JP5103727B2 - Fluorene compound and organic EL device using the same - Google Patents

Fluorene compound and organic EL device using the same Download PDF

Info

Publication number
JP5103727B2
JP5103727B2 JP2005331326A JP2005331326A JP5103727B2 JP 5103727 B2 JP5103727 B2 JP 5103727B2 JP 2005331326 A JP2005331326 A JP 2005331326A JP 2005331326 A JP2005331326 A JP 2005331326A JP 5103727 B2 JP5103727 B2 JP 5103727B2
Authority
JP
Japan
Prior art keywords
group
organic
general formula
fluorene compound
hole transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331326A
Other languages
Japanese (ja)
Other versions
JP2007137795A (en
Inventor
直樹 松本
正一 西山
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005331326A priority Critical patent/JP5103727B2/en
Publication of JP2007137795A publication Critical patent/JP2007137795A/en
Application granted granted Critical
Publication of JP5103727B2 publication Critical patent/JP5103727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、フルオレン化合物並びにその製造法、およびそれを用いた有機EL素子に関するものである。   The present invention relates to a fluorene compound, a method for producing the same, and an organic EL device using the same.

有機EL素子は、有機薄膜を1対の電極で狭持した面発光型素子であり、薄型軽量、高視野角、高速応答などの特徴を有し、各種表示素子への応用が期待されている。有機EL素子とは、電圧を印加することにより陽極から注入された正孔と、陰極から注入された電子とが発光層で再結合する際に発する光を利用した素子であり、その素子構造は1987年にC.W.Tangらによって報告された正孔輸送層と発光層を積層した二層型素子が基本となっている(例えば、非特許文献1参照)。その後、正孔輸送層、発光層、電子輸送層の三層から構成される素子が提案され(例えば、非特許文献2参照)、現在では多層積層型素子が主流になっている。正孔輸送層や電子輸送層のような電荷輸送層は、発光層への電荷注入を容易にし、また、発光層に電荷を閉じ込める役割を果たしており、C.W.Tangらの報告以来、有機EL素子の低駆動電圧化および発光効率向上を目的として様々な正孔輸送材料、電子輸送材料の開発が行われてきた。   An organic EL element is a surface-emitting element in which an organic thin film is sandwiched between a pair of electrodes, and has features such as a thin and light weight, a high viewing angle, and a high-speed response, and is expected to be applied to various display elements. . An organic EL element is an element that utilizes light emitted when holes injected from an anode and electrons injected from a cathode are recombined in a light-emitting layer by applying a voltage. In 1987, C.I. W. The basic structure is a two-layer element in which a hole transport layer and a light-emitting layer are stacked as reported by Tang et al. Thereafter, an element composed of three layers of a hole transport layer, a light emitting layer, and an electron transport layer has been proposed (see, for example, Non-Patent Document 2), and at present, a multilayer stacked element has become mainstream. A charge transport layer such as a hole transport layer or an electron transport layer facilitates charge injection into the light emitting layer and plays a role of confining charges in the light emitting layer. W. Since the report of Tang et al., Various hole transport materials and electron transport materials have been developed for the purpose of lowering the driving voltage of organic EL elements and improving the light emission efficiency.

しかし実用化に際しては、さらなる低電圧駆動、発光効率の向上が必要とされ、特に素子の信頼性、即ち駆動時の有機材料劣化および有機薄膜の結晶化等に伴う素子の保存安定性の改善が課題とされている。中でも、正孔輸送材料として一般的に使用されている4,4’−ビス[N−(1−ナフチル)−N−フェニル]ビフェニル(α−NPD)はガラス転移温度が低く、α−NPDの薄膜は高温条件下で容易に結晶化してしまうため、素子の耐久性が低いという問題がある。このような背景から、ガラス転移温度の向上を目的としてフルオレン骨格を導入した正孔輸送材料、2,7−ビス(N,N−ジフェニルアミノ)−9,9−ジメチルフルオレンが開示されている(例えば、特許文献1参照)。しかしながら、本材料においてもガラス転移温度の高さは十分でなく、また、結晶性が高いために、期待される程の耐久性は得られていない。一方、縮合環基の導入によるフルオレン化合物の高ガラス転移温度化も開示されているが(例えば、特許文献2,3参照)、縮合基の導入により分子の電子親和性が高くなるため、正孔輸送層として用いた場合には電子ブロック効果が小さくなり、発光効率が低下するという問題があった。   However, for practical use, it is necessary to further drive at a lower voltage and improve the light emission efficiency. In particular, the reliability of the element, that is, the storage stability of the element accompanying the deterioration of the organic material during driving and the crystallization of the organic thin film is improved. It is an issue. Among these, 4,4′-bis [N- (1-naphthyl) -N-phenyl] biphenyl (α-NPD), which is generally used as a hole transport material, has a low glass transition temperature, Since the thin film easily crystallizes under high temperature conditions, there is a problem that the durability of the element is low. Against this background, 2,7-bis (N, N-diphenylamino) -9,9-dimethylfluorene having a fluorene skeleton introduced for the purpose of improving the glass transition temperature has been disclosed ( For example, see Patent Document 1). However, even in this material, the glass transition temperature is not high enough and the crystallinity is high, so that the durability as expected is not obtained. On the other hand, increasing the glass transition temperature of a fluorene compound by introducing a fused ring group has also been disclosed (see, for example, Patent Documents 2 and 3). When used as a transport layer, there is a problem that the electron blocking effect is reduced and the light emission efficiency is lowered.

他にも、フルオレン骨格を有するアリールアミン誘導体が検討されているが、まだ十分とは言えなかった。   In addition, arylamine derivatives having a fluorene skeleton have been studied, but have not been sufficient.

特開平5−25473号公報)(Japanese Patent Laid-Open No. 5-25473) 特開2000−191606公報JP 2000-191606 A 特開2001−196177公報JP 2001-196177 A 特開2004−315495公報JP 2004-315495 A 特開2005−35919公報JP 2005-35919 A 特開2005−162660公報JP 2005-162660 A Appl.Phys.Lett.51.913(1987)Appl. Phys. Lett. 51.913 (1987) Jpn.J.Appl.Phys.27.L269(1988)Jpn. J. et al. Appl. Phys. 27. L269 (1988)

本発明は、上記従来の課題を解決するものであり、有機EL素子の正孔輸送材料に適した新規なフルオレン化合物並びにその製造法、さらには発光効率が高く、耐久性に優れた有機EL素子を提供するものである。   The present invention solves the above-described conventional problems, and is a novel fluorene compound suitable for a hole transport material of an organic EL device, a method for producing the same, and a high luminous efficiency and an excellent organic EL device. Is to provide.

本発明者らは鋭意検討した結果、下記一般式(1)で示されるフルオレン化合物は、電荷輸送性および薄膜安定性に優れ、さらに高いガラス転移温度を有しており、該化合物を正孔輸送層に用いた有機EL素子が、高性能かつ安定性に優れることを見出し、本発明を完成するに至った。即ち、本発明は、一般式(1)   As a result of intensive studies, the present inventors have found that the fluorene compound represented by the following general formula (1) has excellent charge transportability and thin film stability, and has a higher glass transition temperature. The organic EL element used for the layer was found to have high performance and excellent stability, and the present invention was completed. That is, the present invention relates to the general formula (1)

Figure 0005103727
(式中、Rは水素原子、ハロゲン原子、アルキル基、またはアルコキシ基を表し、Ar,Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、または4−ビフェニリル基
(但し、Ar,Arが共に置換もしくは無置換の4−ビフェニリル基の場合は除く)
を表す。)
で示されるフルオレン化合物並びにその製造法、およびそれを用いた有機EL素子に関するものである。
Figure 0005103727
(In the formula, R represents a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy group, and Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or 4-biphenylyl group (except when both Ar 1 and Ar 2 are substituted or unsubstituted 4-biphenylyl groups)
Represents. )
And a production method thereof, and an organic EL device using the same.

以下、本発明に関し詳細に説明する。   Hereinafter, the present invention will be described in detail.

前記一般式(1)で示されるフルオレン化合物において、Rは水素原子、ハロゲン原子、アルキル基、またはアルコキシ基を表す。   In the fluorene compound represented by the general formula (1), R represents a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy group.

Rで示されるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられる。   Examples of the halogen atom represented by R include fluorine, chlorine, bromine and iodine atoms.

Rで示されるアルキル基としては、炭素数1〜18の直鎖,分岐もしくは環状のアルキル基が挙げられ、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基等を例示することができる。   Examples of the alkyl group represented by R include linear, branched or cyclic alkyl groups having 1 to 18 carbon atoms, and specifically include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl. Examples thereof include a group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group and the like.

Rで示されるアルコキシ基としては、炭素数1〜18の直鎖,分岐もしくは環状のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基等を例示することができる。   Examples of the alkoxy group represented by R include linear, branched or cyclic alkoxy groups having 1 to 18 carbon atoms, specifically methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, Examples thereof include a sec-butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group, and a stearyloxy group.

前記一般式(1)で示されるフルオレン化合物において、Ar,Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、または4−ビフェニリル基
(但し、Ar,Arが共に置換もしくは無置換の4−ビフェニリル基の場合は除く)
を表す。
In the fluorene compound represented by the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or 4-biphenylyl group (provided that Ar 1 and Ar 2 are both substituted or unsubstituted 4-biphenylyl groups)
Represents.

Ar,Arで示される置換もしくは無置換のフェニル基としては、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−tert−ブチルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、4−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−sec−ブトキシフェニル基、4−tert−ブトキシフェニル基、4−トリフルオロメチルフェニル基、4−フルオロフェニル基等を例示することができる。 Examples of the substituted or unsubstituted phenyl group represented by Ar 1 and Ar 2 include a phenyl group, a 4-methylphenyl group, a 3-methylphenyl group, a 2-methylphenyl group, a 4-ethylphenyl group, and a 3-ethylphenyl group. 2-ethylphenyl group, 4-n-propylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl group, 4-cyclopentylphenyl group, 4-cyclohexylphenyl group, 4 -Methoxyphenyl group, 4-ethoxyphenyl group, 4-isopropoxyphenyl group, 4-n-butoxyphenyl group, 4-sec-butoxyphenyl group, 4-tert-butoxyphenyl group, 4-trifluoromethylphenyl group, A 4-fluorophenyl group etc. can be illustrated.

Ar,Arで示される置換もしくは無置換の1−ナフチル基としては、1−ナフチル基、2−メチル−1−ナフチル基、2−エチル−1−ナフチル基、2−ブチル−1−ナフチル基、4−メチル−1−ナフチル基、4−エチル−1−ナフチル基、4−ブチル−1−ナフチル基等を例示することができる。 Examples of the substituted or unsubstituted 1-naphthyl group represented by Ar 1 and Ar 2 include 1-naphthyl group, 2-methyl-1-naphthyl group, 2-ethyl-1-naphthyl group, 2-butyl-1-naphthyl group. Examples thereof include a group, 4-methyl-1-naphthyl group, 4-ethyl-1-naphthyl group, 4-butyl-1-naphthyl group and the like.

Ar,Arで示される置換もしくは無置換の2−ナフチル基としては、2−ナフチル基、6−メトキシ−2−ナフチル基、6−エトキシ−2−ナフチル基、6−n−ブトキシ−2−ナフチル基、6−n−ヘキシルオキシ−2−ナフチル基、7−メトキシ−2−ナフチル基、7−n−ブトキシ−2−ナフチル基等を例示することができる。 Examples of the substituted or unsubstituted 2-naphthyl group represented by Ar 1 and Ar 2 include a 2-naphthyl group, a 6-methoxy-2-naphthyl group, a 6-ethoxy-2-naphthyl group, and 6-n-butoxy-2. Examples include -naphthyl group, 6-n-hexyloxy-2-naphthyl group, 7-methoxy-2-naphthyl group, 7-n-butoxy-2-naphthyl group, and the like.

Ar,Arで示される置換もしくは無置換の4−ビフェニリル基としては、4−ビフェニリル基、4−メチルビフェニリル基、4−エチルビフェニリル基、4−ブチルビフェニリル基、4−メトキシビフェニリル基、4−エトキシビフェニリル基、4−ブトキシビフェニリル基等を例示することができる(但し、Ar,Arが共に置換もしくは無置換の4−ビフェニル基であることはない)。 Examples of the substituted or unsubstituted 4-biphenylyl group represented by Ar 1 and Ar 2 include 4-biphenylyl group, 4-methylbiphenylyl group, 4-ethylbiphenylyl group, 4-butylbiphenylyl group, 4-methoxybiphenyl group. Examples include a ryl group, a 4-ethoxybiphenylyl group, a 4-butoxybiphenylyl group and the like (however, Ar 1 and Ar 2 are not substituted or unsubstituted 4-biphenyl groups).

Ar,Arは、ガラス転移温度の点から置換もしくは無置換の1−ナフチル基、2−ナフチル基、4−ビフェニリル基であることが好ましく、以下で記述する製造時の反応選択性の点から、Ar,Arの少なくとも一つは置換もしくは無置換のフェニル基であることが特に好ましい。従って、Ar,Arは互いに異なり、少なくとも一つが置換もしくは無置換のフェニル基である場合がより好ましい。 Ar 1 and Ar 2 are preferably a substituted or unsubstituted 1-naphthyl group, 2-naphthyl group, and 4-biphenylyl group from the viewpoint of glass transition temperature, and the point of reaction selectivity during production described below. Therefore, it is particularly preferable that at least one of Ar 1 and Ar 2 is a substituted or unsubstituted phenyl group. Therefore, it is more preferable that Ar 1 and Ar 2 are different from each other and at least one is a substituted or unsubstituted phenyl group.

次に、本発明のフルオレン化合物の製造法を説明する。   Next, the manufacturing method of the fluorene compound of this invention is demonstrated.

前記一般式(1)で示されるフルオレン化合物は、下式中の一般式(2)で示される2,7−ジハロフルオレノンと一般式(3)で示される有機金属化合物とを反応させ、一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体へと誘導し、酸触媒存在下、一般式(5)で示される芳香族化合物と反応させて、一般式(6)で示される9位がAr,Arで置換された2,7−ジハロフルオレンを得た後、一般式(7)で示されるアミンを用いて、塩基および触媒の存在下にアミノ化することで製造することができる。 The fluorene compound represented by the general formula (1) reacts with a 2,7-dihalofluorenone represented by the general formula (2) in the following formula and an organometallic compound represented by the general formula (3). Derived into a 2,7-dihalo-9-hydroxyfluorene derivative represented by the formula (4), reacted with an aromatic compound represented by the general formula (5) in the presence of an acid catalyst, and represented by the general formula (6) Obtaining 2,7-dihalofluorene in which the 9-position shown is substituted with Ar 1 and Ar 2 , and then amination using an amine represented by the general formula (7) in the presence of a base and a catalyst Can be manufactured.

Figure 0005103727
(式中、Rは水素原子、ハロゲン原子、アルキル基、またはアルコキシ基を表し、Ar,Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、または4−ビフェニリル基
(但し、Ar,Arが共に置換もしくは無置換の4−ビフェニリル基の場合は除く)
を表し、Xはハロゲン原子を表し、MはLi、MgX、ZnX
(Xはハロゲン原子を表す。)
を表す。)
一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体は、一般式(2)で示される2,7−ジハロフルオレノンと一般式(3)で示される有機金属化合物との反応により、公知の手法で製造することができ、例えば、溶媒に溶解した2,7−ジハロフルオレノンに有機金属化合物の溶液を滴下する方法、または有機金属化合物の溶液に2,7−ジハロフルオレノンの溶液を滴下する方法が挙げられる。
Figure 0005103727
(In the formula, R represents a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy group, and Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or 4-biphenylyl group (except when both Ar 1 and Ar 2 are substituted or unsubstituted 4-biphenylyl groups)
X represents a halogen atom, M represents Li, MgX, ZnX
(X represents a halogen atom.)
Represents. )
The 2,7-dihalo-9-hydroxyfluorene derivative represented by the general formula (4) is obtained by reacting the 2,7-dihalofluorenone represented by the general formula (2) with the organometallic compound represented by the general formula (3). The reaction can be produced by a known method. For example, a method of dropping an organometallic compound solution into 2,7-dihalofluorenone dissolved in a solvent, or a 2,7-dihalo compound in an organometallic compound solution. The method of dripping the solution of fluorenone is mentioned.

本反応に使用される溶媒としては、反応に悪影響を及ぼさないものであればよく、例えば、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(例えば、n−ヘキサン、シクロヘキサン等)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、ジエチルエーテル等)などが挙げられ、これらの溶媒は、混合して使用してもよい。   The solvent used in this reaction is not particularly limited as long as it does not adversely influence the reaction. For example, aromatic hydrocarbons (for example, benzene, toluene, xylene, etc.), aliphatic hydrocarbons (for example, n- Hexane, cyclohexane, etc.), ethers (for example, dioxane, tetrahydrofuran, diethyl ether, etc.) and the like. These solvents may be used as a mixture.

一般式(6)で示される9位がAr,Arで置換された2,7−ジハロフルオレンは、酸触媒存在下、一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体と一般式(5)で示される芳香族化合物とを反応させることにより製造することができる。 In the presence of an acid catalyst, 2,7-dihalofluorene in which the 9-position represented by general formula (6) is substituted with Ar 1 and Ar 2 is 2,7-dihalo-9- represented by general formula (4). It can be produced by reacting a hydroxyfluorene derivative with an aromatic compound represented by the general formula (5).

本反応の方法としては、例えば、一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体、一般式(5)で示される芳香族化合物、酸触媒および反応溶媒を一括で反応器に仕込む方法、一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体、一般式(5)で示される芳香族化合物および反応溶媒の混合物に酸触媒を滴下する方法、一般式(5)で示される芳香族化合物、酸触媒および反応溶媒の混合物に一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体を固体のまま分割して添加、もしくは溶媒に溶解させて滴下する方法が挙げられる。   As a method of this reaction, for example, a 2,7-dihalo-9-hydroxyfluorene derivative represented by the general formula (4), an aromatic compound represented by the general formula (5), an acid catalyst and a reaction solvent are reacted together. A method of charging an acid catalyst into a mixture of a 2,7-dihalo-9-hydroxyfluorene derivative represented by general formula (4), an aromatic compound represented by general formula (5) and a reaction solvent, The 2,7-dihalo-9-hydroxyfluorene derivative represented by the general formula (4) is added to the mixture of the aromatic compound represented by the formula (5), the acid catalyst and the reaction solvent in the form of a solid, or added to the solvent. The method of dissolving and dripping is mentioned.

上記方法において、一般式(5)で示される芳香族化合物が反応温度で液体である場合には、一般式(5)で示される芳香族化合物を反応溶媒として使用することができ、この場合、反応選択率が高く、副生成物の量も少ない。   In the above method, when the aromatic compound represented by the general formula (5) is liquid at the reaction temperature, the aromatic compound represented by the general formula (5) can be used as a reaction solvent. The reaction selectivity is high and the amount of by-products is small.

本反応で使用される酸触媒としては、例えば、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、ホウ酸、リン酸等の鉱酸類、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、トリフルオロメタンスルホン酸等の脂肪族スルホン酸類、ベンゼンスルホン酸、p−クロロベンゼンスルホン酸、p−トルエンスルホン酸、m−トルエンスルホン酸等の芳香族スルホン酸類が挙げられる。これらのうち、反応性、経済性を考慮すると硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、p−トルエンスルホン酸の使用が特に好ましい。当該触媒の使用量としては、一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体1モルに対して0.001〜100モル、好ましくは0.01〜10モルである。   Examples of the acid catalyst used in this reaction include hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid and other mineral acids, methanesulfonic acid, ethanesulfone, and the like. Examples thereof include aliphatic sulfonic acids such as acid, propanesulfonic acid and trifluoromethanesulfonic acid, and aromatic sulfonic acids such as benzenesulfonic acid, p-chlorobenzenesulfonic acid, p-toluenesulfonic acid and m-toluenesulfonic acid. Of these, use of sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid is particularly preferable in consideration of reactivity and economy. The amount of the catalyst used is 0.001 to 100 mol, preferably 0.01 to 10 mol, per 1 mol of the 2,7-dihalo-9-hydroxyfluorene derivative represented by the general formula (4).

本反応において、一般式(5)で示される芳香族化合物の使用量は、一般式(4)で示される2,7−ジハロ−9−ヒドロキシフルオレン誘導体に対して等モル以上、反応選択性の点から、2,7−ジハロ−9−ヒドロキシフルオレン誘導体1モルに対して3モル以上であることが好ましい。   In this reaction, the amount of the aromatic compound represented by the general formula (5) is at least equimolar to the 2,7-dihalo-9-hydroxyfluorene derivative represented by the general formula (4). From the viewpoint, the amount is preferably 3 mol or more with respect to 1 mol of the 2,7-dihalo-9-hydroxyfluorene derivative.

本反応で反応溶媒を使用する場合、その反応溶媒は、反応に悪影響を及ぼさないものであればよく、例えば、n−ヘキサン、シクロヘキサン等の脂肪族炭化水素類、塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素類、ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、ぎ酸、酢酸、プロピオン酸、酪酸等のカルボン酸類、アセトニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等が挙げられ、中でもカルボン酸類が好ましい。   When a reaction solvent is used in this reaction, the reaction solvent may be any one that does not adversely affect the reaction, such as aliphatic hydrocarbons such as n-hexane and cyclohexane, methylene chloride, chloroform, dichloroethane and the like. Halogenated hydrocarbons, ethers such as dioxane, tetrahydrofuran and diethyl ether, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, carboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, acetonitrile , N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like, among which carboxylic acids are preferable.

一般式(1)で示されるフルオレン化合物は、塩基および触媒存在下、一般式(6)で示される9位がAr,Arで置換された2,7−ジハロフルオレンと一般式(7)で示されるアミンとの反応により、公知の手法で製造することができる。 In the presence of a base and a catalyst, the fluorene compound represented by the general formula (1) includes 2,7-dihalofluorene in which the 9-position represented by the general formula (6) is substituted with Ar 1 and Ar 2 and the general formula (7 It can manufacture by a well-known method by reaction with the amine shown.

本反応で使用する触媒は特に制限はないが、パラジウム触媒が好ましく、パラジウム触媒としては、例えば、塩化パラジウム(II)、臭化パラジウム(II)、酢酸パラジウム(II)、パラジウム(II)アセチルアセトナート、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロテトラアンミンパラジウム(II)、ジクロロ(シクロオクタ−1,5−ジエン)パラジウム(II)、パラジウム(II)トリフルオロアセテート等の2価のパラジウム化合物、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、テトラキス(トリフェニルホスフィン)パラジウム(0)等の0価のパラジウム化合物が挙げられる。また、ファイバー担持パラジウム触媒、パラジウム炭素等の固定化パラジウム触媒も挙げられる。これらに、トリフェニルホスフィン、トリ(o−トリル)ホスフィン等の単座アリールホスフィン、トリ(シクロヘキシル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert−ブチル)ホスフィン等の単座アルキルホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、1,2−ビス(ジフェニルホスフィノ)プロパン、1,2−ビス(ジフェニルホスフィノ)ブタン、1,2−ビス(ジフェニルホスフィノ)フェロセン等の二座ホスフィンを共存させて反応させてもよい。   The catalyst used in this reaction is not particularly limited, but a palladium catalyst is preferable. Examples of the palladium catalyst include palladium chloride (II), palladium bromide (II), palladium acetate (II), palladium (II) acetylacetate. Narate, dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (triphenylphosphine) palladium (II), dichlorotetraamminepalladium (II), dichloro (cycloocta-1,5-diene) palladium (II), divalent palladium compounds such as palladium (II) trifluoroacetate, tris (dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium (0) chloroform complex, tetrakis (Triphenylphosphine) palladium (0) 0-valent palladium compound and the like. Moreover, fixed palladium catalysts, such as a fiber carrying | support palladium catalyst and palladium carbon, are also mentioned. These include monodentate aryl phosphines such as triphenylphosphine and tri (o-tolyl) phosphine, monodentate alkyl phosphines such as tri (cyclohexyl) phosphine, tri (isopropyl) phosphine and tri (tert-butyl) phosphine, and 1,2-bis. Bidentate phosphines such as (diphenylphosphino) ethane, 1,2-bis (diphenylphosphino) propane, 1,2-bis (diphenylphosphino) butane and 1,2-bis (diphenylphosphino) ferrocene May be reacted.

パラジウム触媒の使用量は特に限定するものではないが、一般式(6)で示される9位がAr,Arで置換された2,7−ジハロフルオレン 1モルに対し、0.000001〜20モル%の範囲であり、好ましくは0.0001〜5モル%の範囲である。 The use amount of palladium catalyst is not particularly limited, with respect to 9-position by 2,7-dihalofluorene 1 molar substitution in Ar 1, Ar 2 represented by the general formula (6), 0.000001 It is in the range of 20 mol%, preferably in the range of 0.0001 to 5 mol%.

本反応において使用される塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、燐酸カリウム、燐酸ナトリウム等、ナトリウム−メトキシド、ナトリウム−エトキシド、カリウム−メトキシド、カリウム−エトキシド、リチウム−tert−ブトキシド、ナトリウム−tert−ブトキシド、カリウム−tert−ブトキシド等のようなアルカリ金属アルコキシド、トリエチルアミン、トリブチルアミン、ピリジンが挙げられる。   Examples of the base used in this reaction include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, potassium phosphate, sodium phosphate, sodium-methoxide, sodium-ethoxide, potassium-methoxide, potassium-ethoxide, lithium, and the like. Examples include alkali metal alkoxides such as -tert-butoxide, sodium-tert-butoxide, potassium-tert-butoxide, triethylamine, tributylamine, and pyridine.

使用される塩基の量は、一般式(6)で示される9位がAr,Arで置換された2,7−ジハロフルオレン 1モルに対し2〜10倍モルであり、好ましくは2〜3倍モルである。 The amount of the base used is 2 to 10-fold moles with respect to 1 mole of 2,7-dihalofluorene in which the 9-position represented by the general formula (6) is substituted with Ar 1 and Ar 2 , preferably 2 ~ 3 moles.

本反応における反応溶媒は、反応に悪影響を及ぼさないものであればよく、ベンゼン、トルエン、キシレン等の芳香族系有機溶媒、ジエチルエーテル、テトラハイドロフラン、ジオキサンなどのエーテル系有機溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホトリアミド等を挙げることができ、好ましくは、ベンゼン、トルエン、キシレン等の芳香族系有機溶媒である。   The reaction solvent in this reaction is not particularly limited as long as it does not adversely affect the reaction. Aromatic organic solvents such as benzene, toluene and xylene, ether organic solvents such as diethyl ether, tetrahydrofuran and dioxane, acetonitrile and dimethyl Examples include formamide, dimethyl sulfoxide, hexamethylphosphotriamide, and the like, and aromatic organic solvents such as benzene, toluene, and xylene are preferable.

次に、本発明のフルオレン化合物を用いた有機EL素子について説明する。   Next, an organic EL device using the fluorene compound of the present invention will be described.

上記一般式(1)で示されるフルオレン化合物は、正孔輸送性能に優れ、有機EL素子において正孔輸送層、正孔注入層として用いることができる。正孔輸送層の形成方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は1nm〜1μmであり、好ましくは1〜100nmである。   The fluorene compound represented by the general formula (1) is excellent in hole transport performance and can be used as a hole transport layer and a hole injection layer in an organic EL device. As a method for forming the hole transport layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the film thickness is not particularly limited, but is usually 1 nm to 1 μm. The thickness is preferably 1 to 100 nm.

本発明における有機EL素子は特に限定するものではないが、基板、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層および陰極から構成され、正孔輸送層は前記一般式(1)で示されるフルオレン化合物からなる層である。また、必要に応じて新たな層を設けたり、何れかの層を省くこともでき、電子輸送層と電子注入層、発光層と電子注入輸送層を一つの層で兼ねることもできる。   The organic EL device in the present invention is not particularly limited, and is composed of a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode. It is a layer made of a fluorene compound represented by the general formula (1). In addition, a new layer can be provided as needed, or any of the layers can be omitted, and the electron transport layer and the electron injection layer, and the light emitting layer and the electron injection and transport layer can be combined into one layer.

本発明における基板は、透明で表面が平滑なものであれば使用でき、ガラス、プラスチック等を用いることができる。また、基板の厚さは素子の支持が可能な範囲で任意に選択することができる。   The substrate in the present invention can be used as long as it is transparent and has a smooth surface, and glass, plastic and the like can be used. Further, the thickness of the substrate can be arbitrarily selected as long as the element can be supported.

本発明における陽極には、例えば、インジウム錫酸化物(ITO)や酸化錫、金、銀、銅、クロム等を使用することができる。陽極の形成方法としては、例えば、真空蒸着法やスパッタリング法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は10nm〜1μmであり、好ましくは10〜500nmである。   For the anode in the present invention, for example, indium tin oxide (ITO), tin oxide, gold, silver, copper, chromium, or the like can be used. As a method for forming the anode, for example, a known method such as a vacuum deposition method or a sputtering method can be applied, and the film thickness is not particularly limited, but is usually 10 nm to 1 μm, preferably 10 to 500 nm. is there.

本発明における正孔注入層には、前記一般式(1)で示されるフルオレン化合物よりイオン化ポテンシャルが小さく、陽極から正孔を注入する機能を有した公知の材料を用いることができ、例えば、フタロシアニン誘導体、トリアリールアミン誘導体、ポリアニリン誘導体、ポリチオフェン誘導体等が挙げられる。正孔注入層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は1nm〜1μmであり、好ましくは1〜100nmである。   For the hole injection layer in the present invention, a known material having an ionization potential smaller than that of the fluorene compound represented by the general formula (1) and having a function of injecting holes from the anode can be used, for example, phthalocyanine Derivatives, triarylamine derivatives, polyaniline derivatives, polythiophene derivatives and the like. As a method for forming the hole injection layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the film thickness is not particularly limited, but is usually 1 nm to 1 μm. Yes, preferably 1 to 100 nm.

本発明における発光層には、有機EL素子で従来から使用されている公知の発光材料を使用することができ、電子および正孔の注入が可能で、かつ蛍光および/またはりん光を有する物質であれば特に制限はない。発光材料の例としては、オキサジアゾール誘導体、トリアリールアミン誘導体、スチリルベンゼン誘導体、クマリン誘導体、アクリドン誘導体、キナクリドン誘導体、ジケトピロロピロール誘導体、オキサゾン誘導体、ピラン誘導体、縮合芳香族化合物およびその誘導体、8−キノリノール誘導体のアルミニウム錯体、配位子として塩素、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、フェナントロリン、アセチルアセトン等を有するレニウム錯体、イリジウム錯体、白金錯体、ユーロピウム錯体等が挙げられる。発光層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、発光層は発光材料のみで形成されていてもよく、ホスト材料中に発光材料がドープされていてもよい。   For the light emitting layer in the present invention, a known light emitting material conventionally used in organic EL elements can be used, and it is a substance that can inject electrons and holes and has fluorescence and / or phosphorescence. If there is no particular limitation. Examples of luminescent materials include oxadiazole derivatives, triarylamine derivatives, styrylbenzene derivatives, coumarin derivatives, acridone derivatives, quinacridone derivatives, diketopyrrolopyrrole derivatives, oxazone derivatives, pyran derivatives, condensed aromatic compounds and derivatives thereof, Examples include aluminum complexes of 8-quinolinol derivatives and rhenium complexes, iridium complexes, platinum complexes, and europium complexes having chlorine, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, phenanthroline, acetylacetone, and the like as ligands. As a method for forming the light emitting layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the light emitting layer may be formed of only the light emitting material, May be doped with a light emitting material.

本発明における電子輸送層には、陰極から注入された電子を受け取り、発光層に輸送する機能を有した公知の材料を用いることができ、例えば、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、8−キノリノール誘導体のアルミニウム錯体、有機シラン誘導体等が挙げられる。電子輸送層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は1nm〜1μmであり、好ましくは1〜100nmである。また、電子輸送層に、例えば、アルカリ金属、アルカリ土金属等の還元性ドーパントを含有していてもよい。   For the electron transport layer in the present invention, a known material having a function of receiving electrons injected from the cathode and transporting them to the light emitting layer can be used. For example, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole Derivatives, aluminum complexes of 8-quinolinol derivatives, organosilane derivatives, and the like. As a method for forming the electron transport layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the film thickness is not particularly limited, but is usually 1 nm to 1 μm. The thickness is preferably 1 to 100 nm. In addition, the electron transport layer may contain a reducing dopant such as an alkali metal or an alkaline earth metal.

本発明における電子注入層としては、電流のリーク防止および電子注入性を向上させる機能を有した公知の材料を用いることができ、例えば、アルカリ金属のハロゲン化物およびアルカリ土金属のハロゲン化物が挙げられる。電子注入層を形成する方法としては、例えば、真空蒸着法、スパッタリング法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は0.01〜100nmであり、好ましくは0.1〜50nmである。   As the electron injection layer in the present invention, a known material having functions of preventing current leakage and improving electron injection properties can be used, and examples thereof include alkali metal halides and alkaline earth metal halides. . As a method for forming the electron injection layer, for example, a known method such as a vacuum deposition method or a sputtering method can be applied, and the film thickness is not particularly limited, but is usually 0.01 to 100 nm, preferably Is 0.1 to 50 nm.

本発明における陰極には、例えば、アルカリ金属またはアルカリ土金属等を使用することができ、これらを他の金属と組み合わせて用いることもできる。陰極の形成方法としては、例えば、真空蒸着法やスパッタリング法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は10nm〜1μmであり、好ましくは10〜500nmである   For the cathode in the present invention, for example, an alkali metal or an alkaline earth metal can be used, and these can also be used in combination with other metals. As a method for forming the cathode, for example, a known method such as a vacuum deposition method or a sputtering method can be applied, and the film thickness is not particularly limited, but is usually 10 nm to 1 μm, preferably 10 to 500 nm. is there

本発明のフルオレン化合物は、正孔輸送能力に優れ、さらにガラス転移温度が高いことから、高温条件下での薄膜安定性も高く、高効率かつ安定性の高い有機EL素子を提供することが可能となる。   The fluorene compound of the present invention is excellent in hole transport capability and has a high glass transition temperature. Therefore, it is possible to provide a highly efficient and highly stable organic EL device with high thin film stability under high temperature conditions. It becomes.

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by these Examples.

H−NMRおよび13C−NMR測定は、バリアン社製 Gemini200を用いて行った。 1 H-NMR and 13 C-NMR measurements were performed using Gemini 200 manufactured by Varian.

FD−MS測定は、日立製作所製 M−80Bを用いて行った。   The FD-MS measurement was performed using M-80B manufactured by Hitachi, Ltd.

ガラス転移温度の測定は、セイコー電子工業製 SSC−5000を用い、10℃/分の昇温条件下にて行った。   The glass transition temperature was measured using SSC-5000 manufactured by Seiko Denshi Kogyo under the temperature rising condition of 10 ° C / min.

電子親和性の評価は、サイクリックボルタンメトリー(北斗電工製 HA−501、HB−104)を用いて、還元方向に0〜−3.4V vs.Fc/Fcの範囲で行った。通常、電子親和性は還元電位の絶対値が小さいほど高く、サイクリックボルタンメトリーにより材料の電子親和性を判定することができる。 The evaluation of electron affinity was performed using cyclic voltammetry (Hokuto Denko HA-501, HB-104) in the reduction direction of 0 to -3.4 V vs. It was performed in the range of Fc / Fc + . Usually, the electron affinity is higher as the absolute value of the reduction potential is smaller, and the electron affinity of the material can be determined by cyclic voltammetry.

有機EL素子の駆動電圧および発光輝度測定は、TOPCON社製 輝度計LUMINANCE METER(BM−9)を用いて行った。   The driving voltage and emission luminance of the organic EL element were measured using a luminance meter LUMINANCE METER (BM-9) manufactured by TOPCON.

合成例1 (2,7−ジブロモ−9−ヒドロキシ−9−フェニルフルオレンの合成)
窒素気流下、2,7−ジブロモフルオレノン 20g(59mmol)をTHF270mlに加え、そこへ2mol/lのフェニルマグネシウムクロリドのTHF溶液を35ml(70.8mmol)滴下した。室温で12時間反応後、10%塩化アンモニウム水溶液を100g加えて反応を停止した。有機相を分離した後、有機相を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下に濃縮、ベンゼンから再結晶することにより、2,7−ジブロモ−9−ヒドロキシ−9−フェニルフルオレン 13g(32.4mmol)を単離した(収率55%)。
融点;161−163℃
H−NMR(CDCl);7.24−7.48(m,11H),2.50(s,1H)
13C−NMR(CDCl);151.9,141.5,137.4,132.4,128.4,128.2,127.7,125.2,122.5,121.5,83.3
合成例2 (2,7−ジブロモ−9,9−ジフェニルフルオレンの合成)
ベンゼン7.5g(96mmol)、濃硫酸3.7g(38mmol)の混合溶液に合成例1で得られた2,7−ジブロモ−9−ヒドロキシ−9−フェニルフルオレン 4g(9.6mmol)のベンゼン溶液20mlを室温で滴下した。室温で12時間反応後、水20mlを加え、有機相を分離した後、有機相を水、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、減圧下に濃縮、エタノールとクロロホルムの混合溶媒から再結晶することにより、2,7−ジブロモ−9,9−ジフェニルフルオレン 3.2g(6.7mmol)を単離した(収率69%)。
融点;264−267℃
H−NMR(CDCl);7.58(d,2H,J=8.0Hz),7.49(s,2H),7.47(d,2H,J=8.0Hz),7.20−7.27(m,6H),7.11−7.16(m,4H)
13C−NMR(CDCl);152.8,144.3,138.0,130.9,129.3,128.5,127.9,127.1,121.8,121.5,65.6
実施例1 (2,7−ビス[N,N−ビス(1,1’−ビフェニル−4−イル)アミノ]−9,9−ジフェニルフルオレンの合成)
合成例2で得られた2,7−ジブロモ−9,9−ジフェニルフルオレン 2.5g(5.2mmol)、N,N−ビス(1,1’−ビフェニル−4−イル)アミン 3.6g(11.4mmol)、ナトリウム−tert−ブトキシド 1.4g(14.5mmol)、o−キシレン 20mlのスラリー溶液に、酢酸パラジウム0.21g(0.052mmol)、トリ(tert−ブチル)ホスフィン 0.037g(0.182mmol)を加えて120℃で5時間反応させ、室温まで冷却後、水20mlを加えた。有機相を分離した後、有機相を水、飽和食塩水で洗浄した。有機相を無水硫酸マグネシウムで乾燥後、減圧下に濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン)および再結晶(トルエンとヘキサンの混合溶媒)により精製し、2,7−ビス[N,N−ビス(1,1’−ビフェニル−4−イル)アミノ]−9,9−ジフェニルフルオレン 3.7g(3.9mmol)を単離した(収率75%)。
FD−MS;956
H−NMR(THF−d8);7.07−7.69(m,52H)
13C−NMR(THF−d8);153.4,147.7,147.4,146.6,141.3,136.3,136.0,129.4,128.9,128.8,128.3,127.5,127.2,124.9,124.4,123.0,121.2,66.3
真空蒸着法によってガラス板上に形成した薄膜は、室温下1ヶ月間放置しても白濁(凝集および結晶化)は見られなかった。また、ガラス転移温度は156℃であり、ガラス板上の薄膜を120℃に加熱しても白濁化しなかった。
Synthesis Example 1 (Synthesis of 2,7-dibromo-9-hydroxy-9-phenylfluorene)
Under a nitrogen stream, 20 g (59 mmol) of 2,7-dibromofluorenone was added to 270 ml of THF, and 35 ml (70.8 mmol) of a 2 mol / l phenylmagnesium chloride THF solution was added dropwise thereto. After reacting at room temperature for 12 hours, 100 g of 10% aqueous ammonium chloride solution was added to stop the reaction. After separating the organic phase, the organic phase is washed with water and saturated brine, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from benzene to give 2,7-dibromo-9-hydroxy-9. -13 g (32.4 mmol) of phenylfluorene was isolated (55% yield).
Melting point: 161-163 ° C
1 H-NMR (CDCl 3 ); 7.24-7.48 (m, 11H), 2.50 (s, 1H)
13 C-NMR (CDCl 3 ); 151.9, 141.5, 137.4, 132.4, 128.4, 128.2, 127.7, 125.2, 122.5, 121.5, 83 .3
Synthesis Example 2 (Synthesis of 2,7-dibromo-9,9-diphenylfluorene)
Benzene solution of 4 g (9.6 mmol) of 2,7-dibromo-9-hydroxy-9-phenylfluorene obtained in Synthesis Example 1 in a mixed solution of 7.5 g (96 mmol) of benzene and 3.7 g (38 mmol) of concentrated sulfuric acid 20 ml was added dropwise at room temperature. After reacting at room temperature for 12 hours, 20 ml of water was added to separate the organic phase, and then the organic phase was washed with water and saturated brine. The organic phase was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized from a mixed solvent of ethanol and chloroform to obtain 3.2 g (6.7 mmol) of 2,7-dibromo-9,9-diphenylfluorene. (Yield 69%).
Melting point: 264-267 ° C
1 H-NMR (CDCl 3 ); 7.58 (d, 2H, J = 8.0 Hz), 7.49 (s, 2H), 7.47 (d, 2H, J = 8.0 Hz), 7. 20-7.27 (m, 6H), 7.11-7.16 (m, 4H)
13 C-NMR (CDCl 3 ); 152.8, 144.3, 138.0, 130.9, 129.3, 128.5, 127.9, 127.1, 121.8, 121.5, 65 .6
Example 1 (Synthesis of 2,7-bis [N, N-bis (1,1′-biphenyl-4-yl) amino] -9,9-diphenylfluorene)
2.5 g (5.2 mmol) of 2,7-dibromo-9,9-diphenylfluorene obtained in Synthesis Example 2 3.6 g of N, N-bis (1,1′-biphenyl-4-yl) amine 11.4 mmol), sodium tert-butoxide 1.4 g (14.5 mmol), o-xylene 20 ml slurry solution, palladium acetate 0.21 g (0.052 mmol), tri (tert-butyl) phosphine 0.037 g ( 0.182 mmol) was added and reacted at 120 ° C. for 5 hours. After cooling to room temperature, 20 ml of water was added. After the organic phase was separated, the organic phase was washed with water and saturated brine. The organic phase was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The obtained solid was purified by silica gel column chromatography (toluene) and recrystallization (a mixed solvent of toluene and hexane), and 2,7-bis [N, N-bis (1,1′-biphenyl-4-yl)] Amino] -9,9-diphenylfluorene 3.7 g (3.9 mmol) was isolated (75% yield).
FD-MS; 956
1 H-NMR (THF-d8); 7.07-7.69 (m, 52H)
13 C-NMR (THF-d8); 153.4, 147.7, 147.4, 146.6, 141.3, 136.3, 136.0, 129.4, 128.9, 128.8, 128.3, 127.5, 127.2, 124.9, 124.4, 123.0, 121.2, 66.3
The thin film formed on the glass plate by the vacuum deposition method did not show white turbidity (aggregation and crystallization) even when allowed to stand at room temperature for 1 month. Moreover, the glass transition temperature was 156 degreeC, and even if it heated the thin film on a glass plate to 120 degreeC, it did not become cloudy.

サイクリックボルタンメトリーで電子親和性を評価したところ、測定可能な電圧範囲内に還元波は現れず、電子親和性は低いという結果であった。   When the electron affinity was evaluated by cyclic voltammetry, no reduction wave appeared in the measurable voltage range, and the result showed that the electron affinity was low.

比較例1
2,7−ジブロモ−9,9−ジメチルフルオレンとN−フェニル−N−(1−ナフチル)アミンを用いた以外は、実施例1と同様の方法で2,7−ビス(N,N−ジフェニルアミノ)−9,9−ジメチルフルオレンを合成した。
Comparative Example 1
2,7-bis (N, N-diphenyl) was prepared in the same manner as in Example 1 except that 2,7-dibromo-9,9-dimethylfluorene and N-phenyl-N- (1-naphthyl) amine were used. Amino) -9,9-dimethylfluorene was synthesized.

サイクリックボルタンメトリーで電子親和性を評価したところ、電子親和性は低い結果であったが、真空蒸着法によってガラス板上に形成した薄膜は、室温下1ヶ月間放置後、白濁が見られた。また、ガラス転移温度は120℃以下であり、ガラス板上の薄膜を120℃に加熱すると白濁化した。   When the electron affinity was evaluated by cyclic voltammetry, the electron affinity was low. However, the thin film formed on the glass plate by the vacuum evaporation method was clouded after being left for one month at room temperature. Moreover, the glass transition temperature was 120 degrees C or less, and when the thin film on a glass plate was heated at 120 degreeC, it became cloudy.

比較例2
2,7−ジブロモ−9,9−ジメチルフルオレンとN,N−ジフェニルアミンを用いた以外は、実施例1と同様の方法で2,7−ビス[N−フェニル−N−(1−ナフチル)アミノ]−9,9−ジメチルフルオレンを合成した。
Comparative Example 2
2,7-bis [N-phenyl-N- (1-naphthyl) amino was prepared in the same manner as in Example 1 except that 2,7-dibromo-9,9-dimethylfluorene and N, N-diphenylamine were used. ] -9,9-dimethylfluorene was synthesized.

サイクリックボルタンメトリーで電子親和性を評価したところ、−2.98V vs.Fc/Fcに還元波が観測され、電子親和性が高い結果であった。真空蒸着によってガラス板上に形成した薄膜は、室温下1ヶ月間放置後も白濁は見られなかったが、ガラス転移温度は120℃以下であり、ガラス板上の薄膜を120℃に加熱すると白濁化した。 When the electron affinity was evaluated by cyclic voltammetry, -2.98 V vs. A reduction wave was observed in Fc / Fc + , indicating a high electron affinity. The thin film formed on the glass plate by vacuum deposition did not show white turbidity even after standing for 1 month at room temperature, but the glass transition temperature was 120 ° C or lower, and when the thin film on the glass plate was heated to 120 ° C, it became cloudy Turned into.

実施例2
厚さ200nmのITO透明電極(陽極)を積層したガラス基板をアセトンおよび純水により超音波洗浄した後、イソプロピルアルコールによる沸騰洗浄を行なった。さらに紫外線オゾン洗浄を行ない、真空蒸着装置へ設置後、1×10−4Paになるまで、真空ポンプにて排気した。まず、ITO透明電極上に銅フタロシアニンを蒸着速度0.05nm/秒で蒸着し、25nmの正孔注入層とした。引き続き、2,7−ビス[N,N−ビス(1,1’−ビフェニル−4−イル)アミノ]−9,9−ジフェニルフルオレンを蒸着速度0.08nm/秒で45nm蒸着し、正孔輸送層とした。引き続いてトリス(8−キノリノラート)アルミニウムを蒸着速度0.1nm/秒で60nm蒸着して発光層とした後、電子注入層として沸化リチウムを蒸着速度0.01nm/秒で0.5nm蒸着、さらに陰極としてアルミニウムを蒸着速度0.25nm/秒で100nm蒸着して有機EL素子を作製した。
Example 2
A glass substrate on which an ITO transparent electrode (anode) having a thickness of 200 nm was laminated was subjected to ultrasonic cleaning with acetone and pure water, and then subjected to boiling cleaning with isopropyl alcohol. Furthermore, ultraviolet ozone cleaning was performed, and after evacuation with a vacuum pump until it became 1 × 10 −4 Pa after installation in a vacuum deposition apparatus. First, copper phthalocyanine was deposited on the ITO transparent electrode at a deposition rate of 0.05 nm / second to form a 25 nm hole injection layer. Subsequently, 2,7-bis [N, N-bis (1,1′-biphenyl-4-yl) amino] -9,9-diphenylfluorene was deposited at a deposition rate of 0.08 nm / sec. Layered. Subsequently, tris (8-quinolinolato) aluminum was deposited to a light emitting layer by depositing 60 nm at a deposition rate of 0.1 nm / second, and lithium fluoride was deposited as an electron injection layer to a thickness of 0.5 nm at a deposition rate of 0.01 nm / second. Aluminum was deposited as a cathode at a thickness of 100 nm at a deposition rate of 0.25 nm / second to produce an organic EL device.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は5.0V、発光輝度は350cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は10%以内であった。 When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 5.0 V and the light emission luminance was 350 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 under a nitrogen atmosphere, the luminance reduction rate at 500 hours was within 10%.

比較例3
正孔輸送材料に2,7−ビス(N,N−ジフェニルアミノ)−9,9−ジメチルフルオレンを用いた以外は、実施例2と同様の方法で有機EL素子を作製した。
Comparative Example 3
An organic EL device was produced in the same manner as in Example 2 except that 2,7-bis (N, N-diphenylamino) -9,9-dimethylfluorene was used as the hole transport material.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は5.2V、発光輝度は300cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は50%以上であった。 When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 5.2 V and the light emission luminance was 300 cd / m 2 . In addition, when continuously driven at 20 mA / cm 2 in a nitrogen atmosphere, the luminance reduction rate at 500 hours was 50% or more.

比較例4
正孔輸送材料に2,7−ビス[N−フェニル−N−(1−ナフチル)アミノ]−9,9−ジメチルフルオレンを用いた以外は、実施例2と同様の方法で有機EL素子を作製した。
Comparative Example 4
An organic EL device was produced in the same manner as in Example 2, except that 2,7-bis [N-phenyl-N- (1-naphthyl) amino] -9,9-dimethylfluorene was used as the hole transport material. did.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は5.2V、発光輝度は250cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は20%であった。
When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 5.2 V and the light emission luminance was 250 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 in a nitrogen atmosphere, the luminance reduction rate in 500 hours was 20%.

Claims (4)

一般式(1)
Figure 0005103727
(式中、Rは水素原子、ハロゲン原子、炭素数1〜18のアルキル基、または炭素数1〜18のアルコキシ基を表し、Ar、Arは各々独立してメチル基、エチル基、n−プロピル基、n−ブチル基、イソブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、メトキシ基、sec−ブトキシ基、tert−ブトキシ基、トリフルオロメチル基、またはフルオロ基を有してもよいフェニル基を表す。)
で示されるフルオレン化合物からなる有機EL素子用正孔輸送材
General formula (1)
Figure 0005103727
(In the formula, R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms , and Ar 1 and Ar 2 are each independently a methyl group, an ethyl group, n -Propyl group, n-butyl group, isobutyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, methoxy group, sec-butoxy group, tert-butoxy group, trifluoromethyl group, or fluoro group Represents a phenyl group.)
The hole transport material for organic EL elements which consists of a fluorene compound shown by these.
Ar、Arいずれも、無置換のフェニル基であることを特徴とする請求項1に記載のフルオレン化合物からなる有機EL素子用正孔輸送材The hole transport material for an organic EL device comprising the fluorene compound according to claim 1 , wherein Ar 1 and Ar 2 are both unsubstituted phenyl groups. 請求項1に記載の一般式(1)で示されるフルオレン化合物を正孔輸送層に用いることを特徴とする有機EL素子。 An organic EL device comprising the fluorene compound represented by the general formula (1) according to claim 1 as a hole transport layer. 請求項1に記載の一般式(1)で示されるフルオレン化合物からなる正孔輸送層を、真空蒸着によって成膜させることを特徴とする、有機EL素子の製造方法。A method for producing an organic EL element, wherein the hole transport layer made of the fluorene compound represented by the general formula (1) according to claim 1 is formed by vacuum deposition.
JP2005331326A 2005-11-16 2005-11-16 Fluorene compound and organic EL device using the same Expired - Fee Related JP5103727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331326A JP5103727B2 (en) 2005-11-16 2005-11-16 Fluorene compound and organic EL device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331326A JP5103727B2 (en) 2005-11-16 2005-11-16 Fluorene compound and organic EL device using the same

Publications (2)

Publication Number Publication Date
JP2007137795A JP2007137795A (en) 2007-06-07
JP5103727B2 true JP5103727B2 (en) 2012-12-19

Family

ID=38201110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331326A Expired - Fee Related JP5103727B2 (en) 2005-11-16 2005-11-16 Fluorene compound and organic EL device using the same

Country Status (1)

Country Link
JP (1) JP5103727B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675596B1 (en) 2009-06-03 2016-11-11 후지필름 가부시키가이샤 Photoelectric conversion device and imaging device
KR101718165B1 (en) 2009-09-11 2017-03-20 후지필름 가부시키가이샤 Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
KR101757444B1 (en) 2010-04-30 2017-07-13 삼성디스플레이 주식회사 Organic light-emitting device
CN105016968B (en) * 2015-07-07 2017-04-05 河南省商业科学研究所有限责任公司 A kind of synthetic method of 2 bromine, 9,9 diphenylfluorene

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679165B2 (en) * 1986-03-08 1994-10-05 キヤノン株式会社 Electrophotographic photoreceptor
JP3079909B2 (en) * 1993-10-01 2000-08-21 東洋インキ製造株式会社 Hole transport material and its use
JP3824385B2 (en) * 1996-08-02 2006-09-20 三井化学株式会社 Organic electroluminescence device
JPH10104860A (en) * 1996-08-08 1998-04-24 Canon Inc Electrophotographic photoreceptor, process cartridge with the same and electrophotographic device
JP2000016973A (en) * 1998-04-28 2000-01-18 Canon Inc New triarylamine compound and light emission element using the same
JP2000221713A (en) * 1999-01-28 2000-08-11 Canon Inc Electrophotographic photoreceptor and process cartridge and electrophotographic apparatus each having same
JP3998903B2 (en) * 2000-09-05 2007-10-31 出光興産株式会社 Novel arylamine compound and organic electroluminescence device
JP4955877B2 (en) * 2000-09-28 2012-06-20 保土谷化学工業株式会社 Polyaminofluorene derivative
JP4250370B2 (en) * 2002-03-08 2009-04-08 キヤノン株式会社 Organic compound, electroluminescent element and display device
JP3848224B2 (en) * 2002-08-27 2006-11-22 キヤノン株式会社 Spiro compound and organic light emitting device using the same
JP4506113B2 (en) * 2002-09-20 2010-07-21 東ソー株式会社 Novel arylamine derivatives having a fluorene skeleton, synthetic intermediates thereof, production methods thereof, and organic EL devices
JP2004212959A (en) * 2002-12-17 2004-07-29 Canon Inc Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge
JP2004262761A (en) * 2003-01-16 2004-09-24 Idemitsu Kosan Co Ltd Aromatic amine derivative and organic electroluminescent element using the same
JP2005044791A (en) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc Organic electroluminescent element, illuminator, and display device
DE112004002221T5 (en) * 2003-11-17 2007-01-18 Sumitomo Chemical Company, Ltd. Crosslinkable substituted fluorene linkages and conjugated oligomers or polymers based thereon
JP4491666B2 (en) * 2003-12-02 2010-06-30 東ソー株式会社 Method for producing arylamine derivative having fluorene skeleton and synthetic intermediate thereof
JP4810830B2 (en) * 2004-01-15 2011-11-09 東ソー株式会社 Amine compound having fluorene group as mother nucleus and production method and use thereof
TWI304087B (en) * 2005-07-07 2008-12-11 Chi Mei Optoelectronics Corp Organic electroluminescent device and host material of luminescent and hole-blocking material thereof
JP2007142011A (en) * 2005-11-16 2007-06-07 Tosoh Corp Organic electroluminescence element using fluorene compound and benzidine compound

Also Published As

Publication number Publication date
JP2007137795A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
AU2001271550B2 (en) Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
KR101974860B1 (en) organic light-emitting diode with low operating voltage and long lifetime
TWI466978B (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101267854B1 (en) π-CONJUGATED COMPOUND HAVING CARDO STRUCTURE, PROCESS FOR PREPARING SAME AND USE OF SAME
RU2434836C2 (en) Condensed cyclic aromatic compound for organic light-emitting device and organic light-emitting device containing said compound
JP5572806B2 (en) Organic material containing oligophenylene skeleton and light emitting device using the same
US8357821B2 (en) Aromatic amine compound, organic electroluminescent element including the same, and display device including organic electroluminescent element
JP2005518081A (en) Electroluminescent iridium compounds having phosphinoalkoxides and phenylpyridine or phenylpyrimidine and devices made with such compounds
KR20100025544A (en) Chrysenes for blue luminescent applications
WO2013045411A1 (en) Spirobifluorene compounds for light emitting devices
KR20100024451A (en) Chrysenes for green luminescent applications
JP2010270103A (en) New organic compound, light-emitting device, and image display
JP7193649B2 (en) Compounds for organic light-emitting devices and long-lived organic light-emitting devices containing the same
KR101105242B1 (en) Solution Processable Blue Iridium Complex with Picolinic acid or Picolinic acid-N-oxide Derivatives Ancillary Ligand and Organic Light-Emitting Diodes Containing Iridium Complex
KR100910134B1 (en) Organic luminescent material and organic light emitting device using the same
WO2004067675A2 (en) Binaphthol based chromophores for the fabrication of blue organic light emitting diodes
JP5103727B2 (en) Fluorene compound and organic EL device using the same
JP7110778B2 (en) Novel triazine compounds with ortho structure
JP5675085B2 (en) Organic light emitting device
JP6862767B2 (en) Triazine compounds, their production methods, production intermediates, and applications
KR20080017562A (en) Luminescent compounds and electroluminescent device using the same
EP2551264B1 (en) 1,2,4,5-substituted phenyl derivative, method for producing same and organic electroluminescent element having same as constituent component
JP2016181556A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same
CN114560870A (en) Sulfur-containing polycyclic aromatic compound and application thereof
JP2001043974A (en) Organic elecroluminescent element and manufacture of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5103727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees