JP5100001B2 - Epoxy resin composition for fiber reinforced composite materials - Google Patents

Epoxy resin composition for fiber reinforced composite materials Download PDF

Info

Publication number
JP5100001B2
JP5100001B2 JP2005355655A JP2005355655A JP5100001B2 JP 5100001 B2 JP5100001 B2 JP 5100001B2 JP 2005355655 A JP2005355655 A JP 2005355655A JP 2005355655 A JP2005355655 A JP 2005355655A JP 5100001 B2 JP5100001 B2 JP 5100001B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
reinforced composite
fiber
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005355655A
Other languages
Japanese (ja)
Other versions
JP2007161738A5 (en
JP2007161738A (en
Inventor
陽平 三輪
学 金子
常希 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2005355655A priority Critical patent/JP5100001B2/en
Publication of JP2007161738A publication Critical patent/JP2007161738A/en
Publication of JP2007161738A5 publication Critical patent/JP2007161738A5/ja
Application granted granted Critical
Publication of JP5100001B2 publication Critical patent/JP5100001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、スポーツ用途、航空宇宙用途、一般産業用途に好適に使用することのできる繊維強化複合材料用エポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition for fiber-reinforced composite materials that can be suitably used for sports applications, aerospace applications, and general industrial applications.

強化繊維とエポキシ樹脂組成物とからなる繊維強化複合材料は、スポーツ用途をはじめ、航空宇宙用途、一般産業用途に広く用いられている。近年、伸度1.5%以上の高伸度炭素繊維も開発されているが、これを、硬化物が高い伸度を発現するエポキシ樹脂組成物と組み合わせることにより高い破壊伸度を有する繊維強化複合材料の開発も期待される。
ところがエポキシ樹脂組成物は、一般にその硬化物が脆く、靭性が低いことが欠点であり、このようなエポキシ樹脂組成物を用いても高伸度炭素繊維の特性を十分に生かすことができない。
BACKGROUND ART Fiber reinforced composite materials composed of reinforced fibers and epoxy resin compositions are widely used for sports applications, aerospace applications, and general industrial applications. In recent years, high-strength carbon fibers with an elongation of 1.5% or more have also been developed, but this is combined with an epoxy resin composition in which the cured product exhibits high elongation, thereby reinforcing the fiber reinforced with high fracture elongation. Development of composite materials is also expected.
However, epoxy resin compositions generally have disadvantages that their cured products are brittle and have low toughness, and even when such epoxy resin compositions are used, the characteristics of high elongation carbon fibers cannot be fully utilized.

エポキシ樹脂組成物の硬化物の破壊伸度を向上させる方法として、
1)硬化物中の架橋密度を低下する、
2)熱可塑性樹脂を配合し、柔軟性を付与する方法が知られている。しかし、1)、2)の方法は、いずれも硬化物の耐熱性が低下する欠点があった。
As a method of improving the fracture elongation of the cured product of the epoxy resin composition,
1) reduce the crosslink density in the cured product,
2) A method of blending a thermoplastic resin and imparting flexibility is known. However, each of the methods 1) and 2) has a drawback that the heat resistance of the cured product is lowered.

そこで、エポキシ樹脂組成物の硬化物の伸度と耐熱性を両立させる試みとして、熱硬化性樹脂組成物中に不溶なアクリルゴム、ブタジエンゴム、シリコーンゴムなどのゴム質重合体を分散する方法が検討されている(例えば特許文献1)。   Therefore, as an attempt to achieve both the elongation and heat resistance of the cured product of the epoxy resin composition, there is a method of dispersing a rubbery polymer such as acrylic rubber, butadiene rubber, or silicone rubber in the thermosetting resin composition. It has been studied (for example, Patent Document 1).

このようなゴム質重合体をエポキシ樹脂組成物中に分散させる手法においては、ゴム質重合体が均一な大きさを持ってエポキシ樹脂組成物中に分散していることが望まれるが、一般に高い耐熱性を示すエポキシ樹脂組成物は、求められる耐熱温度に近い比較的高い温度で硬化させる必要があるため、その際ゴム質重合体同士が相互に融着、凝集してしまい、エポキシ樹脂組成物の硬化物中に均一に分散した状態とすることが困難であった。
特開平9−227693号公報
In the method of dispersing such a rubbery polymer in the epoxy resin composition, it is desirable that the rubbery polymer is dispersed in the epoxy resin composition with a uniform size, but generally high. The epoxy resin composition exhibiting heat resistance needs to be cured at a relatively high temperature close to the required heat resistance temperature. At that time, the rubber polymers are fused and aggregated with each other, and the epoxy resin composition It was difficult to obtain a uniformly dispersed state in the cured product.
JP-A-9-227693

本発明は、高度な耐熱性および靭性、特に高い破断伸度を有する硬化物を得ることのできる繊維強化複合材料用エポキシ樹脂組成物を提供することを課題とする。   An object of the present invention is to provide an epoxy resin composition for a fiber-reinforced composite material capable of obtaining a cured product having high heat resistance and toughness, particularly high elongation at break.

本発明の第1の要旨は、以下の(A1)、(B)および(C)を含有してなる繊維強化複合材料用エポキシ樹脂組成物にある。
(A1)アルキル(メタ)アクリレート単量体とエポキシ基と反応し得る官能基を有するビニル重合性単量体とをゴム質重合体にグラフト重合したグラフト共重合体
(B)エポキシ樹脂
(C)芳香族ポリアミン硬化剤
The first gist of the present invention resides in an epoxy resin composition for fiber-reinforced composite material comprising the following (A1), (B) and (C).
(A1) Graft copolymer obtained by graft polymerization of an alkyl (meth) acrylate monomer and a vinyl polymerizable monomer having a functional group capable of reacting with an epoxy group onto a rubber polymer (B) Epoxy resin (C) Aromatic polyamine curing agent

また、本発明の第2の要旨は、以下の(A2)、(B)および(C)を含有してなる繊維強化複合材料用エポキシ樹脂組成物にある。
(A2)アルキル(メタ)アクリレート単量体とビニル重合性官能基を二個以上有するビニル重合性単量体とをゴム質重合体にグラフト重合したグラフト共重合体
(B)エポキシ樹脂
(C)芳香族ポリアミン硬化剤
Moreover, the 2nd summary of this invention exists in the epoxy resin composition for fiber reinforced composite materials formed by containing the following (A2), (B), and (C).
(A2) Graft copolymer obtained by graft polymerization of an alkyl (meth) acrylate monomer and a vinyl polymerizable monomer having two or more vinyl polymerizable functional groups onto a rubbery polymer (B) Epoxy resin (C) Aromatic polyamine curing agent

本発明によれば、高度な耐熱性および靭性、特に高い破断伸度を有する硬化物を得ることのできる繊維強化複合材料用エポキシ樹脂組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the epoxy resin composition for fiber reinforced composite materials which can obtain the hardened | cured material which has high heat resistance and toughness, especially high breaking elongation can be provided.

『ゴム質重合体』
(A1)、(A2)、(A3)のグラフト共重合体のいずれにも含まれるゴム質重合体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどが挙げられる。好ましくはn−ブチルアクリレート、エチルアクリレートである。単量体には二個以上のビニル重合性官能基を持つ単量体が含まれてもよい。特に限定されないがアリルメタクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,4−ブチレングリコールジメタクリレート、ジビニルベンゼン等が挙げられる。好ましくはアリルメタクリレートである。
"Rubber polymer"
Examples of the rubbery polymer contained in any of the graft copolymers (A1), (A2), and (A3) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate, methoxytripropylene glycol (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Examples include lauryl (meth) acrylate and stearyl (meth) acrylate. N-butyl acrylate and ethyl acrylate are preferred. The monomer may include a monomer having two or more vinyl polymerizable functional groups. Although not particularly limited, allyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, divinylbenzene and the like can be mentioned. Allyl methacrylate is preferred.

『A1』
本発明では、A1として、アルキル(メタ)アクリレート単量体とエポキシ基と反応し得る官能基を有するビニル重合性単量体とをゴム質重合体にグラフト重合したグラフト共重合体を用いる。
“A1”
In the present invention, a graft copolymer obtained by graft-polymerizing an alkyl (meth) acrylate monomer and a vinyl polymerizable monomer having a functional group capable of reacting with an epoxy group onto a rubbery polymer is used as A1.

アルキル(メタ)アクリレート単量体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート等が挙げられる。好ましくはメチルメタクリレート、エチルアクリレートである。   Examples of the alkyl (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and the like. Preferred are methyl methacrylate and ethyl acrylate.

エポキシ基と反応し得る官能基を持つビニル重合性単量体をグラフト重合されているので、本発明のエポキシ樹脂組成物を加熱硬化する際に、グラフト共重合体がエポキシ樹脂と反応しその中に固定されるので、グラフト共重合体同士が接触、融着しない。   Since a vinyl polymerizable monomer having a functional group capable of reacting with an epoxy group is graft-polymerized, when the epoxy resin composition of the present invention is heat-cured, the graft copolymer reacts with the epoxy resin, Therefore, the graft copolymers do not contact and fuse with each other.

エポキシ基と反応し得る官能基としては、エポキシ基、水酸基、アミド基、イミド基、アミン基、イミン基、カルボン酸基、無水カルボン酸基等が挙げられる。ビニル重合性単量体としては、グリシジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸、(メタ)アクリルアミド等が挙げられる。好ましくはグリシジルメタクリレートである。
エポキシ基と反応し得る官能基を持つビニル重合性単量体はグラフト共重合体100質量部中に30質量部以下であることが好ましく、より好ましくは10質量部以下である。グリシジルメタクリレートを使用する場合は、3質量部以下であることが好ましい。
Examples of the functional group capable of reacting with an epoxy group include an epoxy group, a hydroxyl group, an amide group, an imide group, an amine group, an imine group, a carboxylic acid group, and a carboxylic anhydride group. Examples of the vinyl polymerizable monomer include glycidyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylic acid, (meth) acrylamide and the like. Glycidyl methacrylate is preferred.
The vinyl polymerizable monomer having a functional group capable of reacting with an epoxy group is preferably 30 parts by mass or less, more preferably 10 parts by mass or less in 100 parts by mass of the graft copolymer. When using glycidyl methacrylate, it is preferably 3 parts by mass or less.

『A2』
本発明では、A2として、アルキル(メタ)アクリレート単量体とビニル重合性官能基を二個以上有するビニル重合性単量体とをゴム質重合体にグラフト重合したグラフト共重合体を用いる。
アルキル(メタ)アクリレート単量体は『A1』で述べた通りである。
ビニル重合性官能基を二個以上有するビニル重合性単量体としては、シェル成分の架橋度を上げることによって、マトリックス樹脂を加熱硬化する際にシェルがガラス転移点以上に加熱された状態でゴム微粒子同士が接触しても融着せぬような目的で加えられる。これらの種類は特に限定されないが、アリルメタクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,4−ブチレングリコールジメタクリレート、ジビニルベンゼン等が挙げられる。好ましくはアリルメタクリレートである。
“A2”
In the present invention, a graft copolymer obtained by graft-polymerizing an alkyl (meth) acrylate monomer and a vinyl polymerizable monomer having two or more vinyl polymerizable functional groups onto a rubbery polymer is used as A2.
The alkyl (meth) acrylate monomer is as described in “A1”.
As the vinyl polymerizable monomer having two or more vinyl polymerizable functional groups, the rubber is heated in a state where the shell is heated to the glass transition point or higher when the matrix resin is heated and cured by increasing the degree of crosslinking of the shell component. It is added for the purpose of not fusing even if the fine particles come into contact with each other. These types are not particularly limited, but include allyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, divinylbenzene, and the like. Allyl methacrylate is preferred.

『A3』
本発明では、A3として、アルキル(メタ)アクリレート単量体とビニル重合性官能基を二個以上有するビニル重合性単量体とをゴム質重合体にグラフト重合したグラフト共重合体を用いる。
アルキル(メタ)アクリレート単量体とビニル重合性官能基を二個以上有するビニル重合性単量体とは上述と同様である。
“A3”
In the present invention, a graft copolymer obtained by graft-polymerizing an alkyl (meth) acrylate monomer and a vinyl polymerizable monomer having two or more vinyl polymerizable functional groups onto a rubbery polymer is used as A3.
The alkyl (meth) acrylate monomer and the vinyl polymerizable monomer having two or more vinyl polymerizable functional groups are the same as described above.

『A1〜A3の製造方法』
グラフト共重合体共重合体A1〜A3を得る際の重合方法や重合条件は特に限定されないが、乳化重合、好ましくはソープフリー乳化重合などの公知の方法で製造されたものを用いることができる。
“Manufacturing method of A1 to A3”
The polymerization method and polymerization conditions for obtaining the graft copolymer A1 to A3 are not particularly limited, but those produced by a known method such as emulsion polymerization, preferably soap-free emulsion polymerization, can be used.

『A1〜A3の平均粒子径』
グラフト共重合体A1〜A3の平均粒子径は、いずれも0.1〜1μmとすることが好ましい。平均粒子径を0.1μm以上とすることで、耐衝撃性の改質効果を十分なものとすることができるとともに、本発明の繊維強化複合材料用エポキシ樹脂組成物を強化繊維に含浸する際に起こるグラフト共重合体の再凝集を抑止することができ、繊維強化複合材料用エポキシ樹脂組成物の粘度上昇を避けることができる。一方、平均粒径を1μm以下とすることで強化繊維に本発明の繊維強化複合材料用エポキシ樹脂組成物を含浸する際に強化繊維を構成する単繊維の間隙を通過することができるので、結果として繊維強化複合材料中にグラフト共重合体が均一に分布することとなる。グラフト共重合体A1〜A3の平均粒子径は、より好ましくは0.6〜0.8μmである。
“Average particle size of A1 to A3”
The average particle diameter of the graft copolymers A1 to A3 is preferably 0.1 to 1 μm. When the average particle size is 0.1 μm or more, the impact resistance can be improved sufficiently and the reinforcing fiber is impregnated with the epoxy resin composition for fiber-reinforced composite material of the present invention. The re-aggregation of the graft copolymer that occurs in the above can be suppressed, and an increase in the viscosity of the epoxy resin composition for fiber-reinforced composite materials can be avoided. On the other hand, when the average particle size is 1 μm or less, when the reinforcing fiber is impregnated with the epoxy resin composition for a fiber-reinforced composite material of the present invention, it can pass through the gap between the single fibers constituting the reinforcing fiber. As a result, the graft copolymer is uniformly distributed in the fiber-reinforced composite material. The average particle diameter of the graft copolymers A1 to A3 is more preferably 0.6 to 0.8 μm.

『A1〜A3の平均粒子径の測定方法』
本発明では、グラフト共重合体A1〜A3の平均粒子径は、ラテックスを蒸留水で希釈し、レーザー回折散乱式粒度分布測定装置((株)堀場製作所製LA−910)を用いて測定した50%体積平均粒子径である。
“Measuring method of average particle diameter of A1 to A3”
In the present invention, the average particle sizes of the graft copolymers A1 to A3 were measured by diluting the latex with distilled water and using a laser diffraction / scattering particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.). % Volume average particle diameter.

『エポキシ樹脂』
本発明で(B)として用いるエポキシ樹脂は、公知の各種のものが使用でき、その分子中にエポキシ基を少なくとも2個有するものであれば分子構造、分子量等に特に制限はない。例えばビスフェノール型、フェノールノボラック型、クレゾールノボラック型、ジシクロペンタジエン型、ビフェニル型、オキサゾリドン環系などの各種エポキシ樹脂を単独または2種以上併用して用いることができる。
"Epoxy resin"
As the epoxy resin used as (B) in the present invention, various known resins can be used, and the molecular structure, molecular weight and the like are not particularly limited as long as they have at least two epoxy groups in the molecule. For example, various epoxy resins such as bisphenol type, phenol novolak type, cresol novolak type, dicyclopentadiene type, biphenyl type, and oxazolidone ring system can be used alone or in combination of two or more.

『芳香族ポリアミン』
本発明で(C)として用いる芳香族ポリアミンの具体例としては、ジアミノフェニルメタン、メタフェニルジアミン、ジアミノジフェニルスルフォン等が挙げられる。硬化物の耐熱性からジアミノフェニルスルフォンが好ましい。この芳香族ポリアミン硬化剤は他の硬化剤と併用してもよい。例えばフェノールノボラック樹脂やクレゾールノボラック樹脂等のフェノール系硬化剤、ジシアンジアミドやイミダゾール類、脂肪族あるいは芳香族ポリアミン等のアミン系硬化剤、有機酸及、無機酸及び酸無水物等の酸系硬化剤等が挙げられる。これらの使用量については特に制限されない。
"Aromatic polyamine"
Specific examples of the aromatic polyamine used as (C) in the present invention include diaminophenylmethane, metaphenyldiamine, and diaminodiphenylsulfone. Diaminophenyl sulfone is preferred from the heat resistance of the cured product. This aromatic polyamine curing agent may be used in combination with other curing agents. For example, phenolic hardeners such as phenol novolac resin and cresol novolac resin, amine hardeners such as dicyandiamide and imidazoles, aliphatic or aromatic polyamines, acid hardeners such as organic acids, inorganic acids and acid anhydrides, etc. Is mentioned. These usage amounts are not particularly limited.

『樹脂粘度』
本発明の繊維強化複合材料用エポキシ樹脂組成物の粘度は、特に限定されないが、30℃において1〜1000000ポイズの範囲にあることが好ましい。レジンインフュージョン成形では1〜1000ポイズが好ましく、更には1〜50ポイズが好ましい。プリプレグを用いる場合やレジンフィルムを用いる場合は10000〜1000000ポイズが好ましく、更には50000〜500000ポイズが好ましい。
"Resin viscosity"
The viscosity of the epoxy resin composition for fiber-reinforced composite material of the present invention is not particularly limited, but is preferably in the range of 1 to 1000000 poise at 30 ° C. In resin infusion molding, 1-1000 poise is preferable, and 1-50 poise is more preferable. In the case of using a prepreg or a resin film, 10,000 to 1,000,000 poise is preferable, and 50,000 to 500,000 poise is more preferable.

『熱可塑性樹脂』
本発明の繊維強化複合材料用エポキシ樹脂組成物には、熱可塑性樹脂を添加することができる。これらの種類については特に限定されないがポリアミド、ポリエステル、ポリカーボネート、ポリエーテルスルフォン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド、ポリテトラフルオロエチレン、ポリエーテル、ポリオレフィン、液晶ポリマー、ポリアリレート、ポリスルフォン、ポリアクリロニトリルスチレン、ポリスチレン、ポリアクリロニトリル、ポリメタクリレート、ABS、AES、ASA、ポリ塩化ビニル等が挙げられる。硬化物の耐熱性から好ましくはポリエーテルスルフォンである。
"Thermoplastic resin"
A thermoplastic resin can be added to the epoxy resin composition for fiber-reinforced composite materials of the present invention. These types are not particularly limited, but polyamide, polyester, polycarbonate, polyether sulfone, polyphenylene ether, polyphenylene sulfide, polyether ether ketone, polyimide, polytetrafluoroethylene, polyether, polyolefin, liquid crystal polymer, polyarylate, polysulfone , Polyacrylonitrile styrene, polystyrene, polyacrylonitrile, polymethacrylate, ABS, AES, ASA, polyvinyl chloride and the like. Polyether sulfone is preferred from the heat resistance of the cured product.

『添加剤』
本発明の繊維強化複合材料用エポキシ樹脂組成物には、必要に応じて公知の様々な添加剤を併用することができる。例えば、種々の硬化促進剤、シリコーンオイル、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド、エステル類、パラフィン類等の離型剤、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、タルク、硫酸バリウム等の粉体やガラス繊維、炭素繊維等の無機充填剤、塩素化パラフィン、ブロムトルエン、ヘキサブロムベンゼン、三酸化アンチモン等の難燃剤、カーボンブラック、ベンガラ等の着色剤、シランカップリング剤等を使用することができる。
"Additive"
The epoxy resin composition for fiber reinforced composite material of the present invention can be used in combination with various known additives as required. For example, various curing accelerators, silicone oils, natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, paraffins and other mold release agents, crystalline silica, fused silica, calcium silicate , Powders such as alumina, calcium carbonate, talc, barium sulfate, inorganic fillers such as glass fiber and carbon fiber, flame retardants such as chlorinated paraffin, bromotoluene, hexabromobenzene, antimony trioxide, carbon black, bengara, etc. Coloring agents, silane coupling agents, and the like can be used.

『調製方法』
本発明の繊維強化複合材料用エポキシ樹脂組成物の調製方法は、特に限定されるものではなく公知の技術、例えばミキシングロールやニーダー等を使用することができる。
"Preparation method"
The preparation method of the epoxy resin composition for fiber-reinforced composite material of the present invention is not particularly limited, and a known technique such as a mixing roll or a kneader can be used.

『強化繊維』
本発明の繊維強化複合材料用エポキシ樹脂組成物とともに繊維強化複合材料を構成する強化繊維としては、ガラス繊維、炭素繊維、金属繊維、アラミド繊維など各種の無機繊維または有機繊維を用いることができるが、繊維強化複合材料の強度上、ガラス繊維及び/又は炭素繊維が好ましい。中でも比強度、比弾性率の優れた繊維強化複合材料が得られる炭素繊維を用いることがより好ましい。本発明の繊維強化複合材料用エポキシ樹脂組成物を繊維基材に含浸する方法は公知の方法が使用できる。
"Reinforcing fiber"
As the reinforcing fiber constituting the fiber reinforced composite material together with the epoxy resin composition for fiber reinforced composite material of the present invention, various inorganic fibers or organic fibers such as glass fiber, carbon fiber, metal fiber, and aramid fiber can be used. In view of the strength of the fiber-reinforced composite material, glass fibers and / or carbon fibers are preferred. Among these, it is more preferable to use carbon fibers from which a fiber-reinforced composite material having excellent specific strength and specific modulus can be obtained. As a method of impregnating the fiber base material with the epoxy resin composition for fiber-reinforced composite material of the present invention, a known method can be used.

『成形方法』
本発明の繊維強化複合材料用エポキシ樹脂組成物を利用した繊維強化複合材料は、公知の方法で成形することが可能である。オートクレーブ成形法、オーブン成形法、バキュームバック成形法、ハンドレイアップ成形法、レジントランスファーモールディング成形(RTM)、バキュームアシストRTM等のレジンインフュージョン成形法、プレス成形法等が挙げられるがこれに限定されるものではない。好ましくはプリプレグを経由した成形法である。特に好ましくはオートクレーブ成形法、オーブン成形法、バキュームバック成形法である。
"Molding method"
The fiber reinforced composite material using the epoxy resin composition for fiber reinforced composite material of the present invention can be molded by a known method. Examples include, but are not limited to, autoclave molding, oven molding, vacuum back molding, hand layup molding, resin transfer molding (RTM), resin infusion molding such as vacuum assist RTM, and press molding. It is not something. A molding method via a prepreg is preferred. Particularly preferred are autoclave molding, oven molding, and vacuum back molding.

以下、実施例により本発明をより具体的に説明する。実施例および比較例中の物質名の略称および評価方法は以下の通りである。
『物質名の略称』
「エポキシ樹脂」
YH434L(商品名):東都化成株式会社製4官能型エポキシ樹脂
ELM−100(商品名):住友化学株式会社製3官能型エポキシ樹脂
エピコート828(商品名):ジャパンエポキシレジン株式会社製ビスフェノールA型エポキシ樹脂
BPA328(商品名):株式会社日本触媒製アクリルゴム分散ビスフェノールA型エポキシ樹脂
「芳香族ポリアミン硬化剤」
DDS:ジアミノジフェニルスルフォン
「熱可塑性樹脂」
PES:ポリエーテルスルフォン
Hereinafter, the present invention will be described more specifically with reference to examples. Abbreviations of substance names and evaluation methods in Examples and Comparative Examples are as follows.
"Abbreviation of substance name"
"Epoxy resin"
YH434L (trade name): tetrafunctional epoxy resin manufactured by Toto Kasei Co., Ltd. ELM-100 (trade name): trifunctional epoxy resin manufactured by Sumitomo Chemical Co., Ltd. Epicoat 828 (trade name): bisphenol A type manufactured by Japan Epoxy Resin Co., Ltd. Epoxy resin BPA328 (trade name): Nippon Shokubai Co., Ltd. acrylic rubber dispersed bisphenol A type epoxy resin "Aromatic polyamine curing agent"
DDS: Diaminodiphenyl sulfone "thermoplastic resin"
PES: Polyethersulfone

『硬化樹脂の破断伸度(ε)測定』
2mm厚の硬化樹脂板を60mm×8mmに切り分け、クロスヘッドスピード2mm/min、サポートおよびノーズ圧子の曲率R=3.2、試験片厚みとサポートスパンの比L/D=16にて3点曲げ試験を行った。試験片が破断した際のクロスヘッド変位をD、試験前の試験片厚みをd、サポートスパンをLとして、下式により破断伸度εを算出した。
ε=6Dd/L
“Measurement of rupture elongation (ε) of cured resin”
A 2 mm thick cured resin plate is cut into 60 mm × 8 mm, and the crosshead speed is 2 mm / min, the curvature of the support and nose indenter is R = 3.2, and the ratio of the specimen thickness to the support span is L / D = 16. A test was conducted. The breaking elongation ε was calculated according to the following equation, where D was the crosshead displacement when the test piece broke, d was the test piece thickness before the test, and L was the support span.
ε = 6 Dd / L 2

『硬化樹脂の破壊靭性値(GIC)測定』
ASTM D5045(SENB法)に準拠して3mm厚の硬化樹脂板を所定の大きさに切り分け、切込み部にはカッタ刃を当ててノッチを入れた試験片のモードI臨界エネルギー解放率GICを求めた。
“Measurement of fracture toughness value (G IC ) of cured resin”
In accordance with ASTM D5045 (SENB method), a cured resin plate having a thickness of 3 mm is cut into a predetermined size, and the mode I critical energy release rate G IC of a test piece having a notch formed by applying a cutter blade to the cut portion is obtained. It was.

『硬化樹脂のガラス転移温度(T)測定』
レオメータ(レオメトリック社製RDA−700)にて30℃より5℃ずつ段階的に昇温し、各温度における損失正接Tanδを温度に対してプロットし、Tanδが最大となった温度を硬化樹脂のガラス転移温度Tとした。
"Measurement of glass transition temperature ( Tg ) of cured resin"
Using a rheometer (RDA-700, manufactured by Rheometric), the temperature was raised stepwise from 30 ° C. by 5 ° C., the loss tangent Tan δ at each temperature was plotted against the temperature, and the temperature at which Tan δ was maximized was measured. and the glass transition temperature T g.

『グラフト共重合体の製造例』
(製造例1)グラフト共重合体(M−1)
5リットルのフラスコに、純水88部、ブチルアクリレート5部、アリルメタクリレート0.125部を投入し、窒素雰囲気中、250rpmで攪拌しながら80℃に昇温した。つぎに予め調製した過硫酸カリウム0.10部、純水5.2部の溶液を一括投入し、60分間保持し第一段目のソープフリー乳化重合を行った。次にブチルアクリレート65部、アリルメタクリレート1.625部、ジ(2−エチルヘキシル)スルホコハク酸ナトリウム0.6部(花王(株)製、;商品名:ペレックスOT−P)、純水34.0部の混合液を180分かけて滴下、1時間保持し、第二段目の乳化重合を行いアクリル系ゴム重合ラテックス(ゴム質重合体R−1)を得た。
得られたR−1に、メチルメタクリレート28.4部、エチルアクリレート0.6部、グリシジルメタクリレート1部、ジ(2−エチルヘキシル)スルホコハク酸ナトリウム0.4部、純水15.6部の混合液を100分かけて滴下、1時間保持後乳化重合を終了し、グラフト共重合体ラテックスを得た。得られたグラフト共重合体ラテックスは噴霧乾燥機を用い、圧力ノズル式で微小液滴状に噴霧し、熱風入口温度180℃にて乾燥し、ラテックス平均粒子径600nmの改質剤(M−1)を得た。
"Production example of graft copolymer"
(Production Example 1) Graft copolymer (M-1)
A 5 liter flask was charged with 88 parts of pure water, 5 parts of butyl acrylate, and 0.125 part of allyl methacrylate, and heated to 80 ° C. with stirring at 250 rpm in a nitrogen atmosphere. Next, a pre-prepared solution of 0.10 parts of potassium persulfate and 5.2 parts of pure water was added all at once and held for 60 minutes to perform the first stage soap-free emulsion polymerization. Next, 65 parts of butyl acrylate, 1.625 parts of allyl methacrylate, 0.6 parts of sodium di (2-ethylhexyl) sulfosuccinate (manufactured by Kao Corporation; trade name: Perex OT-P), 34.0 parts of pure water Was added dropwise over 180 minutes and held for 1 hour, and emulsion polymerization of the second stage was performed to obtain an acrylic rubber polymerized latex (rubber polymer R-1).
In the obtained R-1, 28.4 parts of methyl methacrylate, 0.6 part of ethyl acrylate, 1 part of glycidyl methacrylate, 0.4 part of sodium di (2-ethylhexyl) sulfosuccinate, and 15.6 parts of pure water Was added dropwise over 100 minutes, and after 1 hour, the emulsion polymerization was terminated to obtain a graft copolymer latex. The obtained graft copolymer latex was sprayed in the form of fine droplets by a pressure nozzle method using a spray dryer, dried at a hot air inlet temperature of 180 ° C., and a modifying agent (M-1 )

(製造例2)グラフト共重合体(M−2)
製造例1で得られたR−1に、メチルメタクリレート28.4部、エチルアクリレート0.6部、アリルメタクリレート0.75部、グリシジルメタクリレート1部、ジ(2−エチルヘキシル)スルホコハク酸ナトリウム0.4部、純水15.6部の混合液を100分かけて滴下、1時間保持後乳化重合を終了し、グラフト共重合体ラテックスを得た。得られたグラフト共重合体ラテックスは噴霧乾燥機を用い、圧力ノズル式で微小液滴状に噴霧し、熱風入口温度180℃にて乾燥し、ラテックス平均粒子径610nmの改質剤(M−2)を得た。
(Production Example 2) Graft copolymer (M-2)
To R-1 obtained in Production Example 1, 28.4 parts of methyl methacrylate, 0.6 part of ethyl acrylate, 0.75 part of allyl methacrylate, 1 part of glycidyl methacrylate, sodium di (2-ethylhexyl) sulfosuccinate 0.4 A mixture of 15.6 parts of pure water and 15.6 parts of pure water was added dropwise over 100 minutes, and after holding for 1 hour, the emulsion polymerization was terminated to obtain a graft copolymer latex. The obtained graft copolymer latex was sprayed in the form of fine droplets with a pressure dryer using a spray dryer, dried at a hot air inlet temperature of 180 ° C., and a modifier having an average latex particle size of 610 nm (M-2 )

(製造例3)グラフト共重合体(M−3)
製造例1で得られたR−1に、メチルメタクリレート28.4部、エチルアクリレート0.6部、アリルメタクリレート0.75部、ジ(2−エチルヘキシル)スルホコハク酸ナトリウム0.4部、純水15.6部の混合液を100分かけて滴下、1時間保持後乳化重合を終了し、グラフト共重合体ラテックスを得た。得られたグラフト共重合体ラテックスは噴霧乾燥機を用い、圧力ノズル式で微小液滴状に噴霧し、熱風入口温度180℃にて乾燥し、ラテックス平均粒子径600nmの改質剤(M−3)を得た。
(Production Example 3) Graft copolymer (M-3)
To R-1 obtained in Production Example 1, 28.4 parts of methyl methacrylate, 0.6 part of ethyl acrylate, 0.75 part of allyl methacrylate, 0.4 part of sodium di (2-ethylhexyl) sulfosuccinate, 15 pure water .6 parts of the mixed solution was dropped over 100 minutes, and after 1 hour, the emulsion polymerization was terminated to obtain a graft copolymer latex. The obtained graft copolymer latex was sprayed in the form of fine droplets by a pressure nozzle method using a spray dryer, dried at a hot air inlet temperature of 180 ° C., and a modifier having an average particle diameter of 600 nm (M-3 )

(製造例4)グラフト共重合体(M−4)
製造例1で得られたラテックスR−1に、メチルメタクリレート29.4部、エチルアクリレート0.6部、ジ(2−エチルヘキシル)スルホコハク酸ナトリウム0.4部、純水15.6部の混合液を100分かけて滴下、1時間保持後乳化重合を終了し、グラフト共重合体ラテックスを得た。ラテックス平均粒子径は600nmであった。得られたグラフト共重合体ラテックスは噴霧乾燥機を用い、圧力ノズル式で微小液滴状に噴霧し、熱風入口温度180℃にて乾燥し、ラテックス平均粒子径600nmの改質剤(M−4)を得た。
(Production Example 4) Graft copolymer (M-4)
A mixture of 29.4 parts of methyl methacrylate, 0.6 part of ethyl acrylate, 0.4 part of sodium di (2-ethylhexyl) sulfosuccinate, and 15.6 parts of pure water was added to the latex R-1 obtained in Production Example 1. Was added dropwise over 100 minutes, and after 1 hour, the emulsion polymerization was terminated to obtain a graft copolymer latex. The latex average particle size was 600 nm. The obtained graft copolymer latex was sprayed in the form of fine droplets by a pressure nozzle method using a spray dryer, dried at a hot air inlet temperature of 180 ° C., and a modifier having an average particle diameter of 600 nm (M-4 )

Figure 0005100001
Figure 0005100001

(実施例1)
表1に示す組成比にて、フラスコ内でPESをYH434Lに170℃にて3時間かけて加熱溶解した。これにELM−100とエピコート828をフラスコ内でスリーワンモーター攪拌棒を使用して混合し、さらに上記のグラフト共重合体(M−1)を10重量部加えて混合した。該混合物にDDSを加え、均一に分散するまで混合してエポキシ樹脂組成物(NR−1)を得た。該エポキシ樹脂組成物を、2あるいは3mmのスペーサーを挟み込んだガラス板間にキャストし、熱風乾燥機中180℃にて2時間保持して加熱硬化させて厚さ2あるいは3mmの樹脂硬化物(CR−1)を得た。樹脂硬化物(CR−1)の色調は均質性を示し、ゴム成分が均一に分散していた。この樹脂硬化物(CR−1)の破壊靭性値GIC、破断伸度ε、ガラス転移温度Tはいずれも高い値を示した。測定結果を表2に示す。
Example 1
In the composition ratio shown in Table 1, PES was dissolved in YH434L by heating at 170 ° C. for 3 hours in the flask. To this, ELM-100 and Epicoat 828 were mixed in a flask using a three-one motor stirring bar, and 10 parts by weight of the graft copolymer (M-1) was further added and mixed. DDS was added to the mixture and mixed until uniformly dispersed to obtain an epoxy resin composition (NR-1). The epoxy resin composition is cast between glass plates sandwiching a 2 or 3 mm spacer, and is cured by heating at 180 ° C. for 2 hours in a hot air drier to cure a cured resin (CR 2 or 3 mm thick) -1) was obtained. The color tone of the cured resin (CR-1) showed homogeneity, and the rubber component was uniformly dispersed. The cured toughness value G IC , breaking elongation ε, and glass transition temperature T g of the cured resin (CR-1) all showed high values. The measurement results are shown in Table 2.

(実施例2)
グラフト共重合体(M−1)に代えてグラフト共重合体(M−2)を用いた以外は、実施例1と同様にして樹脂組成物(NR−2)および樹脂硬化物(CR−2)を得た。樹脂硬化物(CR−2)の色調は(CR−1)同様に均質性を示し、ゴム成分が均一に分散していた。これらの破壊靭性値GIC、破断伸度ε、ガラス転移温度Tはいずれも高い値を示した。測定結果を表2に示す。
(Example 2)
A resin composition (NR-2) and a cured resin (CR-2) were obtained in the same manner as in Example 1 except that the graft copolymer (M-2) was used instead of the graft copolymer (M-1). ) The color tone of the cured resin (CR-2) showed homogeneity as in (CR-1), and the rubber component was uniformly dispersed. These fracture toughness values G IC , elongation at break ε, and glass transition temperature T g all showed high values. The measurement results are shown in Table 2.

(実施例3)
グラフト共重合体(M−1)に代えてグラフト共重合体(M−3)を用いた以外は、実施例1と同様にして樹脂組成物(NR−3)および樹脂硬化物(CR−3)を得た。樹脂硬化物(CR−3)の色調は(CR−1)同様に均質性を示し、ゴム成分が均一に分散していた。これらの破壊靭性値GIC、破断伸度ε、ガラス転移温度Tはいずれも高い値を示した。測定結果を表2に示す。
(Example 3)
A resin composition (NR-3) and a cured resin (CR-3) were obtained in the same manner as in Example 1 except that the graft copolymer (M-3) was used instead of the graft copolymer (M-1). ) The color tone of the cured resin (CR-3) showed homogeneity as in (CR-1), and the rubber component was uniformly dispersed. These fracture toughness values G IC , elongation at break ε, and glass transition temperature T g all showed high values. The measurement results are shown in Table 2.

(比較例1)
グラフト共重合体(M−1)に代えてグラフト共重合体(M−4)を用いた以外は、実施例1と同様にして樹脂組成物(NR−4)および樹脂硬化物(CR−4)を得た。この樹脂硬化物(CR−4)は、透明な相と不透明な白濁した相が相分離している様子が肉眼で観察され、ゴム成分が均一に分散されなかった。樹脂硬化物(CR−4)の破壊靭性値GICおよびガラス転移温度Tは高い値を示したものの、破断伸度εは低かった。結果を表2に示す。
(Comparative Example 1)
A resin composition (NR-4) and a cured resin (CR-4) were obtained in the same manner as in Example 1 except that the graft copolymer (M-4) was used instead of the graft copolymer (M-1). ) In this cured resin (CR-4), it was observed with the naked eye that the transparent phase and the opaque white turbid phase were phase-separated, and the rubber component was not uniformly dispersed. Although the fracture toughness value G IC and the glass transition temperature T g of the cured resin (CR-4) showed high values, the elongation at break ε was low. The results are shown in Table 2.

(比較例2)
グラフト共重合体(M−1)を加えない以外は、実施例1と同様にして樹脂組成物(NR−5)および樹脂硬化物(CR−5)を得た。樹脂硬化物(CR−5)は、ゴム成分を全く含まないため透明で均一な外観であった。樹脂硬化物(CR−5)の破断伸度εおよびガラス転移温度Tは高い値を示したものの、破壊靭性値GICは低かった。結果を表2に示す。
(Comparative Example 2)
A resin composition (NR-5) and a cured resin product (CR-5) were obtained in the same manner as in Example 1 except that the graft copolymer (M-1) was not added. The cured resin (CR-5) had a transparent and uniform appearance because it did not contain any rubber component. Although elongation at break ε and a glass transition temperature T g of the cured resin (CR-5) showed a high value, fracture toughness G IC was low. The results are shown in Table 2.

(比較例3)
エピコート828に代えてBPA328を使用した以外は、比較例2と同様にして樹脂組成物(NR−6)および樹脂硬化物(CR−6)を得た。樹脂硬化物(CR−6)は、透明な相と不透明な白濁した相が分離している様子が肉眼で観察され、ゴム成分が均一に分散されなかった。樹脂硬化物(CR−6)のガラス転移温度Tは高い値を示したものの、破断伸度εおよび破壊靭性値GICは実施例1〜3に比較して劣る値であった。結果を表2に示す。
(Comparative Example 3)
A resin composition (NR-6) and a cured resin product (CR-6) were obtained in the same manner as in Comparative Example 2 except that BPA328 was used instead of Epicoat 828. In the cured resin (CR-6), it was observed with the naked eye that the transparent phase and the opaque white turbid phase were separated, and the rubber component was not uniformly dispersed. Although the glass transition temperature T g of the cured resin (CR-6) showed a high value, breaking elongation ε and fracture toughness G IC is a value inferior to the Examples 1-3. The results are shown in Table 2.

Figure 0005100001
Figure 0005100001

Claims (1)

以下の(A2)、(B)および(C)を含有してなる繊維強化複合材料用エポキシ樹脂組成物。
(A2)アルキル(メタ)アクリレート単量体と
アリルメタクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,4−ブチレングリコールジメタクリレート、ジビニルベンゼンから選ばれるビニル重合性官能基を二個以上有するビニル重合性単量体と
をゴム質重合体にグラフト重合した、平均粒子径が0.6〜0.8μmのグラフト共重合体
(B)エポキシ樹脂
(C)芳香族ポリアミン硬化剤
An epoxy resin composition for fiber-reinforced composite material comprising the following (A2), (B) and (C).
(A2) an alkyl (meth) acrylate monomer ;
A vinyl polymerizable monomer having two or more vinyl polymerizable functional groups selected from allyl methacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and divinylbenzene. With a mass ,
A graft copolymer (B) epoxy resin (C) aromatic polyamine curing agent having an average particle size of 0.6 to 0.8 μm obtained by graft polymerization of a rubber polymer
JP2005355655A 2005-12-09 2005-12-09 Epoxy resin composition for fiber reinforced composite materials Expired - Fee Related JP5100001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355655A JP5100001B2 (en) 2005-12-09 2005-12-09 Epoxy resin composition for fiber reinforced composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355655A JP5100001B2 (en) 2005-12-09 2005-12-09 Epoxy resin composition for fiber reinforced composite materials

Publications (3)

Publication Number Publication Date
JP2007161738A JP2007161738A (en) 2007-06-28
JP2007161738A5 JP2007161738A5 (en) 2009-01-29
JP5100001B2 true JP5100001B2 (en) 2012-12-19

Family

ID=38245021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355655A Expired - Fee Related JP5100001B2 (en) 2005-12-09 2005-12-09 Epoxy resin composition for fiber reinforced composite materials

Country Status (1)

Country Link
JP (1) JP5100001B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242571A (en) * 2008-03-31 2009-10-22 Mitsubishi Rayon Co Ltd Epoxy resin composition for fiber reinforced composite material
JP2009280669A (en) * 2008-05-21 2009-12-03 Toray Ind Inc Rtm fiber-reinforced composite material and process for producing it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103658A (en) * 1987-07-16 1989-04-20 Takeda Chem Ind Ltd Polycarbonate resin composition
JP2003277471A (en) * 2002-03-27 2003-10-02 Toray Ind Inc Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
KR100548626B1 (en) * 2003-10-29 2006-01-31 주식회사 엘지화학 Rubber Latex and Manufacturing Method thereof
JP2005255822A (en) * 2004-03-11 2005-09-22 Kaneka Corp Rubber-reinforced epoxy resin product

Also Published As

Publication number Publication date
JP2007161738A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP6394610B2 (en) Epoxy resin composition, prepreg, fiber reinforced plastic material, and method for producing fiber reinforced plastic material
US5087657A (en) Fiber-reinforced composites toughened with resin particles
CN104884511B (en) Fiber-reinforced polymer complex with hard interface phase
JP6720181B2 (en) "Production method and curable composition suitable for liquid resin injection"
JPH0368650A (en) Reinforced, thermosetting structural material
WO2012087602A2 (en) Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
KR20140094549A (en) Nanosilica Containing Bismaleimide Compositions
JP6771884B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2005239939A (en) Fiber reinforced resin composite material
CN108291010A (en) Composition epoxy resin, prepreg and fibre reinforced composites
JP2017149887A (en) Epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP5099998B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
CN106753218B (en) A kind of low dielectric high tenacity cyanate ester adhesive and preparation method thereof
Jamshidi et al. Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flexible diamine
JP4986627B2 (en) Heat resistant composite material
EP0351028A2 (en) Resin particle-filled, fiber-reinforced composites
CN110114384A (en) Curable compositions
US5089560A (en) Exopy resin with aromatic oligomer and rubber particles
JP5100001B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006052385A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
Kandpal et al. Mechanical properties of multifunctional epoxy resin/glass fiber reinforced composites modified with poly (ether imide)
Huang et al. Thermo-mechanical properties and morphology of epoxy resins with co-poly (phthalazinone ether nitrile)
JP2009242571A (en) Epoxy resin composition for fiber reinforced composite material
JP4655329B2 (en) Unidirectional prepreg and fiber reinforced composites

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5100001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees