JP5108843B2 - Corrosion test method - Google Patents

Corrosion test method Download PDF

Info

Publication number
JP5108843B2
JP5108843B2 JP2009183050A JP2009183050A JP5108843B2 JP 5108843 B2 JP5108843 B2 JP 5108843B2 JP 2009183050 A JP2009183050 A JP 2009183050A JP 2009183050 A JP2009183050 A JP 2009183050A JP 5108843 B2 JP5108843 B2 JP 5108843B2
Authority
JP
Japan
Prior art keywords
sample
corrosion
terminal member
electrode material
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009183050A
Other languages
Japanese (ja)
Other versions
JP2011033596A (en
Inventor
美里 草刈
太一郎 西川
能章 山野
一成 佐倉
欣吾 古川
保之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2009183050A priority Critical patent/JP5108843B2/en
Priority to PCT/JP2009/003784 priority patent/WO2010016265A1/en
Publication of JP2011033596A publication Critical patent/JP2011033596A/en
Application granted granted Critical
Publication of JP5108843B2 publication Critical patent/JP5108843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属材料からなる部材の耐食性を調べるための腐食試験方法、及び腐食試験システムに関するものである。特に、車両の居住空間内といった屋内環境に配置される金属部材に適した腐食試験方法に関するものである。   The present invention relates to a corrosion test method and a corrosion test system for examining corrosion resistance of a member made of a metal material. In particular, the present invention relates to a corrosion test method suitable for a metal member placed in an indoor environment such as a living space of a vehicle.

各種の金属材料から構成される工業製品の耐食性を調べるための腐食試験方法として、JIS規格の塩水噴霧試験が知られている。この試験では、35℃の塩化ナトリウム水溶液といった腐食溶液が噴霧された雰囲気中に試験片を曝して、所定時間(例えば、数百時間)後の試験片の腐食状況を目視などにより確認することで耐食性を評価する。   A JIS standard salt spray test is known as a corrosion test method for examining the corrosion resistance of industrial products composed of various metal materials. In this test, the test piece is exposed to an atmosphere sprayed with a corrosive solution such as an aqueous sodium chloride solution at 35 ° C., and the corrosion state of the test piece after a predetermined time (for example, several hundred hours) is confirmed visually. Evaluate the corrosion resistance.

JIS Z 2371 塩水噴霧試験、2000年(平成12年)2月20日改正JIS Z 2371 salt spray test, revised on February 20, 2000

塩水噴霧試験といった従来の腐食試験方法では、実環境の模擬試験として適切でない場合がある。   Conventional corrosion test methods such as a salt spray test may not be suitable as a real environment simulation test.

上記塩水噴霧試験は、腐食の進行が速い環境、例えば、自動車のエンジンルームや屋外などの環境を模した加速試験という位置付けである。これに対し、例えば、車両の居住空間内や家屋、建物の室内といった屋内環境に配置された部材は、通常、雨や海水、腐食ガスなどに直接接触し難いことから、エンジンルームや屋外などに配置された場合と比較して腐食の進行が遅いと考えられる。従って、上記屋内環境に配置される部材の耐食性を評価するにあたり上記塩水噴霧試験を利用すると、適切な評価が得られないことがある。   The salt spray test is positioned as an accelerated test that simulates an environment where the progress of corrosion is fast, for example, an environment such as an automobile engine room or outdoors. On the other hand, for example, members placed in indoor environments such as vehicle living spaces, houses, and building interiors are usually difficult to directly contact with rain, seawater, corrosive gases, etc. It is considered that the progress of corrosion is slow compared to the case where it is arranged. Accordingly, when the salt spray test is used in evaluating the corrosion resistance of the members disposed in the indoor environment, an appropriate evaluation may not be obtained.

また、上述のような腐食の進行が比較的遅い環境におかれる部材では、部分的に腐食が生じることがある。例えば、端子付き電線のように、金属材料からなる部材(電線の導体と端子)同士が近接して配置される場合において、電線に具える導体に比して端子が主として腐食することがある。しかし、端子付き電線に対して塩水噴霧試験を行うと、電線に具える導体及び端子の双方ともに腐食する。従って、塩水噴霧試験では、上記端子が主として腐食する環境が模擬されておらず、このような環境の腐食状態を適切に評価することが非常に難しい。   Further, in a member placed in an environment where the progress of corrosion as described above is relatively slow, corrosion may occur partially. For example, in the case where members (conductors and terminals) made of a metal material are arranged close to each other like an electric wire with a terminal, the terminal may be corroded mainly as compared with a conductor included in the electric wire. However, when the salt spray test is performed on the electric wire with terminal, both the conductor and the terminal included in the electric wire are corroded. Therefore, in the salt spray test, an environment in which the terminal mainly corrodes is not simulated, and it is very difficult to appropriately evaluate the corrosion state of such an environment.

更に、自動車の車載システムなどの構成部材には、多種多様な金属材料が用いられてきていることから、異種の金属材料からなる部材間で電気腐食(電食)が生じ得る。このような電食が生じ得る部材に塩水噴霧試験を行うと、電食による試験片の損傷が大き過ぎて、耐食性の評価が実質的にできない。   Furthermore, since various metal materials have been used for components such as in-vehicle systems of automobiles, electric corrosion (electro-corrosion) can occur between members made of different metal materials. When a salt spray test is performed on a member that can cause such electrolytic corrosion, damage to the test piece due to electrolytic corrosion is so great that the corrosion resistance cannot be evaluated substantially.

このように塩水噴霧試験方法では適切な評価が得られ難い環境や条件が存在しており、塩水噴霧試験方法では適切な評価が得られ難い環境、例えば、腐食が比較的緩やかに進行する環境を模擬した腐食試験方法の開発が望まれる。   As described above, there are environments and conditions where it is difficult to obtain an appropriate evaluation by the salt spray test method, and an environment in which an appropriate evaluation is difficult to obtain by the salt spray test method, for example, an environment in which corrosion proceeds relatively slowly. Development of a simulated corrosion test method is desired.

そこで、本発明の目的の一つは、腐食の進行が比較的緩やかな環境を模擬して、耐食性を評価することができる腐食試験方法を提供することにある。また、本発明の他の目的は、上記腐食試験方法の実施に適した腐食試験システムを提供することにある。   Accordingly, one object of the present invention is to provide a corrosion test method that can evaluate corrosion resistance by simulating an environment where the progress of corrosion is relatively slow. Another object of the present invention is to provide a corrosion test system suitable for carrying out the above corrosion test method.

本発明者らは、10年以上の経年自動車の居住空間内に配置されたワイヤーハーネス(複数の電線の端部に端子が取り付けられて束ねられた電線群)について、特に端子の腐食状況を調べた。上記端子は、複数の端子をそれぞれ挿入可能な複数の嵌合穴を有する一つのコネクタに差し込まれていたもの、即ち、狭い空間に複数の端子が密集して配置された環境で使用されていた黄銅製の端子である。これらの各端子は、脱亜鉛(Zn)腐食や脱亜鉛に伴う隙間や欠けが多く認められ、端子を構成する黄銅自体が腐食により欠損した箇所が少なく、ほとんど見られなかった。特に、端子の表面側から内側(電線と接触する側)に向かって脱亜鉛腐食が生じていた。また、導体を構成する銅の腐食がほとんど見られなかった。このことから、上記端子の使用環境は、特に、脱亜鉛腐食の方が黄銅そのものが溶出する腐食よりも生じ易い環境であると考えられる。このような環境を模擬した腐食試験として、上述した塩水噴霧試験に類似の塩水浸漬試験(2日間、60℃に保持)を行ったところ、黄銅の端子だけでなく、銅の導体も腐食していた。従って、この条件の腐食試験は、上記端子が主として腐食する環境を再現した加速腐食試験とは言えない。   The present inventors investigated the corrosion status of terminals in particular, with regard to wire harnesses (a group of electric wires bundled with terminals attached to the ends of a plurality of electric wires) arranged in a living space of an aged automobile over 10 years old. It was. The above terminal was inserted into one connector having a plurality of fitting holes into which a plurality of terminals can be inserted, that is, used in an environment in which a plurality of terminals are densely arranged in a narrow space. It is a brass terminal. In each of these terminals, there were many gaps and chips accompanying dezincification (Zn) corrosion and dezincing, and the brass itself constituting the terminal had few defects due to corrosion, and was hardly seen. In particular, dezincification corrosion occurred from the surface side of the terminal toward the inside (the side in contact with the electric wire). Moreover, there was almost no corrosion of the copper constituting the conductor. From this, it can be considered that the environment in which the terminal is used is an environment in which dezincification corrosion is more likely to occur than corrosion in which brass itself is eluted. As a corrosion test simulating such an environment, a salt water immersion test similar to the salt water spray test described above (held at 60 ° C. for 2 days) was conducted, and not only brass terminals but also copper conductors were corroded. It was. Therefore, the corrosion test under this condition cannot be said to be an accelerated corrosion test that reproduces the environment in which the terminal mainly corrodes.

そこで、本発明者らは、適切な腐食試験条件を得るために、上記採取した端子の環境を更に検討したところ、当該端子の表面側領域において脱亜鉛腐食が生じた箇所では、砂や埃などの粉塵の付着が顕著であり、かつこの粉塵には塩素(Cl)やナトリウム(Na)などが付着していた。また、上記コネクタの隣り合う嵌合穴に挿入された端子間を繋ぐように上記粉塵が付着していた。   Therefore, the present inventors further examined the environment of the collected terminal in order to obtain appropriate corrosion test conditions, and in places where dezincification corrosion occurred in the surface side region of the terminal, sand, dust, etc. The dust was noticeably attached, and chlorine (Cl), sodium (Na), and the like were attached to the dust. In addition, the dust adheres so as to connect the terminals inserted in the adjacent fitting holes of the connector.

上記採取した端子の状態から、銅の導体に比較して黄銅の端子の脱亜鉛腐食が生じた理由は、以下のように推定される。粉塵の表面に塩化ナトリウム(NaCl)といった電解質、特に吸湿性を有する電解質が付着すると、粉塵における付着部分近傍の雰囲気の露点が低下し、雰囲気中の水分が吸着され易くなる。露点の低下により、上記雰囲気が水分を吸着し易くなった結果、上記付着部分近傍は、電解質を含む大気中の水分を吸着し易くなる。即ち、電解質が更に付着され易くなる。経時的に電解質が付着されていくと共に、電解質が付着した状態で温度変化や乾湿の繰り返しなどにより、粉塵の表面の電解質が濃化する(増加する)。この濃化した電解質が水分を吸着して電解液となり、この電解液が隣り合う端子間に介在することで、電圧が印加されている端子間に微小な電流(リーク電流)が流れ得る。また、上記粉塵は、一般に非金属絶縁材料から構成されており、このような絶縁物が端子間に介在することにより、端子間に流れる電流は微小になると考えられる。そして、このリーク電流では、端子を構成する黄銅そのものが溶出するような腐食が生じ難く、黄銅中の亜鉛が溶出する脱亜鉛腐食が生じ易くなったと推測される。また、このリーク電流では、銅の導体の腐食に影響を与え難かったと推測される。   The reason why the dezincification corrosion of the brass terminal compared to the copper conductor is estimated as follows from the collected terminal state. When an electrolyte such as sodium chloride (NaCl), particularly a hygroscopic electrolyte, adheres to the surface of the dust, the dew point of the atmosphere in the vicinity of the adhered portion of the dust decreases, and moisture in the atmosphere is easily adsorbed. As a result of the dew point being lowered, the atmosphere easily adsorbs moisture. As a result, the vicinity of the adhering portion easily adsorbs moisture in the atmosphere including the electrolyte. That is, the electrolyte is more easily attached. As the electrolyte adheres over time, the electrolyte on the surface of the dust concentrates (increases) due to repeated temperature changes and dry and wet conditions with the electrolyte attached. The concentrated electrolyte absorbs moisture to become an electrolytic solution, and this electrolytic solution is interposed between adjacent terminals, so that a minute current (leakage current) can flow between terminals to which a voltage is applied. The dust is generally composed of a non-metallic insulating material, and it is considered that the current flowing between the terminals becomes minute when such an insulator is interposed between the terminals. In addition, it is presumed that the leakage current hardly causes corrosion such that the brass itself constituting the terminal is eluted, and that dezincification corrosion in which zinc in the brass is eluted easily occurs. Further, it is presumed that this leakage current hardly affected the corrosion of the copper conductor.

以上の知見から、本発明では、車両の居住空間内や室内といった腐食が比較的緩やかに進行する環境、特に、リーク電流により腐食が生じるような環境を模擬した加速腐食試験方法として、端子部材といった腐食試験対象と別途用意した電極材との間に電解質を含む流体を介在させた状態で、上記腐食試験対象と上記電極材とに一定の大きさの微弱な電流を通電することを提案する。   From the above knowledge, in the present invention, as an accelerated corrosion test method simulating an environment where corrosion progresses relatively slowly, such as in a vehicle's living space or indoors, particularly an environment where corrosion occurs due to leakage current, a terminal member is used. It is proposed that a weak current of a certain magnitude is passed through the corrosion test object and the electrode material in a state where a fluid containing an electrolyte is interposed between the corrosion test object and a separately prepared electrode material.

本発明の腐食試験方法は、導体の外周に絶縁層を具える電線の端部に端子部材を取り付けた試料の腐食状況を調べるための方法に係るものであり、以下の工程を具える。
上記試料と電極材とを用意して、当該試料の端子部材と当該電極材とを離間して配置する工程。
上記試料の端子部材と上記電極材との間に、電解質を含有する流体を介在させた状態を維持しながら、当該試料の端子部材と当該電極材との間に電流が流れるように、上記試料と上記電極材とに定電流を通電する工程。特に、この通電は、電流値を0.19mA/mm2未満とし、電荷量が20C/mm2以下となる範囲の時間で行う。そして、上記通電後、上記試料の端子部材の腐食状況を評価する。
The corrosion test method of the present invention relates to a method for examining the corrosion state of a sample in which a terminal member is attached to the end of an electric wire having an insulating layer on the outer periphery of a conductor, and includes the following steps.
A step of preparing the sample and the electrode material and arranging the terminal member of the sample and the electrode material apart from each other.
The sample so that a current flows between the terminal member of the sample and the electrode material while maintaining a state in which a fluid containing an electrolyte is interposed between the terminal member of the sample and the electrode material. And applying a constant current to the electrode material. In particular, this energization is performed for a time in a range where the current value is less than 0.19 mA / mm 2 and the charge amount is 20 C / mm 2 or less. And after the said electricity supply, the corrosion condition of the terminal member of the said sample is evaluated.

上記構成によれば、塩水(NaCl水溶液)といった、電解質を含む流体を利用していながらも、電流値及び電荷量の双方を小さくすることで、塩水噴霧試験といった従来の腐食試験方法と比較して、試料の腐食の進行を遅くする(緩やかにする)ことができる。例えば、試料の一部が主として腐食し、残部が腐食し難いといった腐食状態にすることができる。従って、上記構成によれば、従来の塩水噴霧試験や上述した塩水浸漬試験では適切な評価が難しいと考えられる腐食環境、即ち腐食が比較的緩やかに進行する環境を模擬した加速腐食試験として利用することができると期待される。上記腐食環境として、例えば、狭い空間に密集して配置された複数の端子部材間に生じるリーク電流によって腐食が生じる環境が挙げられる。   According to the above configuration, while using a fluid containing an electrolyte such as salt water (NaCl aqueous solution), by reducing both the current value and the amount of charge, compared with a conventional corrosion test method such as a salt spray test. , It is possible to slow (slow) the progress of corrosion of the sample. For example, a corrosive state in which a part of the sample is mainly corroded and the remaining part is hardly corroded can be obtained. Therefore, according to the above configuration, it is used as an accelerated corrosion test that simulates a corrosive environment that is considered difficult to evaluate appropriately in the conventional salt spray test and the salt water immersion test described above, that is, an environment in which corrosion proceeds relatively slowly. Expected to be able to. Examples of the corrosive environment include an environment in which corrosion occurs due to leakage current generated between a plurality of terminal members arranged densely in a narrow space.

また、上記構成によれば、定電流としていることで電荷量を精度良く制御することができ、所定の条件の腐食環境の再現性が高いと期待される。本発明者らは、上記採取した端子と同様の腐食状態を得るために、端子部材を具える電線を一対用意し、両端子部材を離間させてNaCl水溶液といった腐食液に浸漬し、当該端子部材間に腐食液を介在させた状態で、両端子部材間に一定の電圧を印加させてリーク電流を生じさせた。その結果、一方の端子部材(正極側に配置されたもの)は、上記採取した端子の腐食状態と非常によく似た腐食状態となっており、この試験(以下、定電圧試験と呼ぶ)は、再現性があることを確認した。しかし、複数回に亘って上記定電圧試験を行ったところ、電圧の大きさによっては電圧を一定としていても電流値にばらつきが生じることがあった。この電流値のばらつきにより、通電時間を一定としていても電荷量が異なるため、腐食状態にもばらつきが生じる恐れがある。そこで、本発明では、所定の腐食環境を安定して繰り返し得ることができるように、即ち、再現性を高めるために電圧ではなく電流を一定の大きさとする。   Moreover, according to the said structure, it can anticipate that the electric charge amount can be accurately controlled by setting it as a constant current, and it is anticipated that the reproducibility of the corrosive environment of a predetermined condition is high. In order to obtain the same corrosion state as the collected terminal, the present inventors prepare a pair of electric wires having terminal members, immerse both terminal members in a corrosive liquid such as an NaCl aqueous solution, A leak current was generated by applying a constant voltage between the two terminal members with a corrosive liquid interposed therebetween. As a result, one terminal member (disposed on the positive electrode side) is in a corrosion state very similar to the corrosion state of the collected terminal, and this test (hereinafter referred to as a constant voltage test) , Confirmed that there is reproducibility. However, when the above-mentioned constant voltage test was performed a plurality of times, the current value might vary depending on the magnitude of the voltage even if the voltage was constant. Due to the variation in the current value, the amount of charge is different even when the energization time is constant, and there is a possibility that the corrosion state also varies. Therefore, in the present invention, the current, not the voltage, is set to a constant magnitude so that a predetermined corrosive environment can be obtained stably and repeatedly, that is, in order to improve reproducibility.

以下、本発明をより詳細に説明する。
[試料]
本発明腐食試験方法に適用する試料は、導体の外周に絶縁層を具える電線と、この電線の端部に取り付けられた端子部材とを具える端子付き電線とする。このような端子付き電線として、代表的には、自動車や飛行機、産業用ロボットなどのワイヤーハーネスに用いられるものを利用することができる。即ち、試料は、ワイヤーハーネスなどに実際に使用する電線や端子部材と同様な仕様(材質、大きさ(線径や厚さなど)、形状など)のものを用いることができ、電線や端子部材の仕様は特に問わない。所望の電線や端子部材を模した試料を別途作製して利用してもよい。導体や端子部材の材質には、銅、銅合金、アルミニウム、アルミニウム合金などが挙げられる。端子部材を構成する銅合金は、黄銅や、Cu-Sn-Fe-P系合金、Cu-Ni-Si系合金が代表的である。黄銅からなる端子部材を試料の構成要素に利用する場合、本発明により、脱亜鉛腐食の状態を調べられる。電線の導体には、単線、撚り線、圧縮撚り線材などが挙げられ、絶縁層の材質や厚さなども種々のものがある。端子部材には、雄型、雌型、圧着型、溶接型などの種々の形態が挙げられる。試料に利用する電線は、端子部材の取り付け、及び後述する電源手段の取り付け、その他適宜後述する流体槽への配置に必要な長さを有していればよく、その長さは適宜選択することができる。本発明では、上記試料、即ち、1本の電線の一端部に一つの端子部材が取り付けられた形態のものを少なくとも一つ用意する。そして、この試料は、後述する電源手段の正極側に接続する。
Hereinafter, the present invention will be described in more detail.
[sample]
The sample applied to the corrosion test method of the present invention is an electric wire with a terminal including an electric wire having an insulating layer on the outer periphery of a conductor and a terminal member attached to an end portion of the electric wire. As such an electric wire with a terminal, what is typically used for wire harnesses, such as a car, an airplane, and an industrial robot, can be used. In other words, the sample can be of the same specifications (material, size (wire diameter, thickness, etc.), shape, etc.) as the wires and terminal members actually used in the wire harness, etc. The specification of is not particularly limited. A sample imitating a desired electric wire or terminal member may be separately produced and used. Examples of the material of the conductor and the terminal member include copper, copper alloy, aluminum, and aluminum alloy. The copper alloy constituting the terminal member is typically brass, Cu—Sn—Fe—P alloy, or Cu—Ni—Si alloy. When a terminal member made of brass is used as a constituent element of a sample, the state of dezincification corrosion can be examined by the present invention. Examples of the conductor of the electric wire include a single wire, a stranded wire, a compression stranded wire, and the like, and there are various materials and thicknesses of the insulating layer. Examples of the terminal member include various forms such as a male mold, a female mold, a crimping mold, and a welding mold. The wire used for the sample may have a length necessary for the attachment of the terminal member, the attachment of the power supply means described later, and the placement in the fluid tank described later as appropriate, and the length should be appropriately selected. Can do. In the present invention, at least one sample is prepared, that is, one terminal member is attached to one end of one electric wire. And this sample is connected to the positive electrode side of the power supply means mentioned later.

[電極材]
本発明腐食試験方法では、上記試料と、電極材と、後述する電解質を含有する流体とにより、リーク電流のための回路を構成する。後述する試験例で述べるように、リーク電流により腐食が生じ得るのは、電源手段の正極側に接続された試料である。従って、電源手段の負極側に接続させる電極材は、通電が可能なもの、即ち、導電性材料から形成された種々の形態のものが利用できる。例えば、上記試料と同様の形態のもの、即ち、上記試料を一対用意し、一方を電極材として利用してもよい。その他、電極材として導電性材料からなる板材や棒材などを利用することができる。板材や棒材を構成する導電性材料は、試料の端子部材の構成材料と同じ素材でも異なる素材でもよい。例えば、試料の端子部材が黄銅からなる場合、黄銅や銅からなる板材や棒材を利用することができる。
[Electrode material]
In the corrosion test method of the present invention, a circuit for leakage current is constituted by the sample, the electrode material, and a fluid containing an electrolyte described later. As will be described in a test example described later, it is a sample connected to the positive electrode side of the power supply means that can be corroded by a leakage current. Therefore, as the electrode material connected to the negative electrode side of the power supply means, those that can be energized, that is, those in various forms formed from conductive materials can be used. For example, the same form as the above sample, that is, a pair of the above samples may be prepared, and one of them may be used as an electrode material. In addition, a plate material or a bar material made of a conductive material can be used as the electrode material. The conductive material constituting the plate or bar may be the same as or different from the constituent material of the sample terminal member. For example, when the terminal member of the sample is made of brass, a plate or bar made of brass or copper can be used.

[電解質を含有する流体]
《電解質》
本発明では、電解質を含有する流体を腐食液として利用する。電解質は、例えば、Na,Cl,Mg,K,Ca,SO4 2-,SO3 2-,NO3 -及びNH4 +から選択される1種以上の元素又はイオンを含むものが挙げられる。代表的には、NaCl,MgCl2,CaCO3,KCl,Na2SO4,H2SO3,Cu(NO3)2,NH4Cl,FeCl3,及びFeCl2から選択される1種以上の化合物が挙げられる。流体は、1種又は複数種の電解質を含有していてもよい。上記化合物は、代表的には流体中にイオンとして存在する。上記流体中の電解質の濃度は適宜選択することができ、上限は特に設けないが、低過ぎるとリーク電流が十分に生じ難くなるため、0.005質量%以上が好ましい。
[Fluid containing electrolyte]
"Electrolytes"
In the present invention, a fluid containing an electrolyte is used as a corrosive liquid. Examples of the electrolyte include one containing one or more elements or ions selected from Na, Cl, Mg, K, Ca, SO 4 2− , SO 3 2− , NO 3 −, and NH 4 + . Typically, NaCl, MgCl 2, CaCO 3 , KCl, Na 2 SO 4, H 2 SO 3, Cu (NO 3) 2, NH 4 Cl, FeCl 3, and one or more selected from FeCl 2 Compounds. The fluid may contain one or more electrolytes. The compounds are typically present as ions in the fluid. The concentration of the electrolyte in the fluid can be appropriately selected, and an upper limit is not particularly provided. However, if it is too low, a leak current is hardly generated, and therefore 0.005% by mass or more is preferable.

《流体の形態》
電解質を含有する流体の溶媒には、代表的には水(純水)が挙げられる。即ち、電解質を含有する流体は、代表的には電解質を含む水溶液が挙げられる。水溶液は、中性、酸性、アルカリ性のいずれでもよく、NaCl水溶液のような中性水溶液は取り扱い易い。また、水溶液は、作製や入手が比較的容易であり、腐食試験を行う際の利便性に優れる。上記Na,Cl,Mg,K,Caなどの元素は、海水に含有されており、上記水溶液として特に海水や人工海水を利用すると、入手が容易である上に、実際の環境(例えば、海岸際)に更に近い環境を模擬することができると考えられる。上記流体にNaCl水溶液を利用する場合、NaClの濃度は0.005質量%以上が好ましく、0.05質量%以上27質量%以下が利用し易いと考えられる。上記流体に水溶液を利用する形態では、当該流体に上記試料の端子部材と電極材とを離間した状態で浸漬することで、これら端子部材と電極材との間に電解質を含有する流体を容易に介在させられる上に、上述のように流体の準備が容易であるため、試験の作業性に優れる。
<Form of fluid>
A typical example of the fluid solvent containing an electrolyte is water (pure water). That is, the fluid containing the electrolyte typically includes an aqueous solution containing the electrolyte. The aqueous solution may be neutral, acidic, or alkaline, and a neutral aqueous solution such as an NaCl aqueous solution is easy to handle. In addition, the aqueous solution is relatively easy to produce and obtain, and is excellent in convenience when performing a corrosion test. Elements such as Na, Cl, Mg, K, and Ca are contained in seawater.In particular, when the seawater or artificial seawater is used as the aqueous solution, it is easy to obtain and the actual environment (e.g. It is thought that the environment closer to) can be simulated. When using the NaCl aqueous solution for the fluid, the concentration of NaCl is preferably 0.005% by mass or more, and it is considered that 0.05% by mass to 27% by mass is easy to use. In the embodiment using the aqueous solution as the fluid, the fluid containing the electrolyte is easily interposed between the terminal member and the electrode material by immersing the terminal member and the electrode material of the sample in the fluid in a separated state. In addition to being interposed, the fluid is easy to prepare as described above, so the test workability is excellent.

或いは、電解質を含有する流体は、腐食試験時に生成されるようにしてもよい。例えば、複数の粒状体の表面に電解質が付着した電解質担持体を用意し、離間して配置された上記試料の端子部材と上記電極材とに接触すると共に、当該端子部材と当該電極材との間に介在されるように上記電解質担持体を配置し、この状態で当該試料と当該電極材とを恒温恒湿状態に保持する形態が挙げられる。恒温恒湿状態に保持することで、粒状体に付着した電解質が雰囲気中の水分に溶けて電解質を含む水溶液が生成され、この水溶液は、上記端子部材と上記電極材間に介在することができる。従って、この形態も、腐食試験時(特に、通電時)における環境を、上述した電解質を含有する水溶液に上記試料の端子部材と上記電極材とを浸漬する形態と同様の環境とすることができる。そのため、この形態も、上述のように恒温恒湿状態に保持しながら定電流を通電することで、腐食が緩やかに進行する環境、特にリーク電流により腐食が生じるような環境における加速腐食試験方法として利用することができる。また、この形態は、上記電解質担持体を利用することで、上述の経年自動車から採取した端子、即ち、電解質が付着した砂や埃などの粉塵が付着した端子の周囲環境に更に近い環境を模擬できると期待される。   Alternatively, the fluid containing the electrolyte may be generated during the corrosion test. For example, an electrolyte carrier in which an electrolyte is attached to the surfaces of a plurality of granular bodies is prepared, and the terminal member of the sample and the electrode material that are spaced apart from each other are contacted, and the terminal member and the electrode material There is a mode in which the electrolyte carrier is disposed so as to be interposed therebetween, and the sample and the electrode material are maintained in a constant temperature and humidity state in this state. By maintaining a constant temperature and humidity state, the electrolyte attached to the granular material is dissolved in moisture in the atmosphere to generate an aqueous solution containing the electrolyte, and this aqueous solution can be interposed between the terminal member and the electrode material. . Therefore, in this embodiment, the environment at the time of the corrosion test (especially during energization) can be set to the same environment as the embodiment in which the terminal member of the sample and the electrode material are immersed in the aqueous solution containing the electrolyte described above. . Therefore, this form is also an accelerated corrosion test method in an environment where corrosion progresses slowly, especially in an environment where corrosion occurs due to leakage current, by applying a constant current while maintaining a constant temperature and humidity state as described above. Can be used. In addition, this form simulates an environment that is closer to the surrounding environment of the terminal collected from the above-mentioned automobile over time, that is, the terminal to which dust such as sand or dust to which the electrolyte has adhered adheres, by using the electrolyte carrier. It is expected to be possible.

上記粒状体は、溶媒に実質的に溶けず、それ自体が腐食されず、かつ上記試料の端子部材と上記電極材との間を短絡させない非金属材料あって、電気絶縁性が高い(或いは電気抵抗値が大きい)材料(非金属絶縁材料)からなるものが好適に利用することができる。例えば、セラミックスなどの無機材料や樹脂などの有機材料、溶媒(代表的には水)に溶解し難い或いは不溶な塩などからなる粒状体が挙げられる。セラミックスは、例えば、炭化珪素(SiC)、二酸化珪素(SiO2)、アルミナ(Al2O3)、酸化鉄、窒化珪素、ホウ化チタン、酸化ベリリウム、タルク、カオリナイト(カオリン、白陶土)などが挙げられる。セラミックスは、一般に、水に溶けず、耐熱性、耐水性に優れ、高温高湿状態に保持しても変質し難い上に、耐久性に優れるため再利用が可能である。また、上記列挙したセラミックスは、一般に、絶縁性が高いものが多く、このような絶縁性に優れるセラミックスからなる粒状体を利用すれば、試料への通電時、粒状体には実質的に電流が流れない。水に溶けない塩は、例えば、炭酸カルシウム(CaCO3)などが挙げられる。異なる材質の粒状体を複数種組み合わせて用いてもよい。このような粒状体が介在することで、試料の端子部材と電極材との間に流れるリーク電流も小さくなり易いと考えられる。 The granular material is a non-metallic material that does not substantially dissolve in a solvent, does not corrode itself, and does not short-circuit between the terminal member of the sample and the electrode material, and has high electrical insulation (or electrical conductivity). A material made of a material (non-metal insulating material) having a large resistance value can be suitably used. For example, an inorganic material such as ceramics, an organic material such as a resin, and a granular body made of a salt that is hardly soluble or insoluble in a solvent (typically water) can be used. Ceramics include, for example, silicon carbide (SiC), silicon dioxide (SiO 2 ), alumina (Al 2 O 3 ), iron oxide, silicon nitride, titanium boride, beryllium oxide, talc, kaolinite (kaolin, white porcelain), etc. Is mentioned. Ceramics generally do not dissolve in water, are excellent in heat resistance and water resistance, hardly change in quality even when kept in a high-temperature and high-humidity state, and are excellent in durability, and can be reused. In addition, the ceramics listed above generally have a high insulating property, and if a granular material made of such a ceramic having an excellent insulating property is used, a current substantially flows through the granular material when the sample is energized. Not flowing. Examples of the salt that is insoluble in water include calcium carbonate (CaCO 3 ). A plurality of types of granular materials of different materials may be used in combination. It is considered that the leakage current flowing between the terminal member of the sample and the electrode material is likely to be small by interposing such a granular material.

また、上記粒状体は、上記電解質を保持できれば特に形状を問わない。粒子状でも繊維状でもよく、角張ったものでも丸みを帯びたものでもよい。例えば、模擬したい粉塵に応じて所望の形状を適宜選択することができる。平均粒径が1μm以上150μm以下程度が利用し易いと考えられる。異なる大きさの粒状体を複数種組み合わせて用いてもよい。   Further, the shape of the granule is not particularly limited as long as it can hold the electrolyte. It may be particulate or fibrous, and may be angular or rounded. For example, a desired shape can be appropriately selected according to the dust to be simulated. It is considered that an average particle size of about 1 μm to 150 μm is easy to use. A plurality of types of granular materials having different sizes may be used in combination.

上記電解質担持体は、例えば、上記電解質を含む溶液(代表的には、上述した水溶液)を用意し、この溶液を粒状体に塗布した後、乾燥させることで製造することができる。電解質の付着量は、例えば、溶液の濃度により調整することができ、溶液の濃度が高いほど付着量が多くなる傾向にある。電解質の付着量(イオン濃度)は、模擬したい環境によって適宜選択することができる。電解質担持体の質量を100質量%とするとき、電解質の付着量が0.005質量%以上であると、上記電解質を含有する水溶液を用いた場合と同程度の結果が得られる。電解質の付着量は、0.05質量%以上がより好ましく、特に上限は設けない。また、電解質担持体を構成する粒状体の大きさが上記範囲の大きさであると、試料や電極材に振り掛けたりし易い上に、各粒状体を試料や電極材に接触させ易い。上記電解質担持体は、雰囲気中の水分や生成された電解液が接触できる程度の隙間が設けられるように配置する。   The electrolyte carrier can be produced, for example, by preparing a solution containing the electrolyte (typically, the above-described aqueous solution), applying the solution to a granular material, and drying the solution. The attached amount of the electrolyte can be adjusted by, for example, the concentration of the solution, and the attached amount tends to increase as the concentration of the solution increases. The adhesion amount (ion concentration) of the electrolyte can be appropriately selected depending on the environment to be simulated. When the mass of the electrolyte support is 100% by mass, when the amount of the deposited electrolyte is 0.005% by mass or more, the same result as that obtained when the aqueous solution containing the electrolyte is used can be obtained. The adhesion amount of the electrolyte is more preferably 0.05% by mass or more, and no upper limit is particularly set. Further, when the size of the granular material constituting the electrolyte carrier is in the above range, it is easy to sprinkle the sample or the electrode material, and each granular material is easily brought into contact with the sample or the electrode material. The electrolyte carrier is disposed so as to provide a gap that allows contact with moisture in the atmosphere or the generated electrolyte.

或いは、電解質を含有する流体は、上記水溶液に、上述した非金属絶縁材料からなる粒状体を含有していてもよい。実際の環境では、通常、砂や埃などの粉塵が存在する。従って、上記粉塵を模した粒状体を含有した流体を用いることで、実施の環境により近い環境を模擬できると期待される。このような流体として、例えば、カオリナイトといった粘土鉱物を含む泥を利用することができる。このような粒状体を含有する流体を利用する形態も、上記試料の端子部材と上記電極材とを離間した状態で当該流体に浸漬することで、上記試料の端子部材と上記電極材との間に当該流体を容易に介在させられる。このとき、上記試料の端子部材と上記電極材との間に粒状体が介在されても、この粒状体が非金属絶縁材料から構成されることで、この粒状体により上記試料の端子部材と上記電極材との間が短絡されることが無く、逆に、絶縁材料からなる粒状体が介在することで、両者間に流れる電流を微小にし易いと考えられる。   Or the fluid containing an electrolyte may contain the granular material which consists of a nonmetallic insulating material mentioned above in the said aqueous solution. In an actual environment, dust such as sand and dust is usually present. Therefore, it is expected that an environment closer to the actual environment can be simulated by using a fluid containing a granular material imitating the dust. As such a fluid, for example, mud containing clay mineral such as kaolinite can be used. In the embodiment using the fluid containing such granular materials, the terminal member of the sample and the electrode material are immersed in the fluid in a state of being separated from each other, so that the gap between the terminal member of the sample and the electrode material is reduced. The fluid can be easily interposed. At this time, even if a granular material is interposed between the terminal member of the sample and the electrode material, the granular material is made of a non-metallic insulating material, so that the granular material allows the terminal member of the sample to There is no short circuit between the electrode materials, and conversely, the presence of a granular material made of an insulating material makes it easy to reduce the current flowing between the two.

[電流条件]
そして、本発明腐食試験方法では、上記試料及び上記電極材に一定の大きさの電流を所定時間通電する。ここで、上記塩水浸漬試験を行った試料が導体までも腐食した原因の一つとして、電荷量の大小が影響すると考えられる。そこで、後述する試験例に示すように、電荷量(C(クーロン))を一定として、電流値(A)の大きさを変えて腐食状況を調べたところ、電荷量(C)を一定にしても、端子部材の露出面積に対して単位面積当たりの電流値(mA/mm2)が大き過ぎると、上記採取した端子と同様な腐食状態が得られなかった。即ち、電荷量(C)を特定の大きさにするだけの条件では、腐食が比較的緩やかに進行する環境、特に、リーク電流により腐食が生じるような環境を模擬することが難しいと考えられる。また、上記端子部材の単位面積当たりの電流値がある程度小さくても通電時間が長くなると、即ち、単位面積当たりの電荷量(電荷量=電流値×時間)が大きくなると、上記塩水噴霧試験や塩水浸漬試験を行った場合と同様な腐食状態になると考えられる。従って、電流値を特定の大きさにするだけの条件でも、腐食が比較的緩やかに進行する環境、特に、リーク電流により腐食が生じるような環境を模擬することが難しいと考えられる。更に、上述のように腐食対象となる試料の端子部材の腐食状態は、当該端子部材の露出面積(mm2)に依存する傾向にあり、電流値(A)自体や電荷量(C)自体が大きくても、単位面積当たりの値が小さければ、腐食が比較的緩やかに進行する環境、特に、リーク電流により腐食が生じるような環境を模擬することができると考えられる。
[Current conditions]
In the corrosion test method of the present invention, a constant current is applied to the sample and the electrode material for a predetermined time. Here, it is considered that the magnitude of the electric charge affects one of the causes that the sample subjected to the salt water immersion test corroded even the conductor. Therefore, as shown in a test example to be described later, when the amount of charge (C (coulomb)) is constant and the magnitude of the current value (A) is changed and the corrosion state is examined, the amount of charge (C) is kept constant. However, if the current value per unit area (mA / mm 2 ) was too large with respect to the exposed area of the terminal member, the same corrosion state as that of the collected terminal could not be obtained. That is, it is considered that it is difficult to simulate an environment in which corrosion proceeds relatively slowly, particularly an environment in which corrosion occurs due to a leakage current, under the condition that the charge amount (C) is set to a specific magnitude. In addition, when the energization time becomes long even when the current value per unit area of the terminal member is somewhat small, that is, when the amount of charge per unit area (charge amount = current value × time) increases, the salt spray test or the salt water It is thought that it will be in the same corrosion state as the case where the immersion test is conducted. Therefore, it is considered difficult to simulate an environment in which corrosion proceeds relatively slowly, particularly an environment in which corrosion occurs due to a leakage current, even if the current value is set to a specific value. Furthermore, as described above, the corrosion state of the terminal member of the sample to be corroded tends to depend on the exposed area (mm 2 ) of the terminal member, and the current value (A) itself and the charge amount (C) itself are Even if it is large, if the value per unit area is small, it is considered that an environment in which corrosion proceeds relatively slowly, in particular, an environment in which corrosion occurs due to leakage current can be simulated.

以上のことから本発明では、端子部材の露出面積に対して、電流値を0.19mA/mm2未満(0mA/mm2を除く)、かつ電荷量を20C/mm2以下(0C/mm2を除く)、即ち、通電時間を電荷量が20C/mm2以下となる時間とする。上記端子部材の露出面積における単位面積当たりの電流値や電荷量が小さ過ぎると、腐食が進み難く、加速試験を望む場合は、電流値を0.001mA/mm2以上、電荷量を0.125C/mm2以上とすることが好ましい。特に、電流値:0.005mA/mm2以上0.15mA/mm2以下、電荷量:0.15C/mm2以上15C/mm2以下がより好ましい。本発明では、このように微弱な定電流を上記試料に通電することにより、電荷量を容易に、かつ正確に制御すると共に、所望の腐食環境を良好に再現して、腐食状況を精度良く評価することができる。 From the above, in the present invention, the current value is less than 0.19 mA / mm 2 (excluding 0 mA / mm 2 ) and the charge amount is 20 C / mm 2 or less (0 C / mm 2 is less than the exposed area of the terminal member. Excluded), that is, the energization time is the time when the charge amount is 20 C / mm 2 or less. If the current value or charge amount per unit area in the exposed area of the terminal member is too small, corrosion will not proceed easily, and if an accelerated test is desired, the current value is 0.001 mA / mm 2 or more and the charge amount is 0.125 C / mm. Two or more are preferable. In particular, the current value: 0.005 mA / mm 2 or more 0.15 mA / mm 2 or less, the charge quantity: 0.15C / mm 2 or more 15C / mm 2 or less being more preferred. In the present invention, by applying a weak constant current to the sample as described above, the charge amount can be easily and accurately controlled, and the desired corrosive environment can be reproduced well to accurately evaluate the corrosion state. can do.

なお、自動車の車載システムなどの構成部材には、めっきが施されたものがある。めっきは使用環境により熱劣化(母材金属の熱拡散)してめっきの組成が変化する可能性が考えられる。この組成の変化により、めっき付き部材は、耐食性が変化する可能性が考えられる。本発明者らが、上述の経年自動車の居住空間内に配置されためっき付きの端子の腐食状況を調べたところ、端子を構成する母材金属がめっき中に拡散して、この母材金属とめっきを構成する金属とが合金化している部分がめっき中に認められた。この合金化は、熱劣化により生じたと考えられる。一般に、合金は、純金属に比較して腐食の進行が速い。そのため、特に、めっき付き端子といった、めっきが施された部分を有する金属部材の耐食性を調べる場合、試料に熱処理を施してめっきを合金化させたものを利用すると、例えば、上述のような自動車の居住空間内に配置されためっき付き端子であって、めっきが合金化した状態を模擬した加速試験を実現できると考えられる。そこで、めっき部を有する金属部材の耐食性を評価する場合、母材表面にめっきが施されためっき部を有する試料を用意し、この試料に適宜熱処理を施してめっき部を合金化させたものを利用することを提案する。   Some components such as an in-vehicle system of an automobile are plated. There is a possibility that the plating composition may change due to thermal degradation (thermal diffusion of base metal) depending on the usage environment. Due to this change in the composition, the corrosion resistance of the plated member may change. When the inventors investigated the corrosion status of the terminal with plating arranged in the living space of the above-mentioned aged car, the base metal constituting the terminal diffuses during plating, and this base metal and A portion where the metal constituting the plating was alloyed was observed during the plating. This alloying is considered to have occurred due to thermal degradation. In general, corrosion of an alloy proceeds faster than pure metal. Therefore, in particular, when investigating the corrosion resistance of a metal member having a plated portion, such as a terminal with plating, when a sample obtained by heat-treating a sample and alloying the plating is used, for example, for an automobile as described above It is thought that it is a terminal with plating arranged in a living space, and an acceleration test simulating a state in which plating is alloyed can be realized. Therefore, when evaluating the corrosion resistance of a metal member having a plated part, a sample having a plated part with a plating on the surface of the base material is prepared, and an appropriate heat treatment is applied to the sample to alloy the plated part. Suggest to use.

上記熱処理の条件は、めっきの組成やめっきを施す母材の組成、想定する熱劣化の度合いなどを考慮して設定することができる。例えば、母材が銅又は銅合金であり、めっきが錫である場合、熱処理条件は、加熱温度:100〜200℃、加熱時間:2〜600時間が挙げられる。なお、めっきの種類によっては、めっき後リフロー処理などの熱処理を行うことがある。リフロー処理により、めっきの一部、特に母材側の領域が合金化することがある。これに対し、熱処理を更に施して、めっきにおける合金領域をリフロー処理時のみの場合よりも多くすることで、熱劣化を加速的に模擬することができる。めっきの全てを完全に合金化してもよい。   The conditions for the heat treatment can be set in consideration of the composition of the plating, the composition of the base material to be plated, the assumed degree of thermal deterioration, and the like. For example, when the base material is copper or a copper alloy and the plating is tin, the heat treatment conditions include heating temperature: 100 to 200 ° C., heating time: 2 to 600 hours. Depending on the type of plating, heat treatment such as post-plating reflow treatment may be performed. Due to the reflow treatment, a part of the plating, particularly a region on the base material side, may be alloyed. On the other hand, thermal deterioration can be accelerated and simulated by further performing heat treatment to increase the alloy region in the plating compared to the case of only the reflow treatment. All of the plating may be fully alloyed.

[腐食試験システム]
上記本発明腐食試験方法において、電解質を含有する流体が特に上述した水溶液である場合、例えば、以下の本発明の腐食試験システムを好適に利用することができる。本発明の腐食試験システムは、導体の外周に絶縁層を具える電線の端部に端子部材を取り付けた試料の腐食状況を調べるためのシステムに係るものである。このシステムは、電解質を含有する流体と、この流体が貯留される流体槽と、上記試料の電線と電極材とに取り付けられて、当該試料及び当該電極材に電力を投入する電源手段とを具える。上記流体槽には、用意した上記試料の端子部材と上記電極材とが離間した状態で浸漬される。上記電源手段は、上記試料の端子部材と上記電極材との間に介在された上記流体を利用して当該試料の端子部材と当該電極材との間に電流が流れるように、上記試料と上記電極材とに定電流を通電する。このシステム及び後述するシステムを用いて上記本発明腐食試験方法を実施する場合、通電時の電流値は、0.19mA/mm2未満とし、通電時間は、電荷量が20C/mm2以下となる範囲で設定する。
[Corrosion test system]
In the above corrosion test method of the present invention, when the electrolyte-containing fluid is the above-described aqueous solution, for example, the following corrosion test system of the present invention can be preferably used. The corrosion test system of the present invention relates to a system for examining the corrosion state of a sample in which a terminal member is attached to an end of an electric wire having an insulating layer on the outer periphery of a conductor. The system includes a fluid containing an electrolyte, a fluid tank in which the fluid is stored, and a power source unit that is attached to the electric wire and electrode material of the sample and supplies power to the sample and the electrode material. Yeah. The prepared sample terminal member and the electrode material are immersed in the fluid tank in a separated state. The power source means uses the fluid interposed between the terminal member of the sample and the electrode material so that a current flows between the terminal member of the sample and the electrode material. A constant current is passed through the electrode material. When carrying out the above-described corrosion test method of the present invention using this system and the system described later, the current value during energization is less than 0.19 mA / mm 2 and the energization time is within the range where the charge amount is 20 C / mm 2 or less. Set with.

上記流体槽は、流体の貯留が可能な適宜なものを利用することができる。電源手段は、定電流の通電が可能な適宜な市販の電源装置を利用することができる。   As the fluid tank, an appropriate one capable of storing fluid can be used. As the power supply means, an appropriate commercially available power supply device capable of supplying a constant current can be used.

その他、本発明腐食試験方法を実施するにあたり、試料を恒温恒湿状態に保持してもよい。恒温恒湿とすることで、上記流体の温度が均一的になり、対流による影響を低減したり、水分の蒸発などによる流体の電解質濃度の変動や水分の枯渇の恐れを低減したりすることができると期待される。恒温恒湿状態に保持する場合、上記システムには、恒温恒湿手段を具えるとよい。また、定電流を通電後、非通電状態で恒温恒湿に一定時間保持してから、腐食状況を評価してもよい。或いは、定電流の通電と、非通電状態での恒温恒湿の保持とを交互に繰り返すサイクル試験を行ってもよい。   In addition, in carrying out the corrosion test method of the present invention, the sample may be kept in a constant temperature and humidity state. By making the temperature and humidity constant, the temperature of the fluid becomes uniform, reducing the influence of convection, reducing the fluctuation of the electrolyte concentration of the fluid due to evaporation of moisture and the risk of moisture depletion. It is expected to be possible. In the case of maintaining a constant temperature and humidity state, the system may include a constant temperature and humidity means. Further, after the constant current is applied, the corrosion state may be evaluated after the constant current is maintained at a constant temperature and humidity in a non-energized state. Alternatively, a cycle test may be performed in which energization with a constant current and holding of constant temperature and humidity in a non-energized state are alternately repeated.

上記本発明腐食試験方法として、特に、上述した、試験時に電解質を含有する流体が生成される形態とする場合、例えば、以下の腐食試験システムを好適に利用することができる。この腐食試験システムは、導体の外周に絶縁層を具える電線の端部に端子部材を取り付けた試料の腐食状況を調べるためのものである。特に、このシステムは、上記試料の端子部材と上記電極材との間を離間した状態で恒温恒湿に保持する恒温恒湿手段と、上述した電解質を付着した粒状体(電解質担持体)と、上記恒温恒湿手段により恒温恒湿状態に保持された上記試料の端子部材と上記電極材との間に電流が流れるように上記試料と上記電極材とに電力を投入する電源手段とを具える。上記電解質担持体は、上記試料の端子部材と上記電極材とに接触すると共に、上記試料の端子部材と上記電極材との間に介在するように配置される。上記電源手段は、上記試料の電線と上記電極材に取り付けられる。   As the above-described corrosion test method of the present invention, in particular, when the above-described form in which the fluid containing the electrolyte is generated during the test, for example, the following corrosion test system can be suitably used. This corrosion test system is for examining the corrosion state of a sample in which a terminal member is attached to the end of an electric wire having an insulating layer on the outer periphery of a conductor. In particular, this system includes a constant temperature and humidity means for maintaining constant temperature and humidity in a state where the terminal member of the sample and the electrode material are separated from each other, and a granular material (electrolyte carrier) to which the above-described electrolyte is attached, Power supply means for supplying power to the sample and the electrode material is provided so that a current flows between the terminal member of the sample held in a constant temperature and humidity state by the constant temperature and humidity means and the electrode material. . The electrolyte carrier is disposed so as to contact the terminal member of the sample and the electrode material, and to be interposed between the terminal member of the sample and the electrode material. The power supply means is attached to the wire of the sample and the electrode material.

上記システムでは、恒温恒湿手段に装入することで雰囲気からの水分と、粒状体に付着した電解質とにより、電解質を含有する流体が生成され、上記試料の端子部材と上記電極材との間に当該流体を介在させられる。そのため、上述のようにこの流体を利用して上記試料の端子部材と上記電極材との間にリーク電流を流すことができる。なお、通電を開始する時間は、恒温恒湿の保持を開始する時間とずれていてもよく、通電時間と恒温恒湿状態の保持時間とが異なっていてもよい。例えば、所定時間、恒温恒湿状態に保持した後、通電を開始してもよい。この場合、通電開始時に、端子部材と電極材との間に電解質を含有する流体を介在させた状態とすることができる。   In the above system, the fluid containing the electrolyte is generated by the moisture from the atmosphere and the electrolyte adhering to the granular material by being inserted into the constant temperature and humidity means, and between the terminal member of the sample and the electrode material. The fluid is interposed. Therefore, a leak current can be passed between the terminal member of the sample and the electrode material using the fluid as described above. The time for starting energization may be different from the time for starting holding constant temperature and humidity, and the holding time for holding the constant temperature and humidity may be different. For example, energization may be started after the temperature and humidity are maintained for a predetermined time. In this case, when energization is started, a fluid containing an electrolyte can be interposed between the terminal member and the electrode material.

本発明腐食試験方法及び本発明腐食試験システムによれば、リーク電流に起因する腐食といった、腐食が比較的緩やかに進行する環境を模擬した加速腐食試験に相当することができ、当該環境における耐食性を評価することができる。   According to the corrosion test method of the present invention and the corrosion test system of the present invention, it can correspond to an accelerated corrosion test that simulates an environment in which corrosion proceeds relatively slowly, such as corrosion caused by leakage current, and the corrosion resistance in the environment can be improved. Can be evaluated.

図1(I)は、本発明腐食試験方法に利用する試料の概略構成図、図1(II)は、本発明腐食試験システムに一対の上記試料を配置した状態を示す説明図である。FIG. 1 (I) is a schematic configuration diagram of a sample used in the corrosion test method of the present invention, and FIG. 1 (II) is an explanatory diagram showing a state in which a pair of the samples are arranged in the corrosion test system of the present invention. 図2は、実試料の端子部材、及びNaCl水溶液を用いた腐食試験を行った試料の端子部材の断面顕微鏡写真(25倍)であり、図2(I)は実試料(試料No.100)、図2(II)は電流値を0.2mAとした試料No.1、図2(III)は電流値を1mAとした試料No.2を示す。Fig. 2 is a cross-sectional micrograph (25 times) of the terminal member of the actual sample and the terminal member of the sample subjected to the corrosion test using the NaCl aqueous solution, and Fig. 2 (I) is the actual sample (sample No. 100). 2 (II) shows Sample No. 1 with a current value of 0.2 mA, and FIG. 2 (III) shows Sample No. 2 with a current value of 1 mA. 図3は、NaCl水溶液を用いた腐食試験を行った試料の端子部材の断面顕微鏡写真(25倍)であり、図3(I)は電流値を3mAとした試料No.3、図3(II)は電流値を5mAとした試料No.4を示す。Fig. 3 is a cross-sectional micrograph (25 times) of the terminal member of the sample subjected to the corrosion test using NaCl aqueous solution, and Fig. 3 (I) shows sample No. 3 and Fig. 3 (II) with a current value of 3 mA. ) Shows Sample No. 4 with a current value of 5 mA. 図4は、電解質が付着した粒状体(電解質担持体)を用いた腐食試験を行った試料No.10の端子部材の断面顕微鏡写真(25倍)である。FIG. 4 is a cross-sectional micrograph (25 ×) of the terminal member of Sample No. 10 subjected to a corrosion test using a granular material (electrolyte carrier) having an electrolyte attached thereto.

<試験例>
電線の端部に端子部材を取り付けた端子付き電線を複数用意して試料とし、種々の条件で腐食試験を行って、各試料の腐食状況と経年の実製品(実試料)の腐食状況とを比較して、腐食試験方法の評価を行った。
<Test example>
Prepare multiple terminals-attached wires with terminal members attached to the ends of the wires, use them as samples, and conduct corrosion tests under various conditions to determine the corrosion status of each sample and the corrosion status of the actual product (actual sample) over time. In comparison, the corrosion test method was evaluated.

《実試料》
比較対象となる実試料として、砂塵が存在する環境において10年以上20年未満使用された普通自動車の居住空間に配置された銅電線と、この電線の一端に接続された黄銅端子とを具えるものを用意した(実試料No.100)。
《Real sample》
As an actual sample to be compared, a copper wire placed in a living space of an ordinary automobile that has been used for 10 years or more and less than 20 years in an environment where dust is present, and a brass terminal connected to one end of the wire are provided. A sample was prepared (actual sample No. 100).

《腐食試験》
ここでは、NaCl水溶液を用いた腐食試験(形態I)と、電解質が付着した粒状体(電解質担持体)を用いた腐食試験(形態II)と、泥を用いた腐食試験(形態III)との三つの腐食試験を行った。これら三つの腐食試験に共通に用いた試料、キャビティ、及び電源装置(電源手段)と、上記形態I,IIIに用いた流体槽、上記形態IIに用いた電解質担持体、及び恒温恒湿装置をまず説明する。
<Corrosion test>
Here, a corrosion test using an aqueous NaCl solution (form I), a corrosion test using a granular material (electrolyte carrier) with an electrolyte attached (form II), and a corrosion test using mud (form III) Three corrosion tests were performed. Samples, cavities, and power supply devices (power supply means) commonly used for these three corrosion tests, fluid tanks used in the above forms I and III, the electrolyte carrier used in the above form II, and a constant temperature and humidity device First, I will explain.

<試料>
形態I〜IIIでは、いずれも同じ構成の試料1を一対用意して腐食試験を行った。各試料1は、図1(I)に示すように電線10の一端に端子部材11が接続された端子付き電線(圧着電線)である。電線10は、導電性材料からなる複数の金属素線を撚り合わせてなる導体10cと、導体10cの外周を覆う絶縁材料からなる絶縁層10iとを具え、一端側の絶縁層10iを剥ぎ取って導体10cを露出させている。この露出箇所に端子部材11が取り付けられている。端子部材11は、導電性材料からなる金属板材の両縁側に適宜切り込みを入れ、切片を折り曲げて形成したものである。具体的には、端子部材11は、上記板材の一端側の両切片を縁側が接するように適宜折り曲げられて形成された矩形筒状の雌端子部12と、電線10の絶縁層10i部分を挟持するように、板材の他端側の両切片を折り曲げて形成されたインシュレーションバレル部13と、雌端子部12とインシュレーションバレル部13との間に存在し、かつ絶縁層10iから露出された導体10cが縦添えされてこの導体10cを挟持するように板材の中間部分の両切片を折り曲げて形成されたワイヤバレル部14とを具える。露出された導体10cは、その大部分がワイヤバレル部14に覆われ、極一部が露出した状態である。
<Sample>
In Forms I to III, a pair of samples 1 having the same configuration was prepared and a corrosion test was performed. Each sample 1 is a terminal-attached electric wire (crimp electric wire) in which a terminal member 11 is connected to one end of an electric wire 10 as shown in FIG. 1 (I). The electric wire 10 includes a conductor 10c formed by twisting a plurality of metal strands made of a conductive material, and an insulating layer 10i made of an insulating material covering the outer periphery of the conductor 10c, and strips off the insulating layer 10i on one end side. The conductor 10c is exposed. A terminal member 11 is attached to the exposed portion. The terminal member 11 is formed by making appropriate cuts on both edge sides of a metal plate made of a conductive material and bending the section. Specifically, the terminal member 11 sandwiches the rectangular cylindrical female terminal portion 12 formed by appropriately bending both pieces on one end side of the plate material so that the edge side is in contact with the insulating layer 10i portion of the electric wire 10. As shown, the insulation barrel part 13 formed by bending both pieces on the other end side of the plate member, the female terminal part 12 and the insulation barrel part 13 are present and exposed from the insulating layer 10i. A conductor 10c is vertically provided, and a wire barrel portion 14 is formed by bending both sections of the intermediate portion of the plate so as to sandwich the conductor 10c. Most of the exposed conductor 10c is covered with the wire barrel portion 14 and a part of the pole is exposed.

ここでは、電線10として、導体が純銅からなり、AVSS(自動車用極薄肉低圧電線、JASO D611準拠品)などの自動車に利用されている電線(導体断面積:0.5mm2、絶縁層の材質:塩化ビニル、厚さ:約0.3mm)を適当な長さに切断して利用した。導体は、非圧縮型でも圧縮型でもよい。端子部材11は、母材が黄銅からなり、母材表面に錫めっきを具えるものであり、試料No.1〜4,10,20のいずれも、2.3型雌端子を利用した。このように形態I〜IIIの腐食試験方法ではいずれも、材質やサイズなどが同様である電線及び端子を用いて試料を作製した。但し、試料No.1〜4は、雌端子部12部分を切断して、腐食対象となる端子部材の面積を小さくした。端子部材の面積が小さい試料は、端子部材の面積が大きい試料と比較して、通電時の電流が同じ値でも、単位面積あたりの電流値が大きくなる。そのため、腐食試験を加速し易くなると期待される。 Here, as the electric wire 10, the conductor is made of pure copper, and the electric wire (conductor cross-sectional area: 0.5mm 2 , material of the insulating layer: AVSS (ultra-thin wall low-voltage electric wire for automobiles, JASO D611 compliant product) etc. (Vinyl chloride, thickness: about 0.3 mm) was cut into an appropriate length and used. The conductor may be uncompressed or compressed. In the terminal member 11, the base material is made of brass, and the surface of the base material is provided with tin plating. All of the sample Nos. 1 to 4, 10, and 20 used 2.3 type female terminals. Thus, in all of the corrosion test methods of Forms I to III, samples were prepared using electric wires and terminals having the same material and size. However, in Sample Nos. 1 to 4, the female terminal portion 12 was cut to reduce the area of the terminal member to be corroded. A sample with a small area of the terminal member has a larger current value per unit area even when the current during energization is the same as that of a sample with a large area of the terminal member. Therefore, it is expected that the corrosion test can be easily accelerated.

試料No.5,6は、端子付き電線ではなく、一対の黄銅板(露出面積:260mm2)を用意して腐食試験を行った。 Samples Nos. 5 and 6 were subjected to corrosion tests by preparing a pair of brass plates (exposed area: 260 mm 2 ) instead of electric wires with terminals.

<キャビティ>
形態I〜IIIではいずれも、一対の試料1をキャビティ4に配置して利用した。キャビティ4は、外観が四角柱状の部材であり、試料1の端子部材11部分が挿入される複数の挿入孔4hを具える。このキャビティ4は、自動車用ワイヤーハーネスの端子が接続されるFコネクタを模擬したものである。各挿入孔4hは、複数の試料1の軸方向が平行するように設けられている。従って、一つの挿入孔4hに一つの試料1を挿入し、この挿入孔の隣りの挿入孔に別の試料1を挿入すると、両試料1は、図1(II)に示すように並列に配置され、所定の間隔をあけて配置された状態に維持される。ここでは、キャビティ4をポリブチレンテレフタレート(PBT)樹脂により形成し、隣り合う挿入孔4h間の中心間距離(一対の端子部材11間の離間距離)を約3mmとした(2.3型雌端子を用いた試料No.1〜4,10,20)。試料の端子部材と電極材の間の間隔(ここでは端子部材11間の間隔)は、適宜選択することができる。そして、一対の試料1の雌端子部12をキャビティ4の隣り合う挿入孔4hにそれぞれ挿入して、形態I〜IIIの腐食試験に利用する。キャビティ4を利用することで、離間した状態を確実に維持できると共に、上記ワイヤーハーネスが使用される実環境により即した環境を模擬することができる。キャビティ4を利用せず、一対の試料1を離間した状態で配置するだけでもよい。上記キャビティ4の挿通孔は、貫通孔でも非貫通孔でもよい。ここでは、貫通孔としている。
<Cavity>
In all of the forms I to III, a pair of samples 1 were arranged in the cavity 4 and used. The cavity 4 is a member having a square columnar appearance, and includes a plurality of insertion holes 4h into which the terminal member 11 portion of the sample 1 is inserted. The cavity 4 simulates an F connector to which a terminal of an automobile wire harness is connected. Each insertion hole 4h is provided so that the axial directions of the plurality of samples 1 are parallel to each other. Therefore, when one sample 1 is inserted into one insertion hole 4h and another sample 1 is inserted into the insertion hole adjacent to this insertion hole, both samples 1 are arranged in parallel as shown in FIG. And maintained in a state of being arranged at a predetermined interval. Here, the cavity 4 is made of polybutylene terephthalate (PBT) resin, and the center-to-center distance between adjacent insertion holes 4h (separation distance between the pair of terminal members 11) is about 3 mm (using a 2.3 type female terminal). Sample Nos. 1 to 4, 10, 20). The distance between the terminal member of the sample and the electrode material (here, the distance between the terminal members 11) can be selected as appropriate. And the female terminal part 12 of a pair of sample 1 is each inserted in the insertion hole 4h which adjoins the cavity 4, and it utilizes for the corrosion test of form I-III. By using the cavity 4, it is possible to reliably maintain the separated state and to simulate an environment that is more suitable for the actual environment in which the wire harness is used. Instead of using the cavity 4, the pair of samples 1 may be arranged in a separated state. The insertion hole of the cavity 4 may be a through hole or a non-through hole. Here, it is a through hole.

<電源装置>
試料1の電線10の他端側には電源装置3が接続されて、試料1に電流が通電される。ここでは、電線10の他端側に別途リード線を接続して電源装置3を接続させた。電線10を電源装置3に直接接続させても勿論よい。電源装置3は市販のものを利用した。
<Power supply unit>
The power supply device 3 is connected to the other end of the electric wire 10 of the sample 1 so that a current is passed through the sample 1. Here, a lead wire was separately connected to the other end of the electric wire 10 to connect the power supply device 3. Of course, the electric wire 10 may be directly connected to the power supply device 3. A commercially available power supply 3 was used.

<流体槽>
形態I,IIIでは、上記キャビティ4に装着された試料1は、電解質を含有する流体5が貯留される流体槽2に配置される。流体槽2は、所定の流体5を貯留することが可能な適宜なものを利用することができる。
<Fluid tank>
In Embodiments I and III, the sample 1 mounted in the cavity 4 is placed in a fluid tank 2 in which a fluid 5 containing an electrolyte is stored. As the fluid tank 2, an appropriate one capable of storing the predetermined fluid 5 can be used.

<電解質担持体>
電解質担持体を作製するにあたり、上記実試料No.100を採取した自動車内に落ちていた砂塵を採取し、表面に付着しているイオンの種類と濃度とを調べた。測定は、後述する電解質担持体の付着物質の測定方法と同様にして行った。その結果、Cl-:47、Na+:401、Mg2+:3、K+:866、Ca2+:59885、SO4 2-:189であり(砂塵の質量に対する割合。単位は質量ppm)、複数のイオンの存在が認められた。また、砂塵自体を調べたところ、平均粒径数μmの砂と、平均粒径10μm程度の埃とが混在したものであった。この砂塵をEDX分析したところ、主要な元素は、C,O,Si,Caであり(それぞれ14.1〜24.1質量%)、その他、Na,Mg,Al,S,Cl,K,Feが含まれていた(それぞれ1.4〜5.5質量%)。このことから、この砂塵は、SiO2などのセラミックスを含むと考えられる。
<Electrolyte carrier>
In preparing the electrolyte carrier, sand dust that had fallen into the automobile from which the actual sample No. 100 was collected was collected, and the type and concentration of ions adhering to the surface were examined. The measurement was performed in the same manner as the method for measuring the substance adhering to the electrolyte carrier described later. As a result, Cl : 47, Na + : 401, Mg 2+ : 3, K + : 866, Ca 2+ : 59885, SO 4 2− : 189 (ratio to the mass of sand dust, the unit is mass ppm) The presence of multiple ions was observed. Further, when the dust itself was examined, it was found that sand having an average particle diameter of several μm and dust having an average particle diameter of about 10 μm were mixed. When this dust was analyzed by EDX, the main elements were C, O, Si, and Ca (14.1 to 24.1% by mass, respectively), and other elements included Na, Mg, Al, S, Cl, K, and Fe. (1.4-5.5% by mass respectively). Therefore, this dust is considered to include ceramics such as SiO 2.

上記砂塵を参照して、ここでは、以下のようにして電解質担持体を作製した。人工海水(NaClの濃度:26質量%、電解質(Na,Cl)を含む水溶液)を200g、平均粒径数μm(10μm以下、上記採取した砂塵と概ね同じ大きさ)の重質炭酸カルシウム(JIS Z 8901(2006)、試験用粉体1-16種)の粉末(粒状体)を100g用意した。上記人工海水及び粒状体はいずれも市販品である。上記重質炭酸カルシウムに代えて、シリカ(SiO2)や後述する形態IIIで利用するカオリンを粒状体に用いてもよい。その他、上述したアルミナなどのセラミックスを粒状体に用いてもよい。 With reference to the dust, the electrolyte carrier was produced here as follows. 200g of artificial seawater (NaCl concentration: 26% by weight, aqueous solution containing electrolyte (Na, Cl)), heavy calcium carbonate (JIS) with an average particle size of several μm (10 μm or less, roughly the same size as the collected dust) 100 g of powder (granular material) of Z 8901 (2006), 1-16 kinds of test powders was prepared. Both the artificial seawater and the granular material are commercially available products. Instead of the heavy calcium carbonate, silica (SiO 2 ) or kaolin used in the form III described later may be used for the granular material. In addition, ceramics such as alumina described above may be used for the granular material.

用意した上記炭酸カルシウムの粉末を濾紙上に載せ、用意した人工海水を上記粉末の上から滴下した後、150℃に加熱した恒温槽中に装入して乾燥し、乾燥後に得られた粉末を電解質担持体とした。得られた電解質担持体において、粒状体の表面に付着した物質のイオン濃度(質量ppm)を調べた。イオン濃度は、作製した電解質担持体を0.5g取って、超純水50mlに混入し、90℃×1h保持して、付着物質の抽出を行い、この抽出液をイオンクロマト装置により分析して測定した。その結果、Cl-:6974、Na+:3781、Mg2+:306、K+:113、Ca2+:161であった(電解質担持体の質量(0.5g)に対する質量割合。単位は質量ppm。合計11,174質量ppm≒1.1質量%)。この結果から、作製した電解質担持体は、複数種のイオンが存在していると共に、イオン濃度が0.05質量%以上であることが確認できた。また、これらのイオンは、上記実試料を採取した自動車内に落ちていた砂塵に付着していたイオンと同種であることが確認できた。 Place the prepared calcium carbonate powder on the filter paper, drop the prepared artificial seawater from above the powder, place it in a thermostatic bath heated to 150 ° C. and dry it. An electrolyte carrier was obtained. In the obtained electrolyte carrier, the ion concentration (mass ppm) of the substance adhering to the surface of the granular material was examined. The ion concentration is measured by taking 0.5 g of the prepared electrolyte carrier, mixing it in 50 ml of ultrapure water, holding at 90 ° C for 1 h, extracting the adhering substances, and analyzing this extract with an ion chromatograph. did. As a result, Cl : 6974, Na + : 3781, Mg 2+ : 306, K + : 113, and Ca 2+ : 161 (mass ratio with respect to the mass (0.5 g) of the electrolyte support. The unit is ppm by mass) Total 11,174 mass ppm ≒ 1.1 mass%). From this result, it was confirmed that the produced electrolyte carrier had a plurality of types of ions and an ion concentration of 0.05% by mass or more. Moreover, it has confirmed that these ions were the same kind as the ion adhering to the dust which fell in the motor vehicle which collected the said real sample.

<恒温恒湿装置>
形態IIでは、上記キャビティ4に装着された試料1に、上記電解質担持体を配置した状態で恒温恒湿装置(図示せず)に装入し、所定の温度及び湿度に保持する。恒温恒湿装置は市販のものを利用した。
<Constant temperature and humidity device>
In the form II, the sample 1 mounted in the cavity 4 is inserted into a thermo-hygrostat (not shown) with the electrolyte carrier disposed therein, and is maintained at a predetermined temperature and humidity. The constant temperature and humidity device used was a commercially available one.

《形態I:NaCl水溶液を用いた腐食試験、試料No.1〜6》
形態Iでは、電解質を含有する流体5として、NaClの濃度が5質量%のNaCl水溶液を用意し、以下の手順で腐食試験を行った。上記キャビティ4に配置した試料1を流体槽2内に配置した後、流体槽2に上記流体5を満たし、端子部材11の全体及び電線10の一部を流体5に浸漬させる。ここでは、キャビティ4の挿入孔4hの一方の開口部(試料1が挿入されていない方の開口部)から流体5が浸入しないように、上記開口部を図示しない絶縁テープで塞いだ。この点は、形態IIIについても同様である。
《Form I: Corrosion test using NaCl aqueous solution, Sample No. 1 to 6》
In Form I, a NaCl aqueous solution having a NaCl concentration of 5 mass% was prepared as the fluid 5 containing an electrolyte, and a corrosion test was performed in the following procedure. After the sample 1 placed in the cavity 4 is placed in the fluid tank 2, the fluid tank 2 is filled with the fluid 5, and the entire terminal member 11 and a part of the electric wire 10 are immersed in the fluid 5. Here, the opening is closed with an insulating tape (not shown) so that the fluid 5 does not enter from one opening of the insertion hole 4h of the cavity 4 (the opening where the sample 1 is not inserted). This also applies to Form III.

一対の試料1の他端側に電源装置3を接続する。なお、この接続は、試料1への通電前であれば任意のときに行え、試料1を流体槽2内に配置する前でもよい。この工程により、電解質を含有する流体5と、流体5が貯留されると共に、試料1の端子部材11と電極材(ここでは一方の試料1、以下同様)とが離間した状態で浸漬される流体槽2と、試料1の電線10と電極材とに取り付けられ、端子部材11と電極材との間に介在された流体5を利用して端子部材11と電極材との間に電流が流れるように、試料1と電極材とに定電流を通電する電源装置3とを具える腐食試験システムが構築される。   The power supply device 3 is connected to the other end side of the pair of samples 1. This connection can be made at any time before the sample 1 is energized, and may be before the sample 1 is placed in the fluid tank 2. Through this process, the fluid 5 containing the electrolyte, the fluid 5 is stored, and the terminal member 11 of the sample 1 and the electrode material (here, one sample 1, the same applies hereinafter) are immersed in a separated state. A current flows between the terminal member 11 and the electrode material using the fluid 5 attached to the tank 2, the electric wire 10 of the sample 1 and the electrode material, and interposed between the terminal member 11 and the electrode material. In addition, a corrosion test system including the power supply device 3 that supplies a constant current to the sample 1 and the electrode material is constructed.

上記試料1及び流体槽2を常温常圧下に配置した状態で、電源装置3により、表1に示す一定の大きさの電流を試料1に所定時間流す。ここでは、電荷量が50Cとなるように、通電時間を調整した。例えば、試料No.1(電流値:0.2mA)では、通電時間が250000秒(69時間26分40秒)、試料No.4(電流値:5mA)では、通電時間が10000秒(2時間46分40秒)である。所定時間経過後、通電を停止して、流体槽2から試料1を取り出す。   In a state where the sample 1 and the fluid tank 2 are arranged at room temperature and normal pressure, a current having a constant magnitude shown in Table 1 is passed through the sample 1 for a predetermined time by the power supply device 3. Here, the energization time was adjusted so that the charge amount was 50C. For example, in sample No. 1 (current value: 0.2 mA), the energization time was 250,000 seconds (69 hours 26 minutes 40 seconds), and in sample No. 4 (current value: 5 mA), the energization time was 10,000 seconds (2 hours 46 Min 40 sec). After a predetermined time has elapsed, the energization is stopped and the sample 1 is taken out from the fluid tank 2.

試料No.5,6は、一対の黄銅板を離間した状態で(離間距離30mm)、流体槽2内の流体5(上記5%NaCl水溶液)に浸漬し、この状態で、表1に示す一定の大きさの電流を所定時間流して、腐食試験を行った。   Samples Nos. 5 and 6 were immersed in the fluid 5 (the above 5% NaCl aqueous solution) in the fluid tank 2 with a pair of brass plates separated (separation distance 30 mm), and in this state, the constants shown in Table 1 A corrosion test was conducted with a current of a magnitude of.

《形態II:電解質担持体を用いた腐食試験、試料No.10》
形態IIでは、以下の手順で腐食試験を行った。
<< Form II: Corrosion test using electrolyte carrier, Sample No. 10 >>
In Form II, the corrosion test was performed according to the following procedure.

試料1が挿入されたキャビティ4の挿入孔4hに、作製した電解質担持体を充填すると共に、挿入孔4hから露出された電線10の一部を埋めるように電解質担持体を配置する。この工程により、各試料1の端子部材11の少なくともインシュレーションバレル部13及びワイヤバレル部14は、電解質担持体に接触すると共に、両端子部材11間に電解質担持体が介在された状態になる。また、ここでは、電線10の一部も電解質担持体で覆って両試料1間に電解質担持体を存在させることで、両試料1間にキャビティの壁が存在しても、一方の端子部材11から他方の端子部材11にリーク電流が流れ得る。また、キャビティ4の挿入孔4hが貫通孔であることで、貫通孔の一方の開口部(試料が挿入されていない方の開口部)近傍に存在する電解質担持体により、隣り合う挿入孔に挿入された両端子部材の雌端子部間にも電解質担持体が介在された状態とすることができる。   The prepared electrolyte carrier is filled in the insertion hole 4h of the cavity 4 into which the sample 1 is inserted, and the electrolyte carrier is arranged so as to fill a part of the electric wire 10 exposed from the insertion hole 4h. By this step, at least the insulation barrel portion 13 and the wire barrel portion 14 of the terminal member 11 of each sample 1 are in contact with the electrolyte carrier, and the electrolyte carrier is interposed between the terminal members 11. Also, here, by covering a part of the electric wire 10 with the electrolyte carrier and allowing the electrolyte carrier to exist between the two samples 1, even if there is a cavity wall between the two samples 1, one terminal member 11 A leakage current can flow from the other terminal member 11 to the other terminal member 11. In addition, since the insertion hole 4h of the cavity 4 is a through hole, it is inserted into an adjacent insertion hole by an electrolyte carrier existing in the vicinity of one opening of the through hole (the opening where the sample is not inserted). The electrolyte carrier can also be interposed between the female terminal portions of the two terminal members.

一対の試料1の他端側に電源装置3を接続する。この接続は、形態Iと同様に試料1への通電前であれば任意のときに行え、電解質担持体を試料1に配置する前などでもよい。   The power supply device 3 is connected to the other end side of the pair of samples 1. This connection can be made at any time before energization of the sample 1 as in the form I, and may be before placing the electrolyte carrier on the sample 1.

上記電解質担持体が配置された試料1及びキャビティ4を恒温恒湿装置に装入する。恒温恒湿装置に装入後、試料1を恒温恒湿状態に所定時間保持する。ここでは、30分保持した。恒温恒湿条件は、温度:75℃、湿度:95%RHとした。恒湿状態に保持することで、電解質担持体の粉末に付着した電解質と、雰囲気中の水分とにより電解液が生成され、端子部材11間に電解質を含有する流体が介在することができる。   The sample 1 and the cavity 4 on which the electrolyte carrier is arranged are loaded into a constant temperature and humidity apparatus. After loading in the constant temperature and humidity device, the sample 1 is kept in a constant temperature and humidity state for a predetermined time. Here, it was held for 30 minutes. The temperature and humidity conditions were temperature: 75 ° C. and humidity: 95% RH. By maintaining the constant humidity, an electrolyte is generated by the electrolyte adhering to the powder of the electrolyte carrier and the moisture in the atmosphere, and a fluid containing the electrolyte can be interposed between the terminal members 11.

所定時間(30分)経過後、上記恒温恒湿条件の恒温恒湿状態に保持しながら、電源装置3により、表1に示す一定の大きさの電流を試料1に所定時間流す。ここでは、電荷量が50Cとなるように、通電時間を調整した。所定時間経過後、通電を停止して、恒温恒湿装置から試料1を取り出し、電解質担持体を除去する。   After a predetermined time (30 minutes), a constant current shown in Table 1 is passed through the sample 1 for a predetermined time by the power supply device 3 while maintaining the constant temperature and humidity condition of the above constant temperature and humidity conditions. Here, the energization time was adjusted so that the charge amount was 50C. After a predetermined time has elapsed, the energization is stopped, the sample 1 is taken out from the constant temperature and humidity device, and the electrolyte carrier is removed.

《形態III:泥を用いた腐食試験》
形態IIIでは、電解質を含有する流体5として、NaClの濃度が5質量%のNaCl水溶液(50ml)にカオリン(30g)を混合した泥を用意した。そして、形態Iと同様に、キャビティ4に配置した試料1を流体槽2内に配置してから、流体槽2に流体5(泥)を注入して、試料1の端子部材11の全体及び電線10の一部を流体5に浸漬させる。
《Form III: Corrosion test using mud》
In Form III, mud in which kaolin (30 g) was mixed with an aqueous NaCl solution (50 ml) having a NaCl concentration of 5 mass% was prepared as the fluid 5 containing the electrolyte. And, similarly to the form I, after the sample 1 arranged in the cavity 4 is arranged in the fluid tank 2, the fluid 5 (mud) is injected into the fluid tank 2, and the entire terminal member 11 of the sample 1 and the electric wire A part of 10 is immersed in fluid 5.

この試料1及び流体槽2を恒温恒湿装置に装入して、30℃、95%RHの恒温恒湿状態に保持する。この状態で、試料1が配置された流体槽2に流体5を注入後30分以内に、電源装置3により、表1に示す大きさの電流の投入を開始して、定電流を試料1に所定時間流す。ここでは、電荷量が250Cとなるように、通電時間を調整した。所定時間経過後、通電を停止して、恒温恒湿装置から試料1を取り出し、泥を除去する。ブラシなどを適宜用いて泥を除去してもよい。   The sample 1 and the fluid tank 2 are placed in a constant temperature and humidity device, and maintained at a constant temperature and humidity state of 30 ° C. and 95% RH. In this state, within 30 minutes after injecting the fluid 5 into the fluid tank 2 in which the sample 1 is arranged, the power supply device 3 starts to supply a current having a magnitude shown in Table 1, and a constant current is applied to the sample 1. Run for a predetermined time. Here, the energization time was adjusted so that the charge amount was 250C. After a predetermined time has elapsed, the energization is stopped, the sample 1 is taken out from the constant temperature and humidity device, and mud is removed. You may remove mud using a brush etc. suitably.

《観察結果》
上記実試料、及び形態I,II,IIIの腐食試験を行った各試料No.1〜6,10,20の腐食状況を評価した。評価は、実試料及び端子付き電線の各試料のそれぞれについて、インシュレーションバレル部をその軸方向と直交するように切断した断面(図1(I)においてX-X切断した断面に相当)を光学顕微鏡(25倍)で観察して行った。試料No.5,6については任意の断面を光学顕微鏡(25倍)で観察して行った。図2に実試料No.100、試料No.1,2、図3に試料No.3,4、図4に試料No.10の観察像を示す。試料No.1〜4は、更に、図1(I)に示すY-Y断面(導体の露出部分を切断した断面)、Z-Z断面(ワイヤバレル部を切断した断面)の観察像も図2,3に示す。図2,3,4において中央部に存在する複数の丸みを帯びた塊は、電線の導体を構成していた各素線、素線の外周に存在する帯状の塊は、端子部材を示す。実試料No.100では、端子部材の一部を除去した状態のX-X断面を示す。また、図2,3,4の端子部材において、色が濃い箇所は銅を示し、色が薄い箇所は黄銅を示す。
<Observation results>
The corrosion status of each sample No. 1 to 6, 10, and 20 that was subjected to the corrosion test of the above actual samples and forms I, II, and III was evaluated. The evaluation was carried out using an optical microscope (corresponding to a cross section cut along XX in FIG. 25 times). Samples Nos. 5 and 6 were observed by observing an arbitrary cross section with an optical microscope (25 times). Fig. 2 shows an actual sample No. 100, sample Nos. 1 and 2, Fig. 3 shows sample Nos. 3 and 4, and Fig. 4 shows an image of sample No. 10. Samples Nos. 1 to 4 also show observation images of the YY cross section (cross section obtained by cutting the exposed portion of the conductor) and the ZZ cross section (cross section obtained by cutting the wire barrel section) shown in FIG. Show. In FIGS. 2, 3 and 4, a plurality of rounded lumps existing in the center portion are each strand constituting the conductor of the electric wire, and a band-like lump existing on the outer periphery of the strand indicates a terminal member. Actual sample No. 100 shows a XX cross section in a state where a part of the terminal member is removed. Further, in the terminal members of FIGS. 2, 3, and 4, the darker portions indicate copper, and the lighter portions indicate brass.

上記観察像は、並列させた二つの端子部材のうち、正極側(+側)に配置されたものを観察している。負極側(-側)に配置された端子部材は、形態I〜IIIの腐食試験のいずれも、正極側(+側)に配置された端子部材のような腐食が認められなかった。なお、負極側(-側)に接続する対象として、上記端子部材を具える試料に代えて、試料No.5,6で利用した黄銅板や、その他銅棒などを利用することができる。   In the observed image, the two terminal members arranged in parallel are observed on the positive electrode side (+ side). The terminal member arranged on the negative electrode side (− side) was not corroded like the terminal member arranged on the positive electrode side (+ side) in any of the corrosion tests of forms I to III. As a target to be connected to the negative electrode side (− side), the brass plate used in Sample Nos. 5 and 6 or other copper bars can be used instead of the sample including the terminal member.

そして、上記実試料No.100の観察像の腐食状態に比較して、各試料No.1〜6,10,20の観察像の腐食状態がよく似ている試料(ここでは、脱亜鉛腐食の面積が大きい試料)を○、脱亜鉛腐食の面積が小さい試料を△、腐食状態が全く似ていない試料(ここでは、脱亜鉛腐食を実質的に生じていない試料)を×と評価した。この評価結果を表1に示す。   Then, compared to the corrosion state of the observation image of the actual sample No. 100 above, the samples with similar corrosion states of the observation images of the sample Nos. 1 to 6, 10, and 20 (here, dezincification corrosion) A sample with a large area) was evaluated as ◯, a sample with a small area of dezincification corrosion was evaluated as Δ, and a sample with no similar corrosion state (here, a sample with substantially no dezincification corrosion) was evaluated as x. The evaluation results are shown in Table 1.

各試料No.1〜6,10,20について端子部材の露出面積に対する単位面積当たりの電流値(mA/mm2)、及び単位面積当たりの電荷量(C/mm2)を求めた。その結果を表1に示す。また、試料No.1〜6,10,20について、一対の端子部材間の電圧、又は一対の黄銅板間の電圧を通電開始後から測定したところ、通電開始直後から電圧は徐々に上昇し、その後一定の値となった。この一定となった電圧値を系の電圧として表1に示す。更に、試料No.1〜4の脱亜鉛腐食面積及び黄銅の残存面積を、上記観察像を市販の画像処理装置により画像処理することで求めた。その結果を表2に示す。 For each sample No. 1 to 6, 10, and 20 , the current value per unit area (mA / mm 2 ) and the charge amount per unit area (C / mm 2 ) with respect to the exposed area of the terminal member were determined. The results are shown in Table 1. For samples No. 1 to 6, 10, and 20, when the voltage between the pair of terminal members or the voltage between the pair of brass plates was measured after the start of energization, the voltage gradually increased immediately after the start of energization, After that, it became a constant value. This constant voltage value is shown in Table 1 as the system voltage. Furthermore, the dezincification corrosion area and the remaining area of brass of Sample Nos. 1 to 4 were determined by subjecting the observed image to image processing using a commercially available image processing apparatus. The results are shown in Table 2.

実試料No.100は、図2(I)に示すように端子部材の全体に亘って、黄銅が銅に変化した部分、即ち脱亜鉛腐食が生じた部分が存在することが分かる。また、脱亜鉛腐食して銅となっている部分は、凹みや空隙が生じていることが分かる。しかし、黄銅部分では欠損や空隙がほとんど見られない。また、導体は、ほとんど腐食していないことが分かる。   As shown in FIG. 2 (I), the actual sample No. 100 has a portion where the brass is changed to copper, that is, a portion where dezincification corrosion occurs, over the entire terminal member. Moreover, it turns out that the dent and the space | gap have arisen in the part which has become the copper by dezincification corrosion. However, there are almost no defects or voids in the brass part. It can also be seen that the conductor is hardly corroded.

一方、電解質を含有する流体を用いて腐食試験を行った試料のうち、試料No.1,2,10は、図2(II),図2(III),図4に示すように端子部材の全体に亘って脱亜鉛腐食が生じた部分が存在したり、銅部分の一部が欠損した部分が生じていることが分かる。このことは、表2からも裏付けられる。表2に示すように、試料No.1,2は、特にインシュレーションバレル部において脱亜鉛腐食の面積が多い。また、試料No.5,20も概ね試料No.1と同様の腐食状態であった。かつ、試料No.1,2,10は、黄銅部分では欠損や空隙がほとんど見られない上に、導体がほとんど腐食していないことが分かる。また、試料No.5,20も試料No.1と同様に黄銅部分の欠損などが見られなかった。この結果から、試料No.1,2,5,10,20に対して行った腐食試験は、実試料No.100の腐食環境を良好に再現しており、このような腐食環境の加速腐食試験に相当すると言える。   On the other hand, among the samples subjected to the corrosion test using the fluid containing the electrolyte, sample Nos. 1, 2, and 10 are the terminal members as shown in FIG. 2 (II), FIG. 2 (III), and FIG. It can be seen that there is a portion where dezincification corrosion has occurred throughout, or a portion where a part of the copper portion is missing. This is supported by Table 2. As shown in Table 2, Sample Nos. 1 and 2 have a large area of dezincification corrosion particularly in the insulation barrel portion. Samples Nos. 5 and 20 were also almost in the same corrosion state as Sample No. 1. In Samples Nos. 1, 2, and 10, it can be seen that there are almost no defects or voids in the brass portion and the conductor is hardly corroded. In addition, sample Nos. 5 and 20 did not show brass part defects as in sample No. 1. From these results, the corrosion test performed on sample Nos. 1, 2, 5, 10, and 20 reproduces the corrosive environment of actual sample No. 100 well, and the accelerated corrosion test of such a corrosive environment It can be said that it corresponds to.

一方、試料No.3は、試料No.1,2と比較して脱亜鉛腐食の面積が少ないものの、図3(I)に示すように端子部材の全体に亘って脱亜鉛腐食が生じていることが分かる。   On the other hand, although sample No. 3 has a smaller area of dezincification corrosion than sample No. 1 and 2, dezincification corrosion occurs over the entire terminal member as shown in FIG. 3 (I). I understand that.

他方、試料No.4は、脱亜鉛腐食がほとんど生じておらず、黄銅自体が溶出して凹みや空隙が生じたりしていることが分かる。また、試料No.4は、導体の腐食も見られる。この結果から、試料No.4に対して行った腐食試験は、実試料No.100の腐食環境を再現できておらず、このような腐食環境を模擬した腐食試験に相応しくないと考えられる。   On the other hand, Sample No. 4 shows almost no dezincification corrosion, and the brass itself is eluted to form dents and voids. Sample No. 4 also shows corrosion of the conductor. From this result, it is considered that the corrosion test performed on the sample No. 4 cannot reproduce the corrosion environment of the actual sample No. 100 and is not suitable for a corrosion test simulating such a corrosion environment.

以上から、端子部材の露出面積における単位面積当たりの電流値が小さいと、端子部材を構成する黄銅自体が流出せず、脱亜鉛腐食が生じ易い傾向にあり、上記電流値が大きいと、端子部材を構成する黄銅自体が流出する傾向にあると言える。このような結果となった原因の一つとして、電流値によって陽極(黄銅)の電極電位が変化していることが考えられる。後述するように試料No.5,6について陽極電位を測定したところ、表1に示すように、試料No.5は、通電時間(25000秒)中、概ね一定の電位を取っているが、試料No.6は、通電時間(1000秒)中、電位が変動している(変動幅が大きい)ことが分かる。   From the above, if the current value per unit area in the exposed area of the terminal member is small, the brass constituting the terminal member itself does not flow out, and dezincification tends to occur. If the current value is large, the terminal member It can be said that the brass constituting the metal tends to flow out. One possible cause of this result is that the electrode potential of the anode (brass) varies depending on the current value. As will be described later, when the anode potential was measured for sample Nos. 5 and 6, as shown in Table 1, sample No. 5 had a substantially constant potential during the energization time (25000 seconds). No. 6 shows that the potential fluctuates (the fluctuation range is large) during the energization time (1000 seconds).

上記陽極電位は、以下のように測定した。参照電極(Ag/AgCl)を用意して、一対の黄銅板と共に電解質を含有する流体(上記5%NaCl溶液、38℃)に浸漬する。参照電極と陽極の黄銅板とに電圧計を取り付け、この状態で、一対の黄銅板に、電荷量:50C、電流値(一定):2mA又は50mAを通電する。この通電時における陽極電位を上記電圧計で測定した。なお、試料No.5(電流値:2mA)の測定結果は、単位面積当たりの電流値が概ね等しいことから、2.3型雌端子を取り付けて0.2mAを通電した試料No.1にも適用できると考えられる。同様に、試料No.6(電流値:50mA)の測定結果は、2.3型雌端子を取り付けて5mAを通電した試料No.4にも適用できると考えられる。   The anode potential was measured as follows. A reference electrode (Ag / AgCl) is prepared and immersed in a fluid (5% NaCl solution, 38 ° C.) containing an electrolyte together with a pair of brass plates. A voltmeter is attached to the reference electrode and the brass plate of the anode, and in this state, a charge amount: 50 C and a current value (constant): 2 mA or 50 mA are passed through the pair of brass plates. The anode potential during energization was measured with the voltmeter. The measurement result of sample No. 5 (current value: 2 mA) is that the current value per unit area is almost equal, so it can also be applied to sample No. 1 with a 2.3-type female terminal attached and energized with 0.2 mA. Conceivable. Similarly, the measurement result of sample No. 6 (current value: 50 mA) is considered to be applicable to sample No. 4 in which a 2.3 type female terminal is attached and 5 mA is energized.

以上のことから、電解質を含有した流体を用い、端子部材を具える試料と電極材とを用意し、当該試料の端子部材と当該電極材との間に当該流体が介在した状態で、一定の大きさの微弱な電流を流す腐食試験方法、特に、端子部材の単位面積当たりの電流値が0.19mA/mm2未満で、かつ、端子部材の単位面積当たり電荷量が20C/mm2以下となるように定電流を流す腐食試験方法は、リーク電流による腐食が生じる環境といった実環境を模擬した加速試験として好適に利用できると期待される。また、この腐食試験方法は、電流を一定とすることで、電荷量を制御し易く、同じ腐食環境を形成し易く再現性に優れることからも、上記リーク電流による腐食が生じる環境を模擬した腐食試験方法として、好適に利用できると期待される。更に、電解質を含有した流体として、NaCl水溶液といった電解液を用いる場合だけでなく、電解質が付着した粒状体(電解質担持体)を用いると共に恒温恒湿状態に保持して試験時に電解質を含有した流体を形成する場合や、上述した泥のような直接腐食に関与しない粒状体を含有した流体を利用する場合も、リーク電流による腐食が生じる環境といった腐食環境を模擬した腐食試験方法として、好適に利用することができると期待される。加えて、この腐食試験方法では、主として端子部材が腐食し、導体が腐食し難い環境を模擬した加速試験として好適に利用することができると期待される。導体の腐食が少ないことで、導体の構成金属と、端子部材の構成金属とが異なる場合にも、端子部材の腐食状況を評価することができると期待される。 From the above, using a fluid containing an electrolyte, preparing a sample having a terminal member and an electrode material, and with the fluid interposed between the terminal member of the sample and the electrode material, Corrosion test method for passing a weak current, especially the current value per unit area of the terminal member is less than 0.19 mA / mm 2 and the charge amount per unit area of the terminal member is 20 C / mm 2 or less Thus, the corrosion test method in which a constant current is passed is expected to be suitably used as an accelerated test that simulates an actual environment such as an environment in which corrosion due to leakage current occurs. In addition, this corrosion test method has a constant electric current, which makes it easy to control the amount of charge, easily forms the same corrosive environment, and has excellent reproducibility. It is expected that it can be suitably used as a test method. Furthermore, as a fluid containing an electrolyte, not only when using an electrolytic solution such as an NaCl aqueous solution, but also using a granular material (electrolyte carrier) to which the electrolyte is adhered and maintaining a constant temperature and humidity state, a fluid containing an electrolyte during the test It is also suitable as a corrosion test method that simulates a corrosive environment such as an environment in which corrosion due to leakage current occurs, even when using a fluid containing particulate matter that does not participate in direct corrosion such as mud as described above. Expected to be able to. In addition, it is expected that this corrosion test method can be suitably used as an accelerated test that simulates an environment in which the terminal member mainly corrodes and the conductor hardly corrodes. It is expected that the corrosion status of the terminal member can be evaluated even when the constituent metal of the conductor is different from the constituent metal of the terminal member because the conductor is less corroded.

上記腐食試験方法を実施するにあたり、例えば、電解質の材質や溶媒の材質、流体や電解質担持体の電解質の濃度、電流値、電荷量、恒温恒湿条件(温度、湿度)などを調整することで、実環境により近い環境を模擬できると期待される。また、通電時の電流値を高めることで、試験時間の短縮(加速試験の高速化)が図れると期待される。   In carrying out the above corrosion test method, for example, by adjusting the material of the electrolyte or the solvent, the concentration of the electrolyte of the fluid or the electrolyte carrier, the current value, the charge amount, the constant temperature and humidity conditions (temperature, humidity), etc. It is expected that an environment closer to the actual environment can be simulated. In addition, it is expected that the test time can be shortened (accelerated test speeding up) by increasing the current value during energization.

また、めっき部を有する試料を利用する場合、適宜熱処理を施して、めっき部を合金化してから上記形態I〜IIIに適用してもよい。この場合、めっき部が熱劣化により合金化する環境を模擬することができると期待される。   Moreover, when using the sample which has a plating part, after heat-processing suitably and alloying a plating part, you may apply to the said form I-III. In this case, it is expected that the environment in which the plated portion is alloyed due to thermal deterioration can be simulated.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、電解質を含有する流体の電解質の材質や溶媒の材質、電解質の濃度、試料の形態(材質、大きさ、形状など)、試験条件(通電時の電流値、電荷量、恒温恒湿の温度や湿度など)を適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the electrolyte material and solvent material of the fluid containing the electrolyte, the electrolyte concentration, the sample form (material, size, shape, etc.), test conditions (current value when energized, charge amount, temperature of constant temperature and humidity) And humidity) can be changed as appropriate.

本発明腐食試験方法及び本発明腐食試験システムは、腐食の進行が比較的緩やかであると考えられる環境、例えば、自動車の居住空間内や家屋、建物の室内といった屋内環境下で利用される電気電子機器の構成部材であって、リーク電流による腐食が生じ得る部材の耐食性を評価する際に好適に利用することができる。   The corrosion test method and the corrosion test system of the present invention are used in an environment where the progress of corrosion is considered to be relatively slow, for example, in an indoor environment such as an automobile living space, a house, or a building interior. It can be suitably used when evaluating the corrosion resistance of a component that is a component of a device and that can be corroded by leakage current.

1 試料 2 流体槽 3 電源装置 4 キャビティ 4h 挿入孔 5 流体
10 電線 10c 導体 10i 絶縁層 11 端子部材 12 雌端子部
13 インシュレーションバレル部 14 ワイヤバレル部
1 Sample 2 Fluid tank 3 Power supply 4 Cavity 4h Insertion hole 5 Fluid
10 Electric wire 10c Conductor 10i Insulation layer 11 Terminal member 12 Female terminal
13 Insulation barrel 14 Wire barrel

Claims (7)

導体の外周に絶縁層を具える電線の端部に端子部材を取り付けた試料の腐食状況を調べるための腐食試験方法であって、
前記試料と電極材とを用意して、当該試料の端子部材と当該電極材とを離間して配置する工程と、
前記試料の端子部材と前記電極材との間に電解質を含有する流体を介在させた状態を維持しながら、前記試料の端子部材と前記電極材との間に電流が流れるように、前記試料と前記電極材とに定電流を通電する工程とを具え、
前記通電は、電流値を0.19mA/mm2未満とし、電荷量が20C/mm2以下となる範囲の時間で行うことを特徴とする腐食試験方法。
A corrosion test method for investigating the corrosion status of a sample in which a terminal member is attached to an end of an electric wire having an insulating layer on the outer periphery of a conductor,
Preparing the sample and the electrode material, and arranging the terminal member of the sample and the electrode material apart from each other;
While maintaining a state in which a fluid containing an electrolyte is interposed between the terminal member of the sample and the electrode material, the sample and the sample so that a current flows between the terminal member of the sample and the electrode material. And a step of passing a constant current through the electrode material,
The corrosion test method is characterized in that the energization is performed for a time in a range where the current value is less than 0.19 mA / mm 2 and the charge amount is 20 C / mm 2 or less.
前記流体は、電解質を含有する水溶液であり、
前記流体に前記試料と前記電極材とを浸漬することで、前記試料の端子部材と前記電極材との間に前記流体を介在させることを特徴とする請求項1に記載の腐食試験方法。
The fluid is an aqueous solution containing an electrolyte,
2. The corrosion test method according to claim 1, wherein the fluid is interposed between a terminal member of the sample and the electrode material by immersing the sample and the electrode material in the fluid.
前記流体は、非金属絶縁材料からなる粒状体を含むことを特徴とする請求項1又は2に記載の腐食試験方法。   3. The corrosion test method according to claim 1, wherein the fluid includes a granular material made of a nonmetallic insulating material. 非金属絶縁材料からなる複数の粒状体の表面に電解質が付着した電解質担持体を用意し、
離間して配置された前記試料の端子部材と前記電極材とに接触すると共に、当該端子部材と当該電極材との間に介在されるように前記電解質担持体を配置し、
前記電解質担持体が配置された当該試料と当該電極材とを恒温恒湿状態に保持しながら、前記試料と前記電極材とに定電流を通電することを特徴とする請求項1に記載の腐食試験方法。
Prepare an electrolyte carrier with electrolyte attached to the surface of a plurality of granular materials made of non-metallic insulating materials,
The electrolyte carrier is disposed so as to be in contact with the terminal member and the electrode material of the sample that are spaced apart and interposed between the terminal member and the electrode material,
2. The corrosion according to claim 1, wherein a constant current is applied to the sample and the electrode material while maintaining the sample and the electrode material on which the electrolyte carrier is disposed in a constant temperature and humidity state. Test method.
前記電解質は、Na,Cl,Mg,K,及びCaから選択される1種以上を含むことを特徴とする請求項1〜4のいずれか1項に記載の腐食試験方法。   5. The corrosion test method according to claim 1, wherein the electrolyte includes one or more selected from Na, Cl, Mg, K, and Ca. 前記端子部材は、黄銅から構成されていることを特徴とする請求項1〜5のいずれか1項に記載の腐食試験方法。   6. The corrosion test method according to claim 1, wherein the terminal member is made of brass. 導体の外周に絶縁層を具える電線の端部に端子部材を取り付けた試料の腐食状況を調べるための腐食試験システムであって、
電解質を含有する流体と、
前記流体が貯留されると共に、前記試料と電極材とが離間した状態で浸漬される流体槽と、
前記試料の端子部材と前記電極材との間に介在された前記流体を利用して、前記試料の端子部材と前記電極材との間に電流が流れるように、前記試料と前記電極材とに定電流を通電する電源手段とを具えることを特徴とする腐食試験システム。
A corrosion test system for investigating the corrosion status of a sample in which a terminal member is attached to the end of an electric wire having an insulating layer on the outer periphery of a conductor,
A fluid containing an electrolyte;
A fluid tank in which the fluid is stored and the sample and the electrode material are immersed in a separated state;
Using the fluid interposed between the terminal member of the sample and the electrode material, the sample and the electrode material are connected to each other so that a current flows between the terminal member of the sample and the electrode material. A corrosion test system comprising a power supply means for supplying a constant current.
JP2009183050A 2008-08-08 2009-08-06 Corrosion test method Expired - Fee Related JP5108843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009183050A JP5108843B2 (en) 2009-08-06 2009-08-06 Corrosion test method
PCT/JP2009/003784 WO2010016265A1 (en) 2008-08-08 2009-08-06 Corrosion testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183050A JP5108843B2 (en) 2009-08-06 2009-08-06 Corrosion test method

Publications (2)

Publication Number Publication Date
JP2011033596A JP2011033596A (en) 2011-02-17
JP5108843B2 true JP5108843B2 (en) 2012-12-26

Family

ID=43762794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183050A Expired - Fee Related JP5108843B2 (en) 2008-08-08 2009-08-06 Corrosion test method

Country Status (1)

Country Link
JP (1) JP5108843B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137950A (en) * 2014-01-23 2015-07-30 株式会社オートネットワーク技術研究所 Corrosion detecting electric wire
CN105738273B (en) * 2016-03-08 2018-08-21 浙江工业大学 The test method and experimental rig of reinforcing bar nature non-uniform corrosion in simulation concrete
JP6565980B2 (en) * 2017-08-04 2019-08-28 マツダ株式会社 Corrosion resistance test apparatus for coated metal material and corrosion resistance test method for coated metal material
JP6565979B2 (en) * 2017-08-04 2019-08-28 マツダ株式会社 Corrosion resistance test apparatus and corrosion resistance test method for coated metal material
JP6747495B2 (en) 2018-12-11 2020-08-26 マツダ株式会社 Corrosion resistance test method for coated metal materials
JP2020118468A (en) 2019-01-18 2020-08-06 マツダ株式会社 Corrosion resistance test device of coated metal material
JP6835286B1 (en) * 2020-09-29 2021-02-24 マツダ株式会社 Corrosion resistance test method for coated metal materials and water-containing materials used in the method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566139A (en) * 1979-06-27 1981-01-22 Nisshin Steel Co Ltd Method and device for testing soil corrosion of metal
JPS57161533A (en) * 1981-03-30 1982-10-05 Matsuda Pump Seisakusho:Kk Method and device for testing sand erosion and corrosion
JPS61205846A (en) * 1985-03-11 1986-09-12 Nisshin Steel Co Ltd Method for corrosion evaluation test of member for car muffler
JP3279928B2 (en) * 1996-05-31 2002-04-30 理研計器株式会社 Diaphragm type electrochemical gas detector
JP2000150039A (en) * 1998-09-10 2000-05-30 Harness Syst Tech Res Ltd Electric wire connecting structure of fit-in type connection terminal
JP4728934B2 (en) * 2006-11-20 2011-07-20 株式会社ビスキャス Corrosion test method

Also Published As

Publication number Publication date
JP2011033596A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5108843B2 (en) Corrosion test method
WO2010016265A1 (en) Corrosion testing method
JP5108844B2 (en) Corrosion test method
Plant et al. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties
JP6784335B2 (en) Corrosion resistance test method and corrosion resistance test equipment for coated metal materials
EP3667293B1 (en) Method of testing corrosion resistance of coated metal material
EP3686575B1 (en) Corrosion resistance tester for coated metal material
JP6565979B2 (en) Corrosion resistance test apparatus and corrosion resistance test method for coated metal material
EP2342553A1 (en) A method of inspecting a metal coating and a method for analytical control of a deposition electrolyte serving to deposit said metal coating
JP2019032173A (en) Water-containing material for corrosion resistance test of coated metal material and corrosion resistance test method for coated metal material using the same
CN107069282A (en) It is equipped with the electric wire and the wire harness using the electric wire for being equipped with terminal of terminal
JP2019032171A (en) Device and method for testing corrosion resistance of coated metal material
CN113899678A (en) Electrode unit, method and apparatus for testing corrosion resistance of metal-clad material
Antler et al. Base metal contacts: An exploratory study of separable connection to tin-lead
CN114112876A (en) Measuring method and measuring apparatus, and corrosion resistance testing method and apparatus
JP5365998B2 (en) Electric wire with terminal and terminal member
JP2010060549A (en) Corrosion testing method
CN113899680A (en) Method and apparatus for treating flaw, and method and apparatus for testing corrosion resistance
CN112462146A (en) Method for detecting salt drops of electrode material resisting electrochemical migration insulation failure
JP2013020862A (en) Crimp terminal for aluminum wire and manufacturing method therefor
Chanel et al. An investigation on the corrosion of brass-coated steel cords for tyres by electrochemical techniques
Kim et al. Mechanical deterioration of ACSR conductors due to forest fires
Hakansson Galvanic corrosion of aluminum/carbon composite systems
Medgyes et al. Electrochemical migration of Cu and Sn in Na2SO4 environment
Liao et al. In situ study of the effect of Nitrate on the Electrochemical migration of Tin under Chloride-containing Thin Electrolyte Layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees