JP2007142011A - Organic electroluminescence element using fluorene compound and benzidine compound - Google Patents

Organic electroluminescence element using fluorene compound and benzidine compound Download PDF

Info

Publication number
JP2007142011A
JP2007142011A JP2005331327A JP2005331327A JP2007142011A JP 2007142011 A JP2007142011 A JP 2007142011A JP 2005331327 A JP2005331327 A JP 2005331327A JP 2005331327 A JP2005331327 A JP 2005331327A JP 2007142011 A JP2007142011 A JP 2007142011A
Authority
JP
Japan
Prior art keywords
group
organic
general formula
hole transport
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331327A
Other languages
Japanese (ja)
Inventor
Naoki Matsumoto
直樹 松本
Takeshi Tanaka
剛 田中
Shoichi Nishiyama
正一 西山
Hisao Eguchi
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005331327A priority Critical patent/JP2007142011A/en
Publication of JP2007142011A publication Critical patent/JP2007142011A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescence element high in luminous efficiency at a low drive voltage and excellent in durability. <P>SOLUTION: The organic EL element including at least a hole transport layer and a luminous layer between a pair of electrodes employs a hole transport layer containing a fluorene compound having a specific aryl substituent and an aryl benzidine compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高効率および高耐久性を実現する有機EL素子に関するものである。   The present invention relates to an organic EL element that achieves high efficiency and high durability.

有機EL素子は、有機薄膜を1対の電極で狭持した面発光型素子であり、薄型軽量、高視野角、高速応答などの特徴を有し、各種表示素子への応用が期待されている。有機EL素子とは、電圧を印加することにより陽極から注入された正孔と、陰極から注入された電子とが発光層で再結合する際に発する光を利用した素子であり、その素子構造は1987年にC.W.Tangらによって報告された正孔輸送層と発光層を積層した二層型素子が基本となっている(例えば、非特許文献1参照)。その後、正孔輸送層、発光層、電子輸送層の三層から構成される素子が提案され(例えば、非特許文献2参照)、現在では多層積層型素子が主流になっている。正孔輸送層や電子輸送層のような電荷輸送層は、発光層への電荷注入を容易にし、また、発光層に電荷を閉じ込める役割を果たしており、C.W.Tangらの報告以来、有機EL素子の低駆動電圧化および発光効率向上を目的として様々な正孔輸送材料、電子輸送材料の開発が行われてきた。   An organic EL element is a surface-emitting element in which an organic thin film is sandwiched between a pair of electrodes, and has features such as a thin and light weight, a high viewing angle, and a high-speed response, and is expected to be applied to various display elements. . An organic EL element is an element that utilizes light emitted when holes injected from an anode and electrons injected from a cathode are recombined in a light-emitting layer by applying a voltage. In 1987, C.I. W. The basic structure is a two-layer element in which a hole transport layer and a light-emitting layer are stacked as reported by Tang et al. (See, for example, Non-Patent Document 1). Thereafter, an element composed of three layers of a hole transport layer, a light emitting layer, and an electron transport layer has been proposed (see, for example, Non-Patent Document 2), and at present, a multilayer stacked element has become mainstream. A charge transport layer such as a hole transport layer or an electron transport layer facilitates charge injection into the light emitting layer and plays a role of confining charges in the light emitting layer. W. Since the report of Tang et al., Various hole transport materials and electron transport materials have been developed for the purpose of lowering the driving voltage of organic EL elements and improving the light emission efficiency.

しかし実用化に際しては、さらなる低電圧駆動、発光効率および耐久性の向上が必要とされている。中でもベンジジン化合物、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル、4,4’−ビス[N−(m−トリル)−N−フェニルアミノ]ビフェニル等を正孔輸送層とする有機EL素子は、駆動電圧が高く、また薄膜安定性およびガラス転移温度に問題があるため、室温、高温何れの条件下でも耐久性が十分とは言えなかった。   However, for practical use, further low voltage driving, light emission efficiency and durability improvement are required. Among them, benzidine compounds such as 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, 4,4′-bis [N- (m-tolyl) -N-phenylamino] biphenyl, etc. The organic EL device having a hole transporting layer has a high driving voltage and has a problem in thin film stability and glass transition temperature, so that it could not be said to have sufficient durability at both room temperature and high temperature.

Appl.Phys.Lett.51.913(1987)Appl. Phys. Lett. 51.913 (1987) Jpn.J.Appl.Phys.27.L269(1988)Jpn. J. et al. Appl. Phys. 27. L269 (1988)

本発明は、上記従来の課題を解決するものであり、薄膜の安定性および正孔輸送性に優れたフルオレン化合物とベンジジン化合物から構成される正孔輸送層を用いた低駆動電圧で発光効率および耐久性の高い有機EL素子を提供するものである。   The present invention solves the above-described conventional problems, and provides a luminous efficiency at a low driving voltage using a hole transport layer composed of a fluorene compound and a benzidine compound excellent in the stability of the thin film and the hole transport property. An organic EL element having high durability is provided.

本発明者らは鋭意検討した結果、異なる2種類の正孔輸送材料を含む正孔輸送層を用いた有機EL素子が、高効率および高耐久性を実現することを見出し、本発明を完成するに至った。即ち、本発明は、一対の電極間に少なくとも正孔輸送層および発光層を有する有機EL素子において、前記正孔輸送層が、一般式(1)   As a result of intensive studies, the present inventors have found that an organic EL element using a hole transport layer containing two different types of hole transport materials achieves high efficiency and high durability, and completes the present invention. It came to. That is, the present invention provides an organic EL device having at least a hole transport layer and a light emitting layer between a pair of electrodes, wherein the hole transport layer is represented by the general formula (1).

Figure 2007142011
(式中、Ar〜Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、またはビフェニル基を表す。)
で示されるフルオレン化合物、および一般式(2)
Figure 2007142011
(In the formula, Ar 1 to Ar 4 each independently represents a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or biphenyl group.)
And a fluorene compound represented by the general formula (2)

Figure 2007142011
(式中、Ar,Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、またはビフェニル基を表す。)
で示されるベンジジン化合物を含んで成ることを特徴とする有機EL素子に関するものである。
Figure 2007142011
(In the formula, Ar 5 and Ar 6 each independently represent a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or biphenyl group.)
It is related with the organic EL element characterized by including the benzidine compound shown by these.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

前記一般式(1)で示されるフルオレン化合物において、Ar〜Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、またはビフェニリル基を表す。 In the fluorene compound represented by the general formula (1), Ar 1 to Ar 4 each independently represents a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or biphenylyl group.

Ar〜Arで示される置換もしくは無置換のフェニル基としては、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−tert−ブチルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、4−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−sec−ブトキシフェニル基、4−tert−ブトキシフェニル基、4−トリフルオロメチルフェニル基、4−フルオロフェニル基等を例示することができる。 Examples of the substituted or unsubstituted phenyl group represented by Ar 1 to Ar 4 include a phenyl group, a 4-methylphenyl group, a 3-methylphenyl group, a 2-methylphenyl group, a 4-ethylphenyl group, and a 3-ethylphenyl group. 2-ethylphenyl group, 4-n-propylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl group, 4-cyclopentylphenyl group, 4-cyclohexylphenyl group, 4 -Methoxyphenyl group, 4-ethoxyphenyl group, 4-isopropoxyphenyl group, 4-n-butoxyphenyl group, 4-sec-butoxyphenyl group, 4-tert-butoxyphenyl group, 4-trifluoromethylphenyl group, A 4-fluorophenyl group etc. can be illustrated.

Ar〜Arで示される置換もしくは無置換の1−ナフチル基としては、1−ナフチル基、2−メチル−1−ナフチル基、2−エチル−1−ナフチル基、2−ブチル−1−ナフチル基、4−メチル−1−ナフチル基、4−エチル−1−ナフチル基、4−ブチル−1−ナフチル基等を例示することができる。 Examples of the substituted or unsubstituted 1-naphthyl group represented by Ar 1 to Ar 4 include 1-naphthyl group, 2-methyl-1-naphthyl group, 2-ethyl-1-naphthyl group, 2-butyl-1-naphthyl group. Examples thereof include a group, 4-methyl-1-naphthyl group, 4-ethyl-1-naphthyl group, 4-butyl-1-naphthyl group and the like.

Ar〜Arで示される置換もしくは無置換の2−ナフチル基としては、2−ナフチル基、6−メトキシ−2−ナフチル基、6−エトキシ−2−ナフチル基、6−n−ブトキシ−2−ナフチル基、6−n−ヘキシルオキシ−2−ナフチル基、7−メトキシ−2−ナフチル基、7−n−ブトキシ−2−ナフチル基等を例示することができる。 Examples of the substituted or unsubstituted 2-naphthyl group represented by Ar 1 to Ar 4 include a 2-naphthyl group, a 6-methoxy-2-naphthyl group, a 6-ethoxy-2-naphthyl group, and 6-n-butoxy-2. Examples include -naphthyl group, 6-n-hexyloxy-2-naphthyl group, 7-methoxy-2-naphthyl group, 7-n-butoxy-2-naphthyl group, and the like.

Ar〜Arで示される置換もしくは無置換のビフェニリル基としては、4−ビフェニリル基、4’−メチル−4−ビフェニリル基、4’−エチル−4−ビフェニリル基、4’−ブチル−4−ビフェニリル基、4’−メトキシ−4−ビフェニリル基、4’−エトキシ−4−ビフェニリル基、4’−ブトキシ−4−ビフェニリル基、3’−フェニル−4−ビフェニリル基、3’−トリル−4−ビフェニリル基、4’−フェニル−4−ビフェニリル基、4’−トリル−4−ビフェニリル基、3−ビフェニリル基、4’−メチル−3−ビフェニリル基、4’−エチル−3−ビフェニリル基、4’−ブチル−3−ビフェニリル基、4’−メトキシ−3−ビフェニリル基、4’−エトキシ−3−ビフェニリル基、4’−ブトキシ−3−ビフェニリル基、4’−フェニル−3−ビフェニリル基、4’−トリル−3−ビフェニリル基等を例示することができる。 Examples of the substituted or unsubstituted biphenylyl group represented by Ar 1 to Ar 4 include a 4-biphenylyl group, a 4′-methyl-4-biphenylyl group, a 4′-ethyl-4-biphenylyl group, and a 4′-butyl-4- Biphenylyl group, 4'-methoxy-4-biphenylyl group, 4'-ethoxy-4-biphenylyl group, 4'-butoxy-4-biphenylyl group, 3'-phenyl-4-biphenylyl group, 3'-tolyl-4- Biphenylyl group, 4′-phenyl-4-biphenylyl group, 4′-tolyl-4-biphenylyl group, 3-biphenylyl group, 4′-methyl-3-biphenylyl group, 4′-ethyl-3-biphenylyl group, 4 ′ -Butyl-3-biphenylyl group, 4'-methoxy-3-biphenylyl group, 4'-ethoxy-3-biphenylyl group, 4'-butoxy-3-biphenylyl group, 4'-phenyl-3 It can be exemplified biphenylyl group, 4'-tolyl-3-biphenylyl group.

前記一般式(1)で示されるフルオレン化合物において、ガラス転移温度が高く、薄膜の安定性に優れ、入手が容易である点から、Ar,Arのうち少なくとも一つは1−ナフチル基、2−ナフチル基、4−ビフェニリル基であり、かつAr,Arのうち少なくとも一つは1−ナフチル基、2−ナフチル基、4−ビフェニリル基であることが好ましい。ただし、Ar,Arが共に4−ビフェニリル基の場合には、十分なガラス転移温度が確保される点から、Ar,Arは置換もしくは無置換のフェニル基であってもよい。 In the fluorene compound represented by the general formula (1), at least one of Ar 1 and Ar 2 is a 1-naphthyl group because of its high glass transition temperature, excellent thin film stability, and easy availability. A 2-naphthyl group and a 4-biphenylyl group, and at least one of Ar 3 and Ar 4 is preferably a 1-naphthyl group, a 2-naphthyl group, or a 4-biphenylyl group. However, when both Ar 1 and Ar 2 are 4-biphenylyl groups, Ar 3 and Ar 4 may be substituted or unsubstituted phenyl groups from the viewpoint of ensuring a sufficient glass transition temperature.

前記一般式(2)で示されるベンジジン化合物において、Ar,Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、またはビフェニリル基を表す。 In the benzidine compound represented by the general formula (2), Ar 5 and Ar 6 each independently represent a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or biphenylyl group.

Ar,Arで示される置換もしくは無置換のフェニル基としては、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−tert−ブチルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、4−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−sec−ブトキシフェニル基、4−tert−ブトキシフェニル基、4−トリフルオロメチルフェニル基、4−フルオロフェニル基等を例示することができる。 Examples of the substituted or unsubstituted phenyl group represented by Ar 5 and Ar 6 include a phenyl group, a 4-methylphenyl group, a 3-methylphenyl group, a 2-methylphenyl group, a 4-ethylphenyl group, and a 3-ethylphenyl group. 2-ethylphenyl group, 4-n-propylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl group, 4-cyclopentylphenyl group, 4-cyclohexylphenyl group, 4 -Methoxyphenyl group, 4-ethoxyphenyl group, 4-isopropoxyphenyl group, 4-n-butoxyphenyl group, 4-sec-butoxyphenyl group, 4-tert-butoxyphenyl group, 4-trifluoromethylphenyl group, A 4-fluorophenyl group etc. can be illustrated.

Ar,Arで示される置換もしくは無置換の1−ナフチル基としては、1−ナフチル基、2−メチル−1−ナフチル基、2−エチル−1−ナフチル基、2−ブチル−1−ナフチル基、4−メチル−1−ナフチル基、4−エチル−1−ナフチル基、4−ブチル−1−ナフチル基等を例示することができる。 Examples of the substituted or unsubstituted 1-naphthyl group represented by Ar 5 or Ar 6 include 1-naphthyl group, 2-methyl-1-naphthyl group, 2-ethyl-1-naphthyl group, and 2-butyl-1-naphthyl group. Examples thereof include a group, 4-methyl-1-naphthyl group, 4-ethyl-1-naphthyl group, 4-butyl-1-naphthyl group and the like.

Ar,Arで示される置換もしくは無置換の2−ナフチル基としては、2−ナフチル基、6−メトキシ−2−ナフチル基、6−エトキシ−2−ナフチル基、6−n−ブトキシ−2−ナフチル基、6−n−ヘキシルオキシ−2−ナフチル基、7−メトキシ−2−ナフチル基、7−n−ブトキシ−2−ナフチル基等を例示することができる。 Examples of the substituted or unsubstituted 2-naphthyl group represented by Ar 5 or Ar 6 include a 2-naphthyl group, a 6-methoxy-2-naphthyl group, a 6-ethoxy-2-naphthyl group, and 6-n-butoxy-2. Examples include -naphthyl group, 6-n-hexyloxy-2-naphthyl group, 7-methoxy-2-naphthyl group, 7-n-butoxy-2-naphthyl group, and the like.

Ar,Arで示される置換もしくは無置換のビフェニリル基としては、4−ビフェニリル基、4’−メチル−4−ビフェニリル基、4’−エチル−4−ビフェニリル基、4’−ブチル−4−ビフェニリル基、4’−メトキシ−4−ビフェニリル基、4’−エトキシ−4−ビフェニリル基、4’−ブトキシ−4−ビフェニリル基、3’−フェニル−4−ビフェニリル基、3’−トリル−4−ビフェニリル基、4’−フェニル−4−ビフェニリル基、4’−トリル−4−ビフェニリル基、3−ビフェニリル基、4’−メチル−3−ビフェニリル基、4’−エチル−3−ビフェニリル基、4’−ブチル−3−ビフェニリル基、4’−メトキシ−3−ビフェニリル基、4’−エトキシ−3−ビフェニリル基、4’−ブトキシ−3−ビフェニリル基、4’−フェニル−3−ビフェニリル基、4’−トリル−3−ビフェニリル基等を例示することができる。 Examples of the substituted or unsubstituted biphenylyl group represented by Ar 5 and Ar 6 include a 4-biphenylyl group, a 4′-methyl-4-biphenylyl group, a 4′-ethyl-4-biphenylyl group, and a 4′-butyl-4- Biphenylyl group, 4'-methoxy-4-biphenylyl group, 4'-ethoxy-4-biphenylyl group, 4'-butoxy-4-biphenylyl group, 3'-phenyl-4-biphenylyl group, 3'-tolyl-4- Biphenylyl group, 4′-phenyl-4-biphenylyl group, 4′-tolyl-4-biphenylyl group, 3-biphenylyl group, 4′-methyl-3-biphenylyl group, 4′-ethyl-3-biphenylyl group, 4 ′ -Butyl-3-biphenylyl group, 4'-methoxy-3-biphenylyl group, 4'-ethoxy-3-biphenylyl group, 4'-butoxy-3-biphenylyl group, 4'-phenyl-3 It can be exemplified biphenylyl group, 4'-tolyl-3-biphenylyl group.

前記一般式(2)で示されるベンジジン化合物としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルが汎用正孔輸送材料として広く使用されており、安価で入手が容易な点から有機EL素子の製造において好ましい。   As the benzidine compound represented by the general formula (2), 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl is widely used as a general-purpose hole transport material, and is inexpensive. It is preferable in the production of an organic EL device because it is easily available.

有機EL素子において、前記一般式(1)で示されるフルオレン化合物、および前記一般式(2)で示されるベンジジン化合物を含んで成る正孔輸送層を形成する場合、前記一般式(1)で示されるフルオレン化合物と前記一般式(2)で示されるベンジジン化合物を順次積層させる方法、前記一般式(1)で示されるフルオレン化合物と前記一般式(2)で示されるベンジジン化合物を共蒸着して混合層を形成させる方法を選ぶことができる。   In the case of forming a hole transport layer comprising the fluorene compound represented by the general formula (1) and the benzidine compound represented by the general formula (2) in the organic EL device, the organic EL element is represented by the general formula (1). The fluorene compound and the benzidine compound represented by the general formula (2) are sequentially laminated, and the fluorene compound represented by the general formula (1) and the benzidine compound represented by the general formula (2) are co-deposited and mixed. The method of forming the layer can be selected.

前記一般式(1)で示されるフルオレン化合物、および前記一般式(2)で示されるベンジジン化合物を含む正孔輸送層の膜厚は特に制限はないが、通常1nm〜1μmであり、好ましくは5〜500nmであり、より好ましくは10〜100nmである。   The thickness of the hole transport layer containing the fluorene compound represented by the general formula (1) and the benzidine compound represented by the general formula (2) is not particularly limited, but is usually 1 nm to 1 μm, preferably 5 It is -500 nm, More preferably, it is 10-100 nm.

また、正孔輸送層として、前記一般式(1)で示されるフルオレン化合物と前記一般式(2)で示されるベンジジン化合物を積層させる場合、イオン化ポテンシャルの小さい前記一般式(1)で示されるフルオレン化合物を陽極側に設け、イオン化ポテンシャルの大きい前記一般式(2)で示されるベンジジン化合物を発光層側に設ける構成が好ましく、該正孔輸送層の形成方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。また、一般式(2)で示されるベンジジン化合物層の膜厚としては、正孔輸送層の膜厚に対して5〜50%が好ましく、5〜25%がより好ましい。   Further, when the fluorene compound represented by the general formula (1) and the benzidine compound represented by the general formula (2) are stacked as the hole transport layer, the fluorene represented by the general formula (1) having a small ionization potential. A configuration in which the compound is provided on the anode side and the benzidine compound represented by the general formula (2) having a large ionization potential is provided on the light emitting layer side is preferable. Examples of a method for forming the hole transport layer include a vacuum deposition method, a spin method, and the like. Known methods such as a coating method and a casting method can be applied. Moreover, as a film thickness of the benzidine compound layer shown by General formula (2), 5-50% is preferable with respect to the film thickness of a positive hole transport layer, and 5-25% is more preferable.

正孔輸送層として、前記一般式(1)で示されるフルオレン化合物と前記一般式(2)で示されるベンジジン化合物を共蒸着して混合層を形成させる場合、正孔輸送層中に一般式(2)で示されるベンジジン化合物を1〜50重量%含有させることが好ましい。   When a mixed layer is formed by co-evaporating the fluorene compound represented by the general formula (1) and the benzidine compound represented by the general formula (2) as the hole transport layer, the general formula ( It is preferable to contain 1 to 50% by weight of the benzidine compound represented by 2).

本発明における正孔輸送層は、本発明の効果を損なわない範囲で、前記一般式(1)および(2)以外の成分を含むことを妨げるものではない。   The hole transport layer in the present invention does not prevent inclusion of components other than the general formulas (1) and (2) as long as the effects of the present invention are not impaired.

本発明における有機EL素子は特に限定するものではないが、基板、陽極、正孔輸送層、発光層、電子輸送層および陰極から構成され、正孔輸送層は前記一般式(1)で示されるフルオレン化合物、および前記一般式(2)で示されるベンジジン化合物を含んで成る層である。また、必要に応じて陽極と正孔輸送層の間に正孔注入層を設けてもよく、電子輸送層と陰極の間に電子注入層を設けてもよい。さらに、新たな層を設けたり、何れかの層を省くこともでき、電子輸送層と電子注入層、発光層と電子注入輸送層を一つの層で兼ねることもできる。   The organic EL device in the present invention is not particularly limited, and is composed of a substrate, an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode, and the hole transport layer is represented by the general formula (1). It is a layer comprising a fluorene compound and a benzidine compound represented by the general formula (2). Further, if necessary, a hole injection layer may be provided between the anode and the hole transport layer, or an electron injection layer may be provided between the electron transport layer and the cathode. Further, a new layer can be provided, or any of the layers can be omitted, and the electron transport layer and the electron injection layer, and the light emitting layer and the electron injection and transport layer can be combined into one layer.

本発明の有機EL素子の基板は、透明で表面が平滑なものであれば使用でき、ガラス、プラスチック等を用いることができる。また、基板の厚さは素子の支持が可能な範囲で任意に選択することができる。   The substrate of the organic EL device of the present invention can be used as long as it is transparent and has a smooth surface, and glass, plastic and the like can be used. Further, the thickness of the substrate can be arbitrarily selected as long as the element can be supported.

本発明の有機EL素子の陽極には、例えば、インジウム錫酸化物(ITO)や酸化錫、金、銀、銅、クロム等を使用することができる。陽極の形成方法としては、例えば、真空蒸着法やスパッタリング法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は10nm〜1μmであり、好ましくは10〜500nmである。   For the anode of the organic EL device of the present invention, for example, indium tin oxide (ITO), tin oxide, gold, silver, copper, chromium, or the like can be used. As a method for forming the anode, for example, a known method such as a vacuum deposition method or a sputtering method can be applied, and the film thickness is not particularly limited, but is usually 10 nm to 1 μm, preferably 10 to 500 nm. is there.

本発明の有機EL素子の正孔注入層には、前記一般式(1)で示されるフルオレン化合物よりイオン化ポテンシャルが小さく、陽極から正孔を注入する機能を有した公知の材料を用いることができ、例えば、フタロシアニン誘導体、トリアリールアミン誘導体、ポリアニリン誘導体、ポリチオフェン誘導体等が挙げられる。正孔注入層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は1nm〜1μmであり、好ましくは1〜100nmである。   For the hole injection layer of the organic EL device of the present invention, a known material having a smaller ionization potential than the fluorene compound represented by the general formula (1) and having a function of injecting holes from the anode can be used. Examples thereof include phthalocyanine derivatives, triarylamine derivatives, polyaniline derivatives, polythiophene derivatives, and the like. As a method for forming the hole injection layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the film thickness is not particularly limited, but is usually 1 nm to 1 μm. Yes, preferably 1 to 100 nm.

本発明の有機EL素子の発光層には、有機EL素子で従来から使用されている公知の発光材料を使用することができ、電子および正孔の注入が可能で、かつ蛍光および/またはりん光を有する物質であれば特に制限はない。発光材料の例としては、オキサジアゾール誘導体、トリアリールアミン誘導体、スチリルベンゼン誘導体、クマリン誘導体、アクリドン誘導体、キナクリドン誘導体、ジケトピロロピロール誘導体、オキサゾン誘導体、ピラン誘導体、縮合芳香族化合物およびその誘導体、8−キノリノール誘導体のアルミニウム錯体、配位子として塩素、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、フェナントロリン、アセチルアセトン等を有するレニウム錯体、イリジウム錯体、白金錯体、ユーロピウム錯体等が挙げられる。発光層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、発光層は発光材料のみで形成されていてもよく、ホスト材料中に発光材料がドープされていてもよい。   For the light-emitting layer of the organic EL device of the present invention, a known light-emitting material conventionally used in organic EL devices can be used, electrons and holes can be injected, and fluorescence and / or phosphorescence can be used. If it is a substance which has this, there will be no restriction | limiting in particular. Examples of luminescent materials include oxadiazole derivatives, triarylamine derivatives, styrylbenzene derivatives, coumarin derivatives, acridone derivatives, quinacridone derivatives, diketopyrrolopyrrole derivatives, oxazone derivatives, pyran derivatives, condensed aromatic compounds and derivatives thereof, Examples include aluminum complexes of 8-quinolinol derivatives and rhenium complexes, iridium complexes, platinum complexes, and europium complexes having chlorine, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, phenanthroline, acetylacetone, and the like as ligands. As a method for forming the light emitting layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the light emitting layer may be formed of only the light emitting material, May be doped with a light emitting material.

本発明の有機EL素子の電子輸送層には、陰極から注入された電子を受け取り、発光層に輸送する機能を有した公知の材料を用いることができ、例えば、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、8−キノリノール誘導体のアルミニウム錯体、有機シラン誘導体等が挙げられる。電子輸送層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は1nm〜1μmであり、好ましくは1〜100nmである。また、電子輸送層に、例えば、アルカリ金属、アルカリ土金属等の還元性ドーパントを含有していてもよい。   For the electron transport layer of the organic EL device of the present invention, a known material having a function of receiving electrons injected from the cathode and transporting them to the light emitting layer can be used. For example, triazole derivatives, oxazole derivatives, oxazis Examples include azole derivatives, imidazole derivatives, aluminum complexes of 8-quinolinol derivatives, and organic silane derivatives. As a method for forming the electron transport layer, for example, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied, and the film thickness is not particularly limited, but is usually 1 nm to 1 μm. The thickness is preferably 1 to 100 nm. In addition, the electron transport layer may contain a reducing dopant such as an alkali metal or an alkaline earth metal.

本発明の有機EL素子の電子注入層としては、電流のリーク防止および電子注入性を向上させる機能を有した公知の材料を用いることができ、例えば、アルカリ金属のハロゲン化物およびアルカリ土金属のハロゲン化物が挙げられる。電子注入層を形成する方法としては、例えば、真空蒸着法、スパッタリング法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は0.01〜100nmであり、好ましくは0.1〜50nmである。   As the electron injection layer of the organic EL device of the present invention, a known material having a function of preventing current leakage and improving electron injection can be used. For example, an alkali metal halide and an alkaline earth metal halogen can be used. A compound. As a method for forming the electron injection layer, for example, a known method such as a vacuum deposition method or a sputtering method can be applied, and the film thickness is not particularly limited, but is usually 0.01 to 100 nm, preferably Is 0.1 to 50 nm.

本発明の有機EL素子の陰極には、例えば、アルカリ金属またはアルカリ土金属等を使用することができ、これらを他の金属と組み合わせて用いることもできる。陰極の形成方法としては、例えば、真空蒸着法やスパッタリング法等の公知の方法を適用することができ、膜厚は特に制限はないが、通常は10nm〜1μmであり、好ましくは10〜500nmである。   For the cathode of the organic EL device of the present invention, for example, alkali metal or alkaline earth metal can be used, and these can also be used in combination with other metals. As a method for forming the cathode, for example, a known method such as a vacuum deposition method or a sputtering method can be applied, and the film thickness is not particularly limited, but is usually 10 nm to 1 μm, preferably 10 to 500 nm. is there.

本発明の有機EL素子によれば、正孔注入層と発光層の間に少なくとも前記一般式(1)で示されるフルオレン化合物、および前記一般式(2)で示されるベンジジン化合物を含んで成る正孔輸送層を用いることにより、低駆動電圧で発光効率が高く、耐久性にも優れた有機EL素子を提供することが可能となる。   According to the organic EL device of the present invention, a positive electrode comprising at least a fluorene compound represented by the general formula (1) and a benzidine compound represented by the general formula (2) between the hole injection layer and the light emitting layer. By using the hole transport layer, it is possible to provide an organic EL element having a high driving efficiency with a low driving voltage and excellent durability.

以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by these Examples.

なお、有機EL素子の駆動電圧および発光輝度測定は、TOPCON社製 輝度計LUMINANCE METER(BM−9)を用いて行った。   In addition, the drive voltage and light emission luminance measurement of the organic EL element were performed using a luminance meter LUMINANCE METER (BM-9) manufactured by TOPCON.

実施例1
厚さ200nmのITO透明電極(陽極)を積層したガラス基板をアセトンおよび純水による超音波洗浄、イソプロピルアルコールによる沸騰洗浄を行なった。さらに紫外線オゾン洗浄を行ない、真空蒸着装置へ設置後、1×10−4Paになるまで、真空ポンプにて排気した。まず、ITO透明電極上に銅フタロシアニンを蒸着速度0.05nm/秒で蒸着し、25nmの正孔注入層とした。引き続き、2,7−ビス[N−(1−ナフチル)−N−フェニルアミノ]−9,9−ビス(1,1’−ビフェニル−4−イル)フルオレンを蒸着速度0.08nm/秒で40nm蒸着し、さらに4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを蒸着速度0.08nm/秒で5nm蒸着して正孔輸送層とした。引き続いてトリス(8−キノリノラート)アルミニウムを蒸着速度0.1nm/秒で60nm蒸着して発光層とした後、電子注入層として沸化リチウムを蒸着速度0.01nm/秒で0.5nm蒸着、さらに陰極としてアルミニウムを蒸着速度0.25nm/秒で100nm蒸着して有機EL素子を作製した。
Example 1
The glass substrate on which the ITO transparent electrode (anode) having a thickness of 200 nm was laminated was subjected to ultrasonic cleaning with acetone and pure water and boiling cleaning with isopropyl alcohol. Furthermore, ultraviolet ozone cleaning was performed, and after evacuation with a vacuum pump until it became 1 × 10 −4 Pa after installation in a vacuum deposition apparatus. First, copper phthalocyanine was deposited on the ITO transparent electrode at a deposition rate of 0.05 nm / second to form a 25 nm hole injection layer. Subsequently, 2,7-bis [N- (1-naphthyl) -N-phenylamino] -9,9-bis (1,1′-biphenyl-4-yl) fluorene was deposited at a deposition rate of 0.08 nm / sec to 40 nm. Further, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl was deposited at a deposition rate of 0.08 nm / second to 5 nm to form a hole transport layer. Subsequently, tris (8-quinolinolato) aluminum was vapor-deposited at a deposition rate of 0.1 nm / second to 60 nm to form a light-emitting layer, and then lithium fluoride was deposited as an electron injection layer at a deposition rate of 0.01 nm / second to 0.5 nm. Aluminum was deposited as a cathode at a thickness of 100 nm at a deposition rate of 0.25 nm / second to produce an organic EL device.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は4.8V、発光輝度は380cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は10%以内であった。 When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 4.8 V and the light emission luminance was 380 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 under a nitrogen atmosphere, the luminance reduction rate at 500 hours was within 10%.

実施例2
2,7−ビス[N−(1−ナフチル)−N−フェニルアミノ]−9,9−ビス(1,1’−ビフェニル−4−イル)フルオレンの代わりに2,7−ビス[N,N−ビス(1,1’−ビフェニル−4−イル)アミノ]−9,9−ジフェニルフルオレンを蒸着速度0.08nm/秒で40nm蒸着した以外は、実施例1と同様の方法で有機EL素子を作製した。
Example 2
2,7-bis [N, N instead of 2,7-bis [N- (1-naphthyl) -N-phenylamino] -9,9-bis (1,1′-biphenyl-4-yl) fluorene -Bis (1,1'-biphenyl-4-yl) amino] -9,9-diphenylfluorene was deposited in an organic EL device in the same manner as in Example 1 except that 40 nm was deposited at a deposition rate of 0.08 nm / sec. Produced.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は4.9V、発光輝度は370cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は10%以内であった。 When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 4.9 V and the light emission luminance was 370 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 under a nitrogen atmosphere, the luminance reduction rate at 500 hours was within 10%.

実施例3
4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルの代わりに4,4’−ビス[N−(m−トリル)−N−フェニルアミノ]ビフェニルを蒸着速度0.08nm/秒で5nm蒸着した以外は、実施例1と同様の方法で有機EL素子を作製した。
Example 3
Instead of 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, 4,4′-bis [N- (m-tolyl) -N-phenylamino] biphenyl was deposited at a deposition rate of 0. An organic EL device was produced in the same manner as in Example 1 except that 5 nm was deposited at 08 nm / second.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は4.9V、発光輝度は383cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は10%以内であった。 When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 4.9 V and the light emission luminance was 383 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 under a nitrogen atmosphere, the luminance reduction rate at 500 hours was within 10%.

実施例4
4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルの代わりに4,4’−ビス[N−(m−トリル)−N−フェニルアミノ]ビフェニルを蒸着速度0.08nm/秒で5nm蒸着した以外は、実施例2と同様の方法で有機EL素子を作製した。
Example 4
Instead of 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, 4,4′-bis [N- (m-tolyl) -N-phenylamino] biphenyl was deposited at a deposition rate of 0. An organic EL device was produced in the same manner as in Example 2 except that 5 nm was deposited at 08 nm / second.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は4.8V、発光輝度は368cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は10%以内であった。 When the drive voltage and the light emission luminance when a current of 7.5 mA / cm 2 was applied to the manufactured element were measured, the drive voltage was 4.8 V and the light emission luminance was 368 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 under a nitrogen atmosphere, the luminance reduction rate at 500 hours was within 10%.

比較例1
正孔輸送層として4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを蒸着速度0.08nm/秒で45nm蒸着した以外は、実施例1と同様の方法で有機EL素子を作製した。
Comparative Example 1
The organic layer was formed in the same manner as in Example 1 except that 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl was deposited as a hole transporting layer at a deposition rate of 0.08 nm / sec. An EL element was produced.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は5.3V、発光輝度は254cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は30%であった。 When the drive voltage and the light emission luminance were measured when a current of 7.5 mA / cm 2 was applied to the manufactured element, the drive voltage was 5.3 V and the light emission luminance was 254 cd / m 2 . In addition, when continuously driven at 20 mA / cm 2 in a nitrogen atmosphere, the luminance reduction rate at 500 hours was 30%.

比較例2
正孔輸送層として4,4’−ビス[N−(m−トリル)−N−フェニルアミノ]ビフェニルを蒸着速度0.08nm/秒で45nm蒸着した以外は、実施例1と同様の方法で有機EL素子を作製した。
Comparative Example 2
The organic layer was formed in the same manner as in Example 1 except that 4,4′-bis [N- (m-tolyl) -N-phenylamino] biphenyl was deposited as a hole transport layer at 45 nm with a deposition rate of 0.08 nm / sec. An EL element was produced.

作製した素子に7.5mA/cmの電流を印加した場合の駆動電圧、発光輝度を測定したところ、駆動電圧は5.2V、発光輝度は248cd/mであった。また、窒素雰囲気下20mA/cmで連続駆動したところ、500時間での輝度減少率は50%であった。
When the drive voltage and the light emission luminance were measured when a current of 7.5 mA / cm 2 was applied to the manufactured element, the drive voltage was 5.2 V and the light emission luminance was 248 cd / m 2 . Further, when continuously driven at 20 mA / cm 2 in a nitrogen atmosphere, the luminance reduction rate in 500 hours was 50%.

Claims (6)

一対の電極間に少なくとも正孔輸送層および発光層を有する有機EL素子において、前記正孔輸送層が、一般式(1)
Figure 2007142011
(式中、Ar〜Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、またはビフェニル基を表す。)
で示されるフルオレン化合物、および一般式(2)
Figure 2007142011
(式中、Ar,Arは各々独立して置換もしくは無置換のフェニル基、1−ナフチル基、2−ナフチル基、またはビフェニル基を表す。)
で示されるベンジジン化合物を含んで成ることを特徴とする有機EL素子。
In the organic EL device having at least a hole transport layer and a light emitting layer between a pair of electrodes, the hole transport layer has the general formula (1).
Figure 2007142011
(In the formula, Ar 1 to Ar 4 each independently represents a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or biphenyl group.)
And a fluorene compound represented by the general formula (2)
Figure 2007142011
(In the formula, Ar 5 and Ar 6 each independently represent a substituted or unsubstituted phenyl group, 1-naphthyl group, 2-naphthyl group, or biphenyl group.)
An organic EL device comprising a benzidine compound represented by the formula:
正孔輸送層が、少なくとも一般式(1)で示されるフルオレン化合物層と一般式(2)で示されるベンジジン化合物層の2層から構成され、一般式(1)で示されるフルオレン化合物層を陽極側に設け、一般式(2)で示されるベンジジン化合物層を発光層側に設けることを特徴とする請求項1に記載の有機EL素子。 The hole transport layer is composed of at least two layers of a fluorene compound layer represented by the general formula (1) and a benzidine compound layer represented by the general formula (2), and the fluorene compound layer represented by the general formula (1) is an anode. The organic EL element according to claim 1, wherein the organic EL element is provided on the light emitting layer side and provided on the light emitting layer side. 一般式(2)で示されるベンジジン化合物層の膜厚が、正孔輸送層の膜厚に対して5〜50%であることを特徴とする請求項2に記載の有機EL素子。 The organic EL element according to claim 2, wherein the film thickness of the benzidine compound layer represented by the general formula (2) is 5 to 50% with respect to the film thickness of the hole transport layer. 正孔輸送層が、少なくとも一般式(1)で示されるフルオレン化合物と一般式(2)で示されるベンジジン化合物を共蒸着した混合層を含んで成ることを特徴とする請求項1に記載の有機EL素子。 2. The organic material according to claim 1, wherein the hole transport layer comprises a mixed layer in which at least a fluorene compound represented by the general formula (1) and a benzidine compound represented by the general formula (2) are co-deposited. EL element. 正孔輸送層が、一般式(2)で示されるベンジジン化合物を1〜50重量%含有することを特徴とする請求項4に記載の有機EL素子。 The organic EL device according to claim 4, wherein the hole transport layer contains 1 to 50% by weight of a benzidine compound represented by the general formula (2). 一般式(2)で示されるベンジジン化合物が、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルであることを特徴とする請求項1乃至5に記載の有機EL素子。
6. The organic EL according to claim 1, wherein the benzidine compound represented by the general formula (2) is 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl. element.
JP2005331327A 2005-11-16 2005-11-16 Organic electroluminescence element using fluorene compound and benzidine compound Pending JP2007142011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331327A JP2007142011A (en) 2005-11-16 2005-11-16 Organic electroluminescence element using fluorene compound and benzidine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331327A JP2007142011A (en) 2005-11-16 2005-11-16 Organic electroluminescence element using fluorene compound and benzidine compound

Publications (1)

Publication Number Publication Date
JP2007142011A true JP2007142011A (en) 2007-06-07

Family

ID=38204553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331327A Pending JP2007142011A (en) 2005-11-16 2005-11-16 Organic electroluminescence element using fluorene compound and benzidine compound

Country Status (1)

Country Link
JP (1) JP2007142011A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137795A (en) * 2005-11-16 2007-06-07 Tosoh Corp Fluorene compound and organic el element by using the same
WO2009041635A1 (en) * 2007-09-28 2009-04-02 Idemitsu Kosan Co., Ltd. Organic el device
US8835911B2 (en) 2011-03-04 2014-09-16 Seiko Epson Corporation Light emitting element, light emitting device, display, and electronic device
US8916854B2 (en) 2011-03-04 2014-12-23 Seiko Epson Corporation Light-emitting element, light-emitting device, display device, and electronic apparatus
US8999524B2 (en) 2010-04-30 2015-04-07 Samsung Display Co., Ltd. Organic light-emitting device
WO2023017856A1 (en) * 2021-08-13 2023-02-16 出光興産株式会社 Mixed powder, method for manufacturing organic electroluminescent element that uses mixed powder, and vapor deposition composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137795A (en) * 2005-11-16 2007-06-07 Tosoh Corp Fluorene compound and organic el element by using the same
WO2009041635A1 (en) * 2007-09-28 2009-04-02 Idemitsu Kosan Co., Ltd. Organic el device
JPWO2009041635A1 (en) * 2007-09-28 2011-01-27 出光興産株式会社 Organic EL device
US8106391B2 (en) 2007-09-28 2012-01-31 Idemitsu Kosan Co., Ltd. Organic EL device
KR101332953B1 (en) 2007-09-28 2013-11-25 이데미쓰 고산 가부시키가이샤 Organic el device
US8999524B2 (en) 2010-04-30 2015-04-07 Samsung Display Co., Ltd. Organic light-emitting device
US8835911B2 (en) 2011-03-04 2014-09-16 Seiko Epson Corporation Light emitting element, light emitting device, display, and electronic device
US8916854B2 (en) 2011-03-04 2014-12-23 Seiko Epson Corporation Light-emitting element, light-emitting device, display device, and electronic apparatus
WO2023017856A1 (en) * 2021-08-13 2023-02-16 出光興産株式会社 Mixed powder, method for manufacturing organic electroluminescent element that uses mixed powder, and vapor deposition composition

Similar Documents

Publication Publication Date Title
US7563519B2 (en) OLEDs doped with phosphorescent compounds
JP4915913B2 (en) Organic electroluminescence device
JP4011325B2 (en) Organic electroluminescence device
JP2001284056A (en) Organic electroluminescent element
JP2007318063A (en) Organic light-emitting device
JP2006172763A (en) Organic el element
JP2008053556A (en) Organic electroluminescent element
JP2002038140A (en) Organic luminescent layer and electroluminescent device
JP2002100482A (en) Organic electroluminescence element
JP2006032883A (en) Light emitting element
JP2011171269A (en) Organic electric field light-emitting element
JP3904793B2 (en) Organic electroluminescence device
JP2007142011A (en) Organic electroluminescence element using fluorene compound and benzidine compound
JP2010027761A (en) Light emitting element
JP5277588B2 (en) Organic EL device
JP3951425B2 (en) Organic electroluminescence device
KR100826439B1 (en) Organic electroluminescent devices
KR101000355B1 (en) Organic electroluminescence element
TW201114320A (en) Organic electroluminescent element
JP4915651B2 (en) Organic electroluminescence device
JP2006120811A (en) Light-emitting device and display device
JP2007200662A (en) Manufacturing method of organic led element
JP2008053558A (en) Organic electroluminescent element
JP6770900B2 (en) Organic electroluminescence element
JP5143245B2 (en) Organic light emitting device