JP5103311B2 - Low NOx combustion apparatus and burner used therefor - Google Patents

Low NOx combustion apparatus and burner used therefor Download PDF

Info

Publication number
JP5103311B2
JP5103311B2 JP2008187409A JP2008187409A JP5103311B2 JP 5103311 B2 JP5103311 B2 JP 5103311B2 JP 2008187409 A JP2008187409 A JP 2008187409A JP 2008187409 A JP2008187409 A JP 2008187409A JP 5103311 B2 JP5103311 B2 JP 5103311B2
Authority
JP
Japan
Prior art keywords
combustion
burner
combustion chamber
combustion air
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008187409A
Other languages
Japanese (ja)
Other versions
JP2010025443A (en
Inventor
伸章 林本
博規 小西
Original Assignee
株式会社日本サーモエナー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本サーモエナー filed Critical 株式会社日本サーモエナー
Priority to JP2008187409A priority Critical patent/JP5103311B2/en
Publication of JP2010025443A publication Critical patent/JP2010025443A/en
Application granted granted Critical
Publication of JP5103311B2 publication Critical patent/JP5103311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に小型の多管式貫流ボイラ等に使用されるものであり、特に、燃料と燃焼用空気を混合させて成る予混合気を縦長薄膜状の形態で高速噴射して燃焼させ、縦長薄膜状の火炎を燃焼室の片方の伝熱面に沿って形成することによって、高負荷燃焼条件下において燃料を低空気比で燃焼させても、NOx及びCOの発生を大幅に抑制できるようにした低NOx燃焼装置及びこれに用いるバーナに関するものである。   The present invention is mainly used for small multi-tube once-through boilers and the like, and in particular, a premixed gas obtained by mixing fuel and combustion air is injected at high speed in the form of a vertically long thin film and burned. By forming a vertically thin film flame along one heat transfer surface of the combustion chamber, the generation of NOx and CO can be greatly suppressed even when the fuel is burned at a low air ratio under high load combustion conditions. The present invention relates to a low NOx combustion apparatus and a burner used therefor.

従来、ガスや油を燃料とするボイラ等においては、大気汚染等の問題により有害な燃焼廃棄物としてNOx、CO等の排出低減が求められて来た。近年では、CO2の温室効果ガスによる地球温暖化が問題になっており、CO2の排出低減も強く求められている。 Conventionally, boilers using gas or oil as fuel have been required to reduce emissions of NOx, CO, etc. as harmful combustion waste due to problems such as air pollution. In recent years, has the global warming due to greenhouse gases of CO 2 in question, has been strongly demanded reduce emissions of CO 2.

そのため、国内のCO2全排出量の約1割を占める小型ボイラ等の小型燃焼機器においても、CO2の排出量を削減できて低NOx化及び低CO化を図れるようにした燃焼機器が求められている。 Therefore, even in a small combustion apparatus compact boiler which accounts for about 10% of domestic CO 2 total emissions, combustion equipment to reduce emissions of CO 2 to attained the NOx reduction and CO reduction is determined It has been.

一般的に、小型ボイラ(例えば、小型の多管式貫流ボイラ)等においては、小型化が益々進んで燃焼室が非常にコンパクトであり、炉負荷が1000kW/m3〜10000kW/m3の非常に高負荷な燃焼条件となっている。そのため、低空気比の燃焼では、COの発生を抑えることができないので、空気比は1.25〜1.4程度に設定されている。 Generally, small boiler (e.g., multi-tube once-through boiler of small) In like, miniaturization increasingly willing combustion chamber is very compact, very furnace load is 1000kW / m 3 ~10000kW / m 3 The combustion conditions are very high. For this reason, in the combustion at a low air ratio, the generation of CO cannot be suppressed, so the air ratio is set to about 1.25 to 1.4.

従来の低NOx化技術としては、分割火炎による拡散燃焼方式や予混合燃焼方式等が挙げられる(例えば、特許文献1、特許文献2及び特許文献3等参照)。   Conventional techniques for reducing NOx include a diffusion combustion system using a divided flame, a premixed combustion system, and the like (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

ところで、空気比が1.25以上の高空気比領域では、予混合燃焼方式は拡散燃焼方式よりも火炎冷却効果が優れているためにNOxの発生を抑えることができる。
しかし、空気比が1.25以下の低空気比領域では、予混合燃焼方式は拡散燃焼方式よりも燃焼速度が増加して火炎温度が上がるためにNOxの発生を抑えることができない。
By the way, in the high air ratio region where the air ratio is 1.25 or more, the premixed combustion method has a flame cooling effect superior to the diffusion combustion method, and therefore, generation of NOx can be suppressed.
However, in the low air ratio region where the air ratio is 1.25 or less, the premixed combustion method cannot suppress the generation of NOx because the combustion speed increases and the flame temperature rises compared to the diffusion combustion method.

従って、小型ボイラ等においては、上述したように高負荷燃焼条件下での低空気比燃焼ではCOが発生する理由から、燃料を低空気比で燃焼させることができないので、予混合燃焼方式が一般的に最も優れた低NOx燃焼方式である。   Therefore, in a small boiler or the like, the premixed combustion method is generally used because the fuel cannot be burned at a low air ratio because CO is generated in the low air ratio combustion under a high load combustion condition as described above. This is the most excellent low NOx combustion method.

小型ボイラ等において低空気比燃焼が可能になると、排ガス熱損失を抑えてボイラを高効率化して燃料消費量を抑えることができるため、その分のCO2排出量の低減が可能となる。
しかし、従来の技術では、高負荷燃焼条件下にてCOの発生を抑え、且つNOxの発生を抑えることは非常に困難であった。
When low air ratio combustion is possible in a small boiler or the like, the exhaust gas heat loss can be suppressed, the boiler can be made highly efficient and the fuel consumption can be suppressed, and accordingly, the amount of CO 2 emission can be reduced.
However, with the conventional technology, it has been very difficult to suppress the generation of CO and the generation of NOx under high-load combustion conditions.

特開2003−302012号公報JP 2003-302012 A 特開2007−120839号公報Japanese Patent Laid-Open No. 2007-120839 特開2007−309578号公報JP 2007-309578 A

本発明は、このような問題点に鑑みて為されたものであり、その目的は、小型ボイラ等の高負荷燃焼条件下において燃料を低空気比で燃焼させても、NOx及びCOの発生を大幅に抑制できるようにした低NOx燃焼装置及びこれに用いるバーナを提供することにある。   The present invention has been made in view of such problems, and its purpose is to generate NOx and CO even when fuel is burned at a low air ratio under high load combustion conditions such as a small boiler. An object of the present invention is to provide a low NOx combustion apparatus and a burner used therefor which can be largely suppressed.

上記目的を達成するために、本発明の請求項1の発明は、複数の水管及びヒレから成る水冷壁構造の伝熱面又は水冷ジャケット構造の伝熱面で囲まれた横断面形状が長方形状の縦長の燃焼室と、燃焼室の一端部に燃焼室の幅方向中央位置から偏芯させた位置に設けられ、燃料と燃焼用空気の予混合気を燃焼室内に高速で噴射して燃焼させる縦長細幅のバーナとを具備した燃焼装置であって、前記バーナは、予混合気を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射すると共に、燃焼室の幅と高速で噴射する縦長薄膜状の予混合気の幅の比率を25:1以上とし、燃焼室内に形成された縦長薄膜状の火炎がコアンダ効果によりバーナを偏芯させた側の燃焼室の伝熱面に沿って形成されるようにしたことに特徴がある。 To achieve the above object, the invention of claim 1 of the present invention has a rectangular cross-sectional shape surrounded by a heat transfer surface of a water cooling wall structure or a water cooling jacket structure comprising a plurality of water tubes and fins. Are provided at a position eccentric to the center of the combustion chamber in the width direction at one end of the combustion chamber, and a premixed mixture of fuel and combustion air is injected into the combustion chamber at high speed for combustion. A combustion apparatus comprising a vertically long and narrow burner, wherein the burner injects the premixed gas in a vertically thin film form with an aspect ratio of 50: 1 or more and at a high speed of 50 m / sec or more , The ratio of the width of the combustion chamber to the width of the vertical thin film premixed gas jetted at high speed is 25: 1 or more, and the vertical thin film flame formed in the combustion chamber is on the side where the burner is eccentric due to the Coanda effect . To be formed along the heat transfer surface of the combustion chamber There is a butterfly.

本発明の請求項2の発明は、請求項1に記載の低NOx燃焼装置に用いるバーナであって、前記バーナは、先端を開放した縦長の偏平な長方体形状に形成されて燃焼用空気の一部が二次燃焼用空気として流入する燃焼筒と、横断面形状が先細り状に形成されて燃焼用空気の一部が一次燃焼用空気として流入する縦長の入口部及び入口部に連設されて縦向きのスリット状の噴出通路を形成すると共に先端部側両側面に燃焼筒内へ流入した二次燃焼用空気の一部を前記噴出通路内へ吸入する吸入穴を形成した縦長の噴出部を備え、前記噴出部先端が燃焼筒の先端側開口内に位置する状態で燃焼筒内に配設されると共に噴出部先端と燃焼筒先端との間に燃焼筒内へ供給された二次燃焼用空気の一部を前方へ噴出するスリット状の間隙を形成した予混合気の噴射ノズルと、噴射ノズルの入口部内に配設されて燃料を入口部内の一次燃焼用空気の流れに交差する状態で噴射するガスマニホールドとから成り、燃料と燃焼用空気の予混合気を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射できる構成とし、また、燃焼室の幅と高速で噴射する縦長薄膜状の予混合気の幅の比率を25:1以上としたことに特徴がある。 According to a second aspect of the present invention, there is provided a burner for use in the low NOx combustion apparatus according to the first aspect, wherein the burner is formed in a vertically long, rectangular parallelepiped shape having an open end, and is a combustion air. A part of the combustion cylinder that flows in as secondary combustion air, and a vertically long inlet section and an inlet section in which the cross-sectional shape is tapered and a part of the combustion air flows in as primary combustion air A vertically long jet having a vertical slit-like jet passage and a suction hole for sucking a part of the secondary combustion air that has flowed into the combustion cylinder into the jet passage on both side surfaces of the tip portion A secondary part that is disposed in the combustion cylinder in a state in which the tip of the ejection part is located in the opening on the tip side of the combustion cylinder and is supplied into the combustion cylinder between the tip of the ejection part and the tip of the combustion cylinder Premixing with a slit-like gap that ejects part of the combustion air forward A gas injection nozzle and a gas manifold that is disposed in an inlet portion of the injection nozzle and injects fuel in a state of intersecting a flow of primary combustion air in the inlet portion, and a premixed gas of fuel and combustion air is The ratio of the width of the combustion chamber to the width of the vertical thin film premixed gas jetted at a high speed in the form of a vertically long thin film with an aspect ratio of 50: 1 or more and at a high speed of 50 m / sec or more. Is characterized by a ratio of 25: 1 or more .

本発明の低NOx燃焼装置は、複数の水管及びヒレから成る水冷壁構造の伝熱面又は水冷ジャケット構造の伝熱面で囲まれた横断面形状が長方形状に形成された縦長の燃焼室の一端部に、燃焼室の幅方向中央位置から偏芯させた位置に縦長細幅のバーナを配設し、当該バーナから燃料と燃焼用空気の予混合気を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射し、縦長薄膜状の火炎がバーナを偏芯させた側の燃焼室の伝熱面に沿って形成されるようにしているため、燃焼室の伝熱面に沿って形成された縦長薄膜状の火炎の上流側では、予混合気の高速噴射によるブローオフ寸前の緩慢燃焼になっていると共に、熱放散の良い縦長薄膜状の火炎になっているので、火炎温度の上昇が抑えられてサーマルNOxの発生を抑制することができ、又、縦長薄膜状の火炎の下流側では、予混合気の高速噴射流により乱流度が高くなっているので、燃焼ガスの混合が促進されてCOからCO2への酸化を素早く完結できる。
その結果、本発明の低NOx燃焼装置は、高負荷燃焼条件下において燃料を空気比が1.1〜1.2の低空気比で燃焼させても、NOx及びCOの発生を大幅に抑制することができる。
又、本発明の低NOx燃焼装置は、燃焼室の幅とバーナから高速で噴射される縦長薄膜状の予混合気の幅の比率を25:1以上としているため、コアンダ効果により縦長薄膜状の火炎がバーナを偏芯させた側の燃焼室の伝熱面に沿って確実且つ良好に形成されることになり、上述した効果をより確実に発揮することができる。
The low NOx combustion apparatus of the present invention is a vertically long combustion chamber in which a transverse cross-sectional shape surrounded by a heat transfer surface of a water cooling wall structure or a water cooling jacket structure consisting of a plurality of water tubes and fins is formed in a rectangular shape. At one end, a vertically narrow burner is disposed at a position eccentric from the center position in the width direction of the combustion chamber, and the aspect ratio of the fuel / combustion air premixed gas from the burner is 50: 1 or more. It is jetted at a high speed of 50 m / sec or more in the form of a vertically long thin film, and the vertically thin thin film flame is formed along the heat transfer surface of the combustion chamber on the side where the burner is eccentric. On the upstream side of the vertical thin film flame formed along the heat transfer surface of the chamber, it is slow combustion just before blow-off due to high-speed injection of premixed gas, and it becomes a vertical thin film flame with good heat dissipation. Therefore, the rise in flame temperature is suppressed and thermal NO It is possible to suppress the occurrence, also, CO in the downstream side of the elongated thin-film flames, because the turbulence degree is high by high-speed jet flow of the premixed gas, a mixture is promoted CO combustion gas The oxidation to 2 can be completed quickly.
As a result, the low NOx combustion apparatus of the present invention greatly suppresses the generation of NOx and CO even when fuel is burned at a low air ratio of 1.1 to 1.2 under high load combustion conditions. be able to.
In the low NOx combustion apparatus of the present invention, the ratio of the width of the combustion chamber and the width of the vertically thin film-like premixed gas injected from the burner at a high speed is 25: 1 or more. The flame is surely and satisfactorily formed along the heat transfer surface of the combustion chamber on the side where the burner is eccentric, and the above-described effects can be more reliably exhibited.

本発明のバーナは、燃料と燃焼用空気の予混合気を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射できる構成としているため、縦長薄膜状で表面積の広い火炎が形成されて輻射放熱性が良くなり、火炎の温度を抑えることができるうえ、燃焼排ガスの引き込み効果が大きくなってNOxの低減効果が大きくなる。
又、本発明のバーナは、燃焼用空気を一次燃焼用空気及び二次燃焼用空気に分割して燃料と多段混合させているため、燃焼初期の反応速度を抑えて低NOx化を図ることができる。
The burner of the present invention is configured to be able to inject a premixed mixture of fuel and combustion air in a vertically thin film shape with an aspect ratio of 50: 1 or more and at a high speed of 50 m / sec or more. A flame having a large surface area is formed, and radiation heat dissipation is improved, the temperature of the flame can be suppressed, and the effect of reducing the flue gas is increased and the effect of reducing NOx is increased.
Further, the burner according to the present invention divides combustion air into primary combustion air and secondary combustion air and mixes them with fuel in multiple stages, so that the reaction speed at the initial stage of combustion can be suppressed and NOx can be reduced. it can.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1及び図2は本発明の実施の形態に係る低NOx燃焼装置を示し、当該低NOx燃焼装置は、対向状に配設されて燃焼室S1及び熱交換室S2を形成する一対の水冷壁1と、両水冷壁1の上方位置及び下方位置に配設されて両水冷壁1の各水管1aの上端部及び下端部が夫々連通状に接続される上部ヘッダー2及び下部ヘッダー3と、熱交換室S2内に配設されて上端部及び下端部が上部ヘッダー2及び下部ヘッダー3に夫々連通状に接続される複数本の伝熱水管4aから成る伝熱水管群4と、燃焼室S1の一端部(燃焼室S1の上流側端部)に燃焼室S1の幅方向中央位置Lから偏芯させた位置に設けられ、燃料Gと燃焼用空気Aを混合して成る予混合気G′を燃焼室S1内に縦長薄膜状に高速で噴射して燃焼させる縦長細幅のバーナ5と、バーナ5全体を覆う状態で設けられ、空気供給ダクト6から供給された燃焼用空気Aをバーナ5へ供給する風箱7とを具備する蒸気ボイラ(多管式貫流ボイラ)の構造に構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 show a low NOx combustion apparatus according to an embodiment of the present invention, and the low NOx combustion apparatus is disposed in a facing manner to form a pair of water cooling walls that form a combustion chamber S1 and a heat exchange chamber S2. 1, an upper header 2 and a lower header 3 that are disposed at the upper and lower positions of both water cooling walls 1 and in which the upper and lower ends of the water pipes 1a of both water cooling walls 1 are connected in a continuous manner, respectively, A heat transfer water tube group 4 including a plurality of heat transfer water tubes 4a disposed in the exchange chamber S2 and having upper and lower ends connected to the upper header 2 and the lower header 3 in communication with each other, and the combustion chamber S1 A premixed gas G ′ formed by mixing the fuel G and the combustion air A is provided at one end (upstream end of the combustion chamber S1) at a position eccentric from the central position L in the width direction of the combustion chamber S1. A vertically long and narrow burner 5 which is burned by being injected into the combustion chamber S1 in a vertically long thin film at high speed. The steam boiler (multitubular once-through boiler) is provided so as to cover the entire burner 5 and includes a wind box 7 for supplying the combustion air A supplied from the air supply duct 6 to the burner 5. ing.

前記一対の水冷壁1は、図1に示す如く、複数本の水管1aを直線状に並列配置して隣接する水管1aを上下方向へ延びる帯板状のヒレ1bで連結することにより形成されており、対向状に配置されて両水冷壁1の内壁面(伝熱面)間に横断面形状が長方形状に形成された縦長の燃焼室S1とこれに連通する熱交換室S2を形成するようになっている。
又、両水冷壁1の上流側端部(図1の右側端部)には、バーナ5が挿着される耐火壁8が設けられている。
As shown in FIG. 1, the pair of water cooling walls 1 are formed by arranging a plurality of water pipes 1a in a straight line and connecting adjacent water pipes 1a with strip-like fins 1b extending in the vertical direction. In addition, a vertically long combustion chamber S1 having a rectangular cross section formed between the inner wall surfaces (heat transfer surfaces) of the two water-cooling walls 1 and a heat exchange chamber S2 communicating therewith are formed. It has become.
Further, a fireproof wall 8 into which the burner 5 is inserted is provided at the upstream end portion (the right end portion in FIG. 1) of both the water cooling walls 1.

前記上部ヘッダー2及び下部ヘッダー3は、図2に示す如く、何れも矩形箱状に形成されており、上部ヘッダー2には、両水冷壁1の各水管1aの上端部が、又、下部ヘッダー3には、両水冷壁1の各水管1aの下端部が夫々連通状に接続されている。
尚、上部ヘッダー2には、発生した蒸気を気水分離器(図示省略)へ導くための蒸気管が接続されていると共に、下部ヘッダー3には、給水管(図示省略)が接続されている。又、上部ヘッダー2の下面側及び下部ヘッダー3の上面側には、耐火物9が夫々内張りされており、上部ヘッダー2及び下部ヘッダー3を高温の燃焼ガスから保護すると共に、燃焼室S1及び熱交換室S2の上面側及び下面側を閉塞するようになっている。
As shown in FIG. 2, the upper header 2 and the lower header 3 are each formed in a rectangular box shape. The upper header 2 has upper ends of the water pipes 1a of the two water cooling walls 1, and the lower header. 3, the lower ends of the water pipes 1a of the water cooling walls 1 are connected in a continuous manner.
The upper header 2 is connected to a steam pipe for guiding the generated steam to a steam separator (not shown), and the lower header 3 is connected to a water supply pipe (not shown). . Further, a refractory 9 is lined on the lower surface side of the upper header 2 and the upper surface side of the lower header 3 to protect the upper header 2 and the lower header 3 from high-temperature combustion gas, as well as the combustion chamber S1 and the heat. The upper surface side and the lower surface side of the exchange chamber S2 are closed.

前記伝熱水管群4は、図1に示す如く、熱交換室S2内に配設されており、上端部及び下端部が上部ヘッダー2及び下部ヘッダー3に夫々連通状に接続された複数本の伝熱水管4aから成る。この伝熱水管群4を形成する複数の伝熱水管4aは、熱交換室S2内に一定のピッチで配設されている。従って、伝熱水管群4と両水冷壁1との隙間及び伝熱水管群4の隙間には、燃焼室S1からの燃焼ガスが通過する燃焼ガス通路が形成されることになる。   As shown in FIG. 1, the heat transfer water tube group 4 is disposed in a heat exchange chamber S2, and has a plurality of pipes whose upper end and lower end are connected to the upper header 2 and the lower header 3 in communication with each other. It consists of a heat transfer water tube 4a. The plurality of heat transfer water tubes 4a forming the heat transfer water tube group 4 are arranged at a constant pitch in the heat exchange chamber S2. Therefore, a combustion gas passage through which the combustion gas from the combustion chamber S1 passes is formed in the clearance between the heat transfer water tube group 4 and the two water cooling walls 1 and the clearance between the heat transfer water tube group 4.

前記バーナ5は、図1に示す如く、燃焼室S1の一端部(上流側端部)に燃焼室S1の幅方向中央位置Lから偏芯させた位置に設けられて耐火壁8に挿着されており、燃料Gと燃焼用空気Aの予混合気G′を縦長薄膜状に高速で噴射させ、縦長薄膜状の火炎Fが偏芯させた側の燃焼室S1内の伝熱面に沿って形成されるようにしている。
この現象は、コアンダ効果(流体が物体の表面を流れるとき、物体の表面外形へ貼り付くように沿って流れる現象)と呼ばれ、薄膜状の予混合気G′の噴流幅と燃焼室S1の幅の比及び予混合気G′の噴出速度に左右される。
そのため、このバーナ5は、予混合気G′を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射させる構成となっている。又、このバーナ5は、燃焼室S1の幅と高速で噴射する縦長薄膜状の予混合気G′の幅との比が25:1以上になるように構成されている。
As shown in FIG. 1, the burner 5 is provided at one end portion (upstream end portion) of the combustion chamber S1 at a position eccentric from the center position L in the width direction of the combustion chamber S1, and is inserted into the fire wall 8. The premixed gas G ′ of the fuel G and the combustion air A is jetted at a high speed in the form of a vertically thin film, and along the heat transfer surface in the combustion chamber S1 on the side where the vertically thin film flame F is eccentric. To be formed.
This phenomenon is called the Coanda effect (a phenomenon in which when the fluid flows on the surface of the object, it flows along the surface of the object so as to stick to it), the jet width of the thin-film premixed gas G ′ and the combustion chamber S1 It depends on the width ratio and the jet velocity of the premixed gas G ′.
Therefore, the burner 5 is configured to inject the premixed gas G ′ at a high speed of 50 m / sec or more in the form of a vertically long thin film having an aspect ratio of 50: 1 or more. The burner 5 is configured such that the ratio of the width of the combustion chamber S1 to the width of the vertically thin film-like premixed gas G ′ injected at a high speed is 25: 1 or more.

具体的には、前記バーナ5は、図1に示す如く、耐火壁8に挿着されて燃焼用空気Aの一部が二次燃焼用空気A2として流入する縦長長方形状の燃焼筒10と、燃焼筒10内に配設されて燃料Gと燃焼用空気Aとを混合して成る予混合気G′を燃焼室S1内へ噴射する噴射ノズル11と、噴射ノズル11の入口内に配設されて燃料Gを噴射ノズル11内に噴出するガスマニホールド12とを具備しており、予混合気G′を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射すると共に、燃焼室S1の幅と高速で噴射する縦長薄膜状の予混合気G′の幅との比が25:1以上になるようにし、燃焼室S1内に縦長薄膜状の火炎Fを形成するようにしたものである。   Specifically, as shown in FIG. 1, the burner 5 is inserted into a fire wall 8 and a vertically long combustion cylinder 10 in which a part of the combustion air A flows as secondary combustion air A2; An injection nozzle 11 which is disposed in the combustion cylinder 10 and injects a premixed gas G ′ formed by mixing fuel G and combustion air A into the combustion chamber S 1, and is disposed in the inlet of the injection nozzle 11. And a gas manifold 12 for injecting fuel G into the injection nozzle 11, and the premixed gas G ′ is in the form of an elongated thin film with an aspect ratio of 50: 1 or more and at a high speed of 50 m / sec or more. In addition to the injection, the ratio of the width of the combustion chamber S1 to the width of the vertically thin film-like premixed gas G ′ injected at high speed is 25: 1 or more, and the vertically thin film-like flame F is introduced into the combustion chamber S1. It is to be formed.

前記燃焼筒10は、図3に示す如く、先端(図3(A)の左端端)を開放した横断面形状が長方形の縦長の偏平な長方体形状に形成されており、その両側面には、送風機(図示省略)から空気供給ダクト6を経て風箱7内に供給された燃焼用空気Aの一部を二次燃焼用空気A2として燃焼筒10内に供給する二次空気穴10aが縦方向に一定の間隔で形成されている。   As shown in FIG. 3, the combustion cylinder 10 is formed into a rectangular oblong shape having a rectangular cross section with the tip (left end of FIG. 3A) open, and on both side surfaces thereof. The secondary air hole 10a for supplying a part of the combustion air A supplied from the blower (not shown) through the air supply duct 6 into the wind box 7 into the combustion cylinder 10 as the secondary combustion air A2 is provided. It is formed at regular intervals in the vertical direction.

噴射ノズル11は、図3に示す如く、横断面形状が先細り状に形成された縦長の入口部11aと、入口部11aに連設されて縦向きのスリット状の噴出通路を形成する縦長の噴出部11bと、入口部11aの開口側端に連設されたフランジ部11cとから成り、フランジ部11cが燃焼筒10の後端に当接し、噴出部11bの先端が燃焼筒10の先端側開口に位置する状態で燃焼筒10内の中心位置に配設されている。
又、噴射ノズル11の噴出部11bの先端部側両側面には、二次空気穴10aから燃焼筒10内に供給された二次燃焼用空気A2の一部を噴出部11bのスリット状の噴出通路内へ吸入するための縦長の吸入穴11dが縦方向に一定間隔ごとに形成されている。
更に、噴射ノズル11の噴出部11bの先端と燃焼筒10の先端との間には、二次空気穴10aから燃焼筒10内に供給された二次燃焼用空気A2の一部を前方へ噴出するスリット状の間隙が形成されていると共に、燃焼筒10体と噴射ノズル11との間に形成された二次燃焼用空気A2の流通路内には、整流板11eが縦方向に一定間隔ごとに配置されている。
As shown in FIG. 3, the injection nozzle 11 has a vertically long inlet portion 11a having a tapered cross-sectional shape and a vertically long discharge formed continuously with the inlet portion 11a to form a vertically oriented slit-like discharge passage. And a flange portion 11c connected to the opening side end of the inlet portion 11a. The flange portion 11c contacts the rear end of the combustion cylinder 10, and the tip of the ejection portion 11b is the opening on the front end side of the combustion cylinder 10. Is located at the center position in the combustion cylinder 10.
Further, on both side surfaces of the ejection portion 11b of the ejection nozzle 11, a part of the secondary combustion air A2 supplied into the combustion cylinder 10 from the secondary air hole 10a is ejected in a slit shape of the ejection portion 11b. A vertically long suction hole 11d for sucking into the passage is formed at regular intervals in the vertical direction.
Further, a part of the secondary combustion air A2 supplied into the combustion cylinder 10 from the secondary air hole 10a is ejected forward between the tip of the ejection part 11b of the injection nozzle 11 and the tip of the combustion cylinder 10. A slit-like gap is formed, and in the flow passage of the secondary combustion air A2 formed between the combustion cylinder 10 and the injection nozzle 11, a rectifying plate 11e is vertically arranged at regular intervals. Is arranged.

ガスマニホールド12は、図3に示す如く、先端部を尖らせた偏平な縦長のボックス状に形成されており、先端部側が噴射ノズル11の入口部11a内に挿入され、又、後端部側に燃料ガス供給源(図示省略)と接続される燃料ガス供給管(図示省略)が接続されている
このガスマニホールド12の先端部の両側面には、噴射ノズル11の入口部11a内面とガスマニホールド12の先端部外面との間に形成される一次燃焼用空気A1の流入路に交差する向きの燃料噴出孔12aが形成されている。
又、ガスマニホールド12は、その先端部外面と噴射ノズル11の入口部11a内面との間隙を燃料噴出孔12aからの燃料Gの噴出で一次燃焼用空気A1の吸引を効果的に行える距離をとって配置されている。
As shown in FIG. 3, the gas manifold 12 is formed in a flat and vertically long box shape with a sharpened tip, and the tip is inserted into the inlet 11 a of the injection nozzle 11, and the rear end side A fuel gas supply pipe (not shown) connected to a fuel gas supply source (not shown) is connected to the both sides of the tip of the gas manifold 12 on the inner surface of the inlet 11a of the injection nozzle 11 and the gas manifold. A fuel injection hole 12a is formed between the front end portion 12 and the outer surface of the front end portion 12 so as to intersect the inflow passage of the primary combustion air A1.
Further, the gas manifold 12 has a distance between the outer surface of its tip and the inner surface of the inlet 11a of the injection nozzle 11 at a distance that allows the primary combustion air A1 to be sucked effectively by the injection of the fuel G from the fuel injection hole 12a. Are arranged.

そして、前記バーナ5の近傍位置には、バーナ5から噴出された予混合気G′に着火させるパイロットバーナ13がそのパイロット炎をバーナ5の先端に臨むように設けられている。このパイロットバーナ13は、予混合気G′の着火後に停止されるものである。   A pilot burner 13 for igniting the premixed gas G ′ ejected from the burner 5 is provided in the vicinity of the burner 5 so that the pilot flame faces the tip of the burner 5. The pilot burner 13 is stopped after the premixed gas G ′ is ignited.

前記バーナ5によれば、送風機(図示省略)から空気供給ダクト6を経て風箱7内に供給された燃焼用空気Aの一部が一次燃焼用空気A1として噴射ノズル11の入口部11a内に流入し、燃料ガス供給管(図示省略)からガスマニホールド12に供給された燃料Gがガスマニホールド12の燃料噴出孔12aから噴射ノズル11の入口部11a内を流動している一次燃焼用空気A1内へ交差する状態で噴射されて燃料Gと一次燃焼用空気A1が混合され、この予混合気G′が噴射ノズル11の噴出部11b先端の開口から縦長薄膜状の形態で噴出されてパイロットバーナ13により着火されて燃焼し、縦長細幅の火炎Fを形成する。
又、このバーナ5によれば、風箱7内に供給された燃焼用空気Aの一部が燃焼筒10の二次空気穴10aから燃焼筒10内に二次燃焼用空気A2として流入し、燃焼筒10体と噴射ノズル11との間に形成された二次燃焼用空気A2の流通路内を燃焼筒10の先端開口へ向って流れて行き、その途中において一部の二次燃焼用空気A2が噴射ノズル11の吸入穴11dから噴射ノズル11内に吸入されて予混合気G′と混合され、残りの二次燃焼用空気A2が噴射ノズル11の噴出部11b先端と燃焼筒10の先端との間に形成されたスリット状の間隙から燃焼室S1内に噴射される。このバーナ5は、燃焼用空気Aを分割して燃料Gと多段混合させているため、燃焼初期の反応速度が抑えられて低NOx化を図ることができる。又、このバーナ5は、燃焼筒10内の二次燃焼用空気A2が噴射ノズル11の噴出部11b先端と燃焼筒10の先端との間に形成されたスリット状の間隙から噴射されるため、火炎Fの拡散が抑制されることになる。
According to the burner 5, a part of the combustion air A supplied from the blower (not shown) through the air supply duct 6 into the wind box 7 enters the inlet 11 a of the injection nozzle 11 as the primary combustion air A 1. The primary combustion air A1 in which the fuel G that flows in and is supplied to the gas manifold 12 from a fuel gas supply pipe (not shown) flows in the inlet 11a of the injection nozzle 11 from the fuel injection hole 12a of the gas manifold 12 The fuel G and the primary combustion air A1 are mixed in a state where they intersect with each other, and this premixed gas G ′ is ejected from the opening at the tip of the ejection portion 11b of the ejection nozzle 11 in the form of a vertically long thin film, and the pilot burner 13 Are ignited and burned to form a vertically long flame F.
Further, according to the burner 5, a part of the combustion air A supplied into the wind box 7 flows into the combustion cylinder 10 as the secondary combustion air A2 from the secondary air hole 10a of the combustion cylinder 10, The secondary combustion air A2 formed between the combustion cylinder 10 and the injection nozzle 11 flows in the flow path of the secondary combustion air A2 toward the tip opening of the combustion cylinder 10, and a part of the secondary combustion air is in the middle. A2 is sucked into the injection nozzle 11 from the suction hole 11d of the injection nozzle 11 and mixed with the premixed gas G ', and the remaining secondary combustion air A2 is supplied to the front end of the injection portion 11b of the injection nozzle 11 and the front end of the combustion cylinder 10. Is injected into the combustion chamber S1 through a slit-like gap formed between the two. Since the burner 5 divides the combustion air A and mixes it with the fuel G in a multistage manner, the reaction speed at the initial stage of combustion can be suppressed and NOx can be reduced. Further, the burner 5 is injected with the secondary combustion air A2 in the combustion cylinder 10 from a slit-like gap formed between the tip of the injection portion 11b of the injection nozzle 11 and the tip of the combustion cylinder 10. The diffusion of the flame F is suppressed.

以上のように構成された低NOx燃焼装置は、燃料Gとしてガス燃料Gを用い、これをバーナ5へ供給し、又、空気比が1.1〜1.2となるように流量制御される燃焼用空気Aをバーナ5へ供給して前記ガス燃料Gと混合させて燃焼させるようになっている。   The low NOx combustion apparatus configured as described above uses the gas fuel G as the fuel G, supplies it to the burner 5, and controls the flow rate so that the air ratio becomes 1.1 to 1.2. Combustion air A is supplied to the burner 5 to be mixed with the gas fuel G and burned.

前記低NOx燃焼装置によれば、バーナ5から噴出されたガス燃料Gと燃焼用空気Aの予混合気G′は、縦長薄膜状に高速で燃焼室S1内に噴射され、パイロットバーナ13により着火されて燃焼する。
このとき、バーナ5が、燃焼室S1の一端部に燃焼室S1の幅方向中央位置Lから偏芯させた位置に設けられ、予混合気G′を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射させていると共に、燃焼室S1の幅と高速で噴射する縦長薄膜状の予混合気G′の幅との比が25:1以上になるようにしているため、燃焼室S1内に形成された縦長薄膜状の火炎Fがコアンダ効果により偏芯させた側の燃焼室S1内の伝熱面に沿うように形成される。
According to the low NOx combustion apparatus, the premixed gas G ′ of the gas fuel G and the combustion air A ejected from the burner 5 is injected into the combustion chamber S1 at a high speed in the form of a vertically long thin film and ignited by the pilot burner 13. Burned.
At this time, the burner 5 is provided at one end portion of the combustion chamber S1 at a position eccentric from the center position L in the width direction of the combustion chamber S1, so that the premixed gas G ′ has an aspect ratio of 50: 1 or more. And a ratio of the width of the combustion chamber S1 to the width of the vertically long thin film premixed gas G ′ injected at a high speed is 25: 1 or more. Therefore, the vertically long thin film-like flame F formed in the combustion chamber S1 is formed along the heat transfer surface in the combustion chamber S1 on the side eccentric by the Coanda effect.

燃焼室S1内の伝熱面に沿って形成される火炎Fにおいては、噴射ノズル11近傍では、予混合気G′が火炎伝播速度を超える高速度で噴射されるために主流では炎が形成されず、流速の遅い側流から緩慢に火炎Fが伝播して行く、いわばブローオフ(吹き消え)寸前の燃焼である。
又、火炎Fは、縦長薄膜状で表面積の広い火炎Fであるために輻射放熱性が良く、然も、火炎Fが燃焼室S1の伝熱面に沿うことから接触放熱性も良く、これらによっても火炎Fの温度を抑えることができる。
更に、火炎Fが燃焼室S1の片方の水冷壁1面(伝熱面)に片寄ることにより、もう片方の水冷壁1面と火炎Fとの間の燃焼室S1空間には燃焼ガスの再循環流G″が発生する。この燃焼ガスの再循環流G″がバーナ5の先端部近傍に戻って主流と合流して燃焼を緩慢にする効果がある。
In the flame F formed along the heat transfer surface in the combustion chamber S1, in the vicinity of the injection nozzle 11, the premixed gas G 'is injected at a high speed exceeding the flame propagation speed, so that a flame is formed in the mainstream. In other words, the flame F slowly propagates from a side flow with a slow flow velocity, that is, combustion just before blow-off (blow-off).
Moreover, the flame F is a vertically long thin film-like flame F having a large surface area, and therefore has a good radiation heat dissipation property. However, since the flame F follows the heat transfer surface of the combustion chamber S1, the contact heat dissipation property is also good. Can also suppress the temperature of the flame F.
Further, when the flame F is shifted to one water cooling wall 1 (heat transfer surface) of the combustion chamber S1, the combustion gas is recirculated in the combustion chamber S1 space between the other water cooling wall 1 and the flame F. A flow G ″ is generated. This recirculation flow G ″ of the combustion gas returns to the vicinity of the tip of the burner 5 and joins with the main flow, which has the effect of slowing the combustion.

このように、低NOx燃焼装置においては、火炎Fの上流側では、高速噴射流であるが故に緩慢な燃焼が起こり、又、火炎Fの下流側では、高速噴射流であるが故に乱流度が高くなって燃焼ガスの混合促進が良くなり、COからCO2への変化を素早く完結できる効果がある。
従って、この低NOx燃焼装置では、燃料Gを空気比が1.1〜1.2の低空気比で燃やしても、火炎Fの上流側では、通常の予混合燃焼方式よりも燃焼速度を抑えることができるため、火炎Fの温度上昇が緩和されてサーマルNOxの発生を抑えることができ、又、火炎Fの下流側では、燃焼を素早く完結できるためにCOの残留を抑えることができる。
Thus, in the low NOx combustion apparatus, slow combustion occurs on the upstream side of the flame F because of the high-speed injection flow, and turbulence degree on the downstream side of the flame F because of the high-speed injection flow. As a result, the mixing of combustion gas is improved and the change from CO to CO 2 can be completed quickly.
Therefore, in this low NOx combustion apparatus, even if the fuel G is burned at a low air ratio of 1.1 to 1.2, the combustion speed is suppressed on the upstream side of the flame F as compared with the normal premixed combustion method. Therefore, the temperature rise of the flame F can be mitigated and the generation of thermal NOx can be suppressed, and the combustion can be completed quickly on the downstream side of the flame F, so that the residual CO can be suppressed.

そして、燃焼室S1内に発生した燃焼ガスは、燃焼室S1から熱交換室S2内に流入し、伝熱水管群4と両水冷壁1に接触しながら燃焼ガス通路内を下流側へ向かって流れ、その間に接触伝熱により両水冷壁1と伝熱水管群4を形成する複数の伝熱水管4aとに熱を与え、その後熱交換室S2に接続された煙道(図示省略)を通ってボイラ外部へ排出される。   Then, the combustion gas generated in the combustion chamber S1 flows into the heat exchange chamber S2 from the combustion chamber S1, and moves downstream in the combustion gas passage while contacting the heat transfer water tube group 4 and the both water cooling walls 1. In the meantime, heat is applied to both water cooling walls 1 and the plurality of heat transfer water tubes 4a forming the heat transfer water tube group 4 by contact heat transfer, and then passes through a flue (not shown) connected to the heat exchange chamber S2. Discharged outside the boiler.

図4のグラフは、本願発明の低NOx燃焼装置を用いた蒸気ボイラと本願発明のバーナと本件出願人が先に開発した従来の予混合燃焼方式を採用した蒸気ボイラの燃焼性能を比較したグラフである。尚、本願発明の低NOx燃焼装置を用いた蒸気ボイラと本願発明のバーナと従来の予混合燃焼方式を採用した蒸気ボイラは、同じ条件下で運転し、使用燃料Gには、天然ガス・LPGを使用した。
図4のグラフからも明らかなように、本願発明の低NOx燃焼装置を用いた蒸気ボイラと本願発明のバーナは、従来の予混合燃焼方式を採用した蒸気ボイラに比較してNOx及びCOの発生を大幅に抑制することができた。
The graph of FIG. 4 is a graph comparing the combustion performance of the steam boiler using the low NOx combustion apparatus of the present invention, the burner of the present invention, and the steam boiler employing the conventional premixed combustion system previously developed by the applicant. It is. The steam boiler using the low NOx combustion apparatus of the present invention, the burner of the present invention and the steam boiler adopting the conventional premixed combustion system are operated under the same conditions, and the fuel G used is natural gas / LPG. It was used.
As is apparent from the graph of FIG. 4, the steam boiler using the low NOx combustion apparatus of the present invention and the burner of the present invention generate NOx and CO as compared with the steam boiler adopting the conventional premixed combustion system. Was able to be greatly suppressed.

尚、上記の実施の形態に於いては、水冷壁1構造の伝熱面で燃焼室S1を形成するようにしたが、他の実施の形態に於いては、水冷ジャケット構造の伝熱面で燃焼室S1を形成するようにしても良い(図示省略)。   In the above-described embodiment, the combustion chamber S1 is formed by the heat transfer surface of the water-cooled wall 1 structure. In other embodiments, the heat transfer surface of the water-cooled jacket structure is used. The combustion chamber S1 may be formed (not shown).

本発明の実施の形態に係る低NOx燃焼装置の概略横断面図である。1 is a schematic cross-sectional view of a low NOx combustion apparatus according to an embodiment of the present invention. 同じく低NOx燃焼装置の一部切欠側面図である。It is a partially cutaway side view of the low NOx combustion apparatus. 低NOx燃焼装置のバーナを示し、(A)はバーナの横断面図、(B)はバーナの部分側面図である。The burner of a low NOx combustion apparatus is shown, (A) is a cross-sectional view of the burner, and (B) is a partial side view of the burner. 本願発明の低NOx燃焼装置を用いた蒸気ボイラと本願発明のバーナと本件出願人が先に開発した従来の予混合燃焼方式を採用した蒸気ボイラの燃焼性能を比較したグラフである。It is the graph which compared the combustion performance of the steam boiler which employ | adopted the conventional premixed combustion system which the steam boiler using the low NOx combustion apparatus of this invention, the burner of this invention, and this applicant developed previously.

符号の説明Explanation of symbols

1は水冷壁、1aは水管、1bはヒレ、5はバーナ、10は燃焼筒、11は噴射ノズル、11aは入口部、11bは噴出部、11dは吸入穴、12はガスマニホールド、Aは燃焼用空気、A1は一次燃焼用空気、A2は二次燃焼用空気、Fは火炎、Gは燃料、G′は予混合気、Lは燃焼室の幅方向中央位置、S1は燃焼室。   1 is a water cooling wall, 1a is a water pipe, 1b is a fin, 5 is a burner, 10 is a combustion cylinder, 11 is an injection nozzle, 11a is an inlet portion, 11b is an ejection portion, 11d is a suction hole, 12 is a gas manifold, and A is combustion Air for primary combustion, A1 for primary combustion, A2 for secondary combustion, F for flame, G for fuel, G 'for premixed gas, L for the center in the width direction of the combustion chamber, and S1 for the combustion chamber.

Claims (2)

複数の水管及びヒレから成る水冷壁構造の伝熱面又は水冷ジャケット構造の伝熱面で囲まれた横断面形状が長方形状の縦長の燃焼室と、燃焼室の一端部に燃焼室の幅方向中央位置から偏芯させた位置に設けられ、燃料と燃焼用空気の予混合気を燃焼室内に高速で噴射して燃焼させる縦長細幅のバーナとを具備した燃焼装置であって、前記バーナは、予混合気を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射すると共に、燃焼室の幅と高速で噴射する縦長薄膜状の予混合気の幅の比率を25:1以上とし、燃焼室内に形成された縦長薄膜状の火炎がコアンダ効果によりバーナを偏芯させた側の燃焼室の伝熱面に沿って形成されるようにしたことを特徴とする低NOx燃焼装置。 A vertically long combustion chamber surrounded by a heat transfer surface of a water cooling wall structure or a water cooling jacket structure consisting of a plurality of water pipes and fins, and a longitudinal direction of the combustion chamber at one end of the combustion chamber A combustion apparatus comprising a vertically long and narrow burner that is provided at a position eccentric from a central position and injects and burns a premixed mixture of fuel and combustion air into a combustion chamber at high speed, In addition, the premixed gas is injected in the form of a vertically thin film having an aspect ratio of 50: 1 or more and at a high speed of 50 m / sec or more, and the width of the combustion chamber and the width of the vertically mixed thin premixed gas to be injected at a high speed The ratio of the ratio is 25: 1 or more, and a vertically thin film-like flame formed in the combustion chamber is formed along the heat transfer surface of the combustion chamber on the side where the burner is eccentric due to the Coanda effect. A low NOx combustion device. 請求項1に記載の低NOx燃焼装置に用いるバーナであって、前記バーナは、先端を開放した縦長の偏平な長方体形状に形成されて燃焼用空気の一部が二次燃焼用空気として流入する燃焼筒と、横断面形状が先細り状に形成されて燃焼用空気の一部が一次燃焼用空気として流入する縦長の入口部及び入口部に連設されて縦向きのスリット状の噴出通路を形成すると共に先端部側両側面に燃焼筒内へ流入した二次燃焼用空気の一部を前記噴出通路内へ吸入する吸入穴を形成した縦長の噴出部を備え、前記噴出部先端が燃焼筒の先端側開口内に位置する状態で燃焼筒内に配設されると共に噴出部先端と燃焼筒先端との間に燃焼筒内へ供給された二次燃焼用空気の一部を前方へ噴出するスリット状の間隙を形成した予混合気の噴射ノズルと、噴射ノズルの入口部内に配設されて燃料を入口部内の一次燃焼用空気の流れに交差する状態で噴射するガスマニホールドとから成り、燃料と燃焼用空気の予混合気を縦横比が50:1以上になる縦長薄膜状の形態で且つ50m/sec以上の高速で噴射できる構成とし、また、燃焼室の幅と高速で噴射する縦長薄膜状の予混合気の幅の比率を25:1以上としたことを特徴とするバーナ。The burner used in the low NOx combustion apparatus according to claim 1, wherein the burner is formed in a vertically long and flat rectangular shape with an open end, and a part of the combustion air is used as secondary combustion air. An inflowing combustion cylinder, a longitudinal inlet portion in which a cross-sectional shape is tapered and a part of the combustion air flows in as primary combustion air, and a slit-like jet passage that is vertically connected to the inlet portion And a vertically long jet part formed with a suction hole for sucking a portion of the secondary combustion air that has flowed into the combustion cylinder into the jet passage on both side surfaces of the tip part, and the tip of the jet part burns A portion of the secondary combustion air that is disposed in the combustion cylinder in a state of being located in the opening on the tip end side of the cylinder and is supplied into the combustion cylinder between the tip of the ejection portion and the tip of the combustion cylinder is ejected forward A premixed gas injection nozzle formed with a slit-like gap and an injection nozzle And a gas manifold that injects fuel in a state intersecting with the flow of primary combustion air in the inlet, and has an aspect ratio of 50: 1 or more for the premixed mixture of fuel and combustion air The ratio of the width of the combustion chamber to the width of the premixed gas in the form of a vertically long thin film that is injected at a high speed is 25: 1 or more. A burner characterized by that.
JP2008187409A 2008-07-18 2008-07-18 Low NOx combustion apparatus and burner used therefor Active JP5103311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187409A JP5103311B2 (en) 2008-07-18 2008-07-18 Low NOx combustion apparatus and burner used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187409A JP5103311B2 (en) 2008-07-18 2008-07-18 Low NOx combustion apparatus and burner used therefor

Publications (2)

Publication Number Publication Date
JP2010025443A JP2010025443A (en) 2010-02-04
JP5103311B2 true JP5103311B2 (en) 2012-12-19

Family

ID=41731457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187409A Active JP5103311B2 (en) 2008-07-18 2008-07-18 Low NOx combustion apparatus and burner used therefor

Country Status (1)

Country Link
JP (1) JP5103311B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442402B (en) * 2018-10-11 2024-06-04 浙江力巨热能设备有限公司 Water-cooling premixed combustion method and device
KR102505403B1 (en) * 2022-05-03 2023-03-06 주식회사 대열보일러 Boiler system
KR102505405B1 (en) * 2022-05-03 2023-03-06 주식회사 대열보일러 Burner for boiler system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238254B2 (en) * 1972-11-15 1977-09-28
JP4808133B2 (en) * 2006-11-01 2011-11-02 株式会社タクマ Gas burner

Also Published As

Publication number Publication date
JP2010025443A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US6875009B2 (en) Combustion method and apparatus for NOx reduction
JP3358527B2 (en) Tubular flame burner
JP4808133B2 (en) Gas burner
JP5806550B2 (en) Gas burner
US7647898B2 (en) Boiler and low-NOx combustion method
US8118588B2 (en) Energy efficient low NOx burner and method of operating same
JP5386230B2 (en) Fuel burner and swirl combustion boiler
JP4551971B2 (en) Reactor using high temperature air combustion technology
JP5103311B2 (en) Low NOx combustion apparatus and burner used therefor
KR200448947Y1 (en) Low nitrogen oxide burner
EP2781834B1 (en) Oil-fired burner, solid fuel-fired burner unit and solid fuel-fired boiler
KR101025655B1 (en) Lean-rich burner
JP2008185240A (en) Thick and thin fuel combustion burner and combustion device using the same
JP5887430B2 (en) High temperature FGR ultra-low NOx combustion system using Coanda effect
JP2006349255A (en) Boiler
JP2016156530A (en) Combustion burner, boiler, and combustion method of fuel gas
CN209801465U (en) Premixing and staged combustion device
JP4664180B2 (en) Boiler equipment
WO2011030501A1 (en) Pulverized coal boiler
JP4069882B2 (en) boiler
JP3946574B2 (en) Air heat burner
JP2006292317A (en) Boiler and low-nox combustion method
JPWO2011055528A1 (en) Oxygen mixing equipment for oxyfuel boilers
JP4459112B2 (en) Burner apparatus and medium heating apparatus provided with the same
JP4167608B2 (en) Premixed gas combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5103311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250