JP5101627B2 - High yield ratio cold rolled steel sheet with excellent weather resistance - Google Patents

High yield ratio cold rolled steel sheet with excellent weather resistance Download PDF

Info

Publication number
JP5101627B2
JP5101627B2 JP2009541217A JP2009541217A JP5101627B2 JP 5101627 B2 JP5101627 B2 JP 5101627B2 JP 2009541217 A JP2009541217 A JP 2009541217A JP 2009541217 A JP2009541217 A JP 2009541217A JP 5101627 B2 JP5101627 B2 JP 5101627B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
yield ratio
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009541217A
Other languages
Japanese (ja)
Other versions
JP2010512460A (en
Inventor
ジャイ イク キム、
キー ジュ ジョン、
チョン ファ キム、
スー ヒー リー、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2010512460A publication Critical patent/JP2010512460A/en
Application granted granted Critical
Publication of JP5101627B2 publication Critical patent/JP5101627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は建築、鉄道車両、コンテナなどに使用される高強度耐候性冷延鋼板及びその製造方法に関するもので、より詳しくは、高降伏比の特性を有する高強度耐候性冷延鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength weather-resistant cold-rolled steel sheet used for construction, railway vehicles, containers and the like and a method for producing the same, and more specifically, a high-strength weather-resistant cold-rolled steel sheet having a high yield ratio and the production thereof. It is about the method.

従来より、コンテナまたは鉄道車両などの軽量化及び使用寿命の延長を目的としてステンレスまたはアルミニウムなどの素材が使われてきた。このような製品に要求される特性としては、曲げ加工性、溶接性、耐久性などが挙げられる。また、運送用構造物の場合、貨物の船積み及び積み置く時に衝撃を受ける場合が多いため、衝撃による変形を抑制する必要があり、このためには高降伏比を有する素材を適用することが好ましい。   Conventionally, materials such as stainless steel and aluminum have been used for the purpose of reducing the weight and extending the service life of containers and railway vehicles. Properties required for such products include bending workability, weldability, durability, and the like. Further, in the case of a structure for transportation, since it is often subjected to an impact when cargo is loaded and loaded, it is necessary to suppress deformation due to the impact. For this purpose, it is preferable to apply a material having a high yield ratio. .

降伏比(Yield−ratio)とは、引張試験から得られた材質値のうち降伏強度に対する引張強度の比と定義され、同一の引張強度レベルにおいて降伏比が高いとは、素材の降伏強度が高いということを意味する。即ち、高降伏比を有する鋼は、弾性領域の材質特性である降伏強度が高いことによって、衝撃を受けた場合にも変形に対する抵抗力が増加して、変形を抑制する能力が大きくなるものである。コンテナなどの用途に使用される場合、80%以上の降伏比を確保することが好ましく、特にコンテナなどは、輸送条件に従い海洋または陸上の多様な気候条件に耐えなければならないので、耐候性に優れた鋼の使用が要求されていた。   The yield ratio (Yield-ratio) is defined as the ratio of the tensile strength to the yield strength among the material values obtained from the tensile test. A high yield ratio at the same tensile strength level means that the yield strength of the material is high. It means that. That is, steel having a high yield ratio has a high yield strength, which is a material characteristic of the elastic region, so that the resistance to deformation increases even when subjected to an impact, and the ability to suppress deformation increases. is there. When used for applications such as containers, it is preferable to ensure a yield ratio of 80% or more. Especially, containers and the like have to withstand various marine or land climatic conditions according to transportation conditions, so they have excellent weather resistance. The use of steel was required.

一例として、従来には耐候性圧延鋼材であるSPA−C(工業規格KS−D3542及びJIS−G3125)が使用されてきたが、これら鋼は、引張強度が50kg/mm級と低いため、より大きい製品を製作する場合にそれ自体の重量による輸送費の上昇などが制約要因となった。また、自動車の構造部材用として引張強度60〜80kg/mm級の高強度冷延鋼材があるが、これら素材の場合も、強度特性を重視して製造することによって、目的とする耐候性を発揮することはできないという問題点があった。 As an example, the conventional a weatherproof rolled steel SPA-C (Industry Standard KS-D3542 and JIS-G3125) but have been used, these steels have a tensile strength as low as secondary 50 kg / mm, more When manufacturing a large product, the increase in transportation costs due to its own weight was a limiting factor. In addition, there are high strength cold-rolled steel materials with a tensile strength of 60 to 80 kg / mm 2 for automobile structural members, but in the case of these materials as well, by producing with an emphasis on strength characteristics, the desired weather resistance can be achieved. There was a problem that it could not be demonstrated.

最近、コンテナ産業においても原価節減及び環境問題に対応するために、コンテナ自体の重量を大きく減少させてより大きいコンテナを製作し、これによって輸送の効率性を大きく増加させるための試みが進行されている。特に、耐候性及び80kg/mm以上の高強度を有する鋼板に対する要求、及びこれら素材の製造方法に関する技術が提案されている。 Recently, in order to cope with cost saving and environmental problems in the container industry, attempts have been made to greatly reduce the weight of the container itself to produce a larger container, thereby greatly increasing the efficiency of transportation. Yes. In particular, a request for a steel sheet having a weather resistance and a high strength of 80 kg / mm 2 or more, and a technique relating to a method for manufacturing these materials have been proposed.

一例として、特許文献1では、C:0.008%以下、Si:0.5〜2.5%、Mn:0.1〜3.5%、P:0.03〜0.20%、S:0.01%以下、Cu:0.05〜2.0%、Al:0.005〜0.1%、及び、N:0.008%以下、Cr:0.05〜6.0%、Ni:0.05〜2.0%、及び、Mo:0.05〜3.0%、B:0.0003〜0.002%を含有する鋼を1100〜1300℃で加熱し、800〜950℃で圧延終了して400〜700℃で巻き取ることを特徴とする熱延鋼帯の製造方法を提案した。しかし、この技術においてごく一部の実施例のみ引張強度60〜70kg/mm級であり、ほとんどは引張強度50kg/mm級を示しているため、80kg/mm級の引張強度を確保することができない。また、成分構成要素の中でCr,Moなどの硬化能向上元素を多量に添加することによって溶接性が劣化して製造費用が上昇するという問題点があった。 As an example, in Patent Document 1, C: 0.008% or less, Si: 0.5 to 2.5%, Mn: 0.1 to 3.5%, P: 0.03 to 0.20%, S : 0.01% or less, Cu: 0.05 to 2.0%, Al: 0.005 to 0.1%, and N: 0.008% or less, Cr: 0.05 to 6.0%, Steel containing Ni: 0.05-2.0%, Mo: 0.05-3.0%, B: 0.0003-0.002% is heated at 1100-1300 ° C., 800-950 A method for producing a hot-rolled steel strip was proposed, characterized in that rolling was completed at ℃ and winding was performed at 400 to 700 ℃. However, it only a small portion of Example Tensile Strength 60~70kg / mm 2 class in the art, since the most exhibited a tensile strength of 50 kg / mm 2 class, to ensure 80 kg / mm 2 class tensile strength I can't. In addition, the addition of a large amount of a hardenability improving element such as Cr or Mo among the constituent components causes a problem that weldability deteriorates and manufacturing costs increase.

また、他の一例として、特許文献2では、C:0.15%以下、Si:0.7%以下、Mn:0.2〜1.5%、P:0.03〜0.15%、S:0.02%以下、Cu:0.4%以下、Al:0.01〜0.1%、Cr:0.1%以下、Ni:0.4〜4.0%、及び、Mo:0.1〜1.5%を含有する鋼を1050〜1300℃に加熱し、950℃以上で40%以上の熱間圧延を行った後、900〜750℃で圧延終了して空冷を行う方法を提案した。しかし、この場合においても引張強度はほとんど50kg/mm級でごく一部のみ60kg/mm級の引張特性を示し、この技術は主に引張強度50kg/mm級の鋼板に適用する技術と言うことができる。また、Pを0.03〜0.15%と多量に添加し、海水雰囲気においての耐食性を向上する効果について言及してはいるが、Pの多量添加は冷延材の中心偏析などを誘発して、鋼板の加工性を急激に落とすという問題点があった。 As another example, in Patent Document 2, C: 0.15% or less, Si: 0.7% or less, Mn: 0.2 to 1.5%, P: 0.03 to 0.15%, S: 0.02% or less, Cu: 0.4% or less, Al: 0.01-0.1%, Cr: 0.1% or less, Ni: 0.4-4.0%, and Mo: A method in which steel containing 0.1 to 1.5% is heated to 1050 to 1300 ° C., hot-rolled at 950 ° C. or more and 40% or more, and then rolled at 900 to 750 ° C. and air-cooled. Proposed. However, even in this case, the tensile strength is almost 50 kg / mm class 2 and only a part of it has a tensile characteristic of 60 kg / mm class 2. This technique is mainly applied to steel sheets with a tensile strength of 50 kg / mm class 2. I can say that. In addition, P is added in a large amount of 0.03 to 0.15% to mention the effect of improving the corrosion resistance in the seawater atmosphere. However, the addition of a large amount of P induces center segregation of cold-rolled material. As a result, there is a problem that the workability of the steel sheet is drastically lowered.

さらに、特許文献3では、C:0.02〜0.12%、Si:0.5%以下、Mn:0.1〜2.0%、P:0.07〜0.15%、S:0.02%以下、Cu:0.25〜0.55%以下、Al:0.01〜0.05%、Cr:0.3〜1.25%、N:0.006%以下、Ti:0.06〜0.20%を含有する鋼を12.1Xti,eff(%)/Mn(%)>1.0の範囲で制御し、1180℃以上で再加熱、880〜950℃で熱間圧延した後、650℃以下で巻き取る技術を提供している。この技術では析出物制御元素としてTiの含量をMn添加量に連携して添加している。しかし、この技術の実施例においても引張強度は60kg/mm級で、本発明で目標とする80kg/mm級よりは低い。 Furthermore, in Patent Document 3, C: 0.02 to 0.12%, Si: 0.5% or less, Mn: 0.1 to 2.0%, P: 0.07 to 0.15%, S: 0.02% or less, Cu: 0.25 to 0.55% or less, Al: 0.01~0.05%, Cr: 0.3~1.25%, N 2: 0.006% or less, Ti : Steel containing 0.06 to 0.20% is controlled in the range of 12.1X ti, eff (%) / Mn (%)> 1.0, and reheated at 1180 ° C. or higher, at 880 to 950 ° C. After hot rolling, a technique of winding at 650 ° C. or lower is provided. In this technique, the Ti content is added as a precipitate control element in conjunction with the Mn addition amount. However, the tensile strength in the examples of this technology is 60 kg / mm 2 class, lower than 80 kg / mm 2 class as a target in the present invention.

特開平07−207408号公報Japanese Patent Application Laid-Open No. 07-207408 特開平11−21622号公報Japanese Patent Laid-Open No. 11-21622 特開平06−104858号公報Japanese Patent Laid-Open No. 06-104858

従って、本発明では上記のような問題点を解決するために80kg/mm以上の高強度特性を有する耐候性と高降伏比特性を確保しようとする。 Therefore, in the present invention, in order to solve the above-described problems, it is intended to ensure weather resistance and high yield ratio characteristics having high strength characteristics of 80 kg / mm 2 or more.

上記目的を達成するための本発明の高降伏比型耐候性冷延鋼板は、重量%で、C:0.08〜0.20%、Si:0.1〜0.5%、Mn:0.9〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.02〜0.07%、Nb:0.03〜0.06%、Ni:0.05〜0.30%、Cu:0.2〜0.5%、Cr:0.3〜0.6%、B:0.001〜0.004%、Co:0.02〜0.08%を含有し、残りのFe及びその他不可避な不純物からなるものである。   In order to achieve the above object, the high yield ratio type weatherproof cold-rolled steel sheet of the present invention is C: 0.08-0.20%, Si: 0.1-0.5%, Mn: 0% by weight. .9-2.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.02-0.07%, Nb: 0.03-0.06%, Ni: 0.0. 05-0.30%, Cu: 0.2-0.5%, Cr: 0.3-0.6%, B: 0.001-0.004%, Co: 0.02-0.08% And the remaining Fe and other inevitable impurities.

上記冷延鋼板の引張強度は、80kg/mm以上であることが好ましい。 The cold-rolled steel sheet preferably has a tensile strength of 80 kg / mm 2 or more.

また、本発明の冷延鋼板製造方法は、重量%で、C:0.08〜0.20%、Si:0.1〜0.5%、Mn:0.9〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.02〜0.07%、Nb:0.03〜0.06%、Ni:0.05〜0.30%、Cu:0.2〜0.5%、Cr:0.3〜0.6%、B:0.001〜0.004%、Co:0.02〜0.08%を含有し、残りのFe及びその他不可避な不純物からなる鋼を1150〜1300℃で再加熱して850〜950℃の仕上げ圧延温度の条件で熱間圧延し、1秒当たり20〜40℃の冷却速度で冷却して500〜650℃の温度で巻き取った後、冷間圧延して500℃以上〜A変態点以下で連続焼鈍することを含んでなる。 Moreover, the cold-rolled steel plate manufacturing method of this invention is weight%, C: 0.08-0.20%, Si: 0.1-0.5%, Mn: 0.9-2.0%, P : 0.02% or less, S: 0.01% or less, Al: 0.02 to 0.07%, Nb: 0.03 to 0.06%, Ni: 0.05 to 0.30%, Cu: 0.2 to 0.5%, Cr: 0.3 to 0.6%, B: 0.001 to 0.004%, Co: 0.02 to 0.08%, the remaining Fe and others The steel consisting of inevitable impurities is reheated at 1150 to 1300 ° C., hot-rolled at a finish rolling temperature of 850 to 950 ° C., cooled at a cooling rate of 20 to 40 ° C. per second, and 500 to 650 ° C. after wound at a temperature, comprising to continuous annealing at 500 ° C. or higher to a 1 or less transformation point and cold rolling.

本発明によると、耐候性と機械的特性を同時に確保するとともに、高降伏比を得ることができ、衝撃抵抗性が要求される用途などの付加価置が高い鋼板を提供することができる。且つ、連続焼鈍作業が比較的低温領域で行われることにより、エネルギーの節減及び焼鈍作業性の改善効果も同時に得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while ensuring a weather resistance and a mechanical characteristic simultaneously, a high yield ratio can be obtained and the steel plate with high added value, such as a use as which impact resistance is requested | required, can be provided. In addition, since the continuous annealing operation is performed in a relatively low temperature region, energy saving and an improvement effect on the annealing workability can be obtained at the same time.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、多様な加工特性とともに耐候性を満たし、且つ、高強度の特性とともに高降伏比の特性を確保するための研究及び実験を重ねて本発明を完成した。本発明は、Cu−Coの耐候性成分系においてCr,B,Nbなどの添加量を制御して高強度の特性とともに高降伏比を確保するものである。   The inventors of the present invention have completed the present invention by repeating research and experiments for satisfying weatherability as well as various processing characteristics and ensuring high yield characteristics and high yield ratio characteristics. The present invention secures a high yield ratio as well as high strength characteristics by controlling the amount of addition of Cr, B, Nb, etc. in a weathering component system of Cu-Co.

Cは0.08〜0.20重量%(以下、単に%とする)であることが好ましい。   C is preferably 0.08 to 0.20% by weight (hereinafter simply referred to as%).

Cは、鋼板の強度向上のために添加される元素であって、添加量が増加するほど引張及び降伏強度は増加するが、過剰に添加されると、素材の加工性が低下するので、その上限は0.20%が好ましい。一方、C量が0.08%未満であると、析出強化効果が十分に得られないという問題がある。   C is an element added to improve the strength of the steel sheet, and the tensile and yield strength increases as the addition amount increases, but if added excessively, the workability of the material decreases, so that The upper limit is preferably 0.20%. On the other hand, if the C content is less than 0.08%, there is a problem that the precipitation strengthening effect cannot be obtained sufficiently.

Siは0.1〜0.5%であることが好ましい。   Si is preferably 0.1 to 0.5%.

Siは、溶鋼脱酸及び固溶強化の効果を提供し、且つ高温で鋼の表層にFeとともにFeSiOの緻密な酸化物を形成させて耐食性を向上させる役割もする元素であって、この効果を得るためには少なくとも0.1%以上を添加することが好ましい。従って、Siは耐候性向上のためには添加しなければならないが、過剰に添加されると、溶接性が低下するという問題があり、めっき性を落とすので、0.5%以下とすることが好ましい。 Si is an element that provides the effect of deoxidation and solid solution strengthening of molten steel, and also improves the corrosion resistance by forming a dense oxide of Fe 2 SiO 4 together with Fe on the surface layer of the steel at a high temperature, In order to obtain this effect, it is preferable to add at least 0.1% or more. Therefore, Si must be added to improve the weather resistance, but if added excessively, there is a problem that the weldability is lowered, and the plating property is lowered. preferable.

Mnは0.9〜2.0%であることが好ましい。   Mn is preferably 0.9 to 2.0%.

Mnは、固溶により強化させるのに効果的な元素であって、鋼の強度を高めて熱間加工性を向上させる重要な元素であるが、一方で、MnS形成による素材の軟性及び加工性を損なう元素でもある。Mnの含量が少ないと加工性には有利であるが、強度に問題があり、目標の強度を確保するためには0.9%以上を添加することが好ましい。これに対し、Mnが過剰に添加されると、高価の合金元素の多量添加による経済性の低下及び溶接性を損なうという問題点があるので、上限は2.0%が好ましい。   Mn is an effective element for strengthening by solid solution, and is an important element for improving the hot workability by increasing the strength of steel. On the other hand, the softness and workability of the material due to the formation of MnS. It is also an element that damages. A low Mn content is advantageous for workability, but there is a problem with strength, and 0.9% or more is preferably added in order to ensure the target strength. On the other hand, when Mn is added excessively, there is a problem that economic efficiency is deteriorated due to a large amount of expensive alloy elements added and weldability is impaired. Therefore, the upper limit is preferably 2.0%.

Pは0.02%以下であることが好ましい。   P is preferably 0.02% or less.

Pは、鋼の耐食性を向上させる役割をするので耐食性の側面では多量に添加されることが好ましいが、鋳造時に中心偏析を最も大きく起こす元素であるので、多量に添加すると溶接性及び靱性を低下させる要因となる。従って、その含量は0.02%以下に制限することが好ましい。   Since P plays a role of improving the corrosion resistance of steel, it is preferable to be added in a large amount in terms of corrosion resistance. However, P is the element that causes the largest segregation at the time of casting. It becomes a factor to make. Therefore, the content is preferably limited to 0.02% or less.

Sは0.01%以下であることが好ましい。   S is preferably 0.01% or less.

Sは、耐食性向上に効果的な元素として知られているが、鋼中のMnと結合して腐食開始点の役割をする非金属介在物を形成するので、できるだけその含量を減少させることが好ましい。従って、S含量は0.01%以下に限定し、より好ましくは0.005%以下である。   S is known as an element effective for improving the corrosion resistance, but forms non-metallic inclusions that act as a corrosion initiation point by combining with Mn in steel, so it is preferable to reduce its content as much as possible. . Accordingly, the S content is limited to 0.01% or less, and more preferably 0.005% or less.

Alは0.02〜0.07%であることが好ましい。   Al is preferably 0.02 to 0.07%.

Alは、一般的に溶鋼脱酸及び耐食性向上にも効果的な元素であるが、過剰に添加されると、鋼中の介在物量を増加させて加工性を低下するという問題点があるので、その含量を0.02〜0.07%に設定することが好ましい。   Al is generally an effective element for improving the deoxidation and corrosion resistance of molten steel, but when added in excess, there is a problem that the amount of inclusions in the steel is increased and workability is lowered. The content is preferably set to 0.02 to 0.07%.

Nbは0.03〜0.06%であることが好ましい。   Nb is preferably 0.03 to 0.06%.

Nbは、フェライトの再結晶を遅延させる効果だけでなく、鋼中のC,Nなどと結合して析出することによって鋼板の強度を上昇させる効果を有する元素であって、目標とする強度を確保するためには0.03%以上を添加することが好ましい。これに対し、Nbの添加量が0.06%を超過と、製造原価の上昇及び熱延作業性を低下させる要因となることがある。 Nb is not only an effect of delaying the recrystallization of ferrite, but also an element that has an effect of increasing the strength of the steel sheet by binding and precipitation with C, N 2, etc. in the steel. In order to ensure, it is preferable to add 0.03% or more. On the other hand, if the amount of Nb added exceeds 0.06%, it may cause an increase in manufacturing cost and a decrease in hot rolling workability.

Niは0.05〜0.3%であることが好ましい。   Ni is preferably 0.05 to 0.3%.

Niは、一般的にCu添加鋼において鋳造時に発生する鋳造割れを防止する役割だけでなく、耐食性を向上させる元素であって、このような効果を発揮するためには0.05%以上を添加することが好ましい。しかし、Niの含量が0.3%を超過すると、却って耐食性を悪くし、且つ高価の合金元素を過多使用することによって原価が上昇するようになる。   Ni is an element that not only plays a role in preventing casting cracks that generally occur during casting in Cu-added steel, but also improves corrosion resistance, and in order to exert such an effect, 0.05% or more is added. It is preferable to do. However, if the Ni content exceeds 0.3%, the corrosion resistance is worsened, and the cost increases due to excessive use of expensive alloy elements.

Cuは0.2〜0.5%であることが好ましい。   Cu is preferably 0.2 to 0.5%.

Cuは、腐食雰囲気において安定したさび層を形成して耐腐食性を向上させる元素であって、目標とする耐食性を確保するためには0.2%以上を添加することが好ましい。しかし、Cuの添加量が0.5%を超過すると、連鋳時に粒界割れの要因となり、且つ熱延鋼板の表面状態を粗くする恐れがある。   Cu is an element that improves the corrosion resistance by forming a stable rust layer in a corrosive atmosphere, and it is preferable to add 0.2% or more in order to ensure the target corrosion resistance. However, if the added amount of Cu exceeds 0.5%, it may cause grain boundary cracking during continuous casting and may roughen the surface state of the hot-rolled steel sheet.

Crは0.3〜0.6%であることが好ましい。   It is preferable that Cr is 0.3 to 0.6%.

Crは、Cuのように安定したさび層を形成させる役割をする元素であって、耐食性を確保して強度を得るためには0.3%以上を添加することが好ましい。また、Crの添加量が0.6%を超過すると、却って孔の腐食性を誘発する要因として作用し、且つ製造原価を急激に上昇させるようになる。   Cr is an element that plays a role of forming a stable rust layer like Cu, and 0.3% or more is preferably added in order to secure corrosion resistance and obtain strength. On the other hand, if the added amount of Cr exceeds 0.6%, it acts as a factor inducing the corrosiveness of the pores, and the manufacturing cost is rapidly increased.

Bは0.001〜0.004%であることが好ましい。   B is preferably 0.001 to 0.004%.

Bは、鋼の硬化能を向上させるだけでなく、フェライト相の再結晶を遅延させる元素であって、低温領域で目標とする強度レベルを得るためには0.001%以上を添加することが好ましい。これに対し、Bの含量が0.004%超過すると、焼入れ性の増加により、熱間圧延工程でベイナイトのような硬質相の生成を促進して冷間圧延性が確保できなくなる。   B is an element that not only improves the hardenability of the steel but also delays recrystallization of the ferrite phase, and 0.001% or more may be added to obtain a target strength level in a low temperature region. preferable. On the other hand, if the B content exceeds 0.004%, the hardenability is increased and the formation of a hard phase such as bainite is promoted in the hot rolling process, so that the cold rollability cannot be ensured.

Coは0.02〜0.08%であることが好ましい。   Co is preferably 0.02 to 0.08%.

Coは、鋼中耐食性を確保するために添加されるCu及びCrなどと反応して表面層腐食抑制生成物の形成を促進する元素であって、このような効果を得るためには少なくとも0.02%以上を添加することが好ましい。しかし、Coの添加量が0.08%超過すると、耐食性を向上させる効果よりは製造原価を上昇させる要因として作用するようになる。   Co is an element that promotes the formation of a surface layer corrosion inhibiting product by reacting with Cu and Cr added to ensure corrosion resistance in the steel. It is preferable to add 02% or more. However, if the added amount of Co exceeds 0.08%, it will act as a factor that increases the manufacturing cost rather than the effect of improving the corrosion resistance.

本発明の鋼は、上記の成分を含有しながら不可避な不純物と残りのFeからなるものである。必要に応じて耐候性鋼に特性を向上させる合金元素が添加されてもよく、本発明の実施例で説明していない合金元素が添加されたとしても本発明の範囲から除外されるものではない。   The steel of the present invention is composed of inevitable impurities and the remaining Fe while containing the above components. Alloy elements that improve the properties may be added to the weather resistant steel as needed, and even if alloy elements not described in the examples of the present invention are added, they are not excluded from the scope of the present invention. .

本発明の冷延鋼板は、高強度とともに高降伏比特性を有するものである。本発明の一実施例によると、引張強度は80kg/mm以上であればよく、例えば略80〜110kg/mm程度の引張強度を有するものである。降伏比は80%以上であればよく、例えば略85〜94%である。また、軟性は10%以上の特性を有する。 The cold-rolled steel sheet of the present invention has high strength and high yield ratio characteristics. According to an embodiment of the present invention, the tensile strength may be at 80 kg / mm 2 or more, for example those having a substantially 80 to 110 kg / mm 2 approximately tensile strength. The yield ratio may be 80% or more, for example, approximately 85 to 94%. The softness has a characteristic of 10% or more.

このような特性は、上記の成分系を満足しながら、後述する本願発明の低温焼鈍により得られるものである。低温焼鈍により圧延変形粒の全てが回復せずに一部が微細組織に存在するようになる。本発明の微細組織は、フェライトまたはフェライトとパーライトの混粒組織であってもよく、これに制限されるものではない。   Such characteristics are obtained by low-temperature annealing of the present invention described later while satisfying the above component system. By low temperature annealing, all of the rolling deformation grains are not recovered and a part of them is present in the microstructure. The microstructure of the present invention may be ferrite or a mixed grain structure of ferrite and pearlite, and is not limited thereto.

以下、本発明の冷延鋼板の製造方法について説明する。   Hereinafter, the manufacturing method of the cold-rolled steel sheet of this invention is demonstrated.

上記のように組成された鋼を製造する方法について一実施例によって具体的に説明する。上記の化学組成を有する鋼は、1150〜1300℃で再加熱して仕上げ熱間圧延を850〜950℃で行い、20〜40℃/秒の冷却速度で冷却して500〜650℃で巻き取った後、冷延及び熱処理時に500〜A変態点以下の温度で連続焼鈍することによって耐候性に優れた引張強度80kg/mm以上の高降伏比型冷延鋼板を製造する方法に関するものである。 The method for producing the steel having the above composition will be specifically described with reference to an example. The steel having the above chemical composition is reheated at 1150 to 1300 ° C., finish hot rolled at 850 to 950 ° C., cooled at a cooling rate of 20 to 40 ° C./second, and wound at 500 to 650 ° C. and then, it relates to a method of producing a superior tensile strength 80 kg / mm 2 or more high yield ratio cold rolled steel sheet in weather resistance by continuous annealing at a temperature 500~A 1 transformation point during cold rolling and heat treatment is there.

再加熱温度が1150℃未満であると、鋳造時に形成された凝固組織の破壊が不十分で中心偏析がよく発達されるので、最終形成された結晶粒の混粒が発生され加工性及び衝撃靱性が著しく低下される。また、再加熱温度が1300℃を超えると、酸化によるスケール形成が促進され、スラブの厚さの減少量が大きく、再加熱時に結晶粒の粗大化により衝撃靱性が低下するという短所があり、加熱原単位の上昇による経済的な損失が大きいので、管理範囲は1150〜1300℃に限定する。   If the reheating temperature is less than 1150 ° C, the solidified structure formed at the time of casting is not sufficiently broken and the center segregation is well developed, so that the final formed crystal grains are generated, and the workability and impact toughness are increased. Is significantly reduced. In addition, when the reheating temperature exceeds 1300 ° C., the scale formation due to oxidation is promoted, the amount of decrease in the thickness of the slab is large, and the impact toughness is reduced due to the coarsening of crystal grains during the reheating, Since the economic loss due to the increase in the basic unit is large, the management range is limited to 1150 to 1300 ° C.

仕上げ熱延温度が950℃よりも高いと、厚さ全般にわたって均一な熱間圧延ができず、結晶粒の微細化が不十分となり、これによって結晶粒の粗大化に起因した衝撃靱性の低下が現れる。これに対し、仕上げ熱延温度850℃未満では、低温領域で熱間圧延が仕上げられるようになり、結晶粒の混粒化が急激に進行されて耐食性及び加工性の低下をもたらすので、仕上げ熱延温度を850〜950℃に制限することが好ましい。   When the finish hot rolling temperature is higher than 950 ° C., uniform hot rolling cannot be performed over the entire thickness, and the refinement of the crystal grains becomes insufficient, thereby reducing the impact toughness due to the coarsening of the crystal grains. appear. On the other hand, when the finish hot rolling temperature is less than 850 ° C., the hot rolling is finished in a low temperature region, and the mixing of crystal grains proceeds rapidly, resulting in a decrease in corrosion resistance and workability. It is preferable to limit the rolling temperature to 850 to 950 ° C.

上記のように熱間圧延した後の冷却工程において、冷却温度は20〜40℃が好ましい。即ち、仕上げ熱延後にランアウトテーブル(ROT、Run−out−table)での冷却速度が1秒当たり20℃未満であると、結晶粒成長の促進により相対的に粗大結晶粒が形成されて強度低下の要因となるので、下限を1秒当たり20℃とすることが好ましい。これに対し、冷却速度が1秒当たり40℃超過すると、ベイナイトのような硬い第2相を形成して冷間圧延性を著しく落とすので、冷却速度は1秒当たり20〜40℃に設定することが好ましい。   In the cooling step after hot rolling as described above, the cooling temperature is preferably 20 to 40 ° C. That is, if the cooling rate on the run-out table (ROT, Run-out-table) is less than 20 ° C. per second after finishing hot rolling, relatively coarse crystal grains are formed due to the promotion of crystal grain growth, resulting in a decrease in strength. Therefore, the lower limit is preferably 20 ° C. per second. On the other hand, if the cooling rate exceeds 40 ° C. per second, a hard second phase such as bainite is formed and the cold rolling property is remarkably lowered, so the cooling rate should be set to 20 to 40 ° C. per second. Is preferred.

上記のように冷却した後の巻き取り工程において、巻き取り温度は500〜650℃が好ましい。熱延巻き取り温度が650℃超過すると、十分な析出効果が得られないため、素材強度が減少して目標の強度である80kg/mmを安定して確保することが困難である。これに対し、500℃未満の巻き取り温度では、冷却及び維持する間に硬質相が生成されて、冷間圧延工程で圧延機のロールフォース(Roll force)が上昇することによって圧延性を確保することができないという問題点があるため、巻き取り温度の管理範囲を500〜650℃に限定することが好ましい。 In the winding process after cooling as described above, the winding temperature is preferably 500 to 650 ° C. When the hot rolling coiling temperature exceeds 650 ° C., a sufficient precipitation effect cannot be obtained, so that it is difficult to stably secure the target strength of 80 kg / mm 2 by reducing the material strength. On the other hand, at a coiling temperature of less than 500 ° C., a hard phase is generated during cooling and maintenance, and rollability of the rolling mill is increased in the cold rolling process to ensure rollability. Therefore, it is preferable to limit the control range of the coiling temperature to 500 to 650 ° C.

熱間圧延が終了した素材は、通常の冷間圧延条件で圧延を行い連続焼鈍工程を経るようになる。この際、目標とする材質特性を確保するためには焼鈍温度を適切に管理する必要がある。連続焼鈍工程において、焼鈍温度が500℃よりも低いと、冷間圧延時の変形粒がそのまま残っており、軟性が急激に落ちるので加工性が低下するという問題点がある。これに対し、A変態点以上の焼鈍温度では、焼鈍後の冷却時に変態によりマルテンサイト相が形成されて降伏強度が低下して降伏比が60%以下と低くなり、変形に対する抵抗性が確保できなかったため焼鈍温度の上限線はA変態点にすることが好ましい。本発明では、低温焼鈍により冷延鋼板に圧延変形粒を一部残存させることができる。 The material that has been hot-rolled is rolled under normal cold rolling conditions and undergoes a continuous annealing process. At this time, it is necessary to appropriately manage the annealing temperature in order to ensure the target material characteristics. In the continuous annealing step, if the annealing temperature is lower than 500 ° C., there is a problem that deformed grains during cold rolling remain as they are, and the softness is drastically lowered, so that workability is lowered. In contrast, in the A 1 transformation point or more annealing temperature, the yield strength martensite phase is formed by transformation during the cooling after annealing the yield ratio is lowered to 60% or less reduced resistance to deformation to ensure the upper limit line for that could not be annealing temperature is preferably set to a 1 transformation point. In the present invention, some of the rolling deformation grains can remain on the cold-rolled steel sheet by low-temperature annealing.

以下、実施例によって本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1のように組成された鋼に対し、規格化された腐食抵抗指数(CI)値に対する評価及び耐候性試験を行った後、その評価結果を[表2]に示した。耐候性試験は、30℃の5%塩水(NaCl溶液)の条件で480時間の間塩水噴霧試験(SST、Salt Spray Test)を行った結果である。ここで、腐食抵抗指数(CI)は、ASTM G101に規定された耐候性関連評価指数であって、この値が高いほど鋼の耐候性は良いものと知られており、これは主に合金元素に基づいて算出した指数として次のように定義される。 After evaluating the standardized corrosion resistance index (CI) value and the weather resistance test on the steel having the composition as shown in Table 1, the evaluation results are shown in [Table 2]. The weather resistance test is a result of conducting a salt spray test (SST, Salt Spray Test) for 480 hours under conditions of 5% salt water (NaCl solution) at 30 ° C. Here, the corrosion resistance index (CI) is a weather resistance related evaluation index defined in ASTM G101, and it is known that the higher this value is, the better the weather resistance of the steel is. The index calculated based on is defined as follows.

即ち、腐食抵抗指数(CI)=26.01(%Cu)+ 3.88(%Ni)+1.2(%Cr)+1.49(%Si)+17.28(%P)−7.29(%Cu)(%Ni)−9.10(%Ni)(%P)−33.39(%Cu) That is, corrosion resistance index (CI) = 26.11 (% Cu) +3.88 (% Ni) +1.2 (% Cr) +1.49 (% Si) +17.28 (% P) −7.29 ( % Cu) (% Ni) -9.10 (% Ni) (% P) -33.39 (% Cu) 2

Figure 0005101627
Figure 0005101627

Figure 0005101627
Figure 0005101627

表2に示したように、比較鋼2は、腐食抵抗指数は低く腐食減量が大きいため耐候性の側面では適用することが困難であり、比較鋼3及び比較鋼4は、CI値も多少高かったが、塩水噴霧試験による腐食減量が0.030g/cm以上と耐候性が低くなった。これに対し、発明鋼1と2及び比較鋼1は、腐食減量と腐食抵抗指数の側面で優れた耐候性を示した。 As shown in Table 2, the comparative steel 2 is difficult to apply in terms of weather resistance because the corrosion resistance index is low and the corrosion weight loss is large, and the comparative steel 3 and the comparative steel 4 have slightly higher CI values. However, the corrosion weight loss by the salt spray test was 0.030 g / cm 2 or more, and the weather resistance was low. In contrast, invention steels 1 and 2 and comparative steel 1 showed excellent weather resistance in terms of corrosion weight loss and corrosion resistance index.

実施例1の表1において発明鋼1と2及び比較鋼1〜4を用いて、表3のような条件で作業し冷延鋼板を製造した後、それぞれの素材に対して機械的性質及び加工特性を評価した結果を表4に示した。   In Table 1 of Example 1, the inventive steels 1 and 2 and comparative steels 1 to 4 were used to manufacture cold-rolled steel sheets under the conditions shown in Table 3, and then mechanical properties and processing for each material. The results of evaluating the characteristics are shown in Table 4.

Figure 0005101627
Figure 0005101627

Figure 0005101627
Figure 0005101627

表4に示したように、化学成分及び製造条件が本発明方法の範囲を満たす発明材1〜4の場合、引張強度80kgf/mm以上、降伏比80%以上、軟性10%以上を確保することができ、バンディング加工時にも加工割れを発生することなく、高強度を有する高降伏比型耐候性鋼を製造することができた。 As shown in Table 4, in the case of invention materials 1 to 4 whose chemical components and production conditions satisfy the scope of the method of the present invention, a tensile strength of 80 kgf / mm 2 or more, a yield ratio of 80% or more, and a softness of 10% or more are ensured. It was possible to produce high-yield-ratio-type weathering steel having high strength without causing cracks during banding.

一方、発明鋼の化学組成範囲を満たしているが、製造条件で発明の範囲から外れた比較材1〜5は目標の特性を得ることができなかった。即ち、焼鈍温度が本発明よりも高い比較材2及び比較材5の場合、引張強度基準は満たしたが、焼鈍温度が高いことによって、冷却段階での変態により生成された第2相によって、降伏強度が低くなって降伏比70%以下を示した。即ち、目標とする80%以上の降伏比を得ることができず、変形抵抗性が落ちるという問題点があった。   On the other hand, although the chemical composition range of invention steel was satisfy | filled, the comparative materials 1-5 which remove | deviated from the range of invention with manufacturing conditions were not able to obtain the target characteristic. That is, in the case of the comparative material 2 and the comparative material 5 whose annealing temperature is higher than that of the present invention, the tensile strength criterion is satisfied, but the yield is caused by the second phase generated by the transformation in the cooling stage due to the high annealing temperature. The strength was lowered, and the yield ratio was 70% or less. That is, there is a problem that the target yield ratio of 80% or more cannot be obtained and the deformation resistance is lowered.

焼鈍温度が発明範囲よりも低い比較材4の場合、冷間圧延時に生成された変形粒がほとんど残っており、軟性及びバンディング加工性を確保することができなかった。また、熱延仕上げ温度及び巻き取り温度が本発明の範囲から外れた比較材1、及び冷却速度が発明範囲よりも高い比較材3の場合も軟性5%未満と適切な加工性を確保することができなかった。   In the case of the comparative material 4 having an annealing temperature lower than the range of the invention, almost all of the deformed grains generated during the cold rolling remained, and the softness and banding workability could not be ensured. Also, in the case of the comparative material 1 whose hot rolling finishing temperature and winding temperature are out of the scope of the present invention and the comparative material 3 whose cooling rate is higher than the scope of the present invention, the softness is less than 5% and appropriate workability is ensured. I could not.

MnとCrなどが本発明組成から外れているが、耐候性が比較的優れた比較鋼1に対し製造条件を本発明の範囲とした場合(比較材7)、軟性及び加工性を確保することが困難であった。さらに、軟性及び加工性を確保するために焼鈍温度を上げると、複合組織が生成されて降伏強度が低くなり、80%以上の降伏比を得ることができなかった。   Although Mn and Cr are not included in the composition of the present invention, when the production conditions are within the scope of the present invention for the comparative steel 1 having relatively excellent weather resistance (Comparative material 7), the flexibility and workability should be ensured. It was difficult. Furthermore, when the annealing temperature was raised to ensure softness and workability, a composite structure was generated, yield strength was lowered, and a yield ratio of 80% or more could not be obtained.

化学組成が本発明鋼の組成範囲から外れて耐候性においても確保できなかった比較鋼2〜3に対し製造条件変更試験を行った場合(比較材8〜11)も、表4から明らかなように加工性及び材質の適正範囲が設定できないことが分かった。   It is clear from Table 4 when the production conditions change test was performed on the comparative steels 2 to 3 whose chemical composition was out of the composition range of the steel of the present invention and could not be secured even in the weather resistance (comparative materials 8 to 11). It was found that the appropriate range of workability and material could not be set.

Claims (3)

重量%で、C:0.08〜0.20%、Si:0.1〜0.5%、Mn:0.9〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.02〜0.07%、Nb:0.03〜0.06%、Ni:0.05〜0.30%、Cu:0.2〜0.5%、Cr:0.3〜0.6%、B:0.001〜0.004%、Co:0.02〜0.08%を含有し、残りのFe及びその他不可避な不純物からなる高降伏比型耐候性冷延鋼板。  % By weight, C: 0.08 to 0.20%, Si: 0.1 to 0.5%, Mn: 0.9 to 2.0%, P: 0.02% or less, S: 0.01 %: Al: 0.02 to 0.07%, Nb: 0.03 to 0.06%, Ni: 0.05 to 0.30%, Cu: 0.2 to 0.5%, Cr: 0 .3 to 0.6%, B: 0.001 to 0.004%, Co: 0.02 to 0.08%, consisting of the remaining Fe and other unavoidable impurities Rolled steel sheet. 前記冷延鋼板の引張強度は、80kg/mm以上であることを特徴とする請求項1に記載の高降伏比型耐候性冷延鋼板。The tensile strength of the cold-rolled steel sheet is 80 kg / mm 2 or more, The high yield ratio type weather-resistant cold-rolled steel sheet according to claim 1. 重量%で、C:0.08〜0.20%、Si:0.1〜0.5%、Mn:0.9〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.02〜0.07%、Nb:0.03〜0.06%、Ni:0.05〜0.30%、Cu:0.2〜0.5%、Cr:0.3〜0.6%、B:0.001〜0.004%、Co:0.02〜0.08%を含有し、残りのFe及びその他不可避な不純物からなる鋼を1150〜1300℃で再加熱して850〜950℃の仕上げ圧延温度の条件で熱間圧延し、1秒当たり20〜40℃の冷却速度で冷却して500〜650℃の温度で巻き取った後、冷間圧延して500℃以上〜A変態点以下で連続焼鈍する高降伏比型冷延鋼板の製造方法。% By weight, C: 0.08 to 0.20%, Si: 0.1 to 0.5%, Mn: 0.9 to 2.0%, P: 0.02% or less, S: 0.01 %: Al: 0.02 to 0.07%, Nb: 0.03 to 0.06%, Ni: 0.05 to 0.30%, Cu: 0.2 to 0.5%, Cr: 0 3 to 0.6%, B: 0.001 to 0.004%, Co: 0.02 to 0.08%, and the steel composed of the remaining Fe and other inevitable impurities at 1150 to 1300 ° C Reheat and hot-roll at a finish rolling temperature of 850 to 950 ° C, cool at a cooling rate of 20 to 40 ° C per second, wind up at a temperature of 500 to 650 ° C, and then cold-roll. high yield ratio-type production method of a cold-rolled steel sheet to continuous annealing at 500 ° C. or higher to a 1 transformation point Te.
JP2009541217A 2006-12-12 2007-12-10 High yield ratio cold rolled steel sheet with excellent weather resistance Expired - Fee Related JP5101627B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020060126488A KR100815799B1 (en) 2006-12-12 2006-12-12 Cold-rolled steel sheet with high yield ratio and excellent weather resistance
KR10-2006-0126488 2006-12-12
PCT/KR2007/006405 WO2008072866A1 (en) 2006-12-12 2007-12-10 Cold-rolled steel sheet with high yield ratio and excellent weather resistance

Publications (2)

Publication Number Publication Date
JP2010512460A JP2010512460A (en) 2010-04-22
JP5101627B2 true JP5101627B2 (en) 2012-12-19

Family

ID=39411342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009541217A Expired - Fee Related JP5101627B2 (en) 2006-12-12 2007-12-10 High yield ratio cold rolled steel sheet with excellent weather resistance

Country Status (4)

Country Link
JP (1) JP5101627B2 (en)
KR (1) KR100815799B1 (en)
CN (1) CN101558178B (en)
WO (1) WO2008072866A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068328A2 (en) * 2009-12-04 2011-06-09 주식회사 포스코 Cold rolled steel sheet for processing with excellent heat resistance, and preparation method thereof
CN103266274B (en) * 2013-05-22 2015-12-02 宝山钢铁股份有限公司 A kind of superhigh intensity cold rolling weather resisting steel plate and manufacture method thereof
CN104419878B (en) * 2013-09-05 2017-03-29 鞍钢股份有限公司 Superhigh intensity cold rolling dual phase steel with weatherability and its manufacture method
CN104419877B (en) * 2013-09-05 2017-04-05 鞍钢股份有限公司 A kind of cold rolling martensite steel with weatherability and its manufacture method
KR101518578B1 (en) * 2013-09-10 2015-05-07 주식회사 포스코 Steel for complex corrosion resistance to hydrochloric acid and sulfuric acid having excellent wear resistance and surface qualities and method for manufacturing the same
KR101585739B1 (en) * 2013-12-25 2016-01-14 주식회사 포스코 Cold rolled steel sheet having high yield ratio and excelent impact property and method for manufacturing the same
US10435762B2 (en) 2014-03-31 2019-10-08 Jfe Steel Corporation High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
CN105274432B (en) * 2014-06-11 2017-04-26 鞍钢股份有限公司 600 MPa grade high-yield-ratio high-plasticity cold-rolled steel plate and manufacturing method thereof
KR101611762B1 (en) * 2014-12-12 2016-04-14 주식회사 포스코 Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same
CN116200662B (en) * 2023-02-07 2023-08-15 安徽工业大学 Tempered high-performance bridge weathering steel with low yield ratio and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063981A (en) * 1998-08-20 2000-02-29 Nippon Steel Corp Atmosphere corrosion resisting steel showing blackish color tone from initial stage of rusting and excellent in external appearance characteristic and stability of color tone
KR100371960B1 (en) * 2000-09-29 2003-02-14 주식회사 포스코 High atmosphere corrosion resting and workability hot rolled strip having tensile strength of 60 kg/㎟ and method for manufacturing it
JP3817152B2 (en) * 2000-10-06 2006-08-30 新日本製鐵株式会社 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
TWI290177B (en) 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP3895986B2 (en) * 2001-12-27 2007-03-22 新日本製鐵株式会社 High-strength steel plate excellent in weldability and hole expansibility and method for producing the same
JP3940301B2 (en) * 2002-02-27 2007-07-04 新日本製鐵株式会社 Blasting weathering high-strength steel plate with excellent bending resistance and method for producing the same
JP4486336B2 (en) * 2003-09-30 2010-06-23 新日本製鐵株式会社 High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof
JP4507668B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 Manufacturing method of high corrosion resistant steel
CN1302143C (en) * 2004-06-30 2007-02-28 宝山钢铁股份有限公司 Steel capable of resisting CO2 and chlorine ion corrosion and for petroleum drilling rod
JP4586489B2 (en) * 2004-10-22 2010-11-24 住友金属工業株式会社 Steel and structures with excellent beach weather resistance
JP4844197B2 (en) * 2006-03-30 2011-12-28 住友金属工業株式会社 Manufacturing method of steel material with excellent weather resistance and paint peeling resistance

Also Published As

Publication number Publication date
WO2008072866A1 (en) 2008-06-19
JP2010512460A (en) 2010-04-22
KR100815799B1 (en) 2008-03-20
CN101558178B (en) 2011-05-25
CN101558178A (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP5101627B2 (en) High yield ratio cold rolled steel sheet with excellent weather resistance
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
KR101069968B1 (en) High strength hot-rolled steel sheet having exceelent impact resistance and paintability and method for manufacturing the same
JP5402191B2 (en) Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
KR101758567B1 (en) Clad steel sheet having superior strength and formability, and method for manufacturing the same
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP5564432B2 (en) High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
KR101256523B1 (en) Method for manufacturing low yield ratio type high strength hot rolled steel sheet and the steel sheet manufactured thereby
KR20160078840A (en) High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same
KR100957974B1 (en) High Managese Steel Plate, Hot Rolled Steel Plate, Cold Rolled Steel Plate, Galvanized Steel Plate Having Excellent Hole Expansibility and Manufacturing Method Thereof
JP5101628B2 (en) High-strength cold-rolled steel sheet excellent in weather resistance and workability and method for producing the same
KR101439613B1 (en) The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same
KR20150075307A (en) Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
KR101038826B1 (en) High Strength Hot-Rolled Steel Sheet Having Excellent Weather Resistance and Impact Resistance, and Manufacturing Method Thereof
JP5764498B2 (en) High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
KR101778404B1 (en) Clad steel sheet having excellent strength and formability, and method for manufacturing the same
KR100925639B1 (en) High strength cold-rolled steel sheet having excellent weather resistance and method manufacturing the Same
KR101786262B1 (en) Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same
JPH06104858B2 (en) Method for producing high strength weather resistant hot rolled steel sheet
JP7332692B2 (en) High-strength structural steel and its manufacturing method
KR101657801B1 (en) Steel sheet having excellent strength and ductility and manufacturing method for the same
KR20020040213A (en) A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/㎟ GRADE WITH EXCELLENT WEATHER RESISTANCE AND WORKABILITY
CN115418566B (en) Manufacturing method of low-cost high-P weather-resistant steel
KR100958002B1 (en) Formable High Strength Cold-Rolled Steel Sheet With Weather Resistance And Method Manufacturing The Same
KR20090020360A (en) High strength cold-rolled steel sheet having exellent dent resistance and weatherability and manufacturing thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees