JP5109112B2 - Ellipsometry system - Google Patents

Ellipsometry system Download PDF

Info

Publication number
JP5109112B2
JP5109112B2 JP2005317352A JP2005317352A JP5109112B2 JP 5109112 B2 JP5109112 B2 JP 5109112B2 JP 2005317352 A JP2005317352 A JP 2005317352A JP 2005317352 A JP2005317352 A JP 2005317352A JP 5109112 B2 JP5109112 B2 JP 5109112B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
polarization
intensity
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005317352A
Other languages
Japanese (ja)
Other versions
JP2007121235A (en
Inventor
浩司 小野
晃 畑山
友之 佐々木
顕雄 江本
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2005317352A priority Critical patent/JP5109112B2/en
Publication of JP2007121235A publication Critical patent/JP2007121235A/en
Application granted granted Critical
Publication of JP5109112B2 publication Critical patent/JP5109112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光波の偏光を測定・解析するシステムにおいて、偏光回折素子の回折特性を応用し、偏光子の回転機構などの機械駆動を含まない偏光解析システムに関するものである。   The present invention relates to a polarization analysis system that applies the diffraction characteristics of a polarization diffraction element and does not include a mechanical drive such as a rotation mechanism of a polarizer in a system that measures and analyzes the polarization of light waves.

光情報処理の高性能化に伴い、光波の持つパラメーターの一つである偏光を利用する光学機器及びシステムが普及してきている。例えば光磁気記録システムにおいては、光磁気記録材料の磁気カー効果による光波の偏波面の回転を検出することによって記録ピットの検出を行っている。また、次世代の高密度記録方式であるホログラム記録においても、偏光多重の概念が提案されている。また、表面分析や光学薄膜の解析に用いられているエリプソメトリでは、表面からの反射光の偏光状態を検出することによって、薄膜の厚さや屈折率を決定する。このような「偏光」を利用した種々の応用をさらに高機能にしていくためには、簡便な偏光状態の解析システムが必要であり、その重要性は今後増大していくものと考えられる。   As the performance of optical information processing increases, optical devices and systems that use polarized light, which is one of the parameters of light waves, have become popular. For example, in the magneto-optical recording system, the recording pit is detected by detecting the rotation of the polarization plane of the light wave due to the magnetic Kerr effect of the magneto-optical recording material. The concept of polarization multiplexing has also been proposed for hologram recording, which is a next-generation high-density recording method. In ellipsometry used for surface analysis and optical thin film analysis, the thickness and refractive index of the thin film are determined by detecting the polarization state of the reflected light from the surface. In order to make various applications using such “polarized light” more sophisticated, a simple polarization state analysis system is necessary, and its importance will increase in the future.

光波は電磁波であり、光波の電界ベクトルは、波の進行方向(z軸とする)に常に直交している(横波)。電界ベクトルは、波動の進行に伴って時間的に振動しながら進行するが、ベクトルの時間的軌跡は、2つの電界成分E、Eの振幅A、A及び、位相差Δで決まり、以下の式(1)で与えられる。 The light wave is an electromagnetic wave, and the electric field vector of the light wave is always orthogonal to the wave traveling direction (referred to as the z-axis) (transverse wave). Electric field vector is proceed while oscillating temporally with the progress of the wave, the temporal trajectory of the vector, two field components E x, the amplitude A x of E y, A y and determined by the phase difference Δ Is given by the following equation (1).

Figure 0005109112
Figure 0005109112

(1)式で与えられる電界ベクトルの時間的軌跡によって偏光が定義されており、その形は一般的には図1に示すような楕円で与えられる。偏光解析を行うということは、この楕円の楕円率及び楕円の傾きを決定することになる。一般的に使われている直線偏光や円偏光は、この楕円の特別な場合に相当する。   Polarization is defined by the temporal trajectory of the electric field vector given by equation (1), and its shape is generally given by an ellipse as shown in FIG. Performing ellipsometry determines the ellipticity of the ellipse and the inclination of the ellipse. Commonly used linearly polarized light and circularly polarized light correspond to the special case of this ellipse.

従来上記の楕円率及び傾きを決定するためには、1/4波長板とグラントムソンプリズム等の検光子の2つが最低限必要で、消光法や回転検光子法などの測定方法により、1/4波長板とグラントムソンプリズムを機械的に回転させて計測する必要があり、解析速度が遅いだけでなく、高価な波長板や検光子を必要とするという欠点があった。   Conventionally, in order to determine the ellipticity and inclination described above, at least two analyzers such as a quarter wave plate and a Glan-Thompson prism are required, and by a measuring method such as a quenching method or a rotating analyzer method, 1 / The four-wavelength plate and the Glan-Thompson prism need to be measured by mechanical rotation, and the analysis speed is slow, and an expensive waveplate and analyzer are required.

特開2004−341024号公報Japanese Patent Laid-Open No. 2004-341024

従来から使用されてきた偏光解析システムは、回転機構を有する波長板と偏光子を組み合わせ、消光位置を検出するものであった。測定の高速化や解析システムのコンパクト化を実現し、高密度光記録システムや高速なエリプソメトリーに応用するために、このような機械的回転機構を用いない偏光解析システムが期待されている。   Conventionally, the ellipsometry system used has been to detect the extinction position by combining a wave plate having a rotating mechanism and a polarizer. In order to realize a high-speed measurement and a compact analysis system and to apply it to a high-density optical recording system and a high-speed ellipsometry, an ellipsometry system that does not use such a mechanical rotation mechanism is expected.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

周期的に変化した固定化された分子配向構造を有する重合層を含む回折格子素子と、この回折格子素子からの回折光強度を測定する検出素子とを含む偏光解析システムであって、前記回格子素子は、強度変調露光により形成される分子配向方向が一定で配向秩序度が周期的に変調された格子ベクトルを有する回折格子と、偏光変調露光により形成される分子配向方向が周期的に変調された格子ベクトルを有する回折格子とを含むものであり、前記強度変調露光により形成された回折格子からの回折光強度を測定して入射偏光の方位角を決定し、前記偏光変調露光により形成された回折格子からの回折光強度を測定して入射偏光の楕円率を決定するように構成したことを特徴とする偏光解析システムに係るものである。 A diffraction grating element comprising a polymer layer having a periodically varying the immobilized molecular orientation structure, a polarization analysis system comprising a detector device for measuring the intensity of diffracted light from the diffraction grating element, the diffraction The grating element consists of a diffraction grating having a lattice vector in which the molecular orientation direction formed by intensity-modulated exposure is constant and the orientation order degree is periodically modulated, and the molecular orientation direction formed by polarization-modulated exposure is periodically modulated. A diffraction grating having a grating vector formed, and measuring an intensity of diffracted light from the diffraction grating formed by the intensity modulation exposure to determine an azimuth angle of incident polarized light, and forming the polarization modulation exposure. The present invention relates to a polarization analysis system configured to measure the intensity of diffracted light from a diffraction grating and determine the ellipticity of incident polarized light .

本発明は上述のように構成したから、周期的に変化した固定化された分子配向構造を有する重合層を含む回折格子素子と、回折格子素子からの回折光強度を測定する検出素子を含むことによって、機械駆動部を要しない偏光解析システムが提供される。   Since the present invention is configured as described above, it includes a diffraction grating element including a polymerized layer having a periodically changed molecular orientation structure and a detection element for measuring the intensity of diffracted light from the diffraction grating element. Provides an ellipsometric system that does not require a mechanical drive.

さらに、本発明では、分子配向方向が一定で配向秩序度が周期的に変調された格子ベクトルと、分子配向方向が周期的に変調された格子ベクトルを含む回折格子素子を有することにより、機械駆動部を要しない偏光解析システムが提供される Furthermore, in the present invention, by having a lattice vector molecular alignment direction orientational order parameter constant is periodically modulated, the diffraction grating element comprising a grating vector that molecular orientation direction is periodically modulated, the machine An ellipsometric system that does not require a drive is provided .

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

すでに述べたように、光波の偏光は、光波の電界ベクトルの時間的軌跡の形によって定義されており、一般的には図1に示すような楕円状の軌跡を描く。楕円の形状を決定するためには、2次元平面の360度の任意の方向の光波の振幅を測定する必要があり、従来からある特定の方向の光波のみを透過する偏光子を用い、それを機械的に回転させて、おのおのの角度での透過光強度を測定する方法が行われてきた。   As described above, the polarization of the light wave is defined by the shape of the temporal trajectory of the electric field vector of the light wave, and generally draws an elliptical trajectory as shown in FIG. In order to determine the shape of an ellipse, it is necessary to measure the amplitude of a light wave in an arbitrary direction of 360 degrees on a two-dimensional plane. Conventionally, a polarizer that transmits only a light wave in a specific direction is used. A method of measuring the transmitted light intensity at each angle by mechanical rotation has been performed.

高価な偏光子とそれを駆動するための機械駆動部を要しない偏光解析システムを提供するために、本発明では、周期的に変化した固定化された分子配向構造を有する重合層を含む回折格子素子を用いる。このような回折格子素子を光学設計の上に作製すると、光波の電界ベクトルの方向によって回折効率の異なる異方性を有する回折格子素子を形成することが可能である。我々は、性質の異なる異方性回折格子の特性を組み合わせ、その2次元回折光のおのおのの回折光強度比を測定・解析することによって、任意の偏光状態を同定できることを見出し本発明に至った。   In order to provide an ellipsometry system that does not require an expensive polarizer and a mechanical driving unit for driving the polarizer, the present invention provides a diffraction grating including a polymerization layer having a periodically changed molecular orientation structure. Use elements. When such a diffraction grating element is fabricated on an optical design, it is possible to form a diffraction grating element having anisotropy with different diffraction efficiency depending on the direction of the electric field vector of the light wave. We have found that an arbitrary polarization state can be identified by combining the characteristics of anisotropic diffraction gratings having different properties, and measuring and analyzing the intensity ratio of each diffracted light of the two-dimensional diffracted light. .

回折格子素子は、光を分波する光学素子として広く用いられている。このような回折格子素子の代表的な作製方法としては、半導体集積回路などの作製に用いるフォトレジストを用いる方法が挙げられる。フォトレジストを塗布した基板に、フォトマスクや干渉法によって周期的に強度変調された紫外線露光を行うことによって、表面に凹凸を有する回折格子を形成し、これから金型を作製して複製することができる。このようにして形成された回折素子は、光学的異方性を有しないため、本発明で提案するような偏光解析システムに用いることはできない。   A diffraction grating element is widely used as an optical element for demultiplexing light. As a typical method for manufacturing such a diffraction grating element, a method using a photoresist used for manufacturing a semiconductor integrated circuit or the like can be given. A substrate coated with a photoresist is exposed to ultraviolet light whose intensity is periodically modulated by a photomask or interferometry, thereby forming a diffraction grating having irregularities on the surface, from which a mold can be produced and replicated. it can. Since the diffractive element formed in this way does not have optical anisotropy, it cannot be used for the ellipsometry system proposed in the present invention.

回折格子素子を偏光解析システムに用いるためには、入射の偏光によって回折効率が異なるといった機能を有する必要がある。我々はすでに、有機分子の周期的分子配向構造を固定化することによって、このような偏光依存性を有する回折格子素子(偏光回折素子)を形成可能であることを提案している[特願2003−134355(特開2004−341024)]。本発明は、前記発明の結果に基き鋭意工夫した結果、光学設計された2次元偏光回折素子とその回折光強度を検出する素子を組み合わせたシステムを用いることにより、本発明の機械駆動部不要な偏光解析システムの提供に至ったものである。   In order to use the diffraction grating element in the ellipsometry system, it is necessary to have a function that the diffraction efficiency varies depending on the incident polarized light. We have already proposed that a diffraction grating element (polarization diffraction element) having such polarization dependence can be formed by fixing the periodic molecular orientation structure of organic molecules [Japanese Patent Application 2003]. -134355 (Japanese Patent Laid-Open No. 2004-341024)]. As a result of diligent efforts based on the results of the present invention, the present invention eliminates the need for the mechanical drive unit of the present invention by using a system that combines an optically designed two-dimensional polarization diffraction element and an element for detecting the intensity of the diffracted light. This led to the provision of an ellipsometry system.

上記のような、偏光回折素子を形成するためには、光学的異方性を高度に制御し、周期性を持たせた構造を有することが必要である。このような目的を達成するためには、例えば光化学反応によって屈折率変化を生じさせる際に同時に光学的異方性を生じさせることが考えられる。   In order to form the polarization diffraction element as described above, it is necessary to have a structure in which optical anisotropy is highly controlled and periodic. In order to achieve such an object, for example, it is conceivable to cause optical anisotropy at the same time when a refractive index change is caused by a photochemical reaction.

このようなことが可能な材料として例えば、ネガ型のフォトレジストであるポリビニルシンナメート(PVCi)が知られている。ポリビニルシンナメートフィルムに直線偏光紫外光を照射すると、ケイ皮酸部の-C=C-結合が偏光の電界方向に平行方向となる場合に光を選択的に吸収して2量化し、その部分の屈折率は低下する。このことを利用すれば、光学的異方性を周期的に制御することが可能であるが、誘起される屈折率異方性は0.01以下と非常に小さいため実用性に乏しい。   For example, polyvinyl cinnamate (PVCi), which is a negative photoresist, is known as a material capable of such a purpose. When the polyvinyl cinnamate film is irradiated with linearly polarized ultraviolet light, when the -C = C- bond of the cinnamic acid portion is parallel to the direction of the electric field of polarized light, light is selectively absorbed and dimerized. The refractive index of decreases. By utilizing this fact, it is possible to periodically control the optical anisotropy, but the induced refractive index anisotropy is as small as 0.01 or less, so that it is not practical.

また、その他の代表的な材料として、アゾベンゼンを含む高分子材料を用いることが検討されている。アゾベンゼン分子は光や熱のような外部からの刺激によってシス体とトランス体の間で異性化反応が起こり、このことを利用して分子配向を制御することができ周期的な分子配向制御も光照射によって行うことが可能である。しかしながら、従来検討されてきた、アゾベンゼンを含む高分子材料では、光学的異方性の発現性があまり大きくないだけでなく、熱や光などの外場の影響によって特性が変化する、あるいは可視領域での光吸収があるなど、高い安定性を要求される受動型の光デバイスへの応用が困難である。   As other representative materials, use of a polymer material containing azobenzene has been studied. The azobenzene molecule undergoes an isomerization reaction between the cis- and trans-forms by external stimuli such as light and heat, and this can be used to control the molecular orientation, and periodic molecular orientation control is also possible. It can be done by irradiation. However, polymer materials containing azobenzene, which have been studied in the past, not only have a very high optical anisotropy, but also change their properties due to the influence of external fields such as heat and light, or in the visible region. Therefore, it is difficult to apply to passive optical devices that require high stability.

上記の状況を鑑み、本発明では、周期的分子配向構造を有する光学的に透明な高分子層を用いること、さらに光反応性高分子液晶を用いることで、メソゲン配向に伴う大きな屈折率異方性による高機能化と高い耐熱性を発現できることを応用し、本発明に係わる偏光解析システムを提供する。   In view of the above situation, in the present invention, by using an optically transparent polymer layer having a periodic molecular alignment structure, and further using a photoreactive polymer liquid crystal, a large refractive index anisotropy associated with mesogen alignment is obtained. A polarization analysis system according to the present invention is provided by applying high performance and high heat resistance due to the property.

光学設計された2次元分子配向パターンを形成する方法としては、マスク露光法、レーザービーム描画法、干渉露光法、などを例示することができ、本発明においては特に限定するものではないが、微細で多様な2次元分子配向パターンを形成するためには、干渉露光法を用いることが望ましい。干渉露光法で、2次元分子配向パターンを形成する方法として、2光波干渉露光において回折格子を重ね書きする方法や、3光波以上の多光束干渉露光による方法を例示できるが、本発明では特に限定されない。   Examples of a method for forming an optically designed two-dimensional molecular alignment pattern include a mask exposure method, a laser beam drawing method, an interference exposure method, and the like, and are not particularly limited in the present invention. In order to form various two-dimensional molecular alignment patterns, it is desirable to use an interference exposure method. Examples of the method for forming a two-dimensional molecular orientation pattern by the interference exposure method include a method in which a diffraction grating is overwritten in a two-wave interference exposure and a method by multi-beam interference exposure with three or more light waves. Not.

干渉光の強度分布及び偏光分布は、図2にまとめるように2光波の偏光状態に強く依存する(図2の中のδは2光波の位相差をあらわしている)。2光波の干渉を考える時、2光波の偏光状態が互いに等しいときには、偏光状態は一定で強度が変調される(強度変調)。また、2光波の偏光状態が互いに直交している場合には、強度は一定で偏光状態が変調される(偏光変調)。前述した偏光に対して分子配向が誘起されるような機能性材料にこのような干渉光を照射すると、空間的に配向状態が変調された構造を形成できる。具体的には、強度変調露光を行うと、分子配向方向が一定で配向秩序度が周期的に変調された格子ベクトルが形成され、偏光変調露光を行うと分子配向方向が周期的に変調された格子ベクトルが形成される。   The intensity distribution and the polarization distribution of the interference light strongly depend on the polarization state of the two light waves as summarized in FIG. 2 (δ in FIG. 2 represents the phase difference of the two light waves). When considering the interference of two light waves, when the polarization states of the two light waves are equal to each other, the polarization state is constant and the intensity is modulated (intensity modulation). When the polarization states of the two light waves are orthogonal to each other, the intensity is constant and the polarization state is modulated (polarization modulation). When a functional material that induces molecular orientation with respect to the polarized light is irradiated with such interference light, a structure in which the orientation state is spatially modulated can be formed. Specifically, when intensity-modulated exposure is performed, a lattice vector in which the molecular orientation direction is constant and the orientation order is periodically modulated is formed. When polarization-modulated exposure is performed, the molecular orientation direction is periodically modulated. A lattice vector is formed.

今、図2中にPPで記載された干渉光によって回折格子を形成したとする。このような露光によって形成された回折格子の透過を表すJonesマトリックスは、以下の式(2)で与えられる。   Now, suppose that a diffraction grating is formed by interference light described in PP in FIG. The Jones matrix representing the transmission of the diffraction grating formed by such exposure is given by the following equation (2).

Figure 0005109112
Figure 0005109112

ここで、

Figure 0005109112
である。但し、dは格子の厚さ、Δnは誘起された複屈折の大きさ、λは波長をあらわしている。(1)式を級数展開して1次の成分を取り出すと、(4)式のようになる。 here,
Figure 0005109112
It is. Where d is the thickness of the grating, Δn is the magnitude of the induced birefringence, and λ is the wavelength. When the primary component is extracted by expanding the series of the formula (1), the formula (4) is obtained.

Figure 0005109112
Figure 0005109112

今、入射光として直線偏光を想定し、偏光方向の方位角をθと書くと、回折格子からの出射光のJonesベクトルは、(5)式で与えられる。   Now, assuming linearly polarized light as incident light and writing the azimuth angle of the polarization direction as θ, the Jones vector of the light emitted from the diffraction grating is given by equation (5).

Figure 0005109112
Figure 0005109112

(5)式から、回折効率は、(6)式で与えられる。   From equation (5), the diffraction efficiency is given by equation (6).

Figure 0005109112
Figure 0005109112

次に、図2のOCで記載されている干渉光で回折格子を形成したとする。このような露光によって形成された回折格子の透過を表すJonesマトリックスは、以下の式(7)で与えられる。   Next, it is assumed that the diffraction grating is formed by the interference light described in OC of FIG. The Jones matrix representing the transmission of the diffraction grating formed by such exposure is given by the following equation (7).

Figure 0005109112
Figure 0005109112

(7)式から一次の成分を取り出すと、(8)式のようになる。   When the primary component is extracted from the equation (7), the equation (8) is obtained.

Figure 0005109112
Figure 0005109112

(8)式で決まる回折効率は、入射偏光の方位角には依存せず、偏光の楕円率に依存する。楕円偏光は次に示す(9)式で表される。   The diffraction efficiency determined by the equation (8) does not depend on the azimuth angle of the incident polarized light but depends on the ellipticity of the polarized light. The elliptically polarized light is expressed by the following equation (9).

Figure 0005109112
Figure 0005109112

従って回折効率は、次に示す(10)式で表される。   Accordingly, the diffraction efficiency is expressed by the following equation (10).

Figure 0005109112
Figure 0005109112

(6)式からわかるように、PP露光で形成された回折格子の回折効率は、入射偏光の方位角に強く依存する。その依存性を図3に示す。また、(10)式からわかるように、OC露光で形成された回折格子の回折効率は、入射偏光の方位角には依存せず、楕円率に依存する。その依存性を図4に示す。図3及び図4から、PP露光で形成された回折格子(分子配向方向が一定で配向秩序度が周期的に変調された格子ベクトルを有する)と、OC露光で形成された回折格子(分子配向方向が周期的に変調された格子ベクトルを有する)からの回折光強度を測定することで、入射偏光の楕円率と方位角の両方を決定できることになる。   As can be seen from the equation (6), the diffraction efficiency of the diffraction grating formed by PP exposure strongly depends on the azimuth angle of incident polarized light. The dependency is shown in FIG. Further, as can be seen from the equation (10), the diffraction efficiency of the diffraction grating formed by the OC exposure does not depend on the azimuth angle of the incident polarized light but depends on the ellipticity. The dependency is shown in FIG. 3 and 4, the diffraction grating formed by PP exposure (having a lattice vector in which the molecular orientation direction is constant and the orientation order is periodically modulated) and the diffraction grating formed by OC exposure (molecular orientation). By measuring the diffracted light intensity from a grating vector whose direction is periodically modulated, it is possible to determine both the ellipticity and azimuth of the incident polarization.

回折格子を形成する高分子材料としては光学的透明性と充分な分子配向と光学的異方性を発現するものであれば良いが、側鎖にメソゲンを有する高分子液晶を用いることによって、材料の液晶性を利用して、高度に配向した状態を形成でき、大きな光学的異方性を発現することができる。さらに好ましくは、高分子層が側鎖に光架橋性のメソゲンを有する高分子液晶であってそのメソゲン末端に光反応性基を有することによって、偏光を用いた分子配向プロセスによって微細な周期配向構造を形成できるだけでなく、架橋構造を取ることによって光素子として応用する際に必要な耐熱性を確保することが可能となる。   The polymer material that forms the diffraction grating may be any material that exhibits optical transparency, sufficient molecular orientation, and optical anisotropy. By using a polymer liquid crystal having a mesogen in the side chain, the material By utilizing the liquid crystallinity, a highly oriented state can be formed and a large optical anisotropy can be expressed. More preferably, the polymer layer is a polymer liquid crystal having a photocrosslinkable mesogen in the side chain and having a photoreactive group at the mesogen end, so that a fine periodic alignment structure is obtained by a molecular alignment process using polarized light. In addition to forming a cross-linked structure, it is possible to ensure the heat resistance necessary for application as an optical element by adopting a crosslinked structure.

回折素子の製造方法としては、上記の光反応性高分子液晶を溶媒に溶解した液を透明基板上に薄く塗布した後に乾燥し、特定の偏光あるいは強度もしくはその両方が周期的に変調している光波によって露光硬化し、その後熱処理による再配向を行う方法や、上記の薄く塗布した層に熱を加えながら特定の偏光あるいは強度もしくはその両方が周期的に変調している光波によって露光硬化させる方法が考えられるが、露光後に熱処理を行う方法が、装置構造が簡略であるなどの点で好ましい。   As a method of manufacturing a diffraction element, a liquid obtained by dissolving the above-mentioned photoreactive polymer liquid crystal in a solvent is thinly applied on a transparent substrate and then dried, and specific polarization and / or intensity is periodically modulated. There are a method of exposing and curing by light wave, and then performing reorientation by heat treatment, and a method of exposing and curing by light wave in which specific polarized light and / or intensity are periodically modulated while applying heat to the thinly coated layer. Though conceivable, a method of performing a heat treatment after exposure is preferable in that the apparatus structure is simple.

上記の光反応性高分子液晶を溶解する溶媒、濃度および溶解方法は特に限定されず、用いる基板や乾燥時間などによって適宜選択される。溶液を均一に塗布する方法としては、スピンコート法、グラビアコート法、コンマコート法などが考えられるが、特に限定されるものではなく、必要とされる面積、基板形状、精度などによって適宜選択される。基板は透明基板であれば特に限定されるものではないが、機能性高分子層の機能を最大限引き出すために、固有複屈折率の小さい透明基板材料が好ましい。このような性質を有する透明基板材料としては、各種ガラス、石英、などの無機材料、ポリメチルメタクリレート、ポリカーボネート、ノルボルネン系高分子、セルロース系高分子、ポリエステル系高分子、などの有機材料を例示できる。基板の形態は特に限定するものではなく、板状、フィルム状などを用途によって適宜選択できる。   The solvent, concentration and dissolution method for dissolving the above-mentioned photoreactive polymer liquid crystal are not particularly limited, and are appropriately selected depending on the substrate used, the drying time, and the like. As a method for uniformly applying the solution, a spin coating method, a gravure coating method, a comma coating method, and the like can be considered, but the method is not particularly limited and is appropriately selected depending on the required area, substrate shape, accuracy, and the like. The The substrate is not particularly limited as long as it is a transparent substrate, but a transparent substrate material having a small intrinsic birefringence is preferable in order to maximize the function of the functional polymer layer. Examples of transparent substrate materials having such properties include inorganic materials such as various types of glass and quartz, and organic materials such as polymethyl methacrylate, polycarbonate, norbornene-based polymers, cellulose-based polymers, and polyester-based polymers. . The form of a board | substrate is not specifically limited, A plate shape, a film form, etc. can be suitably selected according to a use.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

Figure 0005109112
Figure 0005109112

上式(11)の化学構造式を有し、光反応性基がメソゲンに直接結合している光反応性高分子液晶〔液晶温度領域:116℃から300℃以上まで(約300℃で分解)〕をクロロホルムに1重量%の濃度で溶解し、石英基板の上にスピンコーターを用いて約0.3μmの厚みとなるように塗布した。本実施例では、図5(a)に示すようなA,B,C,Dの4種類の格子ベクトルを有する回折格子素子を形成した。4種類の格子ベクトルの成す角は互いに45度であった。He−Cdレーザー(波長:325nm)の光をビームスプリッターにより2つに分け、まず2光波の偏光状態を光学台に対して垂直として干渉させた光波(PP干渉)を95mJ/cm2照射しAの格子を形成し、次にフィルムを45度回転させBの格子を形成、さらに45度回転させCの格子を形成した。次に、さらにフィルムを45度回転させた後、2光波の偏光状態を一方は右回り円偏光、他方を左回り円偏光として干渉させた光波(OC干渉)を95mJ/cm2照射しDの格子を形成した。さらに150℃で15分間熱処理を行って2次元偏光回折素子を作製した。作製された回折格子素子は4つの方向の異なる格子ベクトルを有しているため、図5(b)に示すように、8つの1次回折光が発生した。これらの回折光強度をフォトダイオードによって測定し、図6に示すフローに従って解析し、偏光状態を決定できる。このことを実証するため、任意の3種類の偏光状態を有する光について偏光解析を行った。その結果を図7に示す。図7のシンボルで記載している結果は、従来通りグラントムソンプリズムを回転させて観測した結果であり、曲線が本発明によりおこなった偏光解析の結果である。図7に示すように、本発明によれば、機械駆動部を必要とせず、従来と同等の偏光解析が可能であることがわかる。 A photoreactive polymer liquid crystal having a chemical structural formula of the above formula (11) and having a photoreactive group directly bonded to a mesogen [liquid crystal temperature range: from 116 ° C. to 300 ° C. or higher (decomposes at about 300 ° C.) ] Was dissolved in chloroform at a concentration of 1% by weight and applied on a quartz substrate to a thickness of about 0.3 μm using a spin coater. In this example, diffraction grating elements having four types of grating vectors A, B, C, and D as shown in FIG. 5A were formed. The angles formed by the four types of lattice vectors were 45 degrees. He-Cd laser (wavelength: 325 nm) is divided into two by the beam splitter the light, first light waves (PP interference) obtained by interference as perpendicular to the optical bench of the polarization states of two light waves was 95mJ / cm 2 irradiation A Next, the film was rotated 45 degrees to form a B grating, and further rotated 45 degrees to form a C grating. Next, after further rotating the film by 45 degrees, a light wave (OC interference) that interferes with the polarization state of the two light waves as clockwise circularly polarized light on one side and counterclockwise circularly polarized light on the other is irradiated at 95 mJ / cm 2 A lattice was formed. Furthermore, heat treatment was performed at 150 ° C. for 15 minutes to produce a two-dimensional polarization diffraction element. Since the produced diffraction grating element has different grating vectors in four directions, eight first-order diffracted lights were generated as shown in FIG. These diffracted light intensities can be measured with a photodiode and analyzed according to the flow shown in FIG. 6 to determine the polarization state. In order to prove this, polarization analysis was performed on light having any three kinds of polarization states. The result is shown in FIG. The results described with the symbols in FIG. 7 are the results of observation with the Glan-Thompson prism rotated as before, and the curves are the results of the polarization analysis performed according to the present invention. As shown in FIG. 7, according to the present invention, it is understood that the polarization analysis equivalent to the conventional one can be performed without requiring a mechanical drive unit.

尚、本発明は、実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to the embodiments, and the specific configuration of each component can be designed as appropriate.

楕円偏光の電界ベクトルの軌跡を示す説明図である。It is explanatory drawing which shows the locus | trajectory of the electric field vector of elliptically polarized light. 2光波の偏光状態と干渉した結果を模式的に表した説明図である。It is explanatory drawing which represented typically the result of having interfered with the polarization state of two light waves. PP干渉で形成した回折格子素子の回折効率と入射直線偏光の方位角の関係の計算結果を示すグラフである。It is a graph which shows the calculation result of the relationship between the diffraction efficiency of the diffraction grating element formed by PP interference, and the azimuth angle of incident linearly polarized light. OC干渉で形成した回折格子素子の回折効率と入射楕円偏光の位相差の関係の計算結果を示すグラフである。It is a graph which shows the calculation result of the relationship between the diffraction efficiency of the diffraction grating element formed by OC interference, and the phase difference of incident elliptically polarized light. 本実施例で作製された2次元回折格子の説明図であって、(a)は4つの格子ベクトルの概念を表しており、(b)は形成された回折格子素子からの回折像を模式的に表している。It is explanatory drawing of the two-dimensional diffraction grating produced in the present Example, (a) represents the concept of four grating vectors, (b) is a schematic of the diffraction image from the formed diffraction grating element. It represents. 本実施例の偏光解析法のフローである。It is a flow of the ellipsometry of a present Example. 本実施例による偏光解析の結果を示す説明図であって、シンボルは従来の技術による解析結果であり、曲線が本実施例での結果である。It is explanatory drawing which shows the result of the polarization analysis by a present Example, Comprising: A symbol is an analysis result by a prior art, and a curve is a result in a present Example.

Claims (1)

周期的に変化した固定化された分子配向構造を有する重合層を含む回折格子素子と、この回折格子素子からの回折光強度を測定する検出素子とを含む偏光解析システムであって、前記回格子素子は、強度変調露光により形成される分子配向方向が一定で配向秩序度が周期的に変調された格子ベクトルを有する回折格子と、偏光変調露光により形成される分子配向方向が周期的に変調された格子ベクトルを有する回折格子とを含むものであり、前記強度変調露光により形成された回折格子からの回折光強度を測定して入射偏光の方位角を決定し、前記偏光変調露光により形成された回折格子からの回折光強度を測定して入射偏光の楕円率を決定するように構成したことを特徴とする偏光解析システム。 A diffraction grating element comprising a polymer layer having a periodically varying the immobilized molecular orientation structure, a polarization analysis system comprising a detector device for measuring the intensity of diffracted light from the diffraction grating element, the diffraction The grating element consists of a diffraction grating having a lattice vector in which the molecular orientation direction formed by intensity-modulated exposure is constant and the orientation order degree is periodically modulated, and the molecular orientation direction formed by polarization-modulated exposure is periodically modulated. A diffraction grating having a grating vector formed, and measuring an intensity of diffracted light from the diffraction grating formed by the intensity modulation exposure to determine an azimuth angle of incident polarized light, and forming the polarization modulation exposure. An ellipsometric system characterized in that the ellipticity of incident polarized light is determined by measuring the intensity of diffracted light from the diffraction grating .
JP2005317352A 2005-10-31 2005-10-31 Ellipsometry system Active JP5109112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317352A JP5109112B2 (en) 2005-10-31 2005-10-31 Ellipsometry system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317352A JP5109112B2 (en) 2005-10-31 2005-10-31 Ellipsometry system

Publications (2)

Publication Number Publication Date
JP2007121235A JP2007121235A (en) 2007-05-17
JP5109112B2 true JP5109112B2 (en) 2012-12-26

Family

ID=38145226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317352A Active JP5109112B2 (en) 2005-10-31 2005-10-31 Ellipsometry system

Country Status (1)

Country Link
JP (1) JP5109112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427928B2 (en) 2009-01-26 2013-04-23 Panasonic Corporation Optical head and optical information device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156956A (en) * 2008-12-05 2010-07-15 Jsr Corp Polarizing diffraction element and method of manufacturing the same
TWI838344B (en) * 2017-08-23 2024-04-11 國立大學法人長岡技術科學大學 Polarized camera device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686941B2 (en) * 1987-12-28 1997-12-08 アンリツ株式会社 Polarimeter
JP2004341024A (en) * 2003-05-13 2004-12-02 Koji Ono Polarizing diffraction element and photoreactive polymer liquid crystal for polarizing diffraction element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427928B2 (en) 2009-01-26 2013-04-23 Panasonic Corporation Optical head and optical information device

Also Published As

Publication number Publication date
JP2007121235A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5624741B2 (en) Optical vortex retarder microarray
US8264623B2 (en) Liquid crystal geometrical phase optical elements and a system for generating and rapidly switching helical modes of an electromagnetic wave, based on these optical elements
Holme et al. An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester
CN110389401B (en) 3D alignment method of anisotropic molecules, patterned anisotropic film, and optical element
JP4250894B2 (en) Optical encoder and encoder scale
CN104704406A (en) Direct write lithography for fabrication of geometric phase holograms
US9594276B2 (en) Optical diffraction element, optical pickup, and optical diffraction element manufacturing method
CA2586359A1 (en) Switchable holographic gratings
US5812233A (en) Polarization sensitive devices and methods of manufacture thereof
JP2006201388A (en) Optical diffraction liquid crystal element
CN111999933B (en) Liquid crystal infrared polarization grating and preparation method thereof
JP5109112B2 (en) Ellipsometry system
Sasaki et al. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups
Cloutier et al. Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography
JP2004341024A (en) Polarizing diffraction element and photoreactive polymer liquid crystal for polarizing diffraction element
JP2010281998A (en) Polarizable diffraction grating
Lee et al. Highly Efficient Double Microprism Polarizer with Microstructured Molecular Ordering
JP5046154B2 (en) Method for forming polarization grating
JP2023102081A (en) Polarization diffraction element and polarization analysis device
Sasaki et al. Liquid crystal diffraction gratings using photocrosslinkable liquid crystalline polymer films as alignment layers
Pagliusi et al. Polarization gratings allow for real-time and artifact-free circular dichroism measurements
JP4697538B2 (en) Method for manufacturing polarization diffraction element and polarization diffraction element
Marmysh et al. Polarization volume holograms in layers of polymethylmethacrylate with phenanthrenequinone
JP2005315996A (en) Backlight for liquid crystal display having polarization property
Thieghi et al. Phenomenological analysis of the light intensity dependence of the photoalignment process in azo-containing polymeric films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150