JP5109238B2 - Manufacturing method of electrolyte membrane - Google Patents

Manufacturing method of electrolyte membrane Download PDF

Info

Publication number
JP5109238B2
JP5109238B2 JP2005188115A JP2005188115A JP5109238B2 JP 5109238 B2 JP5109238 B2 JP 5109238B2 JP 2005188115 A JP2005188115 A JP 2005188115A JP 2005188115 A JP2005188115 A JP 2005188115A JP 5109238 B2 JP5109238 B2 JP 5109238B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrolyte
reinforcing material
membrane
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005188115A
Other languages
Japanese (ja)
Other versions
JP2007012299A (en
Inventor
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005188115A priority Critical patent/JP5109238B2/en
Publication of JP2007012299A publication Critical patent/JP2007012299A/en
Application granted granted Critical
Publication of JP5109238B2 publication Critical patent/JP5109238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は固体高分子型燃料電池で用いられる電解質膜とその製造方法および該電解質膜を備えた膜電極接合体と燃料電池に関する。   The present invention relates to an electrolyte membrane used in a polymer electrolyte fuel cell, a production method thereof, a membrane electrode assembly including the electrolyte membrane, and a fuel cell.

燃料電池の1つとして固体高分子型燃料電池(PEFC)が知られている。固体高分子型燃料電池は、図9に示すように、膜電極接合体(MEA)5を主要な構成要素とし、それを燃料(水素)ガス流路および空気ガス流路を備えたセパレータ4,4で挟持して、単セルと呼ばれる1つの燃料電池6を形成している。膜電極接合体5は、イオン交換膜である電解質膜1の一方側にアノード側の電極(触媒層)2aと拡散層3aを積層し、他方の側にカソード側の電極(触媒層)2bと拡散層3bを積層した構造を有する。   A polymer electrolyte fuel cell (PEFC) is known as one of the fuel cells. As shown in FIG. 9, the polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 5 as a main component, which is a separator 4 provided with a fuel (hydrogen) gas flow path and an air gas flow path. 4, one fuel cell 6 called a single cell is formed. The membrane electrode assembly 5 includes an anode side electrode (catalyst layer) 2a and a diffusion layer 3a laminated on one side of an electrolyte membrane 1 that is an ion exchange membrane, and a cathode side electrode (catalyst layer) 2b on the other side. The diffusion layer 3b has a stacked structure.

固体高分子型燃料電池において用いられる電解質膜は通常10μmから200μm程度の厚さであり、十分な強度を有しないことから、触媒層や拡散層を積層して膜電極接合体とするときに慎重な作業が求められる。また、運転温度が高くなると、膜の弾性率が低下して破損しやすくなり、電池寿命を短縮させる恐れがある。   The electrolyte membrane used in the polymer electrolyte fuel cell is usually about 10 μm to 200 μm thick and does not have sufficient strength. Therefore, when the catalyst layer or the diffusion layer is laminated to form a membrane electrode assembly, be careful. Work is required. In addition, when the operating temperature is high, the elastic modulus of the film is lowered and is easily damaged, which may shorten the battery life.

そのために、電解質膜の強度を向上させるための方法が、特許文献1,2などに提案されている。特許文献1では、無機材料の微粒子を、電解質膜の中央部の濃度は高く、膜表面近傍の濃度は低くなるように、膜厚方向に濃度勾配をもって分散させることが記載されており、微粒子状の無機材料が高分子膜である電解質膜中に複合化して存在することによって、膜強度を向上させている。   Therefore, methods for improving the strength of the electrolyte membrane are proposed in Patent Documents 1 and 2 and the like. Patent Document 1 describes that fine particles of inorganic material are dispersed with a concentration gradient in the film thickness direction so that the concentration in the central portion of the electrolyte membrane is high and the concentration in the vicinity of the membrane surface is low. This inorganic material is present in a composite form in the electrolyte membrane, which is a polymer membrane, thereby improving the membrane strength.

特許文献2には、プロトン伝導性を有する有機珪素化合物の加水分解物マトリックス中に、平均粒子径が5〜500nmのシリカ粒子を分散させることによって、強度や耐熱性を向上させた固体高分子電解質膜が記載されている。   Patent Document 2 discloses a solid polymer electrolyte having improved strength and heat resistance by dispersing silica particles having an average particle diameter of 5 to 500 nm in a hydrolyzate matrix of an organosilicon compound having proton conductivity. A membrane is described.

特開2002−352818号公報JP 2002-352818 A 特開2003−308855号公報JP 2003-308855 A

上記のように、従来の電解質膜強度を向上させる手法は、膜の厚さ方向の全体にわたって何らかの微粒化された補強材を分散混合するようにしており、わずかとはいえ、イオン伝導性に悪影響を及ぼす恐れがある。   As described above, the conventional technique for improving the strength of the electrolyte membrane is to disperse and mix some kind of atomized reinforcing material throughout the thickness direction of the membrane, and although it is slight, it adversely affects the ionic conductivity. There is a risk of affecting.

本発明はそのような事情に鑑みてなされたものであり、電解質膜に固有のイオン伝導性を維持した状態で、物理的強度を向上させた電解質膜とその製造方法を提供することを目的とする。また、そのような電解質膜を備えた膜電極接合体および燃料電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrolyte membrane having improved physical strength and a method for producing the same while maintaining the ionic conductivity inherent to the electrolyte membrane. To do. Moreover, it aims at providing the membrane electrode assembly and fuel cell provided with such an electrolyte membrane.

本発明者は、上記の課題を解決すべく多くの研究と実験とを行うことにより、樹脂フィルムやシートの表層部に微粒化した補強材を分散混合させると、いわゆるアンカー効果により樹脂フィルムやシートの物理的強度が向上することが知られているが、この手法を電解質膜を製造するときに適用する場合、電解質膜に固有のイオン伝導性をほぼ維持した状態で、強度を向上させることができることを知見した。   The present inventor conducted a lot of research and experiments to solve the above problems, and when the dispersed reinforcing material was dispersed and mixed in the surface layer portion of the resin film or sheet, the resin film or sheet was obtained by a so-called anchor effect. Although it is known that the physical strength of the electrolyte membrane is improved, when this technique is applied when manufacturing the electrolyte membrane, it is possible to improve the strength while substantially maintaining the ionic conductivity inherent in the electrolyte membrane. I found out that I can do it.

本発明は、上記の知見に基づくものであり、本発明による電解質膜は、固体高分子型燃料電池で用いられる電解質膜であって、電解質膜の表層部内部に微粒化された補強材が分散混合していることを特徴とする。   The present invention is based on the above findings, and the electrolyte membrane according to the present invention is an electrolyte membrane used in a polymer electrolyte fuel cell, in which the atomized reinforcing material is dispersed inside the surface layer portion of the electrolyte membrane. It is characterized by mixing.

上記本発明による電解質膜では、微粒化された補強材は膜の表層部内部にのみ存在し、内層部には実質的に存在していないので、当該電解質膜の持つイオン伝導性そのものは大きな影響を受けない。一方、表層部内部に分散混合している微粒化された補強材によって、いわゆるアンカー効果が生じるので、電解質膜の強度は向上する。   In the electrolyte membrane according to the present invention, since the atomized reinforcing material exists only in the surface layer portion of the membrane and does not substantially exist in the inner layer portion, the ionic conductivity itself of the electrolyte membrane has a great influence. Not receive. On the other hand, since the so-called anchor effect is generated by the atomized reinforcing material dispersed and mixed in the surface layer portion, the strength of the electrolyte membrane is improved.

なお、本発明による電解質膜において、「電解質膜の表層部」とは、微粒化された補強材が分散して存在することにより、アンカー効果による強度向上という物理現象が生じる範囲の電解質膜の表層部領域をいい、電解質膜の材料や補強材の粒子径などによって変化はするものの、電解質膜表面から数ミクロンの範囲、より好ましくは、1μm〜10μmは範囲である。また、分散量は、電解質膜の表層部に平均に分散混合した状態で、その30%程度以下を占める程度の量であることが好ましく、分散量が30%を超えると、電解質膜のイオン伝導性を低下させる恐れがある。好ましくは、20%〜25%の範囲であり、5%未満の場合には、十分なアンカー効果が得られない。   In the electrolyte membrane according to the present invention, the “surface layer portion of the electrolyte membrane” means the surface layer of the electrolyte membrane in a range in which a physical phenomenon of strength improvement by the anchor effect occurs due to the presence of the dispersed atomized reinforcing material. This is a partial region, which varies depending on the material of the electrolyte membrane and the particle diameter of the reinforcing material, but is in the range of several microns from the electrolyte membrane surface, more preferably in the range of 1 μm to 10 μm. Further, the dispersion amount is preferably an amount that occupies about 30% or less of the electrolyte membrane in the state of being dispersed and mixed on the surface layer on average, and when the dispersion amount exceeds 30%, the ionic conduction of the electrolyte membrane There is a risk of reducing the sex. Preferably, it is in the range of 20% to 25%, and when it is less than 5%, a sufficient anchor effect cannot be obtained.

本発明による電解質膜において、電解質膜を構成する電解質材料は、従来の固体高分子型燃料電池用膜電極接合体で用いられる電解質膜を構成する電解質材料をすべて用いることができる。ただし、後記するように、電解質ポリマーを溶剤に分散させた形のいわゆる溶剤型電解質材料(H型電解質材料)により電解質膜を作る場合と、電解質ポリマーの前駆体高分子からなる電解質材料(F型電解質材料)により電解質膜を作る場合とでは、製造方法が異なる。しかし、いずれによる場合も、補強材としては、非金属系材料であれば任意のものを用いることができる。好ましくは、アルミナ系(例えば、ベーマイト(AlO(OH))、シリカ(SiO)系、アクリル樹脂系、シリコン樹脂系、などを挙げることができる。 In the electrolyte membrane according to the present invention, as the electrolyte material constituting the electrolyte membrane, all electrolyte materials constituting the electrolyte membrane used in the conventional membrane electrode assembly for a polymer electrolyte fuel cell can be used. However, as will be described later, when an electrolyte membrane is made from a so-called solvent-type electrolyte material (H-type electrolyte material) in which an electrolyte polymer is dispersed in a solvent, and an electrolyte material (F-type electrolyte) made of a precursor polymer of the electrolyte polymer The manufacturing method is different from the case where an electrolyte membrane is made depending on the material. However, in any case, any reinforcing material can be used as long as it is a nonmetallic material. Preferably, alumina (e.g., boehmite (AlO (OH)), silica (SiO 2) based, acrylic resin-based, silicone resin, and the like.

微粒化した補強材の大きさは、製造しようとする電解質膜の膜厚によっても異なるが、好ましくは、平均粒径が0.01μm以上10μm以下である。粒径0.01μm未満のものは十分なアンカー効果を発揮することができず、所望の強度向上効果が現れない。10μmを超えるものは、電解質膜の表層部にのみ当該補強材を分散混合することができず、内層部にまで補強材が存在することとなりがちであり、やはり十分なアンカー効果が発揮されないことが起こる。また、イオン交換性にも悪い影響を生じさせる。   The size of the atomized reinforcing material varies depending on the thickness of the electrolyte membrane to be manufactured, but preferably the average particle size is 0.01 μm or more and 10 μm or less. When the particle size is less than 0.01 μm, a sufficient anchor effect cannot be exhibited, and a desired strength improvement effect does not appear. When the thickness exceeds 10 μm, the reinforcing material cannot be dispersed and mixed only in the surface layer portion of the electrolyte membrane, and the reinforcing material tends to exist even in the inner layer portion, and the sufficient anchor effect may not be exhibited. Occur. It also has a negative effect on ion exchange properties.

本発明による電解質膜は、電解質膜の表裏面の双方に微粒化された補強材が分散混合している形態であってもよく、さらにその表裏面に異なった物性の電解質膜がさらに積層されている形態であってもよい。この場合、異なった物性とは、例えば、EW値(イオン交換基当量重量:equivalent weight)が挙げられる。また、電解質膜は、電解質材料の単独膜から構成したものでもよく、PTFE多孔質膜のような多孔質補強膜に電解質材料を含浸させた形態のものであってもよい。   The electrolyte membrane according to the present invention may have a form in which the atomized reinforcing material is dispersed and mixed on both the front and back surfaces of the electrolyte membrane, and further, electrolyte membranes having different physical properties are further laminated on the front and back surfaces. It may be a form. In this case, the different physical properties include, for example, an EW value (equivalent weight of ion exchange group). The electrolyte membrane may be composed of a single membrane of an electrolyte material, or may be in a form in which a porous reinforcing membrane such as a PTFE porous membrane is impregnated with an electrolyte material.

本発明は、上記の電解質膜を製造する方法も開示する。その一つは、固体高分子型燃料電池で用いられる電解質膜の製造方法であって、溶融状態にある電解質材料の表面に微粒化された補強材を噴射することにより、半電解質材料の表層部内部に微粒化された補強材を分散混合させる工程を少なくとも含むことを特徴とする。この方法では、例えばバブルジェット式の噴射ノズルなどを用いて微粒化された補強材を噴射するときに、微粒化された補強材に所要の運動エネルギーを与えることにより、補強材は半電解質材料の表層部内部に分散した状態で入り込む。この溶融状態にある電解質材料を、通常の電解質膜の場合と同様に、定着および冷却することにより、本発明による電解質膜が製造される。   The present invention also discloses a method for producing the above electrolyte membrane. One of them is a method for producing an electrolyte membrane used in a polymer electrolyte fuel cell, and a surface layer portion of a semi-electrolyte material is injected by injecting atomized reinforcing material onto the surface of the electrolyte material in a molten state. It includes at least a step of dispersing and mixing the atomized reinforcing material therein. In this method, for example, when the atomized reinforcing material is injected using a bubble jet type injection nozzle or the like, the reinforcing material is made of the semi-electrolyte material by giving a required kinetic energy to the atomized reinforcing material. It enters in a dispersed state inside the surface layer. The electrolyte membrane according to the present invention is manufactured by fixing and cooling the electrolyte material in a molten state in the same manner as in the case of a normal electrolyte membrane.

本発明による電解質膜の製造方法の他の態様は、固体高分子型燃料電池で用いられる電解質膜の製造方法であって、電解質膜の表面に微粒化された補強材を分散させる工程と、分散面を加熱加圧して補強材を電解質膜の表層部内部に分散混合させる工程とを少なくとも含むことを特徴とする。この方法では、従来法により製造された電解質膜を用いる。その表面に例えばブラストノズルなどを用いて微粒化された補強材を分散させ、ホットプレスなどで分散面を加熱加圧する。それにより、電解質膜の表層部は溶融し、分散された補強材は、電解質膜の表層部内部に入り込んで、分散混合した状態となる。   Another aspect of the method for producing an electrolyte membrane according to the present invention is a method for producing an electrolyte membrane used in a polymer electrolyte fuel cell, the step of dispersing the atomized reinforcing material on the surface of the electrolyte membrane, And a step of heating and pressing the surface to disperse and mix the reinforcing material inside the surface layer portion of the electrolyte membrane. In this method, an electrolyte membrane manufactured by a conventional method is used. For example, a blast nozzle or the like is used to disperse the atomized reinforcing material on the surface, and the dispersed surface is heated and pressurized by a hot press or the like. Thereby, the surface layer portion of the electrolyte membrane is melted, and the dispersed reinforcing material enters the inside of the surface layer portion of the electrolyte membrane and is in a dispersed and mixed state.

この製造方法による場合には、電解質材料が熱的に強いものであることが必要であり、好ましくは、電解質ポリマーの前駆体高分子からなる電解質材料(F型電解質材料)により作られた電解質膜が用いられ、前記のようにして補強材を分散混合した後に、定法によりプロトン伝導化のための加水分解を行うことにより、本発明による電解質膜が製造される。   In the case of this manufacturing method, it is necessary that the electrolyte material is thermally strong. Preferably, an electrolyte membrane made of an electrolyte material (F-type electrolyte material) made of a precursor polymer of an electrolyte polymer is used. After the reinforcing material is dispersed and mixed as described above, the electrolyte membrane according to the present invention is manufactured by performing hydrolysis for proton conduction by a conventional method.

本発明による電解質膜の製造方法の他の態様は、溶剤型の電解質材料を複数回キャスティングした後に乾燥処理をして固体高分子型燃料電池で用いられる電解質膜を製造する方法であり、表層部のキャスティング膜を構成する溶剤型の電解質材料として微粒化された補強材を分散している電解質材料を用いることを特徴とする。この方法による場合でも、表層部にのみ補強材が分散混合した本発明による電解質膜が製造されることは説明を要しない。   Another aspect of the method for producing an electrolyte membrane according to the present invention is a method for producing an electrolyte membrane for use in a polymer electrolyte fuel cell by casting a solvent-type electrolyte material a plurality of times and then performing a drying treatment. As a solvent-type electrolyte material constituting the casting film, an electrolyte material in which atomized reinforcing materials are dispersed is used. Even in this method, it is not necessary to explain that the electrolyte membrane according to the present invention in which the reinforcing material is dispersed and mixed only in the surface layer portion.

本発明により、電解質膜に固有のイオン伝導性を維持した状態で、物理的強度を向上させた電解質膜が得られる。また、本発明による電解質膜を備えた膜電極接合体を用いた燃料電池は、電解質膜の強度が向上していることから、安定した発電性能を長期にわたり維持することができる。   According to the present invention, an electrolyte membrane with improved physical strength can be obtained while maintaining the ionic conductivity inherent to the electrolyte membrane. Moreover, since the strength of the electrolyte membrane is improved, the fuel cell using the membrane electrode assembly provided with the electrolyte membrane according to the present invention can maintain stable power generation performance over a long period of time.

以下、図面を参照しながら、本発明を実施の形態に基づき説明する。図1〜図7は、本発明による異なった形態の電解質膜をその製造方法と共に説明する図であり、図8は本発明による補強手段を施した電解質膜と補強手段を施さない電解質膜との引張強度の比較の一例を示すグラフである。   Hereinafter, the present invention will be described based on embodiments with reference to the drawings. FIG. 1 to FIG. 7 are diagrams for explaining electrolyte membranes of different forms according to the present invention together with the manufacturing method thereof, and FIG. 8 shows an electrolyte membrane with a reinforcing means according to the present invention and an electrolyte membrane without a reinforcing means. It is a graph which shows an example of the comparison of tensile strength.

図1に示す形態において、溶融状態にある従来知られた電解質材料10が押出ダイ20内に収容されており、定法によりフィルム状に押し出される。図1aに示すように、押出ダイ20の出口近傍には、微粒化した補強材Pを所要の運動エネルギーで噴射する噴射装置30が10mm以下の距離を置いて位置しており、押し出された溶融状態の電解質膜11の表裏面に微粒化した補強材Pを噴射する。噴射された微粒化した補強材Pは自己の持つ運動エネルギーによって電解質膜11の表層部内に入り込む。   In the form shown in FIG. 1, a conventionally known electrolyte material 10 in a molten state is accommodated in an extrusion die 20 and is extruded into a film shape by a conventional method. As shown in FIG. 1a, in the vicinity of the exit of the extrusion die 20, an injection device 30 for injecting the atomized reinforcing material P with a required kinetic energy is located at a distance of 10 mm or less, and the molten melt extruded. The atomized reinforcing material P is sprayed on the front and back surfaces of the electrolyte membrane 11 in a state. The injected atomized reinforcing material P enters the surface layer portion of the electrolyte membrane 11 by its own kinetic energy.

この例において、微粒化した補強材Pとして、耐薬品性および耐熱性(300℃以上)のある平均粒径が10μm以下の樹脂補強粉体、より具体的には、アルミナ系粉体であるベーマイト(AlO(OH))を用いており、噴射装置30としては、バブルジェット式噴射ノズルを用いている。アルコールおよび水に拡散された微粒化した補強材Pは、ノズル先端の加熱部にてアルコールおよび水が加熱発泡することで、溶融状態の電解質膜11に向けて噴射され、表層部内に分散混合した状態となる。   In this example, the atomized reinforcing material P is a resin-reinforced powder having an average particle size of 10 μm or less having chemical resistance and heat resistance (300 ° C. or higher), more specifically, boehmite which is an alumina-based powder. (AlO (OH)) is used, and as the injection device 30, a bubble jet type injection nozzle is used. The atomized reinforcing material P diffused in the alcohol and water is sprayed toward the electrolyte membrane 11 in a molten state by alcohol and water being heated and foamed at the heating portion at the tip of the nozzle, and dispersed and mixed in the surface layer portion. It becomes a state.

表裏面の表層部に補強材Pを分散混合した電解質膜11は、その後、図1bに示すように、従来と同様にして定着・冷却ロール31を通過する。それにより、補強材Pは電解質膜11の表層部に定着し、図1cに示されるような電解質膜50となる。表裏面から数ミクロンの範囲s内に分散混合して定着した微粒化された補強材Pは、その領域sでアンカー効果を発揮し、電解質膜50の表裏面から数ミクロンの範囲を補強する。それにより、電解質膜50の強度が向上すると共に、内層部には補強材Pが存在しないために、電解質膜50そのもののイオン交換性能はそのまま維持される。   The electrolyte membrane 11 in which the reinforcing material P is dispersed and mixed in the surface layer portions on the front and back surfaces thereafter passes through the fixing / cooling roll 31 as in the conventional case, as shown in FIG. 1b. As a result, the reinforcing material P is fixed to the surface layer portion of the electrolyte membrane 11 and becomes an electrolyte membrane 50 as shown in FIG. 1c. The atomized reinforcing material P dispersed and mixed within a range s of several microns from the front and back surfaces exhibits an anchor effect in the region s and reinforces a range of several microns from the front and back surfaces of the electrolyte membrane 50. Thereby, the strength of the electrolyte membrane 50 is improved and the reinforcing material P is not present in the inner layer portion, so that the ion exchange performance of the electrolyte membrane 50 itself is maintained as it is.

図2に示す電解質膜50Aは、上記のようにして製造した電解質膜50の表裏面に、EW値の異なる電解質膜51,51を配置し(図2a)、それを熱圧することによって一体化して(図2b)、複合膜構造を備えた電解質膜50Aとしている。なお、この場合に、加熱により電解質膜50および電解質膜51のイオン交換性能が劣化することが起こり得る。従って、このような加熱処理を後で行う場合には、電解質材料として、熱的に強い電解質ポリマーの前駆体高分子からなる電解質材料(F型電解質材料)を用いることが好ましい。複合化後に、プロトン伝導化のための加水分解処理(例えば、スルホニルフロライドの末端のSOF→SOHに変換するなどの処理)を行い、電解質膜とする。 The electrolyte membrane 50A shown in FIG. 2 is integrated by disposing electrolyte membranes 51 and 51 having different EW values on the front and back surfaces of the electrolyte membrane 50 manufactured as described above (FIG. 2a) and heat-pressing them. (FIG. 2b), an electrolyte membrane 50A having a composite membrane structure is formed. In this case, the ion exchange performance of the electrolyte membrane 50 and the electrolyte membrane 51 may be deteriorated by heating. Therefore, when such heat treatment is performed later, it is preferable to use an electrolyte material (F-type electrolyte material) made of a precursor polymer of a thermally strong electrolyte polymer as the electrolyte material. After the complexation, hydrolysis treatment for proton conduction (for example, treatment such as conversion from SO 2 F to SO 3 H at the terminal of the sulfonyl fluoride) is performed to obtain an electrolyte membrane.

図3に示す形態では、前記のようにF型電解質材料を用いて作った電解質膜52の一方の表面に、ブラストノズル32内に収容した微粒化した補強材Pをエアーを利用してノズルより分散させて吹き付けている(図3a)。表面に飛散した微粒化した補強材Pが乗った電解質膜52を熱圧プレスの下型33の上に置き、130℃〜280℃程度に加熱した上型34でゆっくりと押し付ける(図3b)。加熱により膜表層部が次第に溶融し、表面に乗っていた補強材Pは電解質膜52の表層部内部に浸入して定着する(図3c)。冷却してプレスから取り出すことにより、一方の表層部に補強材Pが分散含浸した電解質膜50Bが得られる(図3d)。裏面側の表層部にも補強材Pを分散含浸させる場合には、電解質膜50Bを反転させて、同様の加工を繰り返す。   In the embodiment shown in FIG. 3, the atomized reinforcing material P accommodated in the blast nozzle 32 is applied to one surface of the electrolyte membrane 52 made of the F-type electrolyte material as described above from the nozzle using air. It is dispersed and sprayed (FIG. 3a). The electrolyte membrane 52 on which the atomized reinforcing material P scattered on the surface is placed is placed on the lower die 33 of the hot press and is slowly pressed by the upper die 34 heated to about 130 ° C. to 280 ° C. (FIG. 3b). The membrane surface layer portion is gradually melted by heating, and the reinforcing material P on the surface penetrates into the surface layer portion of the electrolyte membrane 52 and is fixed (FIG. 3c). By cooling and taking out from the press, an electrolyte membrane 50B in which the reinforcing material P is dispersed and impregnated in one surface layer portion is obtained (FIG. 3d). When the reinforcing material P is dispersed and impregnated in the surface layer portion on the back side, the electrolyte membrane 50B is inverted and the same processing is repeated.

図4に示す形態では、前記したF型電解質材料を用いて作った電解質膜52の一方の面に、アルコールおよび水に分散させた補強材Paをコーティングし(図4a)、乾燥させてアルコールおよび水を飛ばすことにより、膜表面に補強材Pを付着させている(図4b)。図4bに示す電解質膜に対して、前記した図3bに示した以降の工程を行うことにより、同様な電解質膜50Bを得ることができる。   In the form shown in FIG. 4, a reinforcing material Pa dispersed in alcohol and water is coated on one surface of the electrolyte membrane 52 made using the F-type electrolyte material (FIG. 4 a), and dried to allow the alcohol and By blowing water, the reinforcing material P is attached to the membrane surface (FIG. 4b). A similar electrolyte membrane 50B can be obtained by performing the subsequent steps shown in FIG. 3b on the electrolyte membrane shown in FIG. 4b.

図5に示す電解質膜50Cは、図3dに示した形態の片面にのみ補強材Pを分散含浸させた電解質膜50Bの2枚を溶融結合して、表裏面双方の表層部に補強材Pを分散含浸させた電解質膜としている。   The electrolyte membrane 50C shown in FIG. 5 is obtained by melt-bonding two electrolyte membranes 50B in which the reinforcing material P is dispersed and impregnated only on one side of the form shown in FIG. The electrolyte membrane is dispersed and impregnated.

図6に示す電解質膜50Dは、多孔質補強膜40の表裏面に前記した電解質膜50Bを積層し、それを図3示したようなホットプレスを用いて、両面から加熱することにより電解質膜50Bを溶融状態とし、それを多孔質補強膜40内に含浸して電解質膜50Dとしている。この形態では、微粒化した補強材Pによるアンカー効果がもたらす表層部の強度向上に加えて、多孔質補強膜40による内層部の強度向上ももたらされる。なお、多孔質補強膜40には、従来から電解質膜で用いられているPTFE多孔質膜のような材料を適宜用いることができる。   The electrolyte membrane 50D shown in FIG. 6 is formed by laminating the electrolyte membrane 50B described above on the front and back surfaces of the porous reinforcing membrane 40, and heating it from both sides using a hot press as shown in FIG. Is made into a molten state, which is impregnated in the porous reinforcing membrane 40 to form an electrolyte membrane 50D. In this embodiment, the strength of the inner layer portion is also improved by the porous reinforcing film 40 in addition to the strength improvement of the surface layer portion brought about by the anchor effect by the atomized reinforcing material P. For the porous reinforcing film 40, a material such as a PTFE porous film conventionally used for an electrolyte film can be used as appropriate.

図7に示す形態では、溶剤型の電解質材料10Aを用いて電解質膜を製造する場合の一例を示している。この場合には、製造過程で熱処理工程は含まれない。図7aに示すように、容器36内で、キャスティングした電解質溶液10Aを乾燥させる工程を複数回繰り返した後、電解質膜52の上に、溶剤を含んでいる電解質溶液中に補強材Pを分散させた電解質溶液53をキャスティングし(図7b)、それを乾燥させて溶剤を飛ばす(図7c)。それをキャスティング容器から取り出すことにより、一方の表層部内部に微粒化した補強材Pを分散含浸した電解質膜50E(図7d)が得られる。両面の表層部に補強材Pを分散含浸した電解質膜を得る場合には、図7dに示す形態の電解質膜50Eを反転させて、同じ工程を繰り返せばよい。   In the form shown in FIG. 7, an example in the case of manufacturing an electrolyte membrane using the solvent-type electrolyte material 10A is shown. In this case, the heat treatment step is not included in the manufacturing process. As shown in FIG. 7a, after the process of drying the cast electrolyte solution 10A is repeated a plurality of times in the container 36, the reinforcing material P is dispersed in the electrolyte solution containing the solvent on the electrolyte membrane 52. The electrolyte solution 53 was cast (FIG. 7b), dried, and the solvent was blown off (FIG. 7c). By taking it out from the casting container, an electrolyte membrane 50E (FIG. 7d) in which the atomized reinforcing material P is dispersed and impregnated inside one surface layer portion is obtained. When obtaining an electrolyte membrane in which the reinforcing material P is dispersed and impregnated on the surface layer portions on both sides, the electrolyte membrane 50E in the form shown in FIG. 7d may be inverted and the same steps may be repeated.

図8は、本発明の方法によって製造した粉体補強電解質膜(補強材としてベーマイト(AlO(OH))を使用)と、同じ電解質材料を用い表層部内部に微粒化した補強材を分散含浸させる工程を行わない以外は、同じ製造方法で製造した電解質膜(未補強電解質膜)に対して、同じ条件で引張強度を比較テストしたときの、結果を示している。テストは室温で行っている。図8のグラフに示すように、同じ変位(mm)に対する引張強度(N)は、本発明の方法により製造した粉体補強電解質膜が大きくなっており、膜強度が向上していることが示される。   FIG. 8 shows a powder-reinforced electrolyte membrane manufactured by the method of the present invention (boehmite (AlO (OH)) is used as a reinforcing material), and the same electrolytic material is used to disperse and impregnate the atomized reinforcing material inside the surface layer portion. The result when carrying out the comparative test of the tensile strength on the same conditions is shown with respect to the electrolyte membrane manufactured by the same manufacturing method (unreinforced electrolyte membrane) except not performing a process. The test is performed at room temperature. As shown in the graph of FIG. 8, the tensile strength (N) with respect to the same displacement (mm) indicates that the powder-reinforced electrolyte membrane produced by the method of the present invention is large and the membrane strength is improved. It is.

本発明による電解質膜とその製造方法の一形態を説明する図。The figure explaining one form of the electrolyte membrane by this invention, and its manufacturing method. 本発明による電解質膜とその製造方法の他の形態を説明する図。The figure explaining the other form of the electrolyte membrane by this invention, and its manufacturing method. 本発明による電解質膜とその製造方法のさらに他の形態を説明する図。The figure explaining further another form of the electrolyte membrane by this invention, and its manufacturing method. 本発明による電解質膜とその製造方法のさらに他の形態を説明する図。The figure explaining further another form of the electrolyte membrane by this invention, and its manufacturing method. 本発明による電解質膜とその製造方法のさらに他の形態を説明する図。The figure explaining further another form of the electrolyte membrane by this invention, and its manufacturing method. 本発明による電解質膜とその製造方法のさらに他の形態を説明する図。The figure explaining further another form of the electrolyte membrane by this invention, and its manufacturing method. 本発明による電解質膜とその製造方法のさらに他の形態を説明する図。The figure explaining further another form of the electrolyte membrane by this invention, and its manufacturing method. 本発明の方法によって製造した粉体補強電解質膜と表層部内部に微粒化した補強材を分散含浸させる工程を行わない以外は同じ製造方法で製造した電解質膜における引張強度試験の結果を示すグラフ。The graph which shows the result of the tensile strength test in the electrolyte membrane manufactured with the same manufacturing method except not performing the process of carrying out the dispersion | distribution impregnation of the powder reinforced electrolyte membrane manufactured by the method of this invention, and the reinforcing material atomized inside the surface layer part. 固体高分子型燃料電池を説明するための図。The figure for demonstrating a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

P…微粒化した補強材、s…電解質膜の表層部領域、10…電解質材料、11…溶融状態の電解質膜、20…押出ダイ、30…噴射装置(バブルジェット式噴射ノズル)、31…定着・冷却ロール、32…ブラストノズル、33…熱圧プレスの下型、34…熱圧プレスの上型、40…多孔質補強膜、50、50A、50B、50C、50D…電解質膜、51…EW値の異なる電解質膜 P: Atomized reinforcing material, s: Surface layer region of electrolyte membrane, 10 ... Electrolyte material, 11 ... Molten electrolyte membrane, 20 ... Extrusion die, 30 ... Injection device (bubble jet type injection nozzle), 31 ... Fixing -Cooling roll, 32 ... Blast nozzle, 33 ... Lower die of hot press, 34 ... Upper die of hot press, 40 ... Porous reinforcing membrane, 50, 50A, 50B, 50C, 50D ... Electrolyte membrane, 51 ... EW Electrolyte membranes with different values

Claims (4)

固体高分子型燃料電池で用いられる電解質膜の製造方法であって、溶融状態にある電解質材料の表面に微粒化されたアルミナ系材料である補強材を噴射することにより、電解質材料の表層部の表面から1μm〜10μmの範囲に前記アルミナ系材料である補強材を分散混合させる工程を少なくとも含むことを特徴とする電解質膜の製造方法。 A process for producing an electrolyte membrane used in polymer electrolyte fuel cells, by injecting reinforcement is alumina-based material is atomized on the surface of the electrolyte material in a molten state, the surface layer portion of the electrolyte material A method for producing an electrolyte membrane comprising at least a step of dispersing and mixing the reinforcing material, which is the alumina-based material, in a range of 1 μm to 10 μm from the surface . 固体高分子型燃料電池で用いられる電解質膜の製造方法であって、電解質膜の表面に微粒化されたアルミナ系材料である補強材を分散させる工程と、分散面を加熱加圧して前記アルミナ系材料である補強材を電解質膜の表層部の表面から1μm〜10μmの範囲に分散混合させる工程とを少なくとも含むことを特徴とする電解質膜の製造方法。 A process for producing an electrolyte membrane used in polymer electrolyte fuel cell, a step of dispersing the electrolyte membrane reinforcing member is alumina-based material is atomized on the surface of, the alumina-based dispersion surface by heating and pressing And a step of dispersing and mixing a reinforcing material as a material in a range of 1 μm to 10 μm from the surface of the surface layer portion of the electrolyte membrane. 溶剤型の電解質材料を複数回キャスティングした後に乾燥処理をして固体高分子型燃料電池で用いられる電解質膜を製造する方法であって、表層部のキャスティング膜を構成する溶剤型の電解質材料として微粒化されたアルミナ系材料である補強材を分散している電解質材料を用い、電解質膜の表層部の表面から1μm〜10μmの範囲に前記アルミナ系材料である補強材を分散させることを特徴とする電解質膜の製造方法。 A method for producing an electrolyte membrane for use in a polymer electrolyte fuel cell by casting a solvent-type electrolyte material a plurality of times and then subjecting it to a drying treatment, and comprising a fine particle as a solvent-type electrolyte material constituting a casting film of a surface layer portion using of the electrolytic material dispersed a reinforcing material is an alumina-based material, and wherein Rukoto dispersing a reinforcing material is the alumina-based material in the range of 1μm~10μm from the surface of the surface layer portion of the electrolyte membrane An electrolyte membrane manufacturing method. 微粒化したアルミナ系材料である補強材として平均粒径が0.01μm以上10μm以下である補強材を用いることを特徴とする請求項1〜3のいずれかに記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to any one of claims 1 to 3 , wherein a reinforcing material having an average particle diameter of 0.01 µm or more and 10 µm or less is used as the reinforcing material which is an atomized alumina-based material .
JP2005188115A 2005-06-28 2005-06-28 Manufacturing method of electrolyte membrane Expired - Fee Related JP5109238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188115A JP5109238B2 (en) 2005-06-28 2005-06-28 Manufacturing method of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188115A JP5109238B2 (en) 2005-06-28 2005-06-28 Manufacturing method of electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2007012299A JP2007012299A (en) 2007-01-18
JP5109238B2 true JP5109238B2 (en) 2012-12-26

Family

ID=37750528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188115A Expired - Fee Related JP5109238B2 (en) 2005-06-28 2005-06-28 Manufacturing method of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP5109238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176664B2 (en) * 2008-04-11 2013-04-03 トヨタ自動車株式会社 Method for producing polymer electrolyte membrane
KR102093536B1 (en) * 2015-11-26 2020-03-25 주식회사 엘지화학 Polymer electrolyte membrane, membrane electrode assembly comprising the same and fuel cell comprising the membrane electrode assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385554B2 (en) * 1992-09-25 2003-03-10 政廣 渡辺 Polymer solid electrolyte composition and electrochemical cell using the composition
JPH06251780A (en) * 1993-02-26 1994-09-09 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JP2000106202A (en) * 1998-09-30 2000-04-11 Toshiba Corp Fuel cell
IT1319649B1 (en) * 2000-11-14 2003-10-23 Nuvera Fuel Cells Europ Srl MEMBRANE-ELECTRODE ASSEMBLY FOR MEMBRANE-POLYMER FUEL CELL.
JP4017510B2 (en) * 2002-12-02 2007-12-05 三洋電機株式会社 Method for producing polymer electrolyte fuel cell
JP2005116308A (en) * 2003-10-07 2005-04-28 Toyota Motor Corp Method of manufacturing fuel cell electrode
JP2006012458A (en) * 2004-06-22 2006-01-12 Matsushita Electric Ind Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP2007012299A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
KR101860873B1 (en) Fuel cell-electrolyte membrane containing the same, and manufacturing method thereof
US8293428B2 (en) Gas diffusion electrode material and production method thereof
EP1436852B1 (en) Separator for fuel cell and method of manufacture therefor
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
US20120152451A1 (en) Method for producing fuel cell electrolyte membrane and method for producing membrane-electrolyte assembly
JP5188872B2 (en) Direct oxidation fuel cell
JPWO2007052650A1 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2008159426A (en) Solid polymer electrolyte fuel cell and manufacturing method therefor
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
US20070126137A1 (en) Method of manufacturing integrated bipolar plate/diffuser components for proton exchange membrane fuel cells
JP2004346411A (en) Porous board, and its production method
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
KR20160009584A (en) Base material for gas diffusion electrode
JP5109238B2 (en) Manufacturing method of electrolyte membrane
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
KR101877755B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2007179870A (en) Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
KR101040428B1 (en) Dual structure gas diffusion layer carbon substrate of Polymer Electrolyte Membrane type fuel cell membrane electrode assembly and its manufacturing method
JP2008041348A (en) Polymer electrolyte fuel cell and its manufacturing method
CN114335584A (en) Bipolar plate preform and preparation method thereof, bipolar plate and preparation method thereof, and fuel cell
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
KR101877750B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2009176545A (en) Method of manufacturing fuel cell
JP2002025572A (en) Separator having groove for solid high polymer molecule fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees