JP5105899B2 - Anticorrosion method for underground piping - Google Patents

Anticorrosion method for underground piping Download PDF

Info

Publication number
JP5105899B2
JP5105899B2 JP2007041335A JP2007041335A JP5105899B2 JP 5105899 B2 JP5105899 B2 JP 5105899B2 JP 2007041335 A JP2007041335 A JP 2007041335A JP 2007041335 A JP2007041335 A JP 2007041335A JP 5105899 B2 JP5105899 B2 JP 5105899B2
Authority
JP
Japan
Prior art keywords
cutting hole
corrosion
cylindrical
core bit
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007041335A
Other languages
Japanese (ja)
Other versions
JP2008202116A (en
Inventor
康夫 安蒜
政人 長藤
Original Assignee
株式会社ナカボーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナカボーテック filed Critical 株式会社ナカボーテック
Priority to JP2007041335A priority Critical patent/JP5105899B2/en
Publication of JP2008202116A publication Critical patent/JP2008202116A/en
Application granted granted Critical
Publication of JP5105899B2 publication Critical patent/JP5105899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、地中埋設配管の防食工法に関する。
The present invention relates to a corrosion prevention method for underground pipes.

従来より、地中埋設配管の腐食を防食するため防食塗装により地中環境から絶縁する防食が行われているが、防食塗装のみでは経時において損傷や欠陥が生じ、充分な防食が果たされていない。特に、地中埋設配管がマンホール、共同溝あるいは橋梁等の鉄筋コンクリート構造物を貫通する貫通部において、地中埋設配管が鉄筋コンクリート構造物の鉄筋と接触することによりコンクリート/土壌マクロセル腐食(C/Sマクロセル腐食)が生じることが知られている。例えば埋設された農業用水用配管では、弁室等の鉄筋コンクリート構造物貫通部でC/Sマクロセル腐食が生じる。   Conventionally, in order to prevent corrosion of underground underground pipes, anticorrosion coating has been used to insulate from the underground environment. However, with anticorrosion coating alone, damage and defects have occurred over time, and sufficient anticorrosion has been achieved. Absent. In particular, in underground penetration pipes penetrating reinforced concrete structures such as manholes, common grooves or bridges, underground pipes come into contact with the reinforcement of reinforced concrete structures, resulting in concrete / soil macrocell corrosion (C / S macrocells). Corrosion) is known to occur. For example, in an embedded agricultural water pipe, C / S macrocell corrosion occurs in a reinforced concrete structure penetrating part such as a valve chamber.

このように地中埋設配管がC/Sマクロセル腐食を生じた場合には、地中埋設配管に腐食孔が生成し、漏水、水質汚染等の問題を起こすことになる。   In this way, when the underground pipe causes C / S macrocell corrosion, a corrosion hole is generated in the underground pipe and causes problems such as water leakage and water pollution.

このような鉄筋コンクリート構造物貫通部での地中埋設配管のC/Sマクロセル腐食を防止するには、電気防食法である流電陽極方式や外部電源方式が採用されている。   In order to prevent the C / S macrocell corrosion of underground piping in such a reinforced concrete structure penetrating portion, an galvanic anode method or an external power supply method, which is an anticorrosion method, is employed.

地中埋設配管に、このような電気防食を行うためには、鉄筋コンクリート構造物の外壁近傍の土壌を地表から掘削し、流電陽極を埋設するか、あるいは不溶性陽極(外部電源用電極)を埋設し通電することによって電気防食が行われている。   In order to perform such anticorrosion in underground underground piping, excavate the soil near the outer wall of the reinforced concrete structure from the ground surface, and embed a galvanic anode or embed an insoluble anode (external power electrode). Then, anti-corrosion is performed by energizing.

しかしながら、山間地や畑地等では既存の樹木等があったり、私有地の畑や果樹園であったり、あるいは急斜面であることが多く、このため道路を敷設することができず、掘削予定地点まで資材や機材が搬出入できず、地表からの掘削が困難で不溶性陽極や流電陽極の埋設が不可能であるという問題がある。また、都市部において、ビル、集合住宅等の構造物や舗装道路がある場合にも上記と同様の問題がある。さらに、地表からの掘削が可能な場合にも、掘削予定地点まで資材や機材の搬出入のための道路等の敷設を必要とし、経済的負担が甚だしい。   However, there are many existing trees in mountainous areas and upland fields, private fields and orchards, or steep slopes. And equipment cannot be carried in and out, and excavation from the ground surface is difficult, so that insoluble anodes and galvanic anodes cannot be buried. In urban areas, there are the same problems as described above when there are structures such as buildings and apartment houses and paved roads. Furthermore, even when excavation from the ground surface is possible, it is necessary to lay roads and the like for carrying materials and equipment to and from the planned excavation point.

このような問題を解決する提案として、特許文献1(特公平6−53940号公報)及び特許文献2(特開平7−26389号公報)には、コンクリート構造物の内部よりコンクリート壁を貫通して穿設の外部土中穴に、通電用電極又は防食アセンブリーを突出せしめて、該コンクリート壁に固定する電気防食施工法が提案されている。そして、このような土中穴はコンクリートカッター等により穿設されるとしている。この電気防食施工法によれば、土壌を地表から掘削する必要がないので、上記のような問題は一応解消される。   As a proposal for solving such a problem, Patent Document 1 (Japanese Patent Publication No. 6-53940) and Patent Document 2 (Japanese Patent Application Laid-Open No. 7-26389) describe that a concrete wall is penetrated from the inside of a concrete structure. There has been proposed an anti-corrosion construction method in which an energizing electrode or an anti-corrosion assembly protrudes from a drilled external soil hole and is fixed to the concrete wall. And such an underground hole is supposed to be drilled by a concrete cutter or the like. According to this cathodic protection method, it is not necessary to excavate the soil from the surface of the earth, so the above problems are solved temporarily.

特公平6−53940号公報Japanese Examined Patent Publication No. 6-53940 特開平7−26389号公報JP-A-7-26389

しかし、特許文献1及び2のような電気防食施工法では、穿設された上記土中穴に上部より土砂が落下し埋まってしまうため、所定の位置に通電用電極又は防食アセンブリーを押し込むことが困難であり、地中埋設配管の防食効果は充分に発揮できない可能性があり、実用性に乏しい。また、上記土中穴に通電用電極を押し込む際に、通電用電極やケーブルを破損しないように突出させる必要が生じるため極めて施工性に劣り、この点からも実用性に乏しい。さらに、上記土中穴内において、通電用電極と土中穴との間には狭い隙間が形成されるため、この空間には従来モルタルが充填されていたが、モルタルの物性から隙間なく充填することは難しく、特に横方向の隙間に対しては圧入が必要となる上、空間が生じるおそれもあった。   However, in the anticorrosion construction method as disclosed in Patent Documents 1 and 2, since the earth and sand falls from the upper part and fills in the drilled hole, it is possible to push the current-carrying electrode or the anticorrosion assembly into a predetermined position. It is difficult, and the anticorrosion effect of underground underground piping may not be fully demonstrated, so it is not practical. Further, when the energizing electrode is pushed into the soil hole, it is necessary to project the energizing electrode and the cable so as not to be damaged, so that the workability is extremely inferior. Furthermore, since a narrow gap is formed between the energizing electrode and the earth hole in the earth hole, this space has been filled with mortar in the past. In particular, it is necessary to press-fit a lateral gap, and there is a risk that a space may be generated.

このように、地中埋設配管の鉄筋コンクリート構造物貫通部の防食効果を充分に発揮でき、しかも施工性及び経済性に優れた防食工法は得られていない。   Thus, the anticorrosion method which can fully exhibit the anticorrosion effect of the penetration part of the reinforced concrete structure of underground piping, and was excellent in workability and economical efficiency is not obtained.

従って、本発明の目的は、施工性及び経済性に優れ、かつ充分な防食効果を発揮することできる地中埋設配管の鉄筋コンクリート構造物貫通部の防食工法並びにこれに用いられる電気防食用円筒状電極装置及び導電性充填材を提供することにある。   Accordingly, an object of the present invention is to provide an anticorrosion method for a penetration portion of a reinforced concrete structure in a buried underground pipe that is excellent in workability and economical efficiency and can exhibit a sufficient anticorrosion effect, and a cylindrical electrode for cathodic protection used in the method. It is to provide an apparatus and a conductive filler.

本発明者は、検討の結果、コアドリルの円筒状コアビットを用いて鉄筋コンクリート構造物内部よりコンクリート壁及び土壌に切削孔を形成し、該切削孔内の該円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置を滑り動かし該切削孔の所定位置に設置し、次いで、該円筒状コアビット及び該ケーシングチューブを該切削孔から引き抜き、さらに該切削孔内の狭い空間に導電性充填材を注入する防食工法により上記目的が達成し得ることを知見して本発明に至った。   As a result of the study, the inventor formed a cutting hole in a concrete wall and soil from the inside of a reinforced concrete structure using a cylindrical core bit of a core drill, and the cylindrical core bit in the cutting hole and a casing connected to the core bit. A cylindrical electrode device for cathodic protection, in which a plurality of bearings are attached to the outer peripheral surface of the tube, is slid and installed at a predetermined position of the cutting hole, and then the cylindrical core bit and the casing tube are connected to the cutting hole. The inventors have found that the above object can be achieved by a corrosion prevention method in which a conductive filler is drawn into a narrow space in the cutting hole and then injected into a narrow space.

すなわち、本発明は、下記(1)〜(4)の工程;
(1)地中埋設配管の鉄筋コンクリート壁貫通部近傍に、コアドリルの円筒状コアビットを用いて鉄筋コンクリート構造物内部よりコンクリート壁及び土壌に水平方向又は斜め方向に切削孔を形成する工程、
(2)上記切削孔内の上記円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置を滑り動かし、該切削孔内の所定位置に設置する工程、
(3)上記円筒状コアビット及び上記ケーシングチューブを上記切削孔から引き抜く工程、
(4)上記切削孔内の空間に導電性充填材を注入する工程、
を順次行うことを特徴とする地中埋設配管の防食工法を提供するものである。
That is, the present invention provides the following steps (1) to (4):
(1) A step of forming a cutting hole in a horizontal direction or an oblique direction in a concrete wall and soil from the inside of a reinforced concrete structure using a cylindrical core bit of a core drill in the vicinity of a reinforced concrete wall penetrating portion of an underground pipe.
(2) A cylindrical electrode device for cathodic protection having a plurality of bearings attached to the outer peripheral surface is slid into the cylindrical core bit in the cutting hole and a casing tube connected to the core bit, and the cutting hole is Installing at a predetermined position in
(3) a step of pulling out the cylindrical core bit and the casing tube from the cutting hole;
(4) Injecting a conductive filler into the space in the cutting hole,
It is intended to provide an anticorrosion method for underground underground pipes characterized in that

また、本発明は、下記(1)〜(5)の工程;
(1)地中埋設配管の鉄筋コンクリート壁貫通部近傍に、コアドリルの円筒状コアビットを用いて鉄筋コンクリート構造物内部よりコンクリート壁及び土壌に水平方向又は斜め方向に、電気防食用円筒状電極装置を設置する切削孔及び該切削孔と別個の照合電極又は腐食防食検知用プローブの少なくともいずれか一方から構成される腐食防食検知用ユニットを設置する切削孔を形成する工程、
(2)電気防食用円筒状電極装置を設置する上記切削孔内の上記円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置を滑り動かし、該切削孔内の所定位置に設置する工程、
(3)腐食防食検知用ユニットを設置する上記切削孔内の上記円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、照合電極又は腐食防食検知用プローブの少なくともいずれか一方から構成される腐食防食検知用ユニットを挿入し、該切削孔内の所定位置に設置する工程、
(4)上記円筒状コアビット及び上記ケーシングチューブを上記各切削孔から引き抜く工程、
(5)電気防食用円筒状電極装置及び腐食防食検知用ユニットを設置した各切削孔内の空間に導電性充填材を注入する工程、
を順次行うことを特徴とする地中埋設配管の防食工法を提供するものである。
Moreover, this invention is the process of following (1)-(5);
(1) Install a cylindrical electrode device for cathodic protection in the horizontal or diagonal direction on the concrete wall and soil from the inside of the reinforced concrete structure using the cylindrical core bit of the core drill near the reinforced concrete wall penetration of the underground pipe. A step of forming a cutting hole for installing a corrosion prevention and detection unit composed of at least one of a cutting hole and a reference electrode separate from the cutting hole or a corrosion prevention detection probe;
(2) An anti-corrosion cylinder in which a plurality of bearings are attached to the outer peripheral surface in the cylindrical core bit in the cutting hole in which the cylindrical electrode device for anti-corrosion is installed and a casing tube connected to the core bit. Sliding the electrode device and installing it at a predetermined position in the cutting hole,
(3) Corrosion composed of at least one of a reference electrode or a corrosion protection detection probe in the cylindrical core bit in the cutting hole in which the corrosion protection detection unit is installed and a casing tube connected to the core bit. Inserting the anticorrosion detection unit and installing it at a predetermined position in the cutting hole;
(4) A step of pulling out the cylindrical core bit and the casing tube from the respective cutting holes,
(5) A step of injecting a conductive filler into the space in each cutting hole in which the cylindrical electrode device for corrosion protection and the corrosion protection detection unit are installed,
It is intended to provide an anticorrosion method for underground underground pipes characterized in that

本発明に係る上記地中埋設配管の防食工法において、上記電気防食用円筒状電極装置は、不溶性陽極又は流電陽極からなる電極本体と、該電極本体を保護する周側面に複数の貫通孔を有する絶縁性の合成樹脂保護管と、該保護管内に充填される電気防食用バックフィル及び外周面に取り付けられる複数個のベアリングとからなることが望ましい。   In the anticorrosion method of the underground pipe according to the present invention, the cylindrical electrode device for cathodic protection has an electrode body composed of an insoluble anode or a flowing anode, and a plurality of through holes on a peripheral side surface protecting the electrode body. It is desirable to have an insulating synthetic resin protective tube having an anticorrosive backfill filled in the protective tube and a plurality of bearings attached to the outer peripheral surface.

本発明に係る地中埋設配管の防食工法は、地表から掘削して鉄筋コンクリート構造物の外周部に電極を埋設することが困難な場合でも、地中埋設配管の鉄筋コンクリート構造物の貫通部近傍に、簡単に電極装置を所要の位置に配置でき、かつ電極や電極と接続されたケーブルの損傷も防止できると共に、使用機材、工具、資材が人力で運搬でき現場作業が容易になりコストを抑えることができる。   The anticorrosion method for underground underground pipes according to the present invention, even when it is difficult to embed electrodes on the outer periphery of a reinforced concrete structure by excavating from the ground surface, near the penetration part of the reinforced concrete structure of the underground underground pipe, The electrode device can be easily placed at the required position, and damage to the electrode and the cable connected to the electrode can be prevented. Also, the equipment, tools, and materials used can be transported manually, making field work easier and reducing costs. it can.

また、本発明に係る電気防食用円筒状電極装置は、切削孔内の設置が容易であり、地中埋設配管の鉄筋コンクリート構造物貫通部のC/Sマクロセル腐食が防止できる。また、本発明に係る導電性充填材により鉄筋コンクリート構造物貫通部近傍に設けられた切削孔の空間部の充填が効率よくできる。   Moreover, the cylindrical electrode device for cathodic protection according to the present invention can be easily installed in the cutting hole, and can prevent C / S macrocell corrosion of the reinforced concrete structure penetrating portion of the underground pipe. Moreover, the space part of the cutting hole provided in the vicinity of the reinforced concrete structure penetration part can be efficiently filled with the conductive filler according to the present invention.

以下、本発明を実施するための最良の形態について詳述する。
図1〜2及び図4〜5は、本発明に係る地中埋設配管の防食工法の第1実施形態を示す工程図であり、工程(1)〜(4)をそれぞれ示す。本実施形態では、電気防食用円筒状電極装置として図3に示される外部電源方式の不溶性陽極を用いている。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
FIGS. 1-2 and FIGS. 4-5 are process drawings which show 1st Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and show process (1)-(4), respectively. In this embodiment, the insoluble anode of the external power source system shown in FIG. 3 is used as the cylindrical electrode device for cathodic protection.

〔工程(1)〕
図1に示されるように、地中埋設配管1の鉄筋コンクリート壁2貫通部近傍に、コアドリル3の円筒状コアピット4を用いて鉄筋コンクリート構造物内部よりコンクリート壁2及び土壌5に切削孔6を形成する。
[Step (1)]
As shown in FIG. 1, a cutting hole 6 is formed in the concrete wall 2 and the soil 5 from the inside of the reinforced concrete structure using the cylindrical core pit 4 of the core drill 3 in the vicinity of the reinforced concrete wall 2 penetrating portion of the underground pipe 1. .

ここで用いられる地中埋設配管1は、特に限定されず、農業用水用埋設配管、水道水用埋設配管等が挙げられる。また、鉄筋コンクリート構造物としては、弁室、ビル、橋梁及び共同溝等である。   The underground underground pipe 1 used here is not particularly limited, and examples thereof include an agricultural water underground pipe and a tap water underground pipe. Reinforced concrete structures include valve chambers, buildings, bridges, and common grooves.

コアドリル3の円筒状コアピット4により形成される切削孔6の径は、電気防食用円筒状電極装置の径より大きくする必要がある。基盤の岩石から離れ切削孔に転落してくる礫の除去を容易にすることを考慮して、例えばφ300mm程度の切削孔が形成されることが望ましい。また、切削孔6は、コンクリート壁及び土壌に対して水平方向又は斜め方向に形成される。   The diameter of the cutting hole 6 formed by the cylindrical core pit 4 of the core drill 3 needs to be larger than the diameter of the cylindrical electrode device for cathodic protection. In view of facilitating the removal of gravel that falls away from the base rock and falls into the cutting hole, it is desirable to form a cutting hole of about φ300 mm, for example. Moreover, the cutting hole 6 is formed in a horizontal direction or a diagonal direction with respect to a concrete wall and soil.

〔工程(2)〕
次に、図2に示されるように、切削孔6内の円筒状コアビット4及び該コアビットに連結されるケーシングチューブ7内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置8を滑り動かし、電気防食用円筒状電極装置8を切削孔6内の所定の位置に設置する。
[Step (2)]
Next, as shown in FIG. 2, a cylindrical core for cathodic protection in which a plurality of bearings are attached to the outer peripheral surface in a cylindrical core bit 4 in the cutting hole 6 and a casing tube 7 connected to the core bit. The electrode device 8 is slid and the cylindrical electrode device 8 for anticorrosion is installed at a predetermined position in the cutting hole 6.

本発明に係る電気防食用円筒状電極装置8の一例を図3に示す。図3は、外部電源方式の不溶性陽極9を用いたものであり、リード線10を介して外部電源と電気的に接続している。不溶性陽極9としては、磁性酸化鉄、白金族金属酸化物被覆電極(MMO電極)、高ケイ素鋳鉄等が用いられる。流電陽極方式を用いる場合には、流電陽極として、マグネシウム、亜鉛及びこれらの合金が用いられる。   An example of the cylindrical electrode device 8 for cathodic protection according to the present invention is shown in FIG. FIG. 3 uses an insoluble anode 9 of an external power source system, and is electrically connected to an external power source via a lead wire 10. As the insoluble anode 9, magnetic iron oxide, platinum group metal oxide-coated electrode (MMO electrode), high silicon cast iron or the like is used. When the galvanic anode method is used, magnesium, zinc, and alloys thereof are used as the galvanic anode.

これらの電気防食を行うことにより、地中埋設配管のコンクリート構造物貫通部のC/Sマクロセル腐食が防止される。   By performing such anticorrosion, C / S macrocell corrosion of the concrete structure penetration part of underground piping is prevented.

本発明に係る電気防食用円筒状電極装置8では、周側面に複数の貫通孔を有する絶縁性の合成樹脂保護管11により不溶性陽極9が保護されており、さらに合成樹脂保護管11内には電気防食用バックフィル12が充填されている。この合成樹脂保護管11は、ポリ塩化ビニル等によりなる。不溶性陽極に用いられる電気防食用バックフィルとしては、例えばコークスや黒鉛によりなり、流電陽極に用いられる電気防食用バックフィルとしては、石膏、ベントナイト及び無水芒硝(NaSO)を混合(混合比が30:60:10又は70:25:5)したもの等よりなる。 In the cylindrical electrode device 8 for cathodic protection according to the present invention, the insoluble anode 9 is protected by an insulating synthetic resin protective tube 11 having a plurality of through holes on the peripheral side surface. A backfill 12 for cathodic protection is filled. The synthetic resin protective tube 11 is made of polyvinyl chloride or the like. The anticorrosion backfill used for the insoluble anode is made of, for example, coke or graphite, and the anticorrosion backfill used for the galvanic anode is a mixture of gypsum, bentonite and anhydrous sodium sulfate (Na 2 SO 4 ). The ratio is 30:60:10 or 70: 25: 5).

本発明に係る電気防食用円筒状電極装置8は、外周面に複数個のベアリング13が取り付けられている。このようにベアリング13を取り付けることによって、電気防食用円筒状電極装置8を滑り動かすことが容易となる。   The cylindrical electrode device 8 for cathodic protection according to the present invention has a plurality of bearings 13 attached to the outer peripheral surface. By attaching the bearing 13 in this manner, it becomes easy to slide the cathodic protection cylindrical electrode device 8.

〔工程(3)〕
電気防食用円筒状電極装置8を切削孔6の所定位置に配置した後、図4に示されるように、パイプレンチ14を用いて、円筒状コアビット4及びケーシングチューブ7を切削孔6から引き抜く。
[Step (3)]
After the cylindrical electrode device 8 for cathodic protection is disposed at a predetermined position of the cutting hole 6, the cylindrical core bit 4 and the casing tube 7 are pulled out from the cutting hole 6 using a pipe wrench 14 as shown in FIG. 4.

〔工程(4)〕
最後に、切削孔6の空間に、圧送ポンプ15を用いて導電性充填材16を充填し、コンクリート壁2及び土壌5に設けられた切削孔6を封止する。
[Step (4)]
Finally, the space of the cutting hole 6 is filled with the conductive filler 16 using the pressure pump 15, and the cutting hole 6 provided in the concrete wall 2 and the soil 5 is sealed.

本発明に係る導電性充填材16は、ベントナイト粉末と水溶性増粘剤とを少なくとも含み、必要に応じて防腐剤等をさらに含有させる。このような水溶性増粘剤を加えることによって、導電性充填材に高い増粘効果を付与することができ、水平方向又は斜め方向に設けられた切削孔の充填、封止が効率よく行うことができる。   The conductive filler 16 according to the present invention contains at least bentonite powder and a water-soluble thickener, and further contains a preservative or the like as necessary. By adding such a water-soluble thickener, a high thickening effect can be imparted to the conductive filler, and the filling and sealing of the cutting holes provided in the horizontal direction or oblique direction should be performed efficiently. Can do.

ベントナイト粉末としては、カルシウム型、ナトリウム型のどちらも用いることができるが、カルシウム型よりも膨潤度の大きいナトリウム型のベントナイトが有利である。このナトリウム型のベントナイトとは、モンモリロナイトのシート状結晶の層間にナトリウムイオンやカリウムイオン等のアルカリ金属類を吸着しているベントナイトである。   As the bentonite powder, both calcium type and sodium type can be used, but sodium type bentonite having a higher degree of swelling than calcium type is advantageous. This sodium-type bentonite is bentonite in which alkali metals such as sodium ions and potassium ions are adsorbed between layers of montmorillonite sheet-like crystals.

水溶性増粘剤としては、カルボキシメチルセルロース、カルボキシビニルポリマー、ポリアクリルアミドポリマー、ポリアクリル酸ナトリウム、メチルセルロース、ポリビニルアルコール、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、キサンタンガムからなる群から選択される少なくとも1種が挙げられるが、カルボキシメチルセルロースが特に好ましく用いられる。   Examples of the water-soluble thickener include at least one selected from the group consisting of carboxymethylcellulose, carboxyvinyl polymer, polyacrylamide polymer, sodium polyacrylate, methylcellulose, polyvinyl alcohol, hydroxyethylcellulose, hydroxypropylcellulose, and xanthan gum. However, carboxymethyl cellulose is particularly preferably used.

ベントナイト粉末と水溶性増粘剤の添加割合は、ベントナイト粉末100重量部に対して、好ましく水溶性増粘剤0.05〜20質量部、さらに好ましくは0.1〜5質量部であり、それらを清水、水道水等の水に入れると高い粘性を付与すると共にゲル化を起こし、上記割合で添加するとそれらの相互作用により適正なチキソトロピー性が得られ充填作業が安定し好ましい。   The addition ratio of bentonite powder and water-soluble thickener is preferably 0.05 to 20 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of bentonite powder. Is added to water such as fresh water and tap water, it gives high viscosity and gelation. When added in the above ratio, proper thixotropy is obtained by their interaction, and the filling operation is stabilized, which is preferable.

次に、本発明に係る地中埋設配管の防食工法の第2実施形態について説明する。本実施形態は、電気防食用円筒状電極装置に加えて、照合電極又は腐食防食検知用プローブの少なくともいずれか一方から構成される腐食防食検知用ユニットを備えるものである。亜鉛等の照合電極を配置することによって、地中埋設配管の対地電位を測定して防食効果を確認することができる。また、腐食防食検知用プローブを配置することによって、プローブと地中埋設配管との間の電流を測定して、その電流の大きさや向きを確認し、地中埋設配管の防食状況のモニタリングができる。   Next, 2nd Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention is described. In this embodiment, in addition to the cylindrical electrode device for corrosion protection, a corrosion protection detection unit including at least one of a reference electrode and a corrosion protection detection probe is provided. By arranging a reference electrode such as zinc, the anti-corrosion effect can be confirmed by measuring the ground potential of the underground buried pipe. In addition, by locating a corrosion / corrosion detection probe, the current between the probe and the underground pipe can be measured, the magnitude and direction of the current can be confirmed, and the anticorrosion status of the underground pipe can be monitored. .

〔工程(1)〕
本実施形態の工程(1)では、電気防食用円筒状電極装置を設置する切削孔及び該切削孔と別個の照合電極又は腐食防食検知用プローブの少なくともいずれか一方から構成される腐食防食検知用ユニットを設置する切削孔を形成する。電気防食用円筒状電極装置を設置する切削孔に腐食防食検知用ユニットを設置しても良いが、この切削孔と別個の切削孔を形成し腐食防食検知用ユニットを設置することによって、電極装置から遠ざかるため地中埋設配管を正確にモニタリングできる。切削孔の形成方法は、上記第1の実施形態と同様である。
[Step (1)]
In the step (1) of the present embodiment, for corrosion protection detection, which comprises at least one of a cutting hole in which a cylindrical electrode device for corrosion protection is installed and a reference electrode separate from the cutting hole or a probe for corrosion protection detection. A cutting hole for forming the unit is formed. Although the corrosion protection detection unit may be installed in the cutting hole where the cylindrical electrode device for cathodic protection is installed, the electrode device is formed by forming a cutting hole separate from this cutting hole and installing the corrosion protection detection unit. The underground piping can be monitored accurately because it is away from the ground. The method for forming the cutting hole is the same as in the first embodiment.

図6は、これらの切削孔61、62を形成している状態を示す斜視図である。図6では、地中埋設配管1の鉄筋コンクリート壁2貫通部近傍に、コアドリル3の円筒状コアピット4を用いて鉄筋コンクリート構造物内部よりコンクリート壁2及び土壌5に切削孔61、62を形成する。   FIG. 6 is a perspective view showing a state in which the cutting holes 61 and 62 are formed. In FIG. 6, cutting holes 61 and 62 are formed in the concrete wall 2 and the soil 5 from the inside of the reinforced concrete structure using the cylindrical core pit 4 of the core drill 3 in the vicinity of the reinforced concrete wall 2 penetrating portion of the underground pipe 1.

〔工程(2)〕
図7に示されるように、電気防食用円筒状電極装置を設置する切削孔61内の円筒状コアビット4及び該コアビットに連結されるケーシングチューブ7内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置8を滑り動かし、電気防食用円筒状電極装置8を切削孔61内の所定の位置に設置する。第1実施形態の工程(2)と同様の工程である。
[Step (2)]
As shown in FIG. 7, a plurality of bearings are attached to the outer peripheral surface in the cylindrical core bit 4 in the cutting hole 61 in which the cylindrical electrode device for cathodic protection is installed and the casing tube 7 connected to the core bit. The cylindrical electrode device 8 for cathodic protection is slid, and the cylindrical electrode device 8 for cathodic protection is installed at a predetermined position in the cutting hole 61. This is the same step as the step (2) of the first embodiment.

〔工程(3)〕
図7に示されるように、腐食防食検知用ユニットを設置する切削孔62内の円筒状コアビット4及び該コアビットに連結されるケーシングチューブ7内に、照合電極17及び腐食防食検知用プローブ18から構成される腐食防食検知用ユニットを挿入し、切削孔62内の所定の位置に設置する。照合電極17や腐食防食検知用プローブ18は小型で軽量なため、ベアリングをこれらの外周面に取り付けなくても所定の位置に容易に設置できる。例えば亜鉛照合電極の寸法φ40mm×L250mm及び腐食防食検知用プローブの寸法φ38mm×L126mmを用いて設置することができる。
[Step (3)]
As shown in FIG. 7, a cylindrical core bit 4 in a cutting hole 62 in which a corrosion / corrosion protection detection unit is installed and a casing tube 7 connected to the core bit are constituted by a verification electrode 17 and a corrosion / corrosion protection detection probe 18. The corrosion / corrosion detection unit to be used is inserted and installed at a predetermined position in the cutting hole 62. Since the verification electrode 17 and the corrosion / corrosion protection detection probe 18 are small and lightweight, they can be easily installed at predetermined positions without attaching bearings to their outer peripheral surfaces. For example, it can be installed using a zinc reference electrode size φ40 mm × L250 mm and a corrosion protection detection probe size φ38 mm × L126 mm.

〔工程(4)〕
パイプレンチ14を用いて、円筒状コアビット4及びケーシングチューブ7を切削孔61、62から引き抜く。第1実施形態の工程(3)と同様の工程である。
[Step (4)]
Using the pipe wrench 14, the cylindrical core bit 4 and the casing tube 7 are pulled out from the cutting holes 61 and 62. This is the same step as step (3) of the first embodiment.

〔工程(5)〕
切削孔61、62の空間に、圧送ポンプ15を用いて導電性充填材16を充填し、コンクリート壁2及び土壌5に設けられた切削孔61、62を封止する。照合電極17又は腐食防食検知用プローブ18の周囲をモルタルで充填すると、地中埋設配管の防食状況が正確にモニタリングできない恐れがあるため、腐食防食検知用ユニットを設置した切削孔62にも導電性充填材16を注入する。第1実施形態の工程(4)と同様の工程である。
[Step (5)]
The space between the cutting holes 61 and 62 is filled with the conductive filler 16 using the pressure pump 15, and the cutting holes 61 and 62 provided in the concrete wall 2 and the soil 5 are sealed. If the surroundings of the reference electrode 17 or the corrosion protection detection probe 18 are filled with mortar, the corrosion protection status of the underground piping may not be accurately monitored. Therefore, the cutting hole 62 provided with the corrosion protection detection unit is also conductive. Filler 16 is injected. This is the same step as the step (4) of the first embodiment.

以下、実施例等に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and the like.

<実施例1a〜1c(導電性充填材の作製)>
水道水300mlに対して、クニミネ(株)のベントナイト「浅間印」を30g(9.09質量%)加えて、薬さじで強く攪拌してベントナイト懸濁液を作製した。このベントナイト懸濁液100mlに対して、第一工業製薬(株)のカルボキシルメチルセルロースナトリウム(CMC−Na)「セロゲンBSH−10」0.05g(0.045質量%)、0.1g(0.09質量%)又は0.15g(0.135質量%)と添加量を変えて、薬さじで強く攪拌して実施例1a〜1cを作液した。
<Examples 1a to 1c (production of conductive filler)>
To 300 ml of tap water, 30 g (9.09% by mass) of bentonite “Asama” from Kunimine Co., Ltd. was added and stirred vigorously with a spoon to prepare a bentonite suspension. To 100 ml of this bentonite suspension, 0.05 g (0.045 mass%), 0.1 g (0.09 mass%) of sodium carboxymethylcellulose (CMC-Na) “Serogen BSH-10” from Daiichi Kogyo Seiyaku Co., Ltd. (Mass%) or 0.15 g (0.135 mass%) and the amount added was changed, and Examples 1a to 1c were prepared by stirring vigorously with a spoon.

比較例Comparative example

<比較例1a〜1f(ベントナイト懸濁液の作製)>
水道水に対して、クニミネ(株)のベントナイト「浅間印」を加えて薬さじで強く攪拌して、8質量%、9.09質量%、10質量%、11質量%、12質量%及び13質量%の配合量を変えて比較例1a〜1fを作液した。
<Comparative Examples 1a to 1f (production of bentonite suspension)>
To the tap water, Kunimine Co., Ltd. bentonite “Asama” was added and stirred vigorously with a spoonful of 8%, 9.09%, 10%, 11%, 12% and 13%. Comparative Examples 1a to 1f were prepared by changing the blending amount of mass%.

〔粘度測定〕
実施例1a〜1c、比較例1a〜1fのそれぞれに対し、薬さじで30秒間強く攪拌した後、B型粘度計(東機産業(株)のTV−10M)のローターを浸漬し、2分間静置した。B型粘度計により、M4ローター、20℃、12rpmで回転し、15秒後の粘度をそれぞれ測定し、表1に示した。
(Viscosity measurement)
For each of Examples 1a to 1c and Comparative Examples 1a to 1f, after vigorously stirring with a spoonful for 30 seconds, the rotor of a B-type viscometer (TV-10M from Toki Sangyo Co., Ltd.) was immersed for 2 minutes. Left to stand. Using a B-type viscometer, it was rotated at an M4 rotor at 20 ° C. and 12 rpm, and the viscosity after 15 seconds was measured.

Figure 0005105899
Figure 0005105899

〔粘度測定の評価結果〕
表1から明らかなように、CMC−Naを添加しない場合の比較例1bと比べて、実施例1a〜1cは同じベントナイト添加量において、高い粘度を示した。すなわち、ベントナイト懸濁液にCMC−Naを添加すれば増粘作用を示すことが分かった。
[Viscosity measurement evaluation results]
As is apparent from Table 1, Examples 1a to 1c showed higher viscosities at the same bentonite addition amount as compared with Comparative Example 1b in the case where CMC-Na was not added. That is, it was found that if CMC-Na was added to the bentonite suspension, a thickening action was exhibited.

〔硬さ試験〕
実施例1b及び比較例1c〜1fのそれぞれに対し、薬さじで30秒間強く攪拌した後、注射器(35ml)19を用いて30g吸い取り、図8に示すように、アルミニウム製の測定板20に対して、5cmの高さより10秒間で試料21を吐き出した。次いで、測定板上の実施例1b及び比較例1c〜1fの試料21に対して、指先で触覚を認知するとともに、注射器排出直後の直径と翌日まで放置後の直径をそれぞれ測定し、表2に示した。
[Hardness test]
For each of Example 1b and Comparative Examples 1c to 1f, after vigorously stirring with a spoon for 30 seconds, 30 g was sucked using a syringe (35 ml) 19 and, as shown in FIG. Then, the sample 21 was discharged from a height of 5 cm in 10 seconds. Next, with respect to the sample 21 of Example 1b and Comparative Examples 1c to 1f on the measurement plate, the tactile sensation was recognized with the fingertip, and the diameter immediately after the syringe was discharged and the diameter after being left until the next day were measured. Indicated.

Figure 0005105899
Figure 0005105899

〔硬さ試験の評価結果〕
表2から明らかなように、CMC−Naを添加しない場合の比較例1c〜1fと比べて、実施例1bは少量のCMC−Na添加で、硬さが高くなることが分かった。また、比較例1c〜1fが粘性を有するゲルであるのに対して、実施例1bは弾力性を有するゲルであった。すなわち、ベントナイト懸濁液と比べて、CMC−Naの低添加量でも流動性を失うと、弾力性を有するゲルに変わるため、鉄筋コンクリート構造物貫通部近傍に設けられた切削孔の空間部の充填、封止に対しても優れており、実用性がある。
[Evaluation results of hardness test]
As is clear from Table 2, it was found that the hardness of Example 1b increased with the addition of a small amount of CMC-Na, as compared with Comparative Examples 1c to 1f in the case where CMC-Na was not added. Further, Comparative Examples 1c to 1f are gels having viscosity, whereas Example 1b is a gel having elasticity. That is, when the fluidity is lost even with a low addition amount of CMC-Na as compared with the bentonite suspension, the gel is changed to an elastic gel, so that the filling of the space portion of the cutting hole provided in the vicinity of the reinforced concrete structure penetration portion It is also excellent for sealing and practical.

<比較例2(モルタル)の作製>
市販プレミックスモルタル(電気化学工業(株)製商品名「デンカプレタスコン−type1」)をカタログに基づいて水を配合して練り混ぜ、モルタルを調製した。
<Production of Comparative Example 2 (Mortar)>
A commercially available premix mortar (trade name “DENKA PRETASCON-type 1” manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed with water based on the catalog and kneaded to prepare a mortar.

〔隙間部の漏れ試験〕
上方に開口を有する透明の円筒状容器22(φ350mm×L1,500mm)を垂直に置き、12個のベアリングが取り付けられた電気防食用円筒状電極装置8(φ230mm×L1,420mm)をこの円筒状容器に装入したものをそれぞれ3本用意した。実施例1b及び比較例1f、2の試料(導電性充填材16)それぞれを強く攪拌した後、圧送ポンプを用いて、この円筒状容器22とこの電気防食用円筒状電極装置8との狭い隙間に対して充分に注入し、円筒状容器の開口端面に合わせてならした。そして、この円筒状容器22を静かに横転させた。
[Leakage test for gaps]
A transparent cylindrical container 22 (φ350 mm × L1,500 mm) having an opening on the top is placed vertically, and a cylindrical electrode device 8 (φ230 mm × L1,420 mm) for cathodic protection to which 12 bearings are attached is formed in this cylindrical shape. Three things each prepared in the container were prepared. After each sample (conductive filler 16) of Example 1b and Comparative Example 1f and 2 is vigorously stirred, a narrow gap between the cylindrical container 22 and the cylindrical electrode device 8 for cathodic protection is used by using a pump. The liquid was sufficiently injected into the cylinder and adjusted to the opening end face of the cylindrical container. And this cylindrical container 22 was gently rolled over.

次いで、10分静置後と20分静置後との実施例1b及び比較例1f、2の漏れの程度を、以下の3段階で評価した。
◎:ほぼ漏れがなく、静置状態では安定していた。
○:若干漏れがあるが、静置状態では安定していた。
×:隙間からほとんど流出し、実用性なし。
Next, the degree of leakage in Example 1b and Comparative Example 1f, 2 after standing for 10 minutes and after standing for 20 minutes was evaluated in the following three stages.
A: Almost no leakage and stable in a stationary state.
○: There was some leakage, but it was stable in the stationary state.
X: Almost out of the gap, no practicality.

これらの結果を表3に示す。また、横転直後の状態を図9に、静置後の状態を図10にそれぞれ示す。   These results are shown in Table 3. FIG. 9 shows a state immediately after rollover, and FIG. 10 shows a state after standing still.

Figure 0005105899
Figure 0005105899

〔漏れ試験の評価結果〕
表3から明らかなように、実施例1bに係る導電性充填材は、非流動性で、表面に凹凸がある場合でも空隙なく充填できることが分かった。
[Evaluation result of leak test]
As is clear from Table 3, it was found that the conductive filler according to Example 1b was non-fluid and could be filled without voids even when the surface had irregularities.

本発明に係る地中埋設配管の防食工法は、地表から掘削して鉄筋コンクリート構造物の外周部に電極を埋設することが困難な場合でも、地中埋設配管の鉄筋コンクリート構造物の貫通部近傍に、簡単に電極装置を所要の位置に配置でき、かつ電極装置の損傷も防止できると共に、使用機材等が人力で運搬でき現場作業が容易になりコストを抑えることができる。また、本発明に係る電気防食用円筒状電極装置によって、切削孔内の移動が容易で、地中埋設配管の鉄筋コンクリート構造物貫通部のC/Sマクロセル腐食が防止できる。また、本発明に係る導電性充填材により、鉄筋コンクリート構造物貫通部近傍に設けられた切削孔の空間部の充填が効率よくできる。   The anticorrosion method for underground underground pipes according to the present invention, even when it is difficult to embed electrodes on the outer periphery of a reinforced concrete structure by excavating from the ground surface, near the penetration part of the reinforced concrete structure of the underground underground pipe, The electrode device can be easily arranged at a required position, and the electrode device can be prevented from being damaged. Also, the equipment used can be transported manually, and the work at the site can be facilitated and the cost can be reduced. The cylindrical electrode device for anticorrosion according to the present invention can be easily moved in the cutting hole and can prevent C / S macrocell corrosion of the reinforced concrete structure penetrating portion of the underground pipe. In addition, the conductive filler according to the present invention can efficiently fill the space portion of the cutting hole provided in the vicinity of the reinforced concrete structure penetration portion.

従って、本発明は、地中埋設配管の鉄筋コンクリート構造物貫通部の防食に好適に用いられる。   Therefore, this invention is used suitably for corrosion prevention of the reinforced concrete structure penetration part of underground piping.

図1は、本発明に係る地中埋設配管の防食工法の第1実施形態を示す工程図であり、工程(1)を示す。FIG. 1: is process drawing which shows 1st Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and shows a process (1). 図2は、本発明に係る地中埋設配管の防食工法の第1実施形態を示す工程図であり、工程(2)を示す。FIG. 2: is process drawing which shows 1st Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and shows a process (2). 図3は、本発明に係る電気防食用円筒状電極装置の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a cylindrical electrode device for cathodic protection according to the present invention. 図4は、本発明に係る地中埋設配管の防食工法の第1実施形態を示す工程図であり、工程(3)を示す。FIG. 4: is process drawing which shows 1st Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and shows a process (3). 図5は、本発明に係る地中埋設配管の防食工法の第1実施形態を示す工程図であり、工程(4)を示す。FIG. 5: is process drawing which shows 1st Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and shows a process (4). 図6は、本発明に係る地中埋設配管の防食工法の第2実施形態を示す斜視図であり、工程(1)を示す。FIG. 6: is a perspective view which shows 2nd Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and shows a process (1). 図7は、本発明に係る地中埋設配管の防食工法の第2実施形態を示す斜視図であり、工程(2)及び(3)を示す。FIG. 7: is a perspective view which shows 2nd Embodiment of the anticorrosion construction method of underground underground piping which concerns on this invention, and shows process (2) and (3). 図8は、硬さ試験の測定方法を示す図。FIG. 8 is a diagram illustrating a measurement method of a hardness test. 図9は、導電性充填材の漏れ試験を説明する図であり、横転直後の状態を示す。FIG. 9 is a diagram for explaining a conductive filler leakage test, and shows a state immediately after rollover. 図10は、導電性充填材の漏れ試験を説明する図であり、静置後の状態を示す。FIG. 10 is a diagram for explaining a leakage test of the conductive filler, and shows a state after standing.

符号の説明Explanation of symbols

1:地中埋設配管
2:コンクリート壁
3:コアドリル
4:円筒状コアビット
5:土壌
6、61、62:切削孔
7:ケーシングチューブ
8:電気防食用円筒状電極装置
9:不溶性陽極
10:リード線
11:合成樹脂保護管
12:電気防食用バックフィル
13:ベアリング
14:パイプレンチ
15:圧送ポンプ
16:導電性充填材
17:照合電極
18:腐食防食検知用プローブ
19:注射器
20:測定板
21:試料
22:円筒状容器
1: Underground piping 2: Concrete wall 3: Core drill 4: Cylindrical core bit 5: Soil 6, 61, 62: Cutting hole 7: Casing tube 8: Cylindrical electrode device 9 for insulative protection 9: Insoluble anode 10: Lead wire 11: Synthetic resin protective pipe 12: Electrocorrosion backfill 13: Bearing 14: Pipe wrench 15: Pressure feed pump 16: Conductive filler 17: Reference electrode 18: Corrosion protection probe 19: Syringe 20: Measuring plate 21: Sample 22: Cylindrical container

Claims (3)

下記(1)〜(4)の工程;
(1)地中埋設配管の鉄筋コンクリート壁貫通部近傍に、コアドリルの円筒状コアビットを用いて鉄筋コンクリート構造物内部よりコンクリート壁及び土壌に水平方向又は斜め方向に切削孔を形成する工程、
(2)上記切削孔内の上記円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置を滑り動かし、該切削孔内の所定位置に設置する工程、
(3)上記円筒状コアビット及び上記ケーシングチューブを上記切削孔から引き抜く工程、
(4)上記切削孔内の空間に導電性充填材を注入する工程、
を順次行うことを特徴とする地中埋設配管の防食工法。
The following steps (1) to (4);
(1) A step of forming a cutting hole in a horizontal direction or an oblique direction in a concrete wall and soil from the inside of a reinforced concrete structure using a cylindrical core bit of a core drill in the vicinity of a reinforced concrete wall penetrating portion of an underground pipe.
(2) A cylindrical electrode device for cathodic protection having a plurality of bearings attached to the outer peripheral surface is slid into the cylindrical core bit in the cutting hole and a casing tube connected to the core bit, and the cutting hole is Installing at a predetermined position in
(3) a step of pulling out the cylindrical core bit and the casing tube from the cutting hole;
(4) Injecting a conductive filler into the space in the cutting hole,
The anticorrosion method for underground pipes, characterized in that
下記(1)〜(5)の工程;
(1)地中埋設配管の鉄筋コンクリート壁貫通部近傍に、コアドリルの円筒状コアビットを用いて鉄筋コンクリート構造物内部よりコンクリート壁及び土壌に水平方向又は斜め方向に、電気防食用円筒状電極装置を設置する切削孔及び該切削孔と別個の照合電極又は腐食防食検知用プローブの少なくともいずれか一方から構成される腐食防食検知用ユニットを設置する切削孔を形成する工程、
(2)電気防食用円筒状電極装置を設置する上記切削孔内の上記円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、複数個のベアリングが外周面に取り付けられている電気防食用円筒状電極装置を滑り動かし、該切削孔内の所定位置に設置する工程、
(3)腐食防食検知用ユニットを設置する上記切削孔内の上記円筒状コアビット及び該コアビットに連結されるケーシングチューブ内に、照合電極又は腐食防食検知用プローブの少なくともいずれか一方から構成される腐食防食検知用ユニットを挿入し、該切削孔内の所定位置に設置する工程、
(4)上記円筒状コアビット及び上記ケーシングチューブを上記各切削孔から引き抜く工程、
(5)電気防食用円筒状電極装置及び腐食防食検知用ユニットを設置した各切削孔内の空間に導電性充填材を注入する工程、
を順次行うことを特徴とする地中埋設配管の防食工法。
The following steps (1) to (5);
(1) Install a cylindrical electrode device for cathodic protection in the horizontal or diagonal direction on the concrete wall and soil from the inside of the reinforced concrete structure using the cylindrical core bit of the core drill near the reinforced concrete wall penetration of the underground pipe. A step of forming a cutting hole for installing a corrosion prevention and detection unit composed of at least one of a cutting hole and a reference electrode separate from the cutting hole or a corrosion prevention detection probe;
(2) An anti-corrosion cylinder in which a plurality of bearings are attached to the outer peripheral surface in the cylindrical core bit in the cutting hole in which the cylindrical electrode device for anti-corrosion is installed and a casing tube connected to the core bit. Sliding the electrode device and installing it at a predetermined position in the cutting hole,
(3) Corrosion composed of at least one of a reference electrode or a corrosion protection detection probe in the cylindrical core bit in the cutting hole in which the corrosion protection detection unit is installed and a casing tube connected to the core bit. Inserting the anticorrosion detection unit and installing it at a predetermined position in the cutting hole;
(4) A step of pulling out the cylindrical core bit and the casing tube from the respective cutting holes,
(5) A step of injecting a conductive filler into the space in each cutting hole in which the cylindrical electrode device for corrosion protection and the corrosion protection detection unit are installed,
The anticorrosion method for underground pipes, characterized in that
上記電気防食用円筒状電極装置が、不溶性陽極又は流電陽極からなる電極本体と、該電極本体を保護する周側面に複数の貫通孔を有する絶縁性の合成樹脂保護管と、該保護管内に充填される電気防食用バックフィル及び外周面に取り付けられる複数個のベアリングとからなる請求項1又は2記載の地中埋設配管の防食工法。   The cylindrical electrode device for cathodic protection includes an electrode main body made of an insoluble anode or a galvanic anode, an insulating synthetic resin protective tube having a plurality of through holes in a peripheral side surface for protecting the electrode main body, and the protective tube. The anticorrosion method for underground pipes according to claim 1 or 2, comprising a backfill for cathodic protection to be filled and a plurality of bearings attached to the outer peripheral surface.
JP2007041335A 2007-02-21 2007-02-21 Anticorrosion method for underground piping Active JP5105899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041335A JP5105899B2 (en) 2007-02-21 2007-02-21 Anticorrosion method for underground piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041335A JP5105899B2 (en) 2007-02-21 2007-02-21 Anticorrosion method for underground piping

Publications (2)

Publication Number Publication Date
JP2008202116A JP2008202116A (en) 2008-09-04
JP5105899B2 true JP5105899B2 (en) 2012-12-26

Family

ID=39779910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041335A Active JP5105899B2 (en) 2007-02-21 2007-02-21 Anticorrosion method for underground piping

Country Status (1)

Country Link
JP (1) JP5105899B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200474759Y1 (en) 2013-08-27 2014-10-10 주식회사 한국가스기술공사 apparatus for mounting electric voltage measuring system
JP7075651B2 (en) * 2017-10-24 2022-05-26 日本防蝕工業株式会社 Embedded form of electrode body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653940B2 (en) * 1986-07-21 1994-07-20 日本防蝕工業株式会社 Cathodic protection method for underground pipes that penetrates reinforced concrete structures.
JPH0711501B2 (en) * 1993-11-15 1995-02-08 日本防蝕工業株式会社 Corrosion protection monitoring method for underground pipes penetrating reinforced concrete structures
JPH0726389A (en) * 1993-11-15 1995-01-27 Nippon Boshoku Kogyo Kk Method for executing electric corrosion protection for underground installation piping passing through reinforced concrete construction
JP3517126B2 (en) * 1998-10-19 2004-04-05 日本電信電話株式会社 Underground pipe renewal method and underground excavation device
JP4140352B2 (en) * 2002-11-15 2008-08-27 マックス株式会社 Concrete drill
JP4260511B2 (en) * 2003-03-07 2009-04-30 大阪瓦斯株式会社 Electrode protection electrode body and installation method thereof

Also Published As

Publication number Publication date
JP2008202116A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
CN202030825U (en) Deep well anode/cathode protection device for protecting embedded steel pipeline
Morris Jr Principal causes and remedies of water main breaks
JP2008186748A (en) Grounding structure and grounding method for concrete structure in ground
CN101752684A (en) Grounding electrode of anti-corrosion and adjustable grounding resistor
RU2571104C1 (en) Cathodic protection for casing strings and oilfield pipelines against corrosion and device for method implementation
JP5105899B2 (en) Anticorrosion method for underground piping
AU2009251723B2 (en) Polymeric, non-corrosive cathodic protection anode
WO2004065330A3 (en) Building material and method for production thereof
Weatherby Tiebacks
US11136266B2 (en) Thixotropic non-cementitious thermal grout and HDD or trough product line methods of application
CA3117537C (en) Thixotropic non-cementitious thermal grout and hdd or trough product line methods of application
JP3406457B2 (en) Grounding method using foundation structure
JP4260511B2 (en) Electrode protection electrode body and installation method thereof
Dussud TDR monitoring of soil deformation: case histories and field techniques
CN105356079B (en) Intensive earthing pole and installation method
KR102669781B1 (en) Expansion method for electrical resistivity measurement using boreholes
JP6984057B1 (en) Sacrificial anode burial method
CN201071708Y (en) Device for using abandoned well as ground bed to protect underground pipes and oil wells
CA2179476A1 (en) Method for improving the transmissivity of an electrode installed into the soil
CN107630465A (en) Assembled circle underground space structure and its construction method
CN209227063U (en) Vertical permanent cathodic protection anode device
CN108179424B (en) Sacrificial anode and construction method thereof
Abomadina Design of Cathodic Protection for Underground Crude-Oil Pipeline by sacrificial anodes systems
Ali et al. Cathodic Protection of Building Foundation Piles
CN104360450A (en) Micro-trenching method for communication transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5105899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250