JP5109227B2 - Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process - Google Patents

Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process Download PDF

Info

Publication number
JP5109227B2
JP5109227B2 JP2005023650A JP2005023650A JP5109227B2 JP 5109227 B2 JP5109227 B2 JP 5109227B2 JP 2005023650 A JP2005023650 A JP 2005023650A JP 2005023650 A JP2005023650 A JP 2005023650A JP 5109227 B2 JP5109227 B2 JP 5109227B2
Authority
JP
Japan
Prior art keywords
resin particles
styrene
styrene resin
expandable styrene
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005023650A
Other languages
Japanese (ja)
Other versions
JP2006206830A (en
Inventor
龍哉 逸見
有一 上田
武彦 柳生
英一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005023650A priority Critical patent/JP5109227B2/en
Publication of JP2006206830A publication Critical patent/JP2006206830A/en
Application granted granted Critical
Publication of JP5109227B2 publication Critical patent/JP5109227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は発泡性スチレン系樹脂粒子中の残存スチレン量が極めて少ない発泡性スチレン系樹脂粒子の製造方法、およびその製造方法により得られる発泡性スチレン系樹脂粒子に関するものである。   The present invention relates to a method for producing expandable styrene resin particles in which the amount of residual styrene in the expandable styrene resin particles is extremely small, and to expandable styrene resin particles obtained by the production method.

近年、シックハウス問題をうけ、多くの樹脂について樹脂中に含まれる残存スチレン量を低減させる検討が進められている。発泡性スチレン系樹脂粒子についても建材用途、食品用トレー、あるいは容器などを中心に、樹脂粒子中の残存スチレン量を下げる検討が進められている。例えば特許文献1、特許文献2においては、可塑剤を不揮発性のものに代えると共に発泡性スチレン系樹脂粒子中に含まれる残存スチレン量を減少させるような発泡性スチレン系樹脂粒子について記されている。   In recent years, due to the problem of sick house, many resins have been studied to reduce the amount of residual styrene contained in the resin. With regard to expandable styrene resin particles, studies are underway to reduce the amount of residual styrene in resin particles, mainly for building materials, food trays, and containers. For example, Patent Document 1 and Patent Document 2 describe expandable styrene resin particles that change the plasticizer to a non-volatile one and reduce the amount of residual styrene contained in the expandable styrene resin particles. .

最終的に得られる樹脂粒子中の残存スチレン量を減少させるためには、一般的には重合温度を高くする、あるいは重合時間を長くすることにより、その目的が達成される。しかし、炭化水素系発泡剤を用いる重合系、あるいは、難燃性付与のため、例えばハロゲン系難燃剤を用いる重合系においては、開始剤の一次ラジカルが炭化水素系発泡剤、もしくはハロゲン系難燃剤に対して水素引き抜き反応を行うので、一般的な方法である高温度、長時間重合を実施した場合においても残存スチレン量は減少しにくい。特に特許文献3においては残存スチレン量を300ppm以下にする方法が記されているが、発泡剤であるブタン添加後、120℃で6時間反応させるなど、極めて生産効率の悪い手段を用いて解決している。   In order to reduce the amount of residual styrene in the finally obtained resin particles, the object is generally achieved by increasing the polymerization temperature or extending the polymerization time. However, in a polymerization system using a hydrocarbon-based blowing agent or a polymerization system using a halogen-based flame retardant for imparting flame retardancy, for example, the primary radical of the initiator is a hydrocarbon-based blowing agent or a halogen-based flame retardant. In contrast, since the hydrogen abstraction reaction is performed, the amount of residual styrene is difficult to decrease even when polymerization is performed at a high temperature for a long time, which is a general method. In particular, Patent Document 3 describes a method of reducing the amount of residual styrene to 300 ppm or less. However, this problem can be solved by using extremely poor production efficiency such as reacting at 120 ° C. for 6 hours after adding butane as a foaming agent. ing.

一方、特許文献4では、従来のt−ブチルパーオキサイドよりも水素引き抜き力が弱い、t−アルキル部分に少なくとも5個の炭素原子を有するアルキルパーオキサイドもしくはその誘導体が開示されている。しかしながら、水素引き抜き力が弱いラジカルを生成することがわかっているt−アルキル部分に少なくとも5個の炭素原子を有するアルキルパーオキサイドもしくはその誘導体を用いる場合、t−アルキル部分の炭素数が増加するに伴い、その重合開始剤の10時間半減期温度が低下する傾向がある事もわかっている。この傾向に従い重合温度を低下させると、開裂した開始剤の運動性が低下し、残存スチレン量の低下が遅くなるという問題が発生する。逆に重合温度を低下させなければ、開始剤の1次開裂が過度に発生し、やはり残存スチレン量は低下しにくくなるという問題がある。   On the other hand, Patent Document 4 discloses an alkyl peroxide having at least 5 carbon atoms in a t-alkyl moiety or a derivative thereof, which has a weaker hydrogen abstraction force than conventional t-butyl peroxide. However, when an alkyl peroxide or derivative thereof having at least 5 carbon atoms in the t-alkyl moiety, which is known to generate a radical having a weak hydrogen abstraction force, the carbon number of the t-alkyl moiety increases. It has also been found that the 10-hour half-life temperature of the polymerization initiator tends to decrease. If the polymerization temperature is lowered according to this tendency, the mobility of the cleaved initiator is lowered, and there is a problem that the decrease in the amount of residual styrene is delayed. Conversely, unless the polymerization temperature is lowered, there is a problem that primary cleavage of the initiator occurs excessively and the residual styrene amount is hardly lowered.

さらに、特許文献5では10時間半減期温度が50℃から80℃の低温型重合開始剤とn−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレートを使用することで、水漏れ防止性に優れた発泡性スチレン系樹脂粒子の製造方法が開示されている。しかし、残存スチレン量に関する記載はなく、特に難燃剤を含んだ系では、特許文献で開示される方法では残存スチレン量は十分に低下しにくいという問題があった。
特開2002−356575号公報 特開平10−17698号公報 特開平11−106548号公報 特開平8−269386号公報 特許第3597109号公報
Furthermore, Patent Document 5 uses a low-temperature polymerization initiator having a 10-hour half-life temperature of 50 ° C. to 80 ° C. and n-butyl-4,4-bis (t-butylperoxy) valerate to prevent water leakage. A method for producing expandable styrene resin particles having excellent properties is disclosed. However, there is no description regarding the amount of residual styrene, and particularly in a system containing a flame retardant, there is a problem that the amount of residual styrene is not sufficiently lowered by the method disclosed in the patent literature.
JP 2002-356575 A Japanese Patent Laid-Open No. 10-17698 JP-A-11-106548 JP-A-8-269386 Japanese Patent No. 3597109

本発明の目的は、生産性を悪化させることなく、発泡性スチレン系樹脂粒子、特に、ハロゲン系難燃剤を含んだ発泡性スチレン系樹脂粒子中の残存モノマー量を好ましくは300ppm以下にする発泡性スチレン系樹脂粒子の製造方法を提供することにある。   The object of the present invention is to expand the residual monomer amount in the expandable styrene resin particles, particularly the expandable styrene resin particles containing a halogen-based flame retardant, to 300 ppm or less without deteriorating the productivity. It is providing the manufacturing method of a styrene-type resin particle.

上記問題を解決すべく鋭意検討したところ、重合開始剤として一般式1に示す化合物を選択し、さらに10時間半減期温度が100℃以上110℃以下である開始剤を併用することによって始めて、生産性を下げることなく、発泡性スチレン系樹脂粒子中の残存スチレン量を大幅に減少させることができることを見出し、本発明の完成に至った。   As a result of diligent studies to solve the above-mentioned problems, production was started only by selecting a compound represented by the general formula 1 as a polymerization initiator and further using an initiator having a 10-hour half-life temperature of 100 ° C. or more and 110 ° C. or less. The present inventors have found that the amount of residual styrene in the expandable styrene-based resin particles can be greatly reduced without lowering the properties, and the present invention has been completed.

即ち、本発明の第1は、スチレン系単量体100重量部に対し、一般式1に示される化合物0.05重量部以上と10時間半減期温度が100℃以上110℃以下である開始剤を使用し、ハロゲン系難燃剤の存在下にスチレン系単量体を重合すると共に、重合中または重合後に発泡剤を含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法に関する。 That is, the first of the present invention is an initiator in which 0.05 parts by weight or more of the compound represented by the general formula 1 and a 10-hour half-life temperature are 100 ° C. or more and 110 ° C. or less with respect to 100 parts by weight of the styrene monomer. And a method for producing expandable styrene resin particles, wherein a styrene monomer is polymerized in the presence of a halogen flame retardant, and a foaming agent is impregnated during or after the polymerization.

Figure 0005109227
好ましい実施態様としては、10時間半減期温度が100℃以上110℃以下である開始剤が、t−ブチルパーオキシベンゾエート、2,2−ジ−(t−アミルパーオキシ)ブタン、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートからなる群から選ばれる1以上であることを特徴とする前記記載の発泡性スチレン系樹脂粒子の製造方法に関する。
Figure 0005109227
In a preferred embodiment, the initiator having a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower is t-butyl peroxybenzoate, 2,2-di- (t-amylperoxy) butane, n-butyl- It is 1 or more chosen from the group which consists of a 4, 4- di- (t-butyl peroxy) valerate, It is related with the manufacturing method of the said expandable styrene resin particle | grains of the said description .

本発明によれば、重合開始剤として一般式1に示す化合物とを選択するとともに10時間半減期温度が100℃以上110℃以下である開始剤を併用することにより、重合温度を高くする、重合時間を延長するなどの生産性悪化の手段を取ることなく、発泡性スチレン系樹脂粒子中の残存スチレン量を低減、好ましくは300ppm以下にすることができる。   According to the present invention, a polymerization temperature is increased by selecting a compound represented by the general formula 1 as a polymerization initiator and using an initiator having a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower in combination. The residual styrene content in the expandable styrene-based resin particles can be reduced, preferably 300 ppm or less, without taking measures to deteriorate productivity such as extending the time.

Figure 0005109227
Figure 0005109227

以下,本発明の実施の形態をより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明に用いるスチレン系単量体としては、スチレン、及び、α―メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレンなどのスチレン系誘導体が挙げられ、さらにスチレンと共重合が可能な成分、例えばメチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート、セチルメタクリレートなどのアクリル酸及びメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレートなどの各種単量体、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの2官能性単量体も包含する。これら共重合が可能な成分を1種又は2種以上使用し共重合に供しても良い。   Examples of the styrene monomer used in the present invention include styrene and styrene derivatives such as α-methyl styrene, paramethyl styrene, t-butyl styrene, chlorostyrene, and components capable of copolymerization with styrene. For example, esters of acrylic acid and methacrylic acid such as methyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, cetyl methacrylate, various monomers such as acrylonitrile, dimethyl fumarate, ethyl fumarate, divinylbenzene, alkylene glycol dimethacrylate Bifunctional monomers such as are also included. One or more of these copolymerizable components may be used for copolymerization.

得られるスチレン系樹脂の分子量としては、使用目的にもよるが、例えば、強度、寸法安定性の観点からは、ゲルパーミエーションクロマトグラフィー(以下、GPC)によるポリスチレン換算での測定で重量平均分子量として20万以上が好ましい。上限は特に定めるものではないが、例えば30万を超えると、予備発泡中の発泡速度の低下する、或いは、成形時により多くの加熱を必要とする等が懸念される。   The molecular weight of the resulting styrene-based resin depends on the purpose of use. For example, from the viewpoint of strength and dimensional stability, the weight average molecular weight is measured by gel permeation chromatography (hereinafter referred to as GPC) in terms of polystyrene. 200,000 or more is preferable. Although the upper limit is not particularly defined, for example, if it exceeds 300,000, there is a concern that the foaming speed during preliminary foaming may be reduced, or that more heating is required during molding.

本発明においては前記スチレン系単量体を後述する分散剤により水中に分散させ、重合開始剤などを加えて、懸濁重合などにより重合し、該重合の途中、あるいは重合後に後述の発泡剤を含浸させて発泡性スチレン系樹脂粒子を得る。   In the present invention, the styrenic monomer is dispersed in water with a dispersant described later, added with a polymerization initiator, and polymerized by suspension polymerization or the like. Impregnated styrene resin particles are obtained by impregnation.

分散剤としては、一般的に懸濁重合に用いられている分散剤、例えば、燐酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウムなどの難水溶性無機塩が挙げられる。これら、難水溶性無機塩を用いる場合には、α−オレフィンスルフォン酸ソーダ、ドデシルベンゼンスルフォン酸ソーダなどのアニオン性界面活性剤を併用すると、分散安定性が増すので効果的である。また、難溶性無機塩は得られる発泡性スチレン系樹脂粒子の粒子径を調節するために、重合中に1回以上追加することもある。   Examples of the dispersant include dispersants generally used for suspension polymerization, for example, poorly water-soluble inorganic salts such as calcium phosphate, hydroxyapatite, and magnesium pyrophosphate. When these poorly water-soluble inorganic salts are used, the use of an anionic surfactant such as α-olefin sodium sulfonate or dodecylbenzene sodium sulfonate is effective because the dispersion stability increases. Further, the hardly soluble inorganic salt may be added one or more times during the polymerization in order to adjust the particle diameter of the resulting expandable styrene resin particles.

本発明は、下記一般式1に示される化合物、及び、10時間半減期温度が100℃以上110℃以下である開始剤を含むことを内容とする。   The present invention includes a compound represented by the following general formula 1 and an initiator having a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower.

Figure 0005109227
一般式1に示される化合物としては、例えば、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−アミルパーオキシ)シクロヘキサンなどが挙げられる。
Figure 0005109227
Examples of the compound represented by the general formula 1 include 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-amylperoxy) cyclohexane, and the like. It is done.

前記一般式1に示す化合物の使用量は、求める発泡性スチレン系樹脂粒子の分子量により異なるが、スチレン系単量体100重量部に対して、0.05重量部以上であり、好ましい下限は0.1重量部である。上限は好ましくは、0.3重量部、更に好ましくは0.2重量部である。一般式1に示す化合物の使用量が、当該範囲内であると、適度な分子量の樹脂が得られ、かつ、残存スチレン量を低減させることが出来る。   The amount of the compound represented by Formula 1 varies depending on the molecular weight of the foamable styrene resin particles to be obtained, but is 0.05 parts by weight or more with respect to 100 parts by weight of the styrene monomer, and the preferred lower limit is 0. .1 part by weight. The upper limit is preferably 0.3 parts by weight, more preferably 0.2 parts by weight. When the amount of the compound represented by the general formula 1 is within the above range, a resin having an appropriate molecular weight can be obtained and the amount of residual styrene can be reduced.

発泡性スチレン系樹脂粒子の製造において、一般的には、主に樹脂を形成するための開始剤と主に残存スチレン量を低下させるための開始剤を併用させることが通常行われている。そして、これらの開始剤の選定は重合温度、重合時間、および必要とする樹脂の分子量を勘案して適宜決められる。よって、本発明においても、一般式1に示される化合物に、一般に用いられる他の重合開始剤を1種或いは2種以上併用することにより、重合温度、重合時間、樹脂の分子量等の選択幅をより広げた上で、残存スチレン量を低減した良好な製品を得ることができるので、併用することは極めて好ましい実施態様である。ここに、一般に用いられる他の重合開始剤としては、過酸化ベンゾイル、t−ブチルパーオキシベンゾエート、イソプロピル−t−ブチルパーオキシカーボネート、過安息香酸ブチルのような有機化酸化物やアゾビスイソブチロニトリル等のアゾ化合物などが例示される。   In the production of expandable styrenic resin particles, generally, an initiator mainly for forming a resin and an initiator mainly for reducing the amount of residual styrene are generally used in combination. The selection of these initiators is appropriately determined in consideration of the polymerization temperature, the polymerization time, and the required molecular weight of the resin. Therefore, also in the present invention, by using one or more other commonly used polymerization initiators in combination with the compound represented by the general formula 1, the selection range such as the polymerization temperature, the polymerization time, and the molecular weight of the resin can be increased. Since it is possible to obtain a good product with a reduced amount of residual styrene after further spreading, it is a very preferable embodiment to use in combination. Examples of other commonly used polymerization initiators include organic oxides such as benzoyl peroxide, t-butyl peroxybenzoate, isopropyl t-butyl peroxycarbonate, butyl perbenzoate, and azobisisobutyrate. Examples include azo compounds such as ronitrile.

本発明においては、前記一般式1に示す化合物に加え、10時間半減期温度が100℃以上110℃以下である開始剤を使用すると、分子量の低下を抑制しつつ、残存スチレン量をさらに低下させる事が可能になる。この開始剤については10時間半減期温度が100℃以上110℃以下である事が重要であり、この範囲であれば重合中の開裂量を極力抑制し、熱処理、あるいは発泡剤含浸工程中に効率よく残存スチレン量を減少させる事ができる。10時間半減期温度が100℃未満の場合、重合中の開裂量が増加し、樹脂の分子量を低下させるため好ましくない。この問題の解決方法として、重合温度を下げることも可能であるが、その場合重合時間が延びるため、工業生産上好ましくない。また、逆に10時間半減期温度が110℃を超える場合、熱処理、あるいは発泡剤含浸中に開裂する開始剤の量が不足し、十分に残存スチレン量を減少させることができない。   In the present invention, when an initiator having a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower is used in addition to the compound represented by the general formula 1, the amount of residual styrene is further reduced while suppressing a decrease in molecular weight. Things are possible. For this initiator, it is important that the 10-hour half-life temperature is 100 ° C. or higher and 110 ° C. or lower. If it is within this range, the amount of cleavage during polymerization is suppressed as much as possible, and the efficiency during the heat treatment or foaming agent impregnation step is reduced. The amount of residual styrene can be reduced well. A 10-hour half-life temperature of less than 100 ° C. is not preferable because the amount of cleavage during polymerization increases and the molecular weight of the resin decreases. As a solution to this problem, it is possible to lower the polymerization temperature. However, in this case, the polymerization time is extended, which is not preferable for industrial production. Conversely, when the 10-hour half-life temperature exceeds 110 ° C., the amount of initiator that cleaves during heat treatment or foaming agent impregnation is insufficient, and the amount of residual styrene cannot be reduced sufficiently.

10時間半減期温度が100℃以上110℃以下の開始剤としては、例えば、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、2,5−ジメチル−2,5−ジ−(ベンゾイルパーオキシヘキサン、t−アミルパーオキシベンゾエート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシアセテート、t−アミルパーオキシアセテート、t−ブチルパーオキシイソシアノナノエート、2,2−ジ−(t−ブチルパーオキシ)ブタン、2,2−ジ−(t−アミルパーオキシ)ブタン、及びn−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートなどが挙げられる。中でもt−ブチルパーオキシベンゾエート、2,2−ジ−(t−アミルパーオキシ)ブタン、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートが好ましい。   Examples of the initiator having a 10-hour half-life temperature of 100 ° C. or more and 110 ° C. or less include t-butylperoxy-2-ethylhexyl carbonate, 2,5-dimethyl-2,5-di- (benzoylperoxyhexane, t -Amyl peroxybenzoate, t-butyl peroxybenzoate, t-butyl peroxyacetate, t-amyl peroxyacetate, t-butyl peroxyisocyano nanoate, 2,2-di- (t-butylperoxy) butane 2,2-di- (t-amylperoxy) butane, n-butyl-4,4-di- (t-butylperoxy) valerate, etc. Among them, t-butylperoxybenzoate, 2, 2-di- (t-amylperoxy) butane, n-butyl-4,4-di- (t-butylperoxy) valere Door is preferable.

10時間半減期温度が100℃以上110℃以下である開始剤の使用量は、スチレン系単量体100重量部に対して、下限が好ましくは0.01重量部、更に好ましくは0.05重量部である。上限は、0.2重量部であることが好ましい。0.01重量部未満でも効果を発揮するが、長時間の熱処理、あるいは発泡剤含浸重合を必要とする傾向がある。また、0.2重量部を超えると、樹脂の分子量が低下する傾向がある。   The use amount of the initiator having a 10-hour half-life temperature of 100 ° C. or more and 110 ° C. or less is preferably 0.01 parts by weight, more preferably 0.05 parts by weight with respect to 100 parts by weight of the styrene monomer. Part. The upper limit is preferably 0.2 parts by weight. Even if it is less than 0.01 parts by weight, the effect is exhibited, but there is a tendency to require a long heat treatment or a foaming agent impregnation polymerization. Moreover, when it exceeds 0.2 weight part, there exists a tendency for the molecular weight of resin to fall.

本発明においては、難燃剤を使用した場合でも顕著な残存スチレン量の低下が見られる。使用することが可能な難燃剤は、発泡性スチレン系樹脂粒子に難燃性を付与する目的で用いられるが、少量で良好な難燃性を発揮させ、かつ成形性を悪化させない難燃剤として、ハロゲン系難燃剤が有効である。ハロゲン系難燃剤としては、市販の一般的なものが使用されるが、その例としては、テトラブロモシクロオクタン、テトラブロモブタン、ヘキサブロモベンゼン、ヘキサブロモシクロドデカン、ポリグリセリンジブロモプロピルエーテル、テトラブロモビスフェノールA、テトラブロモビスフェノールAジアルキルエーテル、ポリ(テトラブロモビスフェノールAジアルキルエーテル)、モノクロロペンタブロモシクロヘキサン等をはじめとして多くの難燃剤が挙げられる。これらの中でも、ポリグリセリンジブロモプロピルエーテル、ポリ(テトラブロモビスフェノールジアルキルエーテル)、ヘキサブロモシクロドデカンが好ましく、更にはヘキサブロモシクロドデカンが最も好ましい。難燃剤の使用量については特に制限はなく、所望の難燃性を付与するに必要な量を添加する事ができる。   In the present invention, even when a flame retardant is used, a remarkable decrease in the amount of residual styrene is observed. The flame retardant that can be used is used for the purpose of imparting flame retardancy to the expandable styrenic resin particles, but as a flame retardant that exhibits good flame retardancy in a small amount and does not deteriorate moldability, Halogen flame retardants are effective. Commercially available halogenated flame retardants are used, and examples thereof include tetrabromocyclooctane, tetrabromobutane, hexabromobenzene, hexabromocyclododecane, polyglycerin dibromopropyl ether, tetrabromo. There are many flame retardants including bisphenol A, tetrabromobisphenol A dialkyl ether, poly (tetrabromobisphenol A dialkyl ether), monochloropentabromocyclohexane and the like. Among these, polyglycerin dibromopropyl ether, poly (tetrabromobisphenol dialkyl ether), and hexabromocyclododecane are preferable, and hexabromocyclododecane is most preferable. There is no restriction | limiting in particular about the usage-amount of a flame retardant, The quantity required in order to provide desired flame retardance can be added.

本発明において使用することの出来る発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタンなど炭素数3以上5以下の炭化水素等の脂肪族炭化水素類、およびジフルオロエタン、テトラフルオロエタンなどのオゾン破壊係数がゼロであるフッ化炭化水素類などの揮発性発泡剤が挙げられる。また、これらの発泡剤を併用することもできる。使用量としてはスチレン系樹脂粒子100重量部に対して、好ましくは3重量部以上12重量部以下、更に好ましくは5重量部以上9重量部以下である。   Examples of the blowing agent that can be used in the present invention include aliphatic hydrocarbons such as hydrocarbons having 3 to 5 carbon atoms such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentane, and difluoroethane and tetrafluoroethane. And volatile foaming agents such as fluorinated hydrocarbons having zero ozone depletion coefficient. Moreover, these foaming agents can also be used together. The amount used is preferably 3 parts by weight or more and 12 parts by weight or less, more preferably 5 parts by weight or more and 9 parts by weight or less, with respect to 100 parts by weight of the styrene resin particles.

本発明においては、残存スチレン量をより効果的に減少させるために重合工程の後、発泡剤含浸工程の前に熱処理工程を実施することが好ましい。熱処理温度は、下限が好ましくは100℃、より好ましくは105℃、更に好ましくは110℃であり、上限は好ましくは130℃、より好ましくは125℃、更に好ましくは120℃であり、当該範囲の間で任意に設定できる。100℃未満では前記一般式1に示す化合物、及び10時間半減期温度が100℃以上110℃以下の開始剤が効率よく開裂せず、残存スチレン量が低下しにくい場合がある。130℃を超えては、例えばハロゲン系難燃剤を使用した際に樹脂が分解し、分子量が低下する場合がある。   In the present invention, in order to more effectively reduce the amount of residual styrene, it is preferable to perform a heat treatment step after the polymerization step and before the foaming agent impregnation step. The lower limit of the heat treatment temperature is preferably 100 ° C., more preferably 105 ° C., still more preferably 110 ° C., and the upper limit is preferably 130 ° C., more preferably 125 ° C., further preferably 120 ° C. Can be set arbitrarily. If it is less than 100 ° C., the compound represented by the general formula 1 and an initiator having a 10-hour half-life temperature of 100 ° C. or more and 110 ° C. or less may not be efficiently cleaved, and the amount of residual styrene may be difficult to decrease. If the temperature exceeds 130 ° C., for example, when a halogen-based flame retardant is used, the resin may decompose and the molecular weight may decrease.

本発明に係る発泡性スチレン系樹脂粒子の製造方法は、例えば以下のとおりである。所定量の水性懸濁媒体中に所定量の一般式1に示される化合物、10時間半減期温度が100℃以上110℃以下である開始剤と共にスチレン系単量体、必要に応じてハロゲン系難燃剤、その他添加剤を添加し、所定の温度、好ましくは90℃以上100℃未満で一定時間重合し、スチレン系単量体の転化率が80%から90%に達した時点で重合工程を完了させる。該重合工程の後、重合温度を所定の温度、好ましくは100℃以上130℃以下に上げ、所定時間熱処理工程を実施することが好ましい。その後、所定の温度まで降温し、発泡剤、発泡助剤等を仕込んだ後、再び昇温する。所定の温度、好ましくは105℃以上120℃以下で一定時間発泡剤含浸工程を実施する。実施後冷却をすると発泡性スチレン系樹脂粒子が得られる。   The production method of the expandable styrene resin particles according to the present invention is, for example, as follows. In a predetermined amount of an aqueous suspension medium, a predetermined amount of a compound represented by the general formula 1, a styrene-based monomer together with an initiator having a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower, and optionally a halogen-based difficulty Add a flame retardant and other additives, polymerize for a certain time at a predetermined temperature, preferably 90 ° C or more and less than 100 ° C, and complete the polymerization process when the conversion rate of styrene monomer reaches 80% to 90% Let After the polymerization step, it is preferable to increase the polymerization temperature to a predetermined temperature, preferably 100 ° C. or higher and 130 ° C. or lower, and perform the heat treatment step for a predetermined time. Thereafter, the temperature is lowered to a predetermined temperature, and after adding a foaming agent, a foaming aid, etc., the temperature is raised again. The foaming agent impregnation step is performed at a predetermined temperature, preferably 105 ° C. or higher and 120 ° C. or lower for a predetermined time. After cooling, foamable styrene resin particles are obtained.

このような製造方法によって得られた発泡性スチレン系樹脂粒子は、残存スチレン量が少なく、好ましくは300ppm以下である。   The expandable styrene resin particles obtained by such a production method have a small amount of residual styrene, preferably 300 ppm or less.

以下に実施例、及び比較例を挙げるが、本発明はこれによって限定されるものではない。なお、実施例、及び比較例中の樹脂の分子量、及び樹脂中の残存スチレン量については以下の方法で測定した。なお、「部」「%」は特に断りのない限り重量基準である。   Examples and Comparative Examples are given below, but the present invention is not limited thereby. In addition, about the molecular weight of resin in an Example and a comparative example, and the amount of residual styrene in resin, it measured with the following method. “Parts” and “%” are based on weight unless otherwise specified.

(分子量測定法)
発泡性スチレン系樹脂粒子をテトラヒドロフランに溶解し、GPC(東ソー(株)製HLC−8020、カラム:TSKgel GMHXL30cm×2、カラム温度:35℃、流速:1ml/1min.)にて測定した。
(残存スチレン測定法)
発泡性スチレン系樹脂粒子を塩化メチレンに溶解し、(株)島津製作所製ガスクロマトグラフィーGC−14B(カラム充填剤:ポリエチレングリコール、カラム温度:110℃、キャリアガス:ヘリウム)を用いて、内部標準法(内部標準:シクロペンタノール)にて発泡性スチレン系樹脂粒子中に含まれる残存スチレン量(ppm)を定量した。
(Molecular weight measurement method)
The expandable styrene resin particles were dissolved in tetrahydrofuran and measured by GPC (HLC-8020 manufactured by Tosoh Corporation, column: TSKgel GMHXL 30 cm × 2, column temperature: 35 ° C., flow rate: 1 ml / 1 min.).
(Residual styrene measurement method)
An expandable styrene resin particle is dissolved in methylene chloride, and an internal standard is used using Shimadzu Corporation gas chromatography GC-14B (column filler: polyethylene glycol, column temperature: 110 ° C., carrier gas: helium). The amount of residual styrene (ppm) contained in the expandable styrene resin particles was determined by the method (internal standard: cyclopentanol).

(実施例1)
6Lオートクレーブに水96重量部、第3リン酸カルシウム0.14重量部、α−オレインスルフォン酸ソーダ0.003重量部、ヘキサブロモシクロドデカン1.0部、過酸化ベンゾイル0.06部、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.139部、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレート0.05部を仕込んだ後、最後にスチレン100重量部を仕込み、98℃で4時間重合を行った。その後110℃で3時間熱処理を行った後98℃に冷却し、ノルマルリッチブタン(ノルマル/イソ=70/30)を8部仕込み、114℃で3時間重合を行った。
Example 1
In a 6 L autoclave, 96 parts by weight of water, 0.14 part by weight of tribasic calcium phosphate, 0.003 part by weight of sodium α-olein sulfonate, 1.0 part of hexabromocyclododecane, 0.06 part of benzoyl peroxide, 1,1- After charging 0.139 part of bis (t-amylperoxy) -3,3,5-trimethylcyclohexane and 0.05 part of n-butyl-4,4-di- (t-butylperoxy) valerate, the last Into this, 100 parts by weight of styrene was charged, and polymerization was carried out at 98 ° C. for 4 hours. Thereafter, heat treatment was performed at 110 ° C. for 3 hours, followed by cooling to 98 ° C., 8 parts of normal rich butane (normal / iso = 70/30) was charged, and polymerization was performed at 114 ° C. for 3 hours.

得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると26.5万、残存スチレン量をガスクロマトグラフィーにて測定すると250ppmであった。結果を表1に示す。   When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 265,000, and when the residual styrene content was measured by gas chromatography, it was 250 ppm. The results are shown in Table 1.

Figure 0005109227
(実施例2)
n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを0.1部仕込んだ以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると24万、残存スチレン量をガスクロマトグラフィーにて測定すると150ppmであった。結果を表1に示す。
Figure 0005109227
(Example 2)
The same operation as in Example 1 was conducted except that 0.1 part of n-butyl-4,4-di- (t-butylperoxy) valerate was charged. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 240,000, and when the residual styrene content was measured by gas chromatography, it was 150 ppm. The results are shown in Table 1.

(実施例3)
n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを0.15部仕込んだ以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると20万、残存スチレン量をガスクロマトグラフィーにて測定すると検出限界以下であった。結果を表1に示す。
(Example 3)
The same operation as in Example 1 was conducted except that 0.15 part of n-butyl-4,4-di- (t-butylperoxy) valerate was charged. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 200,000, and when the residual styrene content was measured by gas chromatography, it was below the detection limit. The results are shown in Table 1.

(実施例4)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.118部、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを0.10部仕込み、熱処理温度を120℃で行った以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると20万、残存スチレン量をガスクロマトグラフィーにて測定すると150ppmであった。結果を表1に示す。
Example 4
Preparation of 0.118 part of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane and 0.10 part of n-butyl-4,4-di- (t-butylperoxy) valerate The same procedure as in Example 1 was performed except that the heat treatment temperature was 120 ° C. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 200,000, and when the residual styrene content was measured by gas chromatography, it was 150 ppm. The results are shown in Table 1.

(実施例5)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.118部、t−ブチルパーベンゾエートを0.116部仕込み、熱処理温度を120℃で行った以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると21万、残存スチレン量をガスクロマトグラフィーにて測定すると180ppmであった。結果を表1に示す。
(Example 5)
Example except that 0.118 part of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane and 0.116 part of t-butylperbenzoate were added and the heat treatment temperature was 120 ° C. 1 was performed. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 210,000, and when the residual styrene content was measured by gas chromatography, it was 180 ppm. The results are shown in Table 1.

(実施例6)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.118部、2,2−ジ−(t−アミルパーオキシ)ブタンを0.0724部仕込み、熱処理温度を120℃で行った以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると22万、残存スチレン量をガスクロマトグラフィーにて測定すると190ppmであった。結果を表1に示す。
(Example 6)
0.118 part of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane and 0.0724 part of 2,2-di- (t-amylperoxy) butane are charged, and the heat treatment temperature is set. It carried out like Example 1 except having performed at 120 degreeC. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 220,000, and when the residual styrene content was measured by gas chromatography, it was 190 ppm. The results are shown in Table 1.

(実施例7)
n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを0.20部仕込み、熱処理温度を105℃で行った以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると20万、残存スチレン量をガスクロマトグラフィーにて測定すると150ppmであった。結果を表1に示す。
(Example 7)
The same procedure as in Example 1 was performed except that 0.20 part of n-butyl-4,4-di- (t-butylperoxy) valerate was charged and the heat treatment temperature was 105 ° C. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 200,000, and when the residual styrene content was measured by gas chromatography, it was 150 ppm. The results are shown in Table 1.

(実施例8)
熱処理の温度を130℃に設定した以外は実施例2と同様に行った。得られた発泡性スチレン系樹脂粒子中の分子量をGPCで測定すると18万、残存スチレン量をガスクロマトグラフィーにて測定すると100ppmであった。結果を表1に示す。
(Example 8)
The heat treatment was performed in the same manner as in Example 2 except that the heat treatment temperature was set to 130 ° C. When the molecular weight in the obtained expandable styrene resin particles was measured by GPC, it was 180,000, and when the residual styrene amount was measured by gas chromatography, it was 100 ppm. The results are shown in Table 1.

(比較例1)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサンのかわりに1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサンを0.108部仕込み、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを仕込まなかった以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると22万、残存スチレン量をガスクロマトグラフィーにて測定すると1000ppmであった。結果を表2に示す。
(Comparative Example 1)
0.108 parts of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane instead of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane The same procedure as in Example 1 was conducted except that n-butyl-4,4-di- (t-butylperoxy) valerate was not charged. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 220,000, and when the residual styrene content was measured by gas chromatography, it was 1000 ppm. The results are shown in Table 2.

Figure 0005109227
(比較例2)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサンのかわりに1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサンを0.108部仕込み、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを仕込まず、且つ熱処理工程の温度を120℃に設定した以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると20万、残存スチレン量をガスクロマトグラフィーにて測定すると800ppmであった。結果を表2に示す。
Figure 0005109227
(Comparative Example 2)
0.108 parts of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane instead of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane The same procedure as in Example 1 was carried out except that the charging, n-butyl-4,4-di- (t-butylperoxy) valerate was not performed, and the temperature of the heat treatment step was set to 120 ° C. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 200,000, and when the residual styrene amount was measured by gas chromatography, it was 800 ppm. The results are shown in Table 2.

(比較例3)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.118部、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを仕込まず、熱処理工程の温度を120℃に設定した以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると23万、残存スチレン量をガスクロマトグラフィーにて測定すると600ppmであった。結果を表2に示す。
(Comparative Example 3)
Heat treatment step without charging 0.118 parts of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane and n-butyl-4,4-di- (t-butylperoxy) valerate This was carried out in the same manner as in Example 1 except that the temperature was set to 120 ° C. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 230,000, and when the residual styrene content was measured by gas chromatography, it was 600 ppm. The results are shown in Table 2.

(比較例4)
n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを仕込まなかった以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子の分子量をGPCで測定すると25万、残存スチレン量をガスクロマトグラフィーにて測定すると500ppmであった。結果を表2に示す。
(Comparative Example 4)
The same procedure as in Example 1 was conducted except that n-butyl-4,4-di- (t-butylperoxy) valerate was not charged. When the molecular weight of the obtained expandable styrene resin particles was measured by GPC, it was 250,000, and when the residual styrene content was measured by gas chromatography, it was 500 ppm. The results are shown in Table 2.

(比較例5)
n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを仕込まず、且つ熱処理工程を実施せず、発泡剤含浸時間を5時間に設定した実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子中の分子量をGPCで測定すると25万、残存スチレン量をガスクロマトグラフィーにて測定すると400ppmであった。結果を表2に示す。
(Comparative Example 5)
This was carried out in the same manner as in Example 1 in which n-butyl-4,4-di- (t-butylperoxy) valerate was not charged, the heat treatment step was not performed, and the blowing agent impregnation time was set to 5 hours. When the molecular weight in the obtained expandable styrene resin particles was measured by GPC, it was 250,000, and when the residual styrene amount was measured by gas chromatography, it was 400 ppm. The results are shown in Table 2.

(比較例6)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン0.31部、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートを仕込まず、熱処理工程の温度を120℃、熱処理工程の時間を6時間に設定した以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子中の分子量をGPCで測定すると16万、残存スチレン量をガスクロマトグラフィーにて測定すると350ppmであった。結果を表2に示す。
(Comparative Example 6)
Heat treatment step without charging 0.31 part of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane and n-butyl-4,4-di- (t-butylperoxy) valerate Was performed in the same manner as in Example 1 except that the temperature was set to 120 ° C. and the time for the heat treatment step was set to 6 hours. When the molecular weight in the obtained expandable styrene resin particles was measured by GPC, it was 160,000, and when the residual styrene content was measured by gas chromatography, it was 350 ppm. The results are shown in Table 2.

(比較例7)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサンのかわりに1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサンを0.108部仕込んだ以外は実施例2と同様に行った。得られた発泡性スチレン系樹脂粒子中の分子量をGPCで測定すると18万、残存スチレン量をガスクロマトグラフィーにて測定すると400ppmであった。結果を表2に示す。
(Comparative Example 7)
0.108 parts of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane instead of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane The same procedure as in Example 2 was performed except for the preparation. When the molecular weight in the obtained expandable styrene resin particles was measured by GPC, it was 180,000, and when the residual styrene amount was measured by gas chromatography, it was 400 ppm. The results are shown in Table 2.

(比較例8)
1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサンのかわりに1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサンを0.22部仕込み、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレート0.15部、且つ熱処理工程を実施せず、発泡剤含浸時間を8時間に設定した以外は実施例1と同様に行った。得られた発泡性スチレン系樹脂粒子中の分子量をGPCで測定すると21万、残存スチレン量をガスクロマトグラフィーにて測定すると660ppmであった。結果を表2に示す。
(Comparative Example 8)
0.21 part of 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane instead of 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane Same as Example 1 except for charging, 0.15 part of n-butyl-4,4-di- (t-butylperoxy) valerate, no heat treatment step and setting the foaming agent impregnation time to 8 hours. Went to. When the molecular weight in the obtained expandable styrene resin particles was measured by GPC, it was 210,000, and when the residual styrene content was measured by gas chromatography, it was 660 ppm. The results are shown in Table 2.

Claims (2)

スチレン系単量体100重量部に対し、一般式1に示される化合物0.05重量部以上と10時間半減期温度が100℃以上110℃以下である開始剤を使用し、ハロゲン系難燃剤の存在下にスチレン系単量体を重合すると共に、重合中または重合後に発泡剤を含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
Figure 0005109227
Using 100 parts by weight of the styrenic monomer, 0.05 parts by weight or more of the compound represented by the general formula 1 and an initiator having a 10-hour half-life temperature of 100 ° C. or more and 110 ° C. or less, A method for producing expandable styrene resin particles, which comprises polymerizing a styrene monomer in the presence and impregnating a foaming agent during or after polymerization.
Figure 0005109227
10時間半減期温度が100℃以上110℃以下である開始剤が、t−ブチルパーオキシベンゾエート、2,2−ジ−(t−アミルパーオキシ)ブタン、n−ブチル−4,4−ジ−(t−ブチルパーオキシ)バレレートからなる群から選ばれる1以上であることを特徴とする請求項1記載の発泡性スチレン系樹脂粒子の製造方法。   Initiators having a 10-hour half-life temperature of 100 ° C. or higher and 110 ° C. or lower are t-butyl peroxybenzoate, 2,2-di- (t-amylperoxy) butane, n-butyl-4,4-di- The method for producing expandable styrene-based resin particles according to claim 1, wherein the number is one or more selected from the group consisting of (t-butylperoxy) valerate.
JP2005023650A 2005-01-31 2005-01-31 Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process Expired - Fee Related JP5109227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023650A JP5109227B2 (en) 2005-01-31 2005-01-31 Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023650A JP5109227B2 (en) 2005-01-31 2005-01-31 Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process

Publications (2)

Publication Number Publication Date
JP2006206830A JP2006206830A (en) 2006-08-10
JP5109227B2 true JP5109227B2 (en) 2012-12-26

Family

ID=36964021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023650A Expired - Fee Related JP5109227B2 (en) 2005-01-31 2005-01-31 Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process

Country Status (1)

Country Link
JP (1) JP5109227B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105457B2 (en) * 2008-03-27 2018-10-24 Arkema France Process for the preparation of expandable polystyrene
JP5713726B2 (en) * 2011-02-25 2015-05-07 積水化成品工業株式会社 Expandable polystyrene resin particles, expanded particles and expanded molded articles
JP6205278B2 (en) * 2014-01-27 2017-09-27 株式会社カネカ Expandable styrene resin particles and method for producing the same
JP6607000B2 (en) * 2015-11-27 2019-11-20 日油株式会社 Mixed curing agent for radical polymerization type thermosetting resin, composition containing the same, curing method thereof, and molded product obtained by curing the composition
JP6910822B2 (en) * 2017-03-21 2021-07-28 株式会社カネカ Styrene-based resin particles and their manufacturing method
JP7073144B2 (en) * 2018-03-08 2022-05-23 株式会社カネカ Method for manufacturing foamable polystyrene resin particles
JP2022542156A (en) 2019-07-26 2022-09-29 中国石油化工股▲ふん▼有限公司 Catalyst system used for olefin polymerization and its application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2915134B2 (en) * 1990-11-19 1999-07-05 三菱化学ビーエーエスエフ株式会社 Method for producing styrene-modified polyethylene resin particles

Also Published As

Publication number Publication date
JP2006206830A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
TWI445748B (en) Flame-retarded, foam-producing styrene-based resin beads
JP5109227B2 (en) Process for producing expandable styrene resin particles and expandable styrene resin particles obtained from the process
JP5632926B2 (en) Styrene polymerization method
JP6410642B2 (en) Expandable resin particles and method for producing the same
JP6249814B2 (en) Expandable resin particles, production method, pre-expanded particles, and expanded molded body
JP6205278B2 (en) Expandable styrene resin particles and method for producing the same
JP6220663B2 (en) Expandable styrene resin particles imparted with flame retardancy and process for producing the same
JP6542623B2 (en) Method for producing expandable polystyrene resin particles
JPH11106548A (en) Styrene-based foaming resin particulate
JP2004211042A (en) Self fire-extinguishing type foaming styrenic resin particle, reserve foaming particle and foamed molded material
JP2007246566A (en) Foamable thermoplastic resin particle and foamed molded article obtained from the same
JP6775371B2 (en) Manufacturing method of foamable styrene resin particles
JP2020094186A (en) Foamable thermoplastic resin particle, thermoplastic pre-foamed particle, thermoplastic foamed molded body and production methods thereof
JP6697862B2 (en) Method for producing expandable styrenic resin particles having flame retardancy
KR100622807B1 (en) Process for the production of expandable polystyrene
JP6539436B2 (en) Expandable polystyrene resin particles
JP4729841B2 (en) Expandable styrenic resin particles and method for producing the same
JP6910822B2 (en) Styrene-based resin particles and their manufacturing method
JP4494074B2 (en) Expandable polystyrene resin particles
JP6677974B2 (en) Method for producing expandable styrene resin particles
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP2019059843A (en) Manufacturing method of foamable styrene resin particle
JPH0461896B2 (en)
KR102065857B1 (en) Flame-retardant expandable styrene resin particles and method for manufacturing the same
JP6679390B2 (en) Expandable styrene resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5109227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees