JP5106577B2 - Non-aqueous secondary battery and portable device using the same - Google Patents

Non-aqueous secondary battery and portable device using the same Download PDF

Info

Publication number
JP5106577B2
JP5106577B2 JP2010117372A JP2010117372A JP5106577B2 JP 5106577 B2 JP5106577 B2 JP 5106577B2 JP 2010117372 A JP2010117372 A JP 2010117372A JP 2010117372 A JP2010117372 A JP 2010117372A JP 5106577 B2 JP5106577 B2 JP 5106577B2
Authority
JP
Japan
Prior art keywords
compound
mass
positive electrode
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010117372A
Other languages
Japanese (ja)
Other versions
JP2010219058A (en
Inventor
房次 喜多
英郎 坂田
春樹 上剃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010117372A priority Critical patent/JP5106577B2/en
Publication of JP2010219058A publication Critical patent/JP2010219058A/en
Application granted granted Critical
Publication of JP5106577B2 publication Critical patent/JP5106577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池の過充電安全性の改善と貯蔵信頼性を確保できる非水二次電池及びこれを用いた携帯機器に関するものである。   The present invention relates to a non-aqueous secondary battery capable of improving the overcharge safety and storage reliability of a battery, and a portable device using the same.

リチウムイオン電池に代表される非水二次電池は、高電圧、高エネルギー密度であるため、その需要は年々増加している。しかし、電池が高エネルギー密度になるにつれてその安全性は逆に低下していくため、安全性の向上も高エネルギー密度の電池ではより重要になる。また、通常考えられている安全対策ではエネルギー密度が低下する傾向にあるため、エネルギー密度を維持しつつ、安全性をも改善する方策が待望されている。   Non-aqueous secondary batteries represented by lithium ion batteries have a high voltage and a high energy density, so that the demand is increasing year by year. However, since the safety of the battery decreases as the energy density of the battery increases, the improvement in safety becomes more important for the battery of high energy density. Moreover, since the energy density tends to decrease in the normally considered safety measures, a measure for improving the safety while maintaining the energy density is awaited.

従来、非水二次電池の電解液に特別な添加剤を含有させて過充電安全性を確保することが行われている。これまで高電圧で重合して過充電時の安全性を改善する電解液の添加剤として、特許文献1に記載のビフェニルや、特許文献2に記載のシクロヘキシルベンゼン等が提案されている。これらの添加剤は、過充電時にガスが発生して電流遮断弁を作動させやすくするものであり、電流遮断弁との組み合わせで安全性を確保するものである。   Conventionally, a special additive is included in the electrolyte of a non-aqueous secondary battery to ensure overcharge safety. So far, biphenyl described in Patent Document 1, cyclohexylbenzene described in Patent Document 2, and the like have been proposed as additives for electrolytic solutions that are polymerized at a high voltage to improve safety during overcharge. These additives are for generating gas at the time of overcharge to facilitate the operation of the current cutoff valve, and ensuring safety in combination with the current cutoff valve.

特開平9−171840号公報JP-A-9-171840 特開2001−015155号公報JP 2001-015155 A

しかし、角型電池では通常電流遮断弁を備えていないため、その効果を十分に発揮できないという問題がある。また、前記電解液の添加剤を特に表面積の大きい正極と組み合わせて多量に用いると、充電状態での添加剤の安定性が低下し、高温で長時間放置しておくと電解液の分解等が起こり、電池の膨れが生じたり、内部抵抗が上昇しやすいという問題がある。その時に発生するガスにより、筒形電池では内圧が上昇し、角形電池やラミネート電池では電池の膨れとして現れる。特に角形電池やラミネート電池では、外見上のサイズ変化として現れる。   However, since a square battery usually does not include a current cutoff valve, there is a problem that the effect cannot be sufficiently exhibited. In addition, when a large amount of the electrolyte additive is used in combination with a positive electrode having a particularly large surface area, the stability of the additive in a charged state is reduced. This may cause problems such as battery swelling and internal resistance. Due to the gas generated at that time, the internal pressure rises in the cylindrical battery, and appears as a swelling of the battery in the rectangular battery or the laminated battery. In particular, in the case of a square battery or a laminate battery, this appears as an apparent size change.

一方、フルオロベンゼン等を前記電解液の添加剤として使用すると、フルオロベンゼン自体は高電圧で安定であり、少々添加しても過充電に対する効果は低いが、電池の膨れ等は生じにくい。例えば、フルオロベンゼンの添加量を増やしていくと過充電性能は良くなっていくが、シクロヘキシルベンゼンを添加するほどの効果は見られない。   On the other hand, when fluorobenzene or the like is used as an additive for the electrolytic solution, the fluorobenzene itself is stable at a high voltage, and even if added a little, the effect on overcharge is low, but the battery does not easily swell. For example, when the amount of fluorobenzene added is increased, the overcharge performance is improved, but the effect of adding cyclohexylbenzene is not seen.

本発明は前記従来の問題を解決するためになされたものであり、優れた過充電安全性を備え、且つ高温貯蔵時のガス発生が少なく、貯蔵信頼性を確保できる非水二次電池を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and provides a non-aqueous secondary battery that has excellent overcharge safety, generates less gas during high-temperature storage, and can ensure storage reliability. The purpose is to do.

本発明の非水二次電池は、正極と、負極と、非水電解液と、セパレータとを備えた非水二次電池であって、正極活物質は、表面積が0.4〜1m2/gのリチウム複合酸化物であり、前記非水電解液は、ベンゼン環にフッ素基が結合した化合物Aと、前記化合物Aより低い電位で酸化される化合物Bとを含み、前記化合物Bは、ベンゼン環を有する化合物から選ばれる少なくとも1種であり、前記非水電解液全体に対する前記化合物Aの含有量が、1質量%以上7質量%以下であり、前記化合物Bの含有量が、0.005質量%以上3質量%以下であることを特徴とする。 The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, and the positive electrode active material has a surface area of 0.4 to 1 m 2 / g of the lithium composite oxide, wherein the non-aqueous electrolyte includes a compound A in which a fluorine group is bonded to a benzene ring, and a compound B that is oxidized at a lower potential than the compound A. It is at least one selected from compounds having a ring, the content of the compound A with respect to the whole non-aqueous electrolyte is 1% by mass or more and 7% by mass or less, and the content of the compound B is 0.005. It is characterized by being not less than 3% by mass and not more than 3% by mass.

また、本発明の非水二次電池は、正極と、負極と、非水電解液と、セパレータとを備えた非水二次電池であって、正極合剤は、正極活物質と、導電助剤と、結着剤とを含み、前記正極合剤全体に対する前記導電助剤の含有量が1〜5質量%であり、前記非水電解液は、ベンゼン環にフッ素基が結合した化合物Aと、前記化合物Aより低い電位で酸化される化合物Bとを含み、前記化合物Bは、ベンゼン環を有する化合物から選ばれる少なくとも1種であり、前記非水電解液全体に対する前記化合物Aの含有量が、1質量%以上7質量%以下であり、前記化合物Bの含有量が、0.005質量%以上3質量%以下であることを特徴とする。   The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, the positive electrode mixture comprising a positive electrode active material, a conductive assistant. A non-aqueous electrolyte comprising a compound A in which a fluorine group is bonded to a benzene ring, and a content of the conductive auxiliary agent is 1 to 5% by mass with respect to the positive electrode mixture as a whole. The compound B is oxidized at a lower potential than the compound A, and the compound B is at least one selected from compounds having a benzene ring, and the content of the compound A with respect to the whole non-aqueous electrolyte is It is 1 mass% or more and 7 mass% or less, and content of the said compound B is 0.005 mass% or more and 3 mass% or less.

また、本発明の携帯機器は、上記本発明の非水二次電池を用いた携帯機器であって、充電時に0.6A以上で充電されることのある携帯機器である。   The portable device of the present invention is a portable device using the non-aqueous secondary battery of the present invention, and may be charged at 0.6 A or more during charging.

本発明に係る非水二次電池の一例を模式的に示す図であり、(a)はその平面図、(b)はその部分縦断面図である。It is a figure which shows typically an example of the non-aqueous secondary battery which concerns on this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明では電解液中にベンゼン環にハロゲン基が結合した化合物Aと、これより低い電位で酸化される化合物Bとを含むことが必要であり、両者の相互作用により、過充電安全性と貯蔵信頼性を実現するものである。   In the present invention, it is necessary that the electrolyte solution contains a compound A in which a halogen group is bonded to a benzene ring and a compound B that is oxidized at a potential lower than this, and the interaction between the two causes overcharge safety and storage. Realize reliability.

上記化合物Aとしては、フルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、クロロベンゼン、又はその誘導体が好ましいが、シクロヘキシルベンゼン、イソプロピルベンゼン、n−ブチルベンゼン、オクチルベンゼン、トルエン、キシレン等の芳香環にハロゲン基が結合したものであってもよく、ハロゲン基としては特にフッ素が望ましい。また、前記化合物Aとしては非イオン性の化合物が望ましい。中でもフッ素置換されたベンゼン、特にフルオロベンゼンが最も望ましい。   As the compound A, fluorobenzene, difluorobenzene, trifluorobenzene, chlorobenzene, or a derivative thereof is preferable, but a halogen group is present on an aromatic ring such as cyclohexylbenzene, isopropylbenzene, n-butylbenzene, octylbenzene, toluene, xylene, or the like. It may be bonded, and fluorine is particularly desirable as the halogen group. The compound A is preferably a nonionic compound. Of these, fluorine-substituted benzene, particularly fluorobenzene, is most desirable.

化合物Aの含有量は、電解液中で1質量%以上が望ましく、2質量%以上がより望ましく、3質量%以上が最も望ましい。また、化合物Aの含有量は、電解液中で15質量%以下が望ましく、10質量%以下がより望ましく、7質量%以下が最も望ましい。   The content of Compound A is preferably 1% by mass or more, more preferably 2% by mass or more, and most preferably 3% by mass or more in the electrolytic solution. Further, the content of Compound A is preferably 15% by mass or less in the electrolytic solution, more preferably 10% by mass or less, and most preferably 7% by mass or less.

また、上記化合物Bとしては、化合物Aより低い電位で酸化される芳香族化合物及び複素環化合物から選ばれる少なくとも1種であり、例えば化合物Aがフッ素置換のベンゼンである場合、ビフェニル、メチルピロール、ジフェニルメタン、ジフェニルエーテル、ナフタレン、フラン等が挙げられる。特に芳香族環を有するものが望ましく、ビフェニルが最も望ましい。   The compound B is at least one selected from an aromatic compound and a heterocyclic compound that are oxidized at a lower potential than the compound A. For example, when the compound A is a fluorine-substituted benzene, biphenyl, methylpyrrole, Examples include diphenylmethane, diphenyl ether, naphthalene, furan and the like. In particular, those having an aromatic ring are desirable, and biphenyl is most desirable.

化合物Bの化合物Aに対する割合は、20質量%以下が望ましく、15質量%以下がより望ましく、10質量%以下が最も望ましい。また、化合物Bの化合物Aに対する割合は、0.5質量%以上が望ましく、1質量%以上がより望ましく、2質量%以上が最も望ましい。   The ratio of compound B to compound A is desirably 20% by mass or less, more desirably 15% by mass or less, and most desirably 10% by mass or less. The ratio of compound B to compound A is preferably 0.5% by mass or more, more preferably 1% by mass or more, and most preferably 2% by mass or more.

化合物Aと化合物Bの相互作用についてはまだ詳細は不明であるが、以下のように推定される。即ち、化合物Bは化合物Aより低い電位で酸化されるため、充電時に化合物Aより先に正極の活性部位と反応して薄い被膜を形成し、これにより過充電時に化合物Aが電極上で均一な状態でより反応しやすくなり、過充電性能が向上すると考えられる。化合物Bが多くなると化合物Bが電池の膨れやインピーダンスの上昇に影響するので、非水電解液全体に対する化合物Bの含有量は、3質量%以下が望ましく、0.5質量%以下がより望ましく、0.2質量%以下が最も望ましい。また、少なすぎると十分な被膜を形成できないので、化合物Bの含有量は、0.005質量%以上が望ましく、0.05質量%以上がより望ましく、0.1質量%以上が最も望ましい。   The details of the interaction between Compound A and Compound B are still unclear, but are estimated as follows. That is, since compound B is oxidized at a lower potential than compound A, it reacts with the active site of the positive electrode prior to compound A during charging to form a thin film, so that compound A is uniform on the electrode during overcharging. It is thought that it becomes easier to react in the state and the overcharge performance is improved. When the amount of Compound B increases, Compound B affects the swelling of the battery and the increase in impedance. Therefore, the content of Compound B with respect to the entire non-aqueous electrolyte is preferably 3% by mass or less, more preferably 0.5% by mass or less, 0.2 mass% or less is the most desirable. If the amount is too small, a sufficient film cannot be formed. Therefore, the content of Compound B is preferably 0.005% by mass or more, more preferably 0.05% by mass or more, and most preferably 0.1% by mass or more.

また、本発明の電解液中には、−SO2結合を有する化合物を含有させておくことが好ましく、特に−O−SO2結合を有する化合物を溶解させておくことがより好ましい。そのような−O−SO2結合を有する化合物としては、例えば、1,3−プロパンスルトン、メチルエチルスルフォネート、ジエチルサルフェート等が挙げられる。その含有量は、電解液中で0.5質量%以上が望ましく、1質量%以上がより望ましく、2質量%以上が最も望ましい。また、10質量%以下が望ましく、5質量%以下がより望ましく、3質量%以下が最も望ましい。この化合物の添加により過充電時の安全性が更に向上する。 Further, the electrolytic solution of the present invention is preferably allowed to contain a compound having a -SO 2 bond, it is more preferable to particularly by dissolving the compound having a -O-SO 2 bond. Examples of such a compound having —O—SO 2 bond include 1,3-propane sultone, methyl ethyl sulfonate, diethyl sulfate and the like. The content is preferably 0.5% by mass or more in the electrolytic solution, more preferably 1% by mass or more, and most preferably 2% by mass or more. Moreover, 10 mass% or less is desirable, 5 mass% or less is more desirable, and 3 mass% or less is the most desirable. Addition of this compound further improves safety during overcharge.

本発明の非水二次電池に用いる電解質には、有機電解液を用いてもよいし、高分子や固体を用いた電解質であってもよいが、有機溶媒(非水電解液)を少なくとも含有すること
が必要である。有機電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)等の炭酸エステルや、γ−ブチロラクトン(γ−BL)、酢酸メチル(EA)等のエステル類を主に用いることができる。また、その他に、1,3−ジオキソラン、1,2−ジメトキシエタン等のエーテル類、スルホラン等の硫黄化合物、含窒素化合物、含珪素化合物、含フッ素化合物、含リン化合物等の有機溶媒を単独又は混合して用いてもよく、これにリチウム塩を溶解して用いられる。
The electrolyte used in the non-aqueous secondary battery of the present invention may be an organic electrolytic solution or an electrolyte using a polymer or a solid, but contains at least an organic solvent (non-aqueous electrolytic solution). It is necessary to. Organic electrolytes include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), and γ- Esters such as butyrolactone (γ-BL) and methyl acetate (EA) can be mainly used. In addition, organic solvents such as ethers such as 1,3-dioxolane and 1,2-dimethoxyethane, sulfur compounds such as sulfolane, nitrogen-containing compounds, silicon-containing compounds, fluorine-containing compounds, and phosphorus-containing compounds may be used alone or It may be used as a mixture, and a lithium salt is dissolved in this.

有機電解液に溶解させるリチウム塩としては、LiPF6、LiCn2n+1SO3(n>
1)、LiClO4、LiBF4、LiAsF6、(Cn2n+1SO2)(Cm2m+1SO2
NLi(m,n≧1)、(RfOSO22NLi(Rfは炭素数が2以上のハロゲンを含
むアルキル基で、Rfは異なるものであってもよいし、Rf同士が互いに結合していてもよい。例えば、(CH2(CF24CH2OSO2N(Li)SO2O)n(n:整数)のよ
うにポリマー状に結合していてもよい。)これらのリチウム塩は上記有機電解液に対して通常、0.1〜2mol/dm3溶解させる。リチウム塩の種類は特に限定されるもので
はないが、LiPF6や炭素数2個以上の含フッ素有機リチウム塩が望ましい。
Examples of the lithium salt dissolved in the organic electrolyte include LiPF 6 , LiC n F 2n + 1 SO 3 (n>
1), LiClO 4 , LiBF 4 , LiAsF 6 , (C n F 2n + 1 SO 2 ) (C m F 2m + 1 SO 2 )
NLi (m, n ≧ 1), (RfOSO 2 ) 2 NLi (Rf is an alkyl group containing a halogen having 2 or more carbon atoms, Rf may be different, and Rf are bonded to each other. For example, these lithium salts may be bonded in the form of a polymer such as (CH 2 (CF 2 ) 4 CH 2 OSO 2 N (Li) SO 2 O) n (n: integer).) Usually, 0.1 to 2 mol / dm 3 is dissolved in the organic electrolyte. The type of the lithium salt is not particularly limited, but LiPF 6 or a fluorine-containing organic lithium salt having 2 or more carbon atoms is desirable.

正極活物質としては、例えばLiCoO2等のリチウムコバルト酸化物、LiMn24
等のリチウムマンガン酸化物、LiNiO2等のリチウムニッケル酸化物、二酸化マンガ
ン、五酸化バナジウム、クロム酸化物等の金属酸化物、又は二硫化チタン、二硫化モリブデン等の金属硫化物が用いられる。また、正極は、それらの正極活物質に導電助剤やポリフッ化ビニリデン等の結着剤を適宜添加した正極合剤を、アルミニウム箔等の集電材料を芯材として成形体に仕上げたものが用いられる。正極活物質としては、特にLiNiO2
、LiCoO2、LiMn24等のように充電された時にLi基準で4.2V以上となる
ものが望ましく、より望ましくは充電終了後の開路電圧がLi基準で4.3V以上を示すリチウム複合酸化物である。正極活物質として最も望ましくはLiCoO2又はLiNi
2を用いることであり、これらの一部が異種元素で置換されていてもよい。
Examples of the positive electrode active material include lithium cobalt oxides such as LiCoO 2 and LiMn 2 O 4.
Lithium manganese oxide such as LiNiO 2 , metal oxides such as manganese dioxide, vanadium pentoxide, and chromium oxide, or metal sulfides such as titanium disulfide and molybdenum disulfide are used. In addition, the positive electrode has a positive electrode mixture obtained by appropriately adding a conductive additive or a binder such as polyvinylidene fluoride to the positive electrode active material, and finished into a molded body using a current collector material such as an aluminum foil as a core material. Used. As the positive electrode active material, in particular LiNiO 2
, LiCoO 2 , LiMn 2 O 4, and the like that desirably have 4.2 V or more on the basis of Li when charged, and more preferably a lithium composite in which the open circuit voltage after charging is 4.3 V or more on the basis of Li It is an oxide. Most desirably, the positive electrode active material is LiCoO 2 or LiNi.
O 2 is used, and some of these may be substituted with different elements.

本発明では、表面積の大きい正極と組み合わせても電池の膨れが少なく、従来のシクロヘキシルベンゼンを用いるより有利である。また、正極の表面積は0.4m2/g以上が
望ましく、0.5m2/g以上がより望ましい。また、正極の表面積は1m2/g以下が望ましく、0.7m2/g以下がより望ましい。表面積が大きくなりすぎると電解液との反
応性が増加する傾向にあるからである。
In the present invention, even when combined with a positive electrode having a large surface area, there is little swelling of the battery, which is more advantageous than using conventional cyclohexylbenzene. The surface area of the positive electrode is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more. Further, the surface area of the positive electrode 1 m 2 / g or less is desirable, 0.7 m 2 / g or less is more preferable. This is because if the surface area becomes too large, the reactivity with the electrolyte tends to increase.

正極の導電助剤としては種々のものを用い得るが、特に炭素材料を用いることが好ましい。また、その導電助剤の含有量は、その正極合剤(正極活物質と導電助剤と結着剤との混合物)全体に対して5質量%以下にすることが好ましい。これは正極合剤中における導電助剤としての炭素材料の含有量が5質量%を超えると、充電状態で電解液溶媒との反応によりガスが発生しやすくなるおそれがあるためである。そのため、導電助剤としての炭素材料の含有量は、正極合剤中で3質量%以下にすることがより好ましく、2.5質量%以下にすることが更に好ましい。一方、導電助剤が少なすぎると正極の導電性が低下して電池特性を低下させる傾向があるので、その含有量は、正極合剤中で1質量%以上が好ましく、1.5質量%以上がより好ましく、2質量%以上が更に好ましい。   Various materials can be used as the conductive additive for the positive electrode, but it is particularly preferable to use a carbon material. Moreover, it is preferable that content of the conductive support agent shall be 5 mass% or less with respect to the whole positive mix (a mixture of a positive electrode active material, a conductive support agent, and a binder). This is because if the content of the carbon material as the conductive additive in the positive electrode mixture exceeds 5% by mass, gas may be easily generated due to reaction with the electrolyte solvent in the charged state. Therefore, the content of the carbon material as the conductive assistant is more preferably 3% by mass or less, and further preferably 2.5% by mass or less in the positive electrode mixture. On the other hand, if the amount of the conductive auxiliary is too small, the conductivity of the positive electrode tends to be lowered and the battery characteristics tend to be lowered. Therefore, the content is preferably 1% by mass or more in the positive electrode mixture, and 1.5% by mass or more. Is more preferable, and 2 mass% or more is still more preferable.

上記導電助剤の炭素材料の種類としては特に限定されるものではないが、結晶性の低いカーボンブラック等の材料を用いると、高温貯蔵時の電池の膨れを抑制できることから好ましい。また、この結晶性の低い炭素材料に結晶性の高い炭素材料、例えば、黒鉛系炭素材料を一部併用すると導電性が向上し、導電助剤の使用量を低減できることから好ましい。このように、導電助剤として結晶性の低い炭素材料と結晶性の高い炭素材料とを併用する場合、結晶性の低い炭素材料の量を全導電助剤中の50質量%以上にすることが好ましく、70質量%以上にすることがより好ましい。また、95質量%以下にすることが好ましく、80質量%以下にすることがより好ましい。結晶性の判断としては、一般的に(002)面の面間隔が0.345nmより大きいものを結晶性が低い炭素材料とするが、判断が困難な場合には、ラマンスペクトルの1540〜1600cm-1のピークの半値幅が100cm-1以上であるものを低結晶性と考える。 The type of the carbon material for the conductive auxiliary agent is not particularly limited, but it is preferable to use a material such as carbon black having low crystallinity because the swelling of the battery during high temperature storage can be suppressed. In addition, it is preferable to use a carbon material having high crystallinity, for example, a graphite-based carbon material, in combination with the carbon material having low crystallinity because the conductivity is improved and the amount of the conductive auxiliary agent can be reduced. As described above, when a carbon material having low crystallinity and a carbon material having high crystallinity are used in combination as the conductive assistant, the amount of the carbon material having low crystallinity may be 50% by mass or more in the total conductive assistant. Preferably, it is more preferably 70% by mass or more. Moreover, it is preferable to set it as 95 mass% or less, and it is more preferable to set it as 80 mass% or less. In general, the crystallinity is determined by using a carbon material having a low (002) plane spacing of greater than 0.345 nm as a low crystallinity carbon material. If the determination is difficult, the Raman spectrum of 1540 to 1600 cm − is used. One having a half-width of 1 peak of 100 cm −1 or more is considered low crystallinity.

また、負極は、炭素材料又はLiが挿入可能な金属酸化物や金属窒化物に、結着剤、場合によっては導電材を加えたものをともに溶媒に分散させ、銅箔等の集電材料に塗布して乾燥後、成形体に仕上げたものを用いる。Liの挿入可能な金属酸化物としては、SnやSiを含む金属化合物、例えばSnOx、SiOx等が挙げられる。また、金属窒化物としては、Li2.6Co0.4N等が挙げられる。 The negative electrode is a carbon material or a metal oxide or metal nitride into which Li can be inserted, and a binder, and in some cases, a conductive material, are dispersed together in a solvent to form a current collecting material such as copper foil. After coating and drying, a finished product is used. Examples of the metal oxide into which Li can be inserted include metal compounds containing Sn and Si, such as SnOx and SiOx. Examples of the metal nitride include Li 2.6 Co 0.4 N.

セパレータとしては、薄い方がエネルギー密度を高くできるため好ましく、厚み20μm以下が望ましいが、安全性の点からは10μm以上とするのが望ましい。セパレータの空孔率は、大きすぎると化合物A及びBの効果が低下するおそれがあるため、42%以下が望ましく、40%以下がより望ましく、38%以下が最も望ましい。一方、空孔率が小さすぎると負荷特性等が低下するおそれがあるため、30%以上が望ましく、33%以上がより望ましく、35%以上が最も望ましい。   As the separator, a thinner one is preferable because the energy density can be increased, and a thickness of 20 μm or less is desirable, but from the viewpoint of safety, it is desirably 10 μm or more. If the porosity of the separator is too large, the effects of the compounds A and B may be reduced. Therefore, the porosity is desirably 42% or less, more desirably 40% or less, and most desirably 38% or less. On the other hand, if the porosity is too small, load characteristics and the like may be lowered, so 30% or more is desirable, 33% or more is more desirable, and 35% or more is most desirable.

セパレータの透気度は、小さすぎると化合物A及びBの効果が低下するおそれがあるため、200秒/100cm3以上が望ましく、300秒/100cm3以上がより望ましい。一方、透気度が大きすぎると特性低下のおそれがあるため、500秒/100cm3以下が望ましく、400秒/100cm3以下がより望ましい。 If the air permeability of the separator is too small, the effects of the compounds A and B may be lowered. Therefore, it is preferably 200 seconds / 100 cm 3 or more, and more preferably 300 seconds / 100 cm 3 or more. On the other hand, there is a risk of air permeability is too large properties decrease, preferably 500 sec / 100 cm 3 or less, and more preferably 400 seconds / 100 cm 3 or less.

また、本発明は、ラミネート電池、角形電池で効果が大きいが、筒型電池、ボタン型電池、コイン型電池等の各種の電池形式にも適応可能である。   Further, the present invention has a great effect with a laminated battery and a rectangular battery, but can be applied to various battery types such as a cylindrical battery, a button battery, and a coin battery.

また、本発明の携帯機器とは、携帯電話、ノートパソコン、PDA、小型医療機器等の持ち運び可能な非水二次電池を用いた機器であるが、充電電流が0.6A以上になることのあるものは、本発明の非水二次電池との組み合わせにより信頼性が向上するので特に望ましい。   The portable device of the present invention is a device using a portable non-aqueous secondary battery, such as a mobile phone, a notebook computer, a PDA, and a small medical device, and the charging current is 0.6 A or more. Some are particularly desirable because the reliability is improved by the combination with the non-aqueous secondary battery of the present invention.

次に、本発明を実施例に基づきより具体的に説明する。だだし、本発明は以下の実施例にのみ限定されるものではない。   Next, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

(実施例1)
本発明の電解液を次のように準備した。まず、ECとMECの体積比が1:2の混合溶媒にLiPF6を1.2mol/dm3溶解させる。更に、この混合溶媒に添加剤としてフルオロベンゼン(FB)を5質量%、ビフェニル(BP)を0.1質量%溶解させ、BPのFBに対する含有量が2質量%の電解液を調製した。
Example 1
The electrolytic solution of the present invention was prepared as follows. First, 1.2 mol / dm 3 of LiPF 6 is dissolved in a mixed solvent having a volume ratio of EC and MEC of 1: 2. Further, 5% by mass of fluorobenzene (FB) and 0.1% by mass of biphenyl (BP) were dissolved in this mixed solvent as an additive to prepare an electrolytic solution having a content of BP with respect to FB of 2% by mass.

次に、正極を以下のようにして準備した。まず、表面積0.5m2/gのLiCoO293.5質量部にカーボンブラック2.0質量部と黒鉛(ロンザ社製の“KS−6”)0.5質量部を加えて混合し、得られた混合物をあらかじめポリフッ化ビニリデン4質量部をN−メチルピロリドンに溶解させておいた溶液に加えて混合し、正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面に均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラープレス機により加圧成形した後、所定の大きさに切断し、リード体を溶接して帯状の正極を作製した。ただし、上記正極では、作製後の正極をセパレータを介して負極と巻回した巻回構造の電極積層体において、負極と対向しない最内周部の内面側となる部分には正極合剤含有ぺーストを塗布しなかった。なお、上記正極合剤中における導電助剤(カーボンブラックと黒鉛)の含有量は2.5質量%であった。 Next, a positive electrode was prepared as follows. First, 2.0 parts by mass of carbon black and 0.5 parts by mass of graphite (“KS-6” manufactured by Lonza) were added to 93.5 parts by mass of LiCoO 2 having a surface area of 0.5 m 2 / g and mixed to obtain. The obtained mixture was added to and mixed with a solution prepared by previously dissolving 4 parts by mass of polyvinylidene fluoride in N-methylpyrrolidone to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste was uniformly applied on both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried to form a positive electrode mixture layer, and then pressure-formed with a roller press. Then, it cut | disconnected to the predetermined magnitude | size and welded the lead body and produced the strip | belt-shaped positive electrode. However, in the above positive electrode, in the electrode laminate having a wound structure in which the produced positive electrode is wound around the negative electrode via a separator, the portion on the inner surface side of the innermost peripheral portion that does not face the negative electrode has a positive electrode mixture-containing page. The strike was not applied. In addition, content of the conductive support agent (carbon black and graphite) in the said positive electrode mixture was 2.5 mass%.

更に、負極を以下のようにして準備した。まず、メソカーボンマイクロビーズ焼成体95質量部を、あらかじめポリフッ化ビニリデン5質量部をN−メチルピロリドンに溶解させておいた溶液に加えて混合し、負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の両面に塗布し、乾燥して負極合剤層を形成し、その後、ローラープレス機により加圧成形した後、所定の大きさに切断し、リード体を溶接して帯状の負極を作製した。ただし、上記負極では、作製後の負極をセパレータと介して正極と巻回した巻回構造の電極積層体において、正極と対向しない最外周部の外面側には負極合剤含有ペーストを塗布しなかった。   Furthermore, the negative electrode was prepared as follows. First, 95 parts by mass of a mesocarbon microbead fired body was added to and mixed with a solution in which 5 parts by mass of polyvinylidene fluoride was previously dissolved in N-methylpyrrolidone to prepare a negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and then pressure-formed by a roller press machine, It cut | disconnected to the predetermined | prescribed magnitude | size and welded the lead body, and produced the strip | belt-shaped negative electrode. However, in the negative electrode, the negative electrode mixture-containing paste is not applied to the outer surface side of the outermost peripheral portion that does not face the positive electrode in the wound electrode stack of the wound structure in which the negative electrode is wound around the positive electrode via a separator. It was.

続いて、上記の正極と負極を厚さ20μm、空孔率37%、透気度400秒/100cm3の微孔性ポリエチレンフィルムからなるセパレータを介して重ね、渦巻状に巻回した
後、扁平状になるように加圧して扁平状巻回構造の電極積層体とした。その後、その電極積層体に絶縁テープを取り付け、外寸が厚み(奥行き)4mm、幅30mm、高さ48mmの角形の電池ケース内に挿入し、リード体の溶接と、封口用蓋板の電池ケースの開口端部へのレーザー溶接を行い、封口用蓋板に設けた電解液注入口から前記電解液を電池ケース内に注入し、電解液がセパレータ等に充分に浸透した後、電解液注入口を封止して密閉状態にした後、予備充電、エイジングを行い、図1に示すような構造の角形の非水二次電池を作製した。
Subsequently, the positive electrode and the negative electrode are stacked with a separator made of a microporous polyethylene film having a thickness of 20 μm, a porosity of 37%, and an air permeability of 400 seconds / 100 cm 3 , wound in a spiral shape, The electrode was laminated so as to form a flat wound structure. Thereafter, an insulating tape is attached to the electrode laminate, and the outer dimensions are inserted into a rectangular battery case having a thickness (depth) of 4 mm, a width of 30 mm, and a height of 48 mm, and welding of the lead body and the battery case of the sealing cover plate The electrolyte solution is injected into the battery case from the electrolyte solution injection port provided in the sealing lid plate, and the electrolyte solution sufficiently permeates the separator and the like, and then the electrolyte solution injection port. After sealing and sealing, preliminary charging and aging were performed to produce a rectangular non-aqueous secondary battery having a structure as shown in FIG.

図1は、本発明に係る非水二次電池の一例を模式的に示す図であり、(a)はその平面図、(b)はその部分縦断面図である。図1において、正極1と負極2は前述のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体6として、角形の電池ケース4に前記電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液等は図示していない。   FIG. 1 is a diagram schematically showing an example of a non-aqueous secondary battery according to the present invention, in which (a) is a plan view thereof and (b) is a partial longitudinal sectional view thereof. In FIG. 1, the positive electrode 1 and the negative electrode 2 are wound in a spiral shape through the separator 3 as described above, and then pressed so as to be flattened to form a flat electrode structure 6 having a rectangular winding structure. The battery case 4 is housed together with the electrolytic solution. However, in FIG. 1, in order to avoid complication, the metal foil, electrolyte solution, etc. as a collector used in producing the positive electrode 1 and the negative electrode 2 are not shown.

電池ケース4はアルミニウム合金で形成され、電池の外装材となるものであり、この電池ケース4は正極端子を兼ねている。また、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる絶縁体5が配置され、前記正極1、負極2及びセパレータ3からなる扁平状巻回構造の電極積層体6からは正極1及び負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の蓋板9には、ポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。更に、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。   The battery case 4 is formed of an aluminum alloy and serves as a battery exterior material. The battery case 4 also serves as a positive electrode terminal. Further, an insulator 5 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode are formed from the flat electrode structure 6 made of the positive electrode 1, the negative electrode 2, and the separator 3. A positive electrode lead body 7 and a negative electrode lead body 8 connected to one end of each of the two are drawn out. A stainless steel terminal 11 is attached to an aluminum alloy lid plate 9 that seals the opening of the battery case 4 via an insulating packing 10 made of polypropylene, and an insulator 12 is connected to the terminal 11. A stainless steel lead plate 13 is attached. Further, the lid plate 9 is inserted into the opening of the battery case 4, and the joint of the two is welded so that the opening of the battery case 4 is sealed and the inside of the battery is sealed.

なお、実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正極、負極が逆になる場合もある。   In the battery of Example 1, by directly welding the positive electrode lead body 7 to the lid plate 9, the battery case 4 and the lid plate 9 function as a positive electrode terminal, and the negative electrode lead body 8 is welded to the lead plate 13, The negative electrode lead body 8 and the terminal 11 are electrically connected through the lead plate 13 so that the terminal 11 functions as a negative electrode terminal. However, depending on the material of the battery case 4, the positive electrode and the negative electrode are reversed. Sometimes it becomes.

(実施例2)
実施例1で調整した電解液に更に1,3−プロパンスルトンを2質量%溶解させたこと
以外は実施例1と同様にして、本発明の角型の非水二次電池を作成した。
(Example 2)
A rectangular non-aqueous secondary battery of the present invention was produced in the same manner as in Example 1 except that 2% by mass of 1,3-propane sultone was further dissolved in the electrolytic solution prepared in Example 1.

(比較例1)
電解液にビフェニル(BP)を添加しなかったこと以外は実施例2と同様にして、角型の非水二次電池を作製した。
(Comparative Example 1)
A square nonaqueous secondary battery was produced in the same manner as in Example 2 except that biphenyl (BP) was not added to the electrolytic solution.

(比較例2)
電解液にフルオロベンゼン(FB)を添加しなかったこと以外は実施例2と同様にして、角型の非水二次電池を作製した。
(Comparative Example 2)
A square nonaqueous secondary battery was produced in the same manner as in Example 2 except that fluorobenzene (FB) was not added to the electrolytic solution.

(比較例3)
電解液にフルオロベンゼン(FB)を添加せず、またビフェニル(BP)の添加量を5質量%としたこと以外は実施例2と同様にして、角型の非水二次電池を作製した。
(Comparative Example 3)
A square non-aqueous secondary battery was fabricated in the same manner as in Example 2 except that fluorobenzene (FB) was not added to the electrolytic solution and the addition amount of biphenyl (BP) was 5 mass%.

次に、実施例1、2及び比較例1〜3の電池を、室温で1CmAで3.0Vまで放電させ、1CmA、4.2Vの定電流定電圧の条件で2.5時間充電後、0.2CmAで3.0Vまで放電させた。4.2Vまで充電したときの正極電位はLi基準で4.3Vであった。   Next, the batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were discharged to 3.0 V at 1 CmA at room temperature, charged for 2.5 hours under conditions of constant current and constant voltage of 1 CmA, 4.2 V, and then 0 Discharged to 3.0 V at 2 CmA. The positive electrode potential when charged to 4.2 V was 4.3 V on the basis of Li.

続いて、以下のようにして過充電安全試験と貯蔵試験を行った。過充電安全試験については、電池を1CmAで4.2Vの定電流定電圧の条件で2.5時間充電後、6Vを上限電圧として0.4〜0.6Aで過充電した。これにより、電池の表面温度が135℃以上となる最小電流値を測定し、これを過充電安全電流値として表1に示した。   Subsequently, an overcharge safety test and a storage test were performed as follows. For the overcharge safety test, the battery was charged for 2.5 hours under the condition of a constant current and a constant voltage of 4.2 V at 1 CmA, and then overcharged at 0.4 to 0.6 A with 6 V as the upper limit voltage. Thus, the minimum current value at which the surface temperature of the battery was 135 ° C. or higher was measured, and this is shown in Table 1 as the overcharge safety current value.

また、貯蔵試験については、電池を1CmAで4.2Vの定電流定電圧の条件で2.5時間充電後、1CmAで3.0Vまで放電させた。その後、1CmAで4.2Vの定電流定電圧の条件で2.5時間充電を行い、充電状態で電池の厚みを測定した。その後、60℃の恒温槽に20日間貯蔵後、電池の厚みを測定した。これにより、貯蔵による電池の厚み変化率(%)を下記式により求め、その結果を表1に示した。
厚み変化率(%)=〔(貯蔵後の厚み)−(貯蔵前の厚み)〕÷(貯蔵前の厚み)×100
Moreover, about the storage test, after charging the battery for 2.5 hours under the condition of a constant current and a constant voltage of 4.2 V at 1 CmA, the battery was discharged to 3.0 V at 1 CmA. Thereafter, charging was performed for 2.5 hours under the condition of a constant current and a constant voltage of 4.2 V at 1 CmA, and the thickness of the battery was measured in a charged state. Then, the battery thickness was measured after storing in a 60 degreeC thermostat for 20 days. Thereby, the rate of change in thickness (%) of the battery due to storage was determined by the following formula, and the results are shown in Table 1.
Thickness change rate (%) = [(thickness after storage) − (thickness before storage)] ÷ (thickness before storage) × 100

なお、添加剤の酸化電位については、作用極に直径0.3mmの白金線、対極、参照極に金属リチウムを用い、電位ステップ法を用いて求めた。測定装置は、東洋システム社製の充放電装置“TOSCAT−3100U”を用いた。測定条件は、リチウム基準で3Vあるいは4Vから上限電流0.2mAの定電圧充電を行い、電流値が5μAになった場合に次の電圧に上昇させた。また、電解液はECとMECの体積比が1:2の混合溶媒にLiPF6を1.2mol/dm3溶解させ、添加剤を1質量%溶解させたものを用いた。電流値が5μA以下にならない電位を酸化電位とした。上昇電位幅は0.03Vである。その結果、フルオロベンゼンの酸化電位は5.10V、ビフェニルの酸化電位は4.54Vであった。 The oxidation potential of the additive was determined by a potential step method using a platinum wire having a diameter of 0.3 mm for the working electrode, a counter electrode, and metallic lithium for the reference electrode. As a measuring device, a charge / discharge device “TOSCAT-3100U” manufactured by Toyo System Co., Ltd. was used. The measurement conditions were 3V or 4V on a lithium basis and constant voltage charging with an upper limit current of 0.2 mA. When the current value reached 5 μA, the voltage was increased to the next voltage. The electrolytic solution used was a solution of LiPF 6 dissolved in 1.2 mol / dm 3 in a mixed solvent having a volume ratio of EC and MEC of 1: 2, and 1% by mass of the additive. A potential at which the current value does not become 5 μA or less was defined as an oxidation potential. The rising potential width is 0.03V. As a result, the oxidation potential of fluorobenzene was 5.10V, and the oxidation potential of biphenyl was 4.54V.

Figure 0005106577
Figure 0005106577

表1の結果から、電解液中に化合物Aと化合物Bを含有させた実施例1、2の電池は、過充電安全性を高めつつ、貯蔵時の電池の膨れを抑えていることがわかる。また、電解液中に−SO2結合を有する化合物を含有している実施例2は、実施例1に比べて、より貯蔵信頼性を高めることができることがわかる。 From the results of Table 1, it can be seen that the batteries of Examples 1 and 2 in which Compound A and Compound B are contained in the electrolytic solution suppress the swelling of the battery during storage while enhancing the overcharge safety. In Example 2, which contains a compound having a -SO 2 bond in the electrolyte, as compared with Example 1, it can be seen that enhance the storage reliability.

一方、電解液中に化合物A又はBが含まれない比較例1、2の電池は過充電安全性が不充分であった。更に、電解液中に化合物Aを含まないで化合物Bの含有量が多い比較例3では貯蔵時の電池の膨れが大きかった。   On the other hand, the batteries of Comparative Examples 1 and 2 in which compound A or B was not contained in the electrolyte solution had insufficient overcharge safety. Further, in Comparative Example 3 in which the electrolyte solution did not contain compound A and the content of compound B was large, the battery swelled during storage.

また、本発明の実施例2の電池を携帯電話の電源として用い、保護回路を作動させないようにし、0.6Aで6Vまで充電しつづけても電池の表面温度は135℃以上に上昇しなかったのに対し、比較例1の電池は135℃以上に上昇するものがあった。   In addition, even when the battery of Example 2 of the present invention was used as a power source for a mobile phone and the protection circuit was not activated, and the battery was continuously charged up to 6 V at 0.6 A, the surface temperature of the battery did not rise above 135 ° C. On the other hand, some of the batteries of Comparative Example 1 rose to 135 ° C. or higher.

以上で説明したように、本発明は、電解液中にベンゼン環にハロゲン基が結合した化合物Aと、この化合物Aより低い電位で酸化される化合物Bとを含有させることにより、過充電安全性を改善し、貯蔵信頼性を確保できる。   As described above, according to the present invention, the overcharge safety is achieved by including the compound A in which a halogen group is bonded to the benzene ring and the compound B that is oxidized at a lower potential than the compound A in the electrolytic solution. Can improve storage reliability.

1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 電極積層体
7 正極リード体
8 負極リード体
9 蓋板
10 絶縁パッキング
11 端子
12 絶縁体
13 リード板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Insulator 6 Electrode laminated body 7 Positive electrode lead body 8 Negative electrode lead body 9 Cover plate 10 Insulation packing 11 Terminal 12 Insulator 13 Lead plate

Claims (7)

正極と、負極と、非水電解液と、セパレータとを備えた非水二次電池であって、
正極活物質は、表面積が0.4〜1m2/gのリチウム複合酸化物であり、
前記非水電解液は、ベンゼン環にフッ素基が結合した化合物Aと、前記化合物Aより低い電位で酸化される化合物Bとを含み、
前記化合物Bは、ベンゼン環を有する化合物から選ばれる少なくとも1種であり、
前記非水電解液全体に対する前記化合物Aの含有量が、1質量%以上7質量%以下であり、前記化合物Bの含有量が、0.005質量%以上3質量%以下であることを特徴とする非水二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
The positive electrode active material is a lithium composite oxide having a surface area of 0.4 to 1 m 2 / g,
The non-aqueous electrolyte includes a compound A having a fluorine group bonded to a benzene ring, and a compound B that is oxidized at a lower potential than the compound A,
The compound B is at least one selected from compounds having a benzene ring,
The content of the compound A with respect to the whole non-aqueous electrolyte is 1% by mass or more and 7% by mass or less, and the content of the compound B is 0.005% by mass or more and 3% by mass or less. Non-aqueous secondary battery.
正極と、負極と、非水電解液と、セパレータとを備えた非水二次電池であって、
正極合剤は、正極活物質と、導電助剤と、結着剤とを含み、
前記正極合剤全体に対する前記導電助剤の含有量が1〜5質量%であり、
前記非水電解液は、ベンゼン環にフッ素基が結合した化合物Aと、前記化合物Aより低い電位で酸化される化合物Bとを含み、
前記化合物Bは、ベンゼン環を有する化合物から選ばれる少なくとも1種であり、
前記非水電解液全体に対する前記化合物Aの含有量が、1質量%以上7質量%以下であり、前記化合物Bの含有量が、0.005質量%以上3質量%以下であることを特徴とする非水二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator,
The positive electrode mixture includes a positive electrode active material, a conductive additive, and a binder,
The content of the conductive auxiliary agent with respect to the whole positive electrode mixture is 1 to 5% by mass,
The non-aqueous electrolyte includes a compound A having a fluorine group bonded to a benzene ring, and a compound B that is oxidized at a lower potential than the compound A,
The compound B is at least one selected from compounds having a benzene ring,
The content of the compound A with respect to the whole non-aqueous electrolyte is 1% by mass or more and 7% by mass or less, and the content of the compound B is 0.005% by mass or more and 3% by mass or less. Non-aqueous secondary battery.
前記非水電解液全体に対する前記化合物Bの含有量が、0.005質量%以上0.5質量%以下である請求項1又は2に記載の非水二次電池。   3. The non-aqueous secondary battery according to claim 1, wherein a content of the compound B with respect to the entire non-aqueous electrolyte is 0.005% by mass or more and 0.5% by mass or less. 前記正極が導電助剤として炭素材料を含み、正極合剤全体に対する前記導電助剤の含有量が5質量%以下である請求項1又は2に記載の非水二次電池。   The non-aqueous secondary battery according to claim 1, wherein the positive electrode includes a carbon material as a conductive additive, and the content of the conductive additive with respect to the entire positive electrode mixture is 5% by mass or less. 前記非水電解液が、1,3−プロパンスルトン、メチルエチルスルフォネート、ジエチルサルフェートからなる群から選ばれた少なくとも一種の化合物を含有している請求項1又は2に記載の非水二次電池。   The non-aqueous secondary solution according to claim 1 or 2, wherein the non-aqueous electrolyte solution contains at least one compound selected from the group consisting of 1,3-propane sultone, methyl ethyl sulfonate, and diethyl sulfate. battery. 電池の形式が、角形電池又はラミネート電池である請求項1〜5のいずれかに記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 5, wherein the battery type is a square battery or a laminated battery. 請求項1〜6のいずれかに記載の非水二次電池を用いた携帯機器であって、充電時に0.6A以上で充電されることのある携帯機器。   A portable device using the non-aqueous secondary battery according to claim 1, wherein the portable device may be charged at 0.6 A or more during charging.
JP2010117372A 2010-05-21 2010-05-21 Non-aqueous secondary battery and portable device using the same Expired - Lifetime JP5106577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117372A JP5106577B2 (en) 2010-05-21 2010-05-21 Non-aqueous secondary battery and portable device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117372A JP5106577B2 (en) 2010-05-21 2010-05-21 Non-aqueous secondary battery and portable device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006352182A Division JP4537373B2 (en) 2006-12-27 2006-12-27 Non-aqueous secondary battery and portable device using the same

Publications (2)

Publication Number Publication Date
JP2010219058A JP2010219058A (en) 2010-09-30
JP5106577B2 true JP5106577B2 (en) 2012-12-26

Family

ID=42977624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117372A Expired - Lifetime JP5106577B2 (en) 2010-05-21 2010-05-21 Non-aqueous secondary battery and portable device using the same

Country Status (1)

Country Link
JP (1) JP5106577B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2163187C (en) * 1995-11-17 2003-04-15 Huanyu Mao Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
JPH1140193A (en) * 1997-07-16 1999-02-12 Sony Corp Nonaqueous electrolyte battery
JP4296620B2 (en) * 1998-11-18 2009-07-15 ソニー株式会社 Non-aqueous electrolyte battery
JP3113652B1 (en) * 1999-06-30 2000-12-04 三洋電機株式会社 Lithium secondary battery
KR100537604B1 (en) * 1999-08-12 2005-12-19 삼성에스디아이 주식회사 Electrolyte for a lithium polymer battery and a lithium polymer battery using the same
JP4017367B2 (en) * 2001-09-21 2007-12-05 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2010219058A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US7285361B2 (en) Non-aqueous secondary battery and portable equipment using the same
KR101965092B1 (en) Non-aqueous liquid electrolyte and non-aqueous secondary battery
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP6865555B2 (en) Non-aqueous secondary battery
JP6767151B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
KR20160091864A (en) Nonaqueous electrolyte secondary battery
JP4893003B2 (en) Nonaqueous electrolyte secondary battery
JP6208560B2 (en) Lithium secondary battery
US20180241085A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same
JP2006318839A (en) Nonaqueous secondary battery
JP7098276B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7339921B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP4537373B2 (en) Non-aqueous secondary battery and portable device using the same
JP4486932B2 (en) Non-aqueous secondary battery and portable device using the same
JP2003132949A (en) Nonaqueous secondary battery and its manufacturing method
JP2004087282A (en) Nonaqueous electrolytic solution and secondary battery using it
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP5106577B2 (en) Non-aqueous secondary battery and portable device using the same
JP6894751B2 (en) Non-aqueous electrolyte for batteries, additives for batteries, and lithium secondary batteries
JP4974316B2 (en) Non-aqueous secondary battery
JP4793835B2 (en) Non-aqueous secondary battery
JP7200465B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP4573474B2 (en) Non-aqueous secondary battery
JP2013157164A (en) Nonaqueous electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5106577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term