JP5103618B2 - Inhibitor of abnormal vasoconstriction - Google Patents

Inhibitor of abnormal vasoconstriction Download PDF

Info

Publication number
JP5103618B2
JP5103618B2 JP2007057111A JP2007057111A JP5103618B2 JP 5103618 B2 JP5103618 B2 JP 5103618B2 JP 2007057111 A JP2007057111 A JP 2007057111A JP 2007057111 A JP2007057111 A JP 2007057111A JP 5103618 B2 JP5103618 B2 JP 5103618B2
Authority
JP
Japan
Prior art keywords
contraction
abnormal
inhibitor
vascular
vasoconstriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007057111A
Other languages
Japanese (ja)
Other versions
JP2008214309A (en
Inventor
誠 小林
博子 岸
幹夫 中島
祥範 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority to JP2007057111A priority Critical patent/JP5103618B2/en
Publication of JP2008214309A publication Critical patent/JP2008214309A/en
Application granted granted Critical
Publication of JP5103618B2 publication Critical patent/JP5103618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-soluble drug composition specifically inhibiting calcium-independent abnormal vasoconstriction and can be used as an injection. <P>SOLUTION: The inhibitor of abnormal vasoconstriction comprises N-ä2-[4-(2,2-dimethylpropyonyloxy)phenylsulfonylamino]benzoyl}aminoacetate or a pharmacologically acceptable derivative thereof as an active ingredient. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、血管の異常収縮に起因する疾患の治療剤に関し、より詳しくは、カルシウム非依存性の血管異常収縮を抑制可能な化合物を有効成分とする血管上収縮の抑制剤に関する。   The present invention relates to a therapeutic agent for a disease caused by abnormal blood vessel contraction, and more particularly, to an inhibitor of epivascular contraction comprising a compound capable of suppressing calcium-independent abnormal blood vessel contraction as an active ingredient.

本明細書において、以下の用語は次の様に定義される。血管の異常収縮とは、血管平滑筋の異常収縮(攣縮ともいう)、特に細胞質内カルシウムイオン(Ca2+)濃度の増加に依存しない、すなわちCa2+非依存性の収縮を指す。メンブレンラフト(membrane raft)とは、血管表面に形成されるコレステロールおよびスフィンゴ脂質に富んだ細胞膜上の構造を指し、血管病のシグナル伝達の場として重要であり、コレステロールの除去により消失するという特徴を有す。 In this specification, the following terms are defined as follows. Abnormal contraction of blood vessels refers to abnormal contraction (also referred to as spasm) of vascular smooth muscle, in particular, contraction independent of an increase in cytoplasmic calcium ion (Ca 2+ ) concentration, that is, Ca 2+ independent. Membrane raft refers to the structure on the cell membrane that is rich in cholesterol and sphingolipids formed on the surface of blood vessels, and is important as a signal transduction field for vascular disease, and disappears by removing cholesterol. Yes.

血管の異常収縮とそれに伴う突発的な血行障害は、脳梗塞、狭心症、心筋梗塞などを引き起こし、これらの疾患による突然死の死亡者数が毎年6万人を数えるなど、社会的にも重大な問題となっている。特に、くも膜下出血後に高頻度で起こる「脳血管スパズム」は、脳の血管の大部分が攣縮して広範囲にわたり脳が梗塞状態に陥る疾患であり、くも膜下出血の手術が成功したにもかかわらず患者さんの命が救えないといった、深刻な事態を引き起こしている。   Abnormal contraction of blood vessels and accompanying sudden blood circulation disorders cause cerebral infarction, angina pectoris, myocardial infarction, and so on. It has become a serious problem. In particular, “cerebral vascular spasm” that occurs frequently after subarachnoid hemorrhage is a disease in which most of the blood vessels in the brain contract and widen the infarcted state of the brain, despite the success of subarachnoid hemorrhage surgery. It is causing a serious situation where the patient's life cannot be saved.

血管の収縮にはCa2+に依存した「正常収縮」と、上記定義に示す「異常収縮」が知られており、正常収縮についてはその機構を含めかなりの部分が明らかになってきている。しかるに異常収縮については、その機構や対処方法がほとんどわかっていない。そのため、脳梗塞、狭心症、心筋梗塞などのうち血管が異常収縮することにより生じるものに対しては、従来、機構の明らかな正常収縮を抑制する手段、すなわちCa2+チャンネルの阻害による治療として、カルシウム拮抗薬等が実際の医療現場では用いられている(特許文献1,2)。
しかしながら、上記疾患の真の原因は血管の異常収縮にあり、正常収縮を抑制するという対処法は結果として、血管の収縮現象全体から見れば収縮量を減ずるという点で応急的効果は期待しうるものの、本質的な治療法とは言えないのが現状であった。そこで、血管の異常収縮自体を特異的に抑制可能な治療方法が切望されていた。
特開2004−43374 カルシウムチャンネル阻害剤 特開平9−176005 オメガ−3系のポリ不飽和脂肪酸を併用するL−カルニチンまたはアルカノイル L−カルニチン含有医薬組成物 特開2001−261556 平滑筋異常収縮の抑制剤 月刊バイオインダストリー2003年11月号「エイコサペンタエン酸(EPA)による血管攣縮の予防効果」 Nakao F,Kobayashi S.et al.2002.Circ.Res.91:953−960. Shirao S,Kobayashi S.et al.2002.Circ.Res.91:112−119. Somlyo A.V.2002.Circ.Res.91:83−84(Editorials).
As for the contraction of blood vessels, “normal contraction” depending on Ca 2+ and “abnormal contraction” shown in the above definition are known, and a considerable part of the normal contraction including its mechanism has been clarified. However, little is known about the mechanism and countermeasures for abnormal contraction. Therefore, in the case of cerebral infarction, angina pectoris, myocardial infarction, etc. caused by abnormal contraction of blood vessels, conventionally, as a means for suppressing the normal contraction of the mechanism, that is, treatment by inhibiting Ca 2+ channel In addition, calcium antagonists and the like are used in actual medical settings (Patent Documents 1 and 2).
However, the true cause of the above diseases is abnormal blood vessel contraction, and as a result, a countermeasure that suppresses normal contraction can be expected to have an immediate effect in terms of reducing the amount of contraction in terms of the overall blood vessel contraction phenomenon. However, the current situation is not an essential treatment. Therefore, a treatment method capable of specifically suppressing abnormal blood vessel contraction itself has been eagerly desired.
Patent application title: Calcium channel inhibitor JP-A-9-176005 L-carnitine or alkanoyl L-carnitine-containing pharmaceutical composition in combination with omega-3 polyunsaturated fatty acid Suppressor of abnormal smooth muscle contraction Monthly Bioindustry November 2003 issue “Eicosapentaenoic acid (EPA) prevents vasospasm” Nakao F, Kobayashi S .; et al. 2002. Circ. Res. 91: 953-960. Shirao S, Kobayashi S. et al. et al. 2002. Circ. Res. 91: 112-119. Somlyo A. V. 2002. Circ. Res. 91: 83-84 (Editorials).

上記の現状に鑑み、本発明は、血管の異常収縮を特異的に抑制可能であり、かつ、即効性を必要とする症状に対処するための手段として、注射薬として利用可能な水溶性の薬剤組成物を提供することを目的とする。   In view of the above-mentioned present situation, the present invention is a water-soluble drug that can specifically inhibit abnormal contraction of blood vessels and can be used as an injection as a means for dealing with symptoms that require immediate effect. An object is to provide a composition.

上記課題の解決のため、本発明者らは哺乳動物の血管収縮モデルやマウスの血管攣縮モデルなどを用いて解析を進め、血管攣縮にはスフィンゴ脂質の一種であるスフィンゴシルフォスフォリルコリン(sphingosylphosphorylcholine、以下SPCと略す)が重要な役割を持つこと、SPCはRho kinaseの活性化を介してCa2+非依存的に血管平滑筋を収縮させること、更にはSPCによりFynという別のタンパク質が活性化され、これが血管平滑筋細胞膜壁上のメンブレンラフトと呼ばれる構造に結合することがRho kinaseの活性化に重要な役割を果たしていることを明らかにした。これらの事実は、SPCの刺激による一連のRho kinase活性化過程をどこかで阻害することができれば、血管の正常な収縮を阻害することなく血管攣縮を治療できる可能性を示唆した(非特許文献1−4)。この予測の基に種々の化合物について検討を重ね、これまでに魚類などに含まれる高度不飽和脂肪酸の一種であるエイコサペンタエン酸(EPA)を経口投与することで実際に血管の異常収縮を予防できうることを見いだしている(特許文献3)。しかしながらEPAは脂肪酸であり、注射薬としては不向きであることから、より即効性が高く、かつ注射薬として利用可能な化合物を探索し、下記化学式(I)で示される化合物、すなわちN−{2−[4−(2,2−dimethylpropyonyloxy)phenylsulfonylamino]benzoyl}aminoacetate(薬品名:シベレスタット)に、高い血管異常収縮の抑制効果が存在することを見出し、本発明を完成させた。

Figure 0005103618
In order to solve the above problems, the present inventors proceeded with analysis using a vasoconstriction model of mammals, a vasospasm model of mice, etc., and for vasospasm, sphingosylphosphorylcholine (sphingosylphosphorylcholine), which is a kind of sphingolipid, (Hereinafter abbreviated as SPC) plays an important role, SPC contracts vascular smooth muscles independently of Ca 2+ through activation of Rho kinase, and another protein called Fyn is activated by SPC. Thus, it has been clarified that binding to a structure called membrane raft on the vascular smooth muscle cell membrane wall plays an important role in the activation of Rho kinase. These facts suggest the possibility that vasospasm can be treated without inhibiting the normal contraction of blood vessels if a series of Rho kinase activation processes by SPC stimulation can be inhibited somewhere (non-patent literature). 1-4). Based on this prediction, various compounds have been studied, and by the oral administration of eicosapentaenoic acid (EPA), one of the highly unsaturated fatty acids contained in fish, etc., abnormal blood vessel contraction can actually be prevented. I have found out (Patent Document 3). However, since EPA is a fatty acid and is unsuitable as an injection, it searches for a compound having a higher immediate effect and available as an injection, and a compound represented by the following chemical formula (I), that is, N- {2 It was found that [4- (2,2-dimethylpropyonyxy) phenylsulfonylamino] benzoyl} aminoacetate (drug name: cyberestat) has a high inhibitory effect on abnormal vascular contraction, and the present invention was completed.
Figure 0005103618

シベレスタット自体は公知の化合物であり、これまでに肺気腫や慢性関節リウマチの治療剤として既に利用されてきている。その作用効果としては体内の炎症性反応に作用するエラスターゼ(好中球エラスターゼ)を特異的に阻害することによって、エラスターゼが過剰に作用して生じる疾患、例えば肺気腫やリウマチ性関節炎、アテローム性動脈硬化などを治療するというものである。本発明者らは、エラスターゼ阻害というこれまでに知られている効果とは全く異なる視点から血管の異常収縮の治療薬として本物質を検討し、既に安全性などが確認されているシベレスタットのナトリウム塩その他の可溶性塩類が、エラスターゼの特異的な阻害効果という従来知られた効果とは根本的に異なる作用効果を有しておりかつ注射薬として利用可能であるという事実を見いだしたものである。   Cibelestat itself is a known compound and has already been used as a therapeutic agent for emphysema and rheumatoid arthritis. Its effect is to specifically inhibit elastase (neutrophil elastase), which acts on the inflammatory response in the body, thereby causing diseases caused by excessive action of elastase, such as emphysema, rheumatoid arthritis, atherosclerosis Is to treat. The present inventors examined this substance as a therapeutic agent for abnormal contraction of blood vessels from a viewpoint completely different from the effect known so far of elastase inhibition, and sodium of sivelestat that has already been confirmed to be safe. The present inventors have found the fact that salts and other soluble salts have a fundamentally different effect from the conventionally known effect of elastase-specific inhibitory effect and can be used as an injection.

本発明の第1の態様は、上記化学式(1)で示される化合物または、そのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩のうち少なくとも1種より選択される誘導体を有効成分とする、血管異常収縮の抑制剤を提供する。 A first aspect of the invention is a compound represented by the chemical formula (1), or, as an active ingredient a derivative selected from at least one of its alkali metal salts, alkaline earth metal salts, ammonium salts, An inhibitor of abnormal blood vessel contraction is provided.

本発明の第の態様は、誘導体がナトリウム塩である、第の態様に記載の血管異常収縮抑制剤を提供する。 According to a second aspect of the present invention, there is provided the abnormal blood vessel contraction inhibitor according to the first aspect, wherein the derivative is a sodium salt.

本発明の第の態様は、血管異常収縮が、カルシウム非依存性の異常収縮であることを特徴とする、第1または第2の態様に記載の血管異常収縮抑制剤を提供する。 According to a third aspect of the present invention, there is provided the vascular abnormal contraction inhibitor according to the first or second aspect, wherein the vascular abnormal contraction is calcium-independent abnormal contraction.

本発明の第の態様は、投与形態が注射薬である、第1から第の態様のうちいずれか1つに記載の血管異常収縮抑制剤を提供する。 According to a fourth aspect of the present invention, there is provided the vasoconstriction inhibitor according to any one of the first to third aspects, wherein the administration form is an injection.

本発明の提供する血管異常収縮の抑制剤を利用することにより、これまで全く治療法が確立されていなかったカルシウム非依存性の血管異常収縮に、即効性のある注射可能な治療用薬剤を提供することが可能となる。本発明の提供する化合物(シベレスタット)は、肺炎の治療薬としてこれまでに安全性などが確認されており、きわめて速やかに新規な治療薬として利用可能であると期待される。   By using an inhibitor of abnormal vascular contraction provided by the present invention, an injectable therapeutic drug that is immediately effective for calcium-independent vascular abnormal contraction for which no therapeutic method has been established at all has been provided. It becomes possible to do. The compound (cyberestat) provided by the present invention has been confirmed to be safe as a therapeutic agent for pneumonia, and is expected to be usable as a new therapeutic agent very quickly.

以下に本発明を実施するための最良の形態を述べる。本発明の第1の態様は、前記化学式(I)に示される化合物、すなわちシベレスタットまたはその薬理学上許容可能な誘導体を有効成分とする、血管異常収縮の抑制剤を提供する。薬理学上許容可能な誘導体とは、好ましくはアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩のから選択される少なくとも1種の誘導体であって、より好ましくはナトリウム塩である。また水和物であっても良い。本明細書においては、前記式(I)に示される化合物及びその薬理学上許容可能な誘導体を総称して、シベレスタットとも称する。本発明者らはこれまでに、血管の異常収縮に対しては魚類などに含まれる不飽和脂肪酸の一種エイコサペンタエン酸(EPA)が特異的な効果を有することを世界に先駆けて発見しているが、その解析の過程でEPAの特定の立体構造が血管異常収縮に対しては必要であることを見いだしており、脂肪酸であるため注射薬としては利用できないEPAに代わる候補物質をその立体構造に注目して探索し、その過程でシベレスタットにたどり着いたものである。図1に示すとおり、EPAとシベレスタットは全く異なる構造式を有しているが、本発明者らがその構造について分子力学的最適化を行ったところ、図2で示すように末端が炭化水素リッチなU字型構造をとることが予想され、この予想の下、下記実施例に示すようにシベレスタットを血管異常収縮モデルに適用したところ、血管平滑筋のカルシウム非依存性収縮を特異的に阻害することが明らかとなったのである。   The best mode for carrying out the present invention will be described below. The first aspect of the present invention provides an inhibitor of abnormal vascular contraction comprising as an active ingredient a compound represented by the above-mentioned chemical formula (I), that is, civerestat or a pharmacologically acceptable derivative thereof. The pharmacologically acceptable derivative is preferably at least one derivative selected from alkali metal salts, alkaline earth metal salts, and ammonium salts, and more preferably a sodium salt. Hydrates may also be used. In the present specification, the compounds represented by the formula (I) and pharmacologically acceptable derivatives thereof are collectively referred to as cyberestat. The present inventors have pioneered the world that eicosapentaenoic acid (EPA), a kind of unsaturated fatty acid contained in fish, has a specific effect on abnormal blood vessel contraction. However, in the process of its analysis, it has been found that a specific three-dimensional structure of EPA is necessary for abnormal vasoconstriction. We searched with attention and arrived at Cibelestat in the process. As shown in FIG. 1, EPA and cibelestat have completely different structural formulas, but when the present inventors performed molecular mechanical optimization on the structure, as shown in FIG. A rich U-shaped structure is expected, and under this expectation, as shown in the examples below, when Cibelestat was applied to an abnormal vasoconstriction model, the calcium-independent contraction of vascular smooth muscle was specifically detected. It became clear that it inhibited.

したがって本発明の提供する血管異常収縮の抑制剤は、好ましくは通常の血管収縮として知られる血管収縮では無い、いわゆる「カルシウム非依存性の血管収縮」、すなわち体内においてはGタンパク質結合型アゴニスト、例えばトロンボキサンや、SPCの刺激に起因する血管異常収縮、より好ましくはSPCの刺激により血管細胞膜上のメンブレンラフトにおいてRhoキナーゼ−Fynタンパク質の活性化によって引き起こされる血管異常収縮に適用可能である。本発明者らがこれまでに明らかにしたEPAによる血管異常収縮の抑制は、EPAがメンブレンラフトに存在するRhoキナーゼ−Fynタンパク質シグナル伝達系の活性化を抑制するというものである。シベレスタットもEPAと同様、図2に示すように末端が炭化水素リッチな立体構造を取るため、おそらくEPAと同様にメンブレンラフトに入り込み、異常収縮を抑制するのだと考えられる。   Therefore, the inhibitor of abnormal vasoconstriction provided by the present invention is preferably a so-called “calcium-independent vasoconstriction” which is not a vasoconstriction known as normal vasoconstriction, that is, a G protein-binding agonist in the body, for example, It is applicable to abnormal vasoconstriction caused by thromboxane or SPC stimulation, more preferably vasoconstriction caused by activation of Rho kinase-Fyn protein in a membrane raft on a vascular cell membrane by SPC stimulation. The suppression of abnormal vasoconstriction by EPA, which has been clarified so far by the present inventors, is that EPA suppresses the activation of the Rho kinase-Fyn protein signaling system present in the membrane raft. As with EPA, Siberestat has a three-dimensional structure rich in hydrocarbons as shown in FIG. 2, and thus probably enters membrane rafts like EPA and suppresses abnormal contraction.

本発明の提供する血管異常収縮の抑制剤は、血管の異常収縮に起因する種々の疾患に対して治療薬として利用可能である。その投与形態などは患者さんの状態によって適宜変更すれば良く、本発明を限定するものではないが、例えば注射薬や経口薬の形で投与するのが良く、特に重篤な症状を示す場合には経口的な投与が難しいため、即効性のある注射薬として投与するのが好適である。シベレスタットの濃度、抑制剤に含まれる他の補助成分などについては疾患の状態や種類によって創薬の目的に応じ適宜使い分ければ良く、本発明を限定するものではないが、例えばシベレスタットの有効濃度として、下記実施例で示すとおり0.1mM−1mMの範囲内、より好ましくは0.2−0.3mMの範囲内の濃度が有効である。以下に本発明の実施例を示すが、本発明は実施例にのみ限定されるものではない。   The inhibitor of abnormal vascular contraction provided by the present invention can be used as a therapeutic agent for various diseases caused by abnormal contraction of blood vessels. The dosage form may be appropriately changed depending on the patient's condition and is not intended to limit the present invention. For example, it may be administered in the form of an injection or oral medicine, particularly when severe symptoms are exhibited. Is difficult to administer orally, so it is preferable to administer it as an immediate injection. The concentration of sivelestat and other auxiliary components contained in the inhibitor may be properly used according to the purpose of drug discovery depending on the state and type of the disease, and the present invention is not limited. As the concentration, a concentration within the range of 0.1 mM to 1 mM, more preferably within the range of 0.2 to 0.3 mM is effective as shown in the following examples. Examples of the present invention are shown below, but the present invention is not limited to the examples.

(ブタ冠動脈標本の調整)本実施例の動物実験は全て、関係法令・規則その他に従って行われた。食肉処理場にて処理されたブタの心臓より、以下の方法で冠動脈を摘出した。冠動脈の起始部から2−3cmの左前下行枝を摘出し、すぐに冷却したクレブス液(123mM NaCl、4.7mM KCl、1.25mM CaCl、1.2mM MgCl、12mM KHPO、15.5mM NaHCO、11.5mM グルコース、95%O+5%COでバブリング)中に浸して保存した。血管周囲の結合組織と血管外膜を丁寧に取り除いた後、1×4mmの条片を作成した。血管内皮細胞を除去した実験では、条片の内皮面を綿棒で静かに拭い、1μMのブラジキニンで血管弛緩反応のないことを確認した。 (Adjustment of porcine coronary artery specimens) All animal experiments in this example were conducted in accordance with relevant laws and regulations. The coronary arteries were removed from the pig heart treated at the slaughterhouse by the following method. A 2-3 cm left anterior descending branch was removed from the origin of the coronary artery, and immediately cooled Krebs solution (123 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl 2 , 1.2 mM MgCl 2 , 12 mM KH 2 PO 4 , 15.5 mM NaHCO 3 , 11.5 mM glucose, bubbled with 95% O 2 + 5% CO 2 ) and stored. After carefully removing the connective tissue and vascular outer membrane around the blood vessel, a 1 × 4 mm strip was prepared. In the experiment in which vascular endothelial cells were removed, the endothelial surface of the strip was gently wiped with a cotton swab, and it was confirmed that there was no vascular relaxation reaction with 1 μM bradykinin.

(等尺性張力測定)作成した冠動脈平滑筋条片を5mlのオーガンチャンバー(37℃のクレブス液で満たす)に懸垂し、一端を固定し、もう一端をトランスデューサー(TB−612T、日本光電)に連結して、等尺性張力を測定した。条片にはおよそ300mgの静止張力を負荷し、発生した張力はクレブス液中での静止張力を0%、Gタンパク質結合型アゴニストであり、血管壁の収縮を引き起こすトロンボキサンのアナログであるU46619(0.1μM,Cayman chemical)投与時の張力を100%として表し、これを血管収縮モデルとした。シベレスタットナトリウム(小野薬品工業)はクレブス液への溶解性が低く、DMSOへ溶解の上0.3mMを投与濃度の上限とした。
上記の血管収縮モデルを用い、シベレスタットの血管平滑筋収縮に対する影響を検討した。図3で示すように、シベレスタットナトリウムは濃度依存的にU46619で前収縮させた冠動脈平滑筋を弛緩させた。図3A,B,Cにおいて、グラフ横軸は時間を表し、また下の白抜ボックスはU46619(A,B)及びカリウム溶液(C)を反応させている期間を示す。グラフ縦軸は血管平滑筋の張力の相対値を示している。図中グラフ上に示す矢印はシベレスタットの投与時点を表し、付随した数字はシベレスタットの濃度(M)を表す。図3Aは、内皮組織を除去した血管平滑筋に対する結果であり、シベレスタットを0.1−0.3mM作用させると、明瞭な弛緩反応が観察された。図3Bは内皮組織が付着した状態の平滑筋条片を供した結果であり、図3A同様に明瞭なシベレスタットの弛緩効果が見られた。図3A,Bの結果より、内皮組織の有無に関係なく、シベレスタットが血管平滑筋の収縮に対してこれを抑制する効果があることが示された。他方、高濃度カリウムイオン(K)脱分極刺激による前収縮(正常な収縮のモデル)においては、U46619による前収縮と比較し、シベレスタットによる弛緩効果が見られなかった(図3C)。図3A,BとCとの対比から、シベレスタットは異常収縮に対してのみ、弛緩効果を示し、正常収縮には作用しないことが明らかとなった。
(Isometric tension measurement) The prepared coronary artery smooth muscle strip is suspended in a 5 ml organ chamber (filled with 37 ° C. Krebs solution), one end is fixed, and the other end is a transducer (TB-612T, Nihon Kohden). And isometric tension was measured. The strip is loaded with a static tension of approximately 300 mg, the generated tension is 0% of the static tension in Krebs solution, a G protein-coupled agonist, and U46619, an analog of thromboxane that causes contraction of the blood vessel wall ( The tension at the time of administration of 0.1 μM, Cayman chemical) was expressed as 100%, and this was used as a vasoconstriction model. Cibelestat sodium (Ono Pharmaceutical Co., Ltd.) has low solubility in Krebs solution, and after dissolving in DMSO, the upper limit of the administration concentration was 0.3 mM.
Using the above vasoconstriction model, the effect of sivelestat on vascular smooth muscle contraction was examined. As shown in FIG. 3, sivelestat sodium relaxed coronary artery smooth muscle pre-contracted with U46619 in a concentration-dependent manner. In FIGS. 3A, B, and C, the horizontal axis of the graph represents time, and the lower white box represents the period in which U46619 (A, B) and potassium solution (C) are reacted. The vertical axis of the graph represents the relative value of the vascular smooth muscle tension. The arrow shown on the graph in the figure represents the administration time point of cibelestat, and the accompanying number represents the concentration (M) of cibelestat. FIG. 3A shows the results for the vascular smooth muscle from which the endothelial tissue was removed, and a clear relaxation reaction was observed when 0.1-0.3 mM of sivelestat was applied. FIG. 3B is a result of providing a smooth muscle strip with an endothelial tissue attached thereto, and a clear relaxation effect of cyberestat was observed as in FIG. 3A. From the results of FIGS. 3A and 3B, it was shown that Siberestat has an effect of suppressing the contraction of vascular smooth muscle regardless of the presence or absence of endothelial tissue. On the other hand, in the precontraction due to high-concentration potassium ion (K + ) depolarization stimulation (model of normal contraction), the relaxation effect due to Siberestat was not observed as compared with the precontraction due to U46619 (FIG. 3C). From the comparison of FIGS. 3A, B and C, it has been clarified that cibelestat has a relaxing effect only on abnormal contraction and does not act on normal contraction.

(平滑筋細胞膜電位測定)シベレスタット処理による弛緩効果が、収縮を抑制したため見られたものか、それともカリウムチャネルを介した筋肉自体の弛緩を引き起こした結果生じたものかを確認するため、シベレスタット処理時における静止膜電位を計測した。内皮細胞を除去した平滑筋条片を3mlのオーガンチャンバー内に内皮側を上に向けて固定した。チャンバー内は37℃のクレブス液を3ml/分の流速で潅流し、3MのKClで満たした極小ガラス電極(先端の電気抵抗=50−80MΩ)を内皮側から挿入し、膜電位を測定した。電気信号はアンプ(Intra767、World Precision Instruments)で増幅し、電位変化はオシロスコープ(SS7802、IWATSU)で経時的に観察した。
図4にその結果を示す。図4Aはシベレスタットと、カリウムチャネルを活性化し過分極を誘導するLevcromakalim(10μM)処理による電位の経時変化を示したもので、グラフ中Levcromakalim処理を示すボックスの範囲では電位が変化しているのに対してシベレスタット処理を示すボックスの範囲では電位が変動しておらず、シベレスタット処理は静止膜電位には影響を与えない、すなわちシベレスタットが血管平滑筋に存在するカリウムチャネルを活性化して筋弛緩を起こしているのでは無いことが明らかとなった。図4Bは各処理における電位の平衡値を示しており、Levcromakalimが−70mV付近であるのに対しシベレスタットは無処理と同様の−50mV付近であり、図4Aの結果を裏付けた。
(Smooth muscle cell membrane potential measurement) In order to confirm whether the relaxation effect of sivelestat treatment was observed due to suppression of contraction, or caused by relaxation of the muscle itself via potassium channels, sivelestat The resting membrane potential at the time of treatment was measured. The smooth muscle strip from which the endothelial cells were removed was fixed in a 3 ml organ chamber with the endothelial side facing up. The chamber was perfused with Krebs solution at 37 ° C. at a flow rate of 3 ml / min, and a very small glass electrode (electric resistance at the tip = 50-80 MΩ) filled with 3 M KCl was inserted from the endothelium side, and the membrane potential was measured. The electric signal was amplified with an amplifier (Intra767, World Precision Instruments), and the potential change was observed over time with an oscilloscope (SS7802, IWATSU).
FIG. 4 shows the result. FIG. 4A shows the time-dependent change in potential due to cybelestat and Levchromalim (10 μM) treatment that activates potassium channels and induces hyperpolarization. In the graph, the potential changes in the range of the box showing Levcrokalim treatment. On the other hand, the potential does not fluctuate in the range of the box indicating the cibelestat treatment, and the cibelestat treatment does not affect the resting membrane potential, that is, the cibelestat activates the potassium channel present in the vascular smooth muscle. It became clear that it did not cause muscle relaxation. FIG. 4B shows the equilibrium value of the potential in each treatment, while Levcrokalim is around −70 mV, while Siberestat is around −50 mV as in the case of no treatment, confirming the result of FIG. 4A.

(張力と細胞内カルシウム濃度の同時測定)内皮細胞を除去した平滑筋条片にCa2+感受性蛍光色素であるFura−2を負荷し、等尺性張力測定と細胞内カルシウムイオン濃度[Ca2+]iの同時測定を行った。脂溶性のアセトキシメチルエステル(AM)基を付けたAM体のFura−2AM(Dojindo)を12.5μM含んだクレブス液中に条片を入れ、37℃で4時間インキュベートした(95%O+5%COでバブリング)。石英製オーガンチャンバー内で等尺性張力測定を行いながら、蛍光光度計(CAM−230、日本分光)を用いて340nmと380nmの2波長励起を行った。340nm励起光と380nm励起光それぞれの500nmにおける蛍光を計測し、その比(F340/F380)を[Ca2+]iとして測定した。張力と[Ca2+]iの変化はクレブス液中での値を0%、118mMK+溶液(前記クレブス液のK+濃度とNa+濃度を逆転させたもの)中での値を100%として表した。
図5にこれらの結果を示す。図5A上のグラフは[Ca2+]iの経時変化を示しており、図5A下のグラフ(張力測定の結果)と時間軸は一致している。U46619にて[Ca2+]iを上昇させて収縮させた平滑筋条片にシベレスタットを投与すると、[Ca2+]iを低下させることなく(上のグラフで変化無し)平滑筋を弛緩させることが明らかとなった。また、図5Bに示すとおり、U46619と高濃度K+存在下でCa2+を累積投与して[Ca2+]−張力カーブを描くと、高濃度K+のみの場合(グラフ◇)と比べてU46619処理によってこのグラフが左側にシフトし(グラフ○)、これは低濃度のカルシウムで収縮がおこる「高感受性」となる事を示しているが、反対にU46619処理後にシベレスタット処理を行うと、このカーブを右方・下方に偏移させ(グラフ●)、シベレスタットがU46619によるカルシウム感受性の増加を抑制していることが示された。本発明者らが非特許文献3で明らかにしてきた様に、カルシウム感受性の増大はSPC刺激によって引き起こされる血管異常収縮で特徴的に見られる現象であり、シベレスタットがこれを抑制したことは血管異常収縮の抑制剤としての有効性を示している。
(Simultaneous measurement of tension and intracellular calcium concentration) Smooth muscle strips from which endothelial cells have been removed were loaded with Fura-2, a Ca 2+ sensitive fluorescent dye, and isometric tension measurement and intracellular calcium ion concentration [Ca 2+ ]. i was measured simultaneously. Strips were placed in Krebs solution containing 12.5 μM AM Fura-2AM (Dojindo) with a fat-soluble acetoxymethyl ester (AM) group and incubated at 37 ° C. for 4 hours (95% O 2 +5 Bubbling with% CO 2 ). While performing isometric tension measurement in a quartz organ chamber, two-wavelength excitation at 340 nm and 380 nm was performed using a fluorometer (CAM-230, JASCO). Fluorescence at 500 nm of 340 nm excitation light and 380 nm excitation light was measured, and the ratio (F340 / F380) was measured as [Ca 2+ ] i. The change in tension and [Ca 2+ ] i was expressed as 0% in Krebs solution and 100% in 118 mM K + solution (reversed K + concentration and Na + concentration of Krebs solution).
FIG. 5 shows these results. The graph in FIG. 5A shows the change with time of [Ca 2+ ] i, and the time axis coincides with the graph in FIG. 5A (result of tension measurement). When Cibelestat is administered to a smooth muscle strip contracted by increasing [Ca 2+ ] i at U46619, smooth muscle is relaxed without decreasing [Ca 2+ ] i (no change in the upper graph). Became clear. Moreover, as shown in FIG. 5B, when Ca2 + is cumulatively administered in the presence of U46619 and high concentration K + and a [Ca2 + ]-tensile curve is drawn, the treatment with U46619 is compared to the case of high concentration K + alone (graph ◇). This graph shifts to the left (graph ○), which indicates that “high sensitivity” occurs in which contraction occurs at a low concentration of calcium. On the other hand, when the cibelestat treatment is performed after the U46619 treatment, this curve is changed. Shifted to the right and downward (graph ●), it was shown that sivelestat suppressed the increase in calcium sensitivity by U46619. As has been clarified in Non-Patent Document 3 by the present inventors, the increase in calcium sensitivity is a phenomenon that is characteristic of abnormal blood vessel contraction caused by SPC stimulation. It shows effectiveness as an inhibitor of abnormal contraction.

(スキンド法)内皮細胞を除去した平滑筋条片をβ−escin(片山化学)処理することにより、細胞膜の情報伝達機構を温存したまま細胞膜に小孔を空けた。150−200mm×2mmの条片を30mMのβ−escinを含む細胞内液(74.1mM Potassium methanesulfonate、2mM Magnesium methanesulfonate、4.5mM MgATP、1mM EGTA、10mM クレアチンリン酸、30mM PIPES、1μM FCCP、1μM ロイペプチン、1μM カルモジュリン)でインキュベートし、pCa6.3溶液(10mM EGTAで緩衝させた低濃度Ca2+を含む細胞内液)に対する収縮反応を観察した。スキンド標本では、pCa4.5で最大収縮が得られた。このスキンド標本を用い、シベレスタットの効果を確認した。
図6にこれらの結果を示す。図6Aにおいて、U46619+GTPのボックスで示す範囲で見られた収縮反応(上側への盛り上がり)は、シベレスタット処理(黒塗りボックス)によって完全に抑制された。図6Bはこれを棒グラフで示したものであり、U46619+GTPの刺激により誘導される収縮(左側)はシベレスタット処理(右側)によってほとんど0にまで抑えられたことを示している。図6Cは上記実験系においてU46619+GTPの処理無しでシベレスタットを処理した結果を示しており、ここでは何の収縮抑制効果も見られないことから、シベレスタットの影響は血管そのものの収縮を抑制するのではなく、U46619など特定の刺激によって引き起こされる収縮を抑制するものであることが示された。すなわち、pCa6.3溶液中でU46619(30nM)とGTP(10μM)を投与して得られた収縮(カルシウム非依存製収縮)を、0.3mMのシベレスタットは完全に抑制し、反対に、カルシウム依存性の収縮(pCa6.3溶液中)に対しては、シベレスタットは影響を与えない事が示された。
(Skinned method) Smooth muscle strips from which endothelial cells had been removed were treated with β-escin (Katayama Chemical) to make small holes in the cell membrane while preserving the information transmission mechanism of the cell membrane. 150-200 mm × 2 mm strip of intracellular fluid containing 30 mM β-escin (74.1 mM Potassium methanolate sulfate, 2 mM Magnesium methanolate sulfate, 4.5 mM MgATP, 1 mM EGTA, 10 mM creatine phosphate, 30 mM PIPES, 1 μM FCCP After incubating with leupeptin, 1 μM calmodulin), a contractile response to pCa6.3 solution (intracellular fluid containing low concentration Ca2 + buffered with 10 mM EGTA) was observed. For skinned specimens, maximum contraction was obtained at pCa4.5. Using this skinned specimen, the effect of Siberestat was confirmed.
FIG. 6 shows these results. In FIG. 6A, the contraction reaction (upward swell) seen in the range indicated by the box of U46619 + GTP was completely suppressed by the Shibelestat treatment (black box). FIG. 6B shows this as a bar graph, and shows that the contraction (left side) induced by the stimulation of U46619 + GTP was suppressed to almost 0 by the Shibelestat treatment (right side). FIG. 6C shows the result of processing Cibelestat without U46619 + GTP in the above experimental system, and since no contraction suppressing effect is seen here, the influence of Cibelestat suppresses the contraction of the blood vessel itself. Instead, it was shown to suppress contractions caused by certain stimuli such as U46619. That is, the contraction (calcium-independent contraction) obtained by administering U46619 (30 nM) and GTP (10 μM) in a pCa6.3 solution was completely suppressed by 0.3 mM cyberestat, It was shown that sivelestat has no effect on the dependent contraction (in pCa6.3 solution).

上記実施例で明らかにされた通り、本発明の提供するシベレスタットを主成分とする薬剤は血管の異常収縮を特異的に、通常の収縮に影響することなく抑制することが期待され、これは血管異常収縮に起因する種々の疾患に対する治療薬として、医療産業上利用可能である。   As clarified in the above examples, the drug mainly composed of cibelestat provided by the present invention is expected to specifically suppress abnormal contraction of blood vessels without affecting normal contraction, It can be used in the medical industry as a therapeutic agent for various diseases caused by abnormal blood vessel contraction.

シベレスタットとエイコサペンタエン酸の化学構造を比較して示す。The chemical structures of cibelestat and eicosapentaenoic acid are compared and shown. シベレスタットとエイコサペンタエン酸の化学構造を、その立体構造に着目し比較して示す。The chemical structures of civerestat and eicosapentaenoic acid are shown in comparison with a focus on their steric structures. U46619(トロンボキサンのアナログ)投与(A,B)及び高濃度カリウム溶液処理(C)によって引き起こされる血管収縮に対する、シベレスタットの効果を示す。(A)内皮を取り除いた血管平滑筋での測定結果を示す。(B)内皮が付着したままの血管平滑筋での測定結果を示す。(C)高濃度カリウム溶液前処理での測定結果を示す。Figure 7 shows the effect of sivelestat on vasoconstriction caused by U46619 (thromboxane analog) administration (A, B) and high concentration potassium solution treatment (C). (A) The measurement result in the vascular smooth muscle which removed the endothelium is shown. (B) shows the measurement results with vascular smooth muscle with the endothelium attached. (C) The measurement result in the high concentration potassium solution pretreatment is shown. シベレスタット処理の静止膜電位への影響を示す。The influence on the resting membrane potential of Siberestat treatment is shown. (A)U46619存在下でシベレスタット処理を行った標本における、細胞内カルシウム濃度及び張力の経時変化を示す。(B)U46619処理によって引き起こされるカルシウム感受性の上昇に対する、シベレスタット処理の影響を示す。(A) shows time-dependent changes in intracellular calcium concentration and tension in a specimen that has been treated with sivelestat in the presence of U46619. (B) shows the effect of sivelestat treatment on the increase in calcium sensitivity caused by U46619 treatment. スキンド法を用いた、U46619存在下における血管平滑筋収縮に対するシベレスタット処理の影響を示す。The influence of the cibelestat process on the vascular smooth muscle contraction in the presence of U46619 using the skinned method is shown.

Claims (4)

式(1)で示される化合物または、そのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩のうち少なくとも1種より選択される誘導体を有効成分とする、血管異常収縮の抑制剤。
Figure 0005103618
The compounds of formula (1), or its alkali metal salts, alkaline earth metal salts, as an active ingredient a derivative selected from at least one of an ammonium salt, an inhibitor of vascular abnormalities contraction.
Figure 0005103618
誘導体がナトリウム塩である、請求項1に記載の血管異常収縮抑制剤。 The abnormal vasoconstriction inhibitor according to claim 1, wherein the derivative is a sodium salt . 血管異常収縮が、カルシウム非依存性の異常収縮であることを特徴とする、請求項1または請求項2に記載の血管異常収縮抑制剤。 The abnormal blood vessel contraction inhibitor according to claim 1 or 2, wherein the abnormal blood vessel contraction is calcium-independent abnormal contraction. 投与形態が注射薬である、請求項1から請求項3のうちいずれか1項に記載の血管異常収縮抑制剤。 The vascular abnormal contraction inhibitor according to any one of claims 1 to 3, wherein the administration form is an injection .
JP2007057111A 2007-03-07 2007-03-07 Inhibitor of abnormal vasoconstriction Active JP5103618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057111A JP5103618B2 (en) 2007-03-07 2007-03-07 Inhibitor of abnormal vasoconstriction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057111A JP5103618B2 (en) 2007-03-07 2007-03-07 Inhibitor of abnormal vasoconstriction

Publications (2)

Publication Number Publication Date
JP2008214309A JP2008214309A (en) 2008-09-18
JP5103618B2 true JP5103618B2 (en) 2012-12-19

Family

ID=39834782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057111A Active JP5103618B2 (en) 2007-03-07 2007-03-07 Inhibitor of abnormal vasoconstriction

Country Status (1)

Country Link
JP (1) JP5103618B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487646A (en) * 2019-07-26 2019-11-22 西安医学院 A kind of method of vitro detection vessel retraction function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977091A (en) * 1998-09-21 1999-11-02 The Research Foundation Of State University Of New York Method of preventing acute lung injury

Also Published As

Publication number Publication date
JP2008214309A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP6570597B2 (en) New method
Docampo et al. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi
ES2320181T3 (en) PHARMACEUTICAL COMPOSITIONS THAT HAVE A REDUCING EFFECT OF CHOLESTEROL.
JP7411967B2 (en) Compositions and methods for treating pulmonary vascular disease
HU221678B1 (en) Prodrugs for treating diseases connected with supranormal intracellular enzyme-activity
US20070060605A1 (en) Compositions and methods for inhibiting platelet activation and thrombosis
JP2003530432A (en) Treatment of neurodegenerative diseases
JP2009519999A (en) Alkyl phospholipid derivatives having reduced cytotoxicity and uses thereof
WO2017015660A1 (en) Prevention and treatment of aging and neurodegenerative diseases
JP2007523858A (en) Methods for inhibiting vascular permeability and apoptosis
JP2023113705A (en) USE OF SCAVENGERS OF REACTIVE γ-KETOALDEHYDES TO EXTEND CELL LIFESPAN AND HEALTHSPAN
JP5103618B2 (en) Inhibitor of abnormal vasoconstriction
US7196071B2 (en) Methods of decreasing or preventing pain using spicamycin derivatives
Pott et al. eNOS translocation but not eNOS phosphorylation is dependent on intracellular Ca2+ in human atrial myocardium
JP5124776B2 (en) Smooth muscle contraction inhibitor
JP4527231B2 (en) Inhibitor of abnormal smooth muscle contraction
Pham et al. Bexarotene cannot reduce amyloid beta plaques through inhibition of production of amyloid beta peptides: in silico and in vitro study
JPH05213760A (en) Endogenous calcium release inhibitor comprising diphenylborane derivative as active ingredient
FR2550447A1 (en) APPLICATION OF N- (ALLY-2-PYRROLIDINYLMETHYL) 2-METHOXY 4-AMINO-5-METHYLSULFAMOYL BENZAMIDE AS PLATELET ANTI-AGGREGATE
WO2014172372A1 (en) Treatment for dopaminergic disorders
Lima et al. Energy metabolism as a target for cyclobenzaprine: a drug candidate against Visceral Leishmaniasis
EP3858357A1 (en) Use of azole compounds to stimulate the immune system and as inhibitors for s-pla2gib
Colpaert et al. Nitric oxide relaxes circular smooth muscle of rat distal colon through RhoA/Rho‐kinase independent Ca2+ desensitisation
WO2004047868A1 (en) Remedy for glaucoma containing lim kinase inhibitory compound as active ingredient
WO2021188055A1 (en) Modulation of cxcr3 chemokine signalling for osteoporosis therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150