JP5099927B2 - Seismic reinforcement structure for existing reinforced concrete bridge piers - Google Patents

Seismic reinforcement structure for existing reinforced concrete bridge piers Download PDF

Info

Publication number
JP5099927B2
JP5099927B2 JP2009252594A JP2009252594A JP5099927B2 JP 5099927 B2 JP5099927 B2 JP 5099927B2 JP 2009252594 A JP2009252594 A JP 2009252594A JP 2009252594 A JP2009252594 A JP 2009252594A JP 5099927 B2 JP5099927 B2 JP 5099927B2
Authority
JP
Japan
Prior art keywords
pier
reinforced concrete
existing
truss
seismic reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009252594A
Other languages
Japanese (ja)
Other versions
JP2011099201A (en
Inventor
健一 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2009252594A priority Critical patent/JP5099927B2/en
Publication of JP2011099201A publication Critical patent/JP2011099201A/en
Application granted granted Critical
Publication of JP5099927B2 publication Critical patent/JP5099927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、既設鉄筋コンクリート橋脚耐震補強構造及び既設鉄筋コンクリート橋脚耐震補強工法に関するものである。
The present invention relates to an existing reinforced concrete pier seismic reinforcement structure and an existing reinforced concrete pier seismic reinforcement method.

例えば、地震振動によって、高速道路の橋脚が折曲し、高速道路が横倒しになったことがあり、その状況は衝撃をもって全世界に伝えられた。
そこで、近年では、特に、高速道路などの既設鉄筋コンクリート橋脚の耐震補強工事が切に要請されるに至っている。
For example, the highway piers were bent due to earthquake vibration, and the highway laid down. The situation was conveyed to the whole world with an impact.
Therefore, in recent years, there has been a strong demand for seismic reinforcement work for existing reinforced concrete piers such as highways.

しかして、従来より、いわゆるRC巻立て工法により既設鉄筋コンクリート橋脚の耐震補強工事が行われている。ここで、いわゆるRC巻立て工法とは耐震補強工法の基本工法をなすものであり、RC(鉄筋コンクリート)の橋脚に、新規にRCを巻いて不足した強度を補強する耐震補強工法である。ここで、RC巻立て工法によれば、耐震補強のコストは比較的安価で行えるが、一方、巻き立て厚が厚くなってしまい、その分スペースが必要となり重量も増加してしまうとの課題もある。   Conventionally, seismic reinforcement work for existing reinforced concrete piers has been performed by the so-called RC winding method. Here, the so-called RC winding method is a basic method of the seismic reinforcement method, and is a seismic reinforcement method in which RC is newly wound around an RC (steel reinforced concrete) pier to reinforce the insufficient strength. Here, according to the RC hoisting method, the cost of seismic reinforcement can be relatively low, but on the other hand, the hoisting thickness becomes thicker, so that the space is required and the weight is also increased. is there.

また、従来は、レベル2地震時において塑性化が予想される領域、すなわち、既設鉄筋コンクリート橋脚の橋脚基部から橋脚の短辺側側面幅までの橋脚高さ箇所では、新設鉄筋コンクリート内のいわゆる帯鉄筋によるコアコンクリートの拘束と新設鉄筋コンクリート内における軸方向鉄筋のはらみ出し防止を目的として、帯鉄筋の変形などを、前記既設鉄筋コンクリート橋脚を貫通する貫通鉄筋で抑制するものとしている。   Conventionally, in areas where plasticization is expected in the event of a level 2 earthquake, that is, in the height of the pier from the pier base of the existing reinforced concrete pier to the side width of the short side of the pier, the so-called band reinforcement in the newly reinforced concrete is used. For the purpose of restraining the core concrete and preventing the protruding of the axial rebar in the newly reinforced concrete, the deformation of the band rebar is suppressed by the penetrating rebar that penetrates the existing reinforced concrete pier.

かかる工法では、前記帯鉄筋の拘束点を増やすことにより、帯鉄筋の曲げ剛度(荷重に対する変形のしにくさ)を向上させ、上記課題を解決しようとするものである。
なお、その他にもRC橋脚の耐震補強工法については効率のよい耐震補強工事を意図して従来より各種の提案がなされている。
In such a construction method, by increasing the number of restraint points of the band reinforcing bar, the bending rigidity (hardness of deformation with respect to load) of the band reinforcing bar is improved, and the above-described problems are to be solved.
In addition, various proposals have been made for RC piers for seismic reinforcement, with the intention of efficient seismic reinforcement work.

特開2009−114824号公報JP 2009-1114824 A

しかしながら、前記従来の貫通鉄筋を貫通させる工法では、前記貫通鉄筋を敷設するべく、既設鉄筋コンクリート橋脚に側壁を貫通する貫通孔を削孔するため、そのための施工期間を必要とするとの課題があった。
さらには、前述したように、貫通鉄筋を敷設するべく、既設鉄筋コンクリート橋脚に側壁を貫通する貫通孔を削孔するため、逆に既設鉄筋コンクリート橋脚自体を損傷してしまうとの課題もあった。
However, in the conventional method of penetrating the penetrating rebar, in order to lay the penetrating rebar, the through hole penetrating the side wall is drilled in the existing reinforced concrete bridge pier, and thus there is a problem that a construction period for that is required. .
Further, as described above, in order to lay the penetration reinforcing bar, since the through hole penetrating the side wall is drilled in the existing reinforced concrete bridge pier, there is also a problem that the existing reinforced concrete pier itself is damaged.

しかして本件発明者は、上記の既設鉄筋コンクリート橋脚の橋脚基部から橋脚の短辺側側面幅までの橋脚高さ箇所で、帯鉄筋によるコアコンクリートの拘束と軸方向鉄筋のはらみ出し防止を目的として、帯鉄筋の変形を、前記既設鉄筋コンクリート橋脚を貫通する貫通鉄筋で抑制するものとし、また帯鉄筋の拘束点を増やすことにより、帯鉄筋の曲げ剛度(荷重に対する変形のしにくさ)を向上させるものとする従来工法に対し、同様の効果が得られ、かつ既設鉄筋コンクリート橋脚自体も損傷させることのない既設鉄筋コンクリート橋脚の耐震補強構造を創案するに至ったのである。   Therefore, the present inventor, in the height of the pier height from the pier base of the above-mentioned existing reinforced concrete pier to the short side width of the pier, for the purpose of restraining the core concrete by the band reinforcement and preventing the protrusion of the axial rebar, The deformation of the strip reinforcement is suppressed by the penetrating reinforcement that penetrates the existing reinforced concrete pier, and the bending stiffness of the strip reinforcement (hardness of deformation against load) is improved by increasing the number of restraint points of the strip reinforcement. This has led to the creation of a seismic reinforcement structure for existing reinforced concrete bridge piers, which has the same effect as the conventional construction method and does not damage the existing reinforced concrete piers themselves.

かくして、本発明は、上述のごとく従来の課題を解消するために創案されたものであって、前記貫通鉄筋を敷設するべく、既設鉄筋コンクリート橋脚に側壁を貫通する貫通孔を削孔することがないため、そのための特別な施工期間を必要とせず、さらには、既設鉄筋コンクリート橋脚に側壁を貫通する貫通孔を削孔しないために既設鉄筋コンクリート橋脚自体を損傷することのなく、かつ前記貫通鉄筋を使用した場合と同様の耐震補強効果が得られる既設鉄筋コンクリート橋脚耐震補強工法あるいは既設鉄筋コンクリート橋脚耐震補強構造を提供することを目的とするものである。
Thus, the present invention has been devised to solve the conventional problems as described above, and does not drill a through-hole penetrating a side wall in an existing reinforced concrete pier in order to lay the through-bar. Therefore, it does not require a special construction period for that purpose, and further, the existing reinforced concrete pier is not damaged so that the through hole penetrating the side wall is not drilled. The purpose of the present invention is to provide an existing reinforced concrete pier seismic reinforcement method or an existing reinforced concrete pier seismic reinforcement structure that can provide the same seismic reinforcement effect.

本発明による既設鉄筋コンクリート橋脚耐震補強工法及び既設鉄筋コンクリート橋脚耐震補強構造は、
横断面略長方形状をなす既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造であって、前記既設鉄筋コンクリート橋脚の橋脚基部から、前記横断面略長方形状をなす既設鉄筋コンクリート橋脚の短辺側面幅と同等の長さをなす橋脚高さを塑性化領域とし、該塑性化領域である橋脚高さ箇所間で、軸方向鉄筋及び帯鉄筋を配筋すると共に、前記軸方向鉄筋のはらみだし防止及び帯鉄筋の変形防止用の貫通鉄筋につき、前記既設コンクリート橋脚内を貫通させて配筋し、新設の鉄筋コンクリートを巻いてなる既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造に替え、
前記新設鉄筋コンクリート内の橋脚長辺側面側に、上段鉄筋と一対の下段鉄筋とをラチス筋により立体トラス状に形成したトラス鉄筋を、上下方向に向かい、前記帯鉄筋に替えて、複数段帯鉄筋状に配筋し、該トラス鉄筋の両端部は、新設鉄筋コンクリート内の橋脚短辺側面側に配筋された帯鉄筋と連結してなり、前記既設コンクリート橋脚内を貫通する貫通鉄筋は配筋せずに新設の鉄筋コンクリートを巻いてなる、
ことを特徴とし、
または、
横断面略長方形状をなす既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造であって、前記既設鉄筋コンクリート橋脚の橋脚基部から、前記横断面略長方形状をなす既設鉄筋コンクリート橋脚の短辺側面幅と同等の長さをなす橋脚高さを塑性化領域とし、該塑性化領域である橋脚高さ箇所間で、軸方向鉄筋及び帯鉄筋を配筋すると共に、前記軸方向鉄筋のはらみだし防止及び帯鉄筋の変形防止用の貫通鉄筋につき、前記既設コンクリート橋脚内を貫通させて配筋し、新設の鉄筋コンクリートを巻いてなる既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造に替え、
前記新設鉄筋コンクリート内の橋脚長辺側面側に、上段鉄筋と一対の下段鉄筋とをラチス筋により立体トラス状に形成したトラス鉄筋を、上下方向に向かい、前記帯鉄筋に替えて、複数段帯鉄筋状に配筋し、該トラス鉄筋の両端部は、新設鉄筋コンクリート内の橋脚短辺側面側に配筋された帯鉄筋と連結してなり、前記既設コンクリート橋脚内を貫通する貫通鉄筋は配筋せず、貫通孔削孔による既設コンクリート橋脚の損傷をきたすことなく新設の鉄筋コンクリートを巻いてなる、
ことを特徴とし、
または、
前記複数段帯鉄筋状に配筋された上下方向に隣り合う前記トラス鉄筋の間隔は、耐震補強の度合いにより任意で決定され、前記橋脚基部から橋脚の短辺側面幅までの塑性化領域である橋脚高さ箇所間のうち強固な耐震補強が必要な箇所には、間隔を狭めて前記複数のトラス鉄筋が配筋される、
ことを特徴とし、
または、
前記新設鉄筋コンクリート内の橋脚長辺の両側面側と、前記新設鉄筋コンクリート内の橋脚短辺の両側面側に、前記トラス鉄筋を、上下方向に向かって複数段帯鉄筋状に配筋した、
ことを特徴とするものである。
The existing reinforced concrete pier seismic reinforcement method and the existing reinforced concrete pier seismic reinforcement structure according to the present invention are:
An existing reinforced concrete bridge pier seismic reinforcement structure in which a new reinforced concrete is wound around an outer peripheral surface of an existing reinforced concrete pier having a substantially rectangular cross section , and the existing reinforced concrete pier is seismically reinforced , and the crossing from the pier base of the existing reinforced concrete pier The height of the pier that has the same length as the short side width of the existing reinforced concrete pier that has a substantially rectangular shape is defined as the plasticized region, and the axial and reinforcing bars are connected between the pier heights that are the plasticized region. In addition to the bar reinforcement, the penetration reinforcement for preventing the extension of the axial rebar and the deformation of the strip reinforcement is made by penetrating through the existing concrete pier, and the existing reinforced concrete pier formed by winding the new reinforced concrete is earthquake-proof. Replace with the existing reinforced concrete pier seismic reinforcement structure to be reinforced,
A pier long side surface side of the new in reinforced concrete, the truss rebar the upper reinforcing bars and a pair of lower reinforcing bars to form a three-dimensional truss-like by lattice muscle, paddle towards the vertical direction, instead of the band rebar, a plurality of stages bands Reinforcing bar reinforcement, both ends of the truss reinforcing bar are connected to the reinforcing bars placed on the side of the short side of the pier in the new reinforced concrete, and the penetrating reinforcing bar that penetrates the existing concrete pier is the reinforcing bar Without wrapping the new reinforced concrete without
It is characterized by
Or
An existing reinforced concrete bridge pier seismic reinforcement structure in which a new reinforced concrete is wound around an outer peripheral surface of an existing reinforced concrete pier having a substantially rectangular cross section , and the existing reinforced concrete pier is seismically reinforced , and the crossing from the pier base of the existing reinforced concrete pier The height of the pier that has the same length as the short side width of the existing reinforced concrete pier that has a substantially rectangular shape is defined as the plasticized region, and the axial and reinforcing bars are connected between the pier heights that are the plasticized region. In addition to the bar reinforcement, the penetration reinforcement for preventing the extension of the axial rebar and the deformation of the strip reinforcement is made by penetrating through the existing concrete pier, and the existing reinforced concrete pier formed by winding the new reinforced concrete is earthquake-proof. Replace with the existing reinforced concrete pier seismic reinforcement structure to be reinforced,
A pier long side surface side of the new in reinforced concrete, the truss rebar the upper reinforcing bars and a pair of lower reinforcing bars to form a three-dimensional truss-like by lattice muscle, paddle towards the vertical direction, instead of the band rebar, a plurality of stages bands Reinforcing bar reinforcement, both ends of the truss reinforcing bar are connected to the reinforcing bars placed on the side of the short side of the pier in the new reinforced concrete, and the penetrating reinforcing bar that penetrates the existing concrete pier is the reinforcing bar Without wrapping the new reinforced concrete without causing damage to the existing concrete pier due to through-hole drilling,
It is characterized by
Or
The interval between the truss reinforcing bars adjacent to each other in the vertical direction arranged in the form of multi-stage reinforcing bars is arbitrarily determined depending on the degree of seismic reinforcement, and is a plasticized region from the pier base to the short side width of the pier. In places where strong seismic reinforcement is required between the pier height locations, the truss rebars are arranged at narrow intervals.
It is characterized by
Or
The truss rebars were arranged in a multi-step reinforced bar shape in the vertical direction on both sides of the long side of the pier in the newly reinforced concrete and on both sides of the short side of the pier in the newly reinforced concrete.
It is characterized by this.

本発明によれば、貫通鉄筋を敷設するべく、既設鉄筋コンクリート橋脚に側壁を貫通する貫通孔を削孔することがないため、そのための特別な施工期間を必要とせず、さらには、既設鉄筋コンクリート橋脚に側壁を貫通する貫通孔を削孔しないために既設鉄筋コンクリート橋脚自体を損傷することのなく、かつ前記貫通鉄筋を使用した場合と同様の耐震補強効果が得られる既設鉄筋コンクリート橋脚耐震補強工法あるいは既設鉄筋コンクリート橋脚耐震補強構造を提供出来るとの優れた効果を奏する。
According to the present invention, there is no need to drill a through hole penetrating the side wall in an existing reinforced concrete pier in order to lay a through reinforcing bar, so that no special construction period is required for that purpose. The existing reinforced concrete bridge pier seismic reinforcement method or existing reinforced concrete pier that does not damage the existing reinforced concrete pier itself because the through-hole penetrating the side wall is not damaged, and can provide the same seismic reinforcement effect as when using the above-mentioned penetration reinforcing bar. It has an excellent effect that it can provide a seismic reinforcement structure.

本発明により耐震補強された橋脚の概略横断面図である。It is a schematic cross-sectional view of a bridge pier reinforced by earthquake resistance according to the present invention. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 図1のa部拡大図である。It is the a section enlarged view of FIG. トラス鉄筋の概略構成を説明する構成を説明図(その1)である。It is explanatory drawing (the 1) about the structure explaining schematic structure of a truss reinforcement. トラス鉄筋の概略構成を説明する構成を説明図(その2)である。It is explanatory drawing (the 2) about the structure explaining schematic structure of a truss reinforcement. 本発明により耐震補強された橋脚の概略構成を説明する構成説明図である。It is composition explanatory drawing explaining the schematic structure of the bridge pier reinforced by earthquake resistance by this invention. 従来例(その1)である。This is a conventional example (part 1). 従来例(その2)である。This is a conventional example (part 2). 従来例(その3)である。This is a conventional example (part 3).

以下本発明を図に示す実施例に従って説明する。   The present invention will be described below with reference to embodiments shown in the drawings.

図6は、本発明を適用し、既設コンクリート橋脚1の耐震補強状態を説明する概略説明図である。
図6から理解されるように、本発明は、既設鉄筋コンクリート橋脚1の橋脚基部2から橋脚の短辺側面幅Hまでの橋脚高さ箇所の間に適用される。
FIG. 6 is a schematic explanatory view for explaining the seismic reinforcement state of the existing concrete pier 1 to which the present invention is applied.
As understood from FIG. 6, the present invention is applied between the pier height points from the pier base 2 of the existing reinforced concrete pier 1 to the short side width H of the pier.

換言すれば、前記既設鉄筋コンクリート橋脚1の橋脚基部2から橋脚の短辺側面幅Hまでの橋脚高さ箇所の間は、塑性化領域であり、従来では、該箇所での新設鉄筋コンクリート3内に埋設する帯鉄筋の変形抑制、帯鉄筋内側における新設鉄筋コンクリート3の拘束、軸方向鉄筋4の座屈防止など耐震性能確保を目的として、前述した貫通鉄筋5・・・を配筋するものとしていたのである。   In other words, the area between the pier height part from the pier base 2 of the existing reinforced concrete pier 1 to the short side width H of the pier is a plasticized region, and conventionally, it is embedded in the newly reinforced concrete 3 at that part. For the purpose of securing seismic performance such as restraining deformation of the reinforcing steel bars, restraining the newly reinforced concrete 3 inside the steel bars, and preventing buckling of the axial steel bars 4, the above-mentioned penetrating rebars 5 are arranged. .

しかしながら、本発明では前記貫通鉄筋5・・・の配筋を行わずに、同様の効果が得られる構造とした。   However, in this invention, it was set as the structure where the same effect is acquired, without performing the arrangement | positioning of the said penetration rebar 5 ....

すなわち、本発明では、以下に示す構成を採用した。図6から理解されるように、既設鉄筋コンクリート橋脚1の橋脚基部2から橋脚の短辺側面幅Hまでの橋脚高さ箇所の間において、新設鉄筋コンクリート3内の橋脚長辺側面6に、上段鉄筋7と一対の下段鉄筋8、8とをラチス筋9により立体トラス状に形成したトラス鉄筋10を帯鉄筋状態に配筋していくのである。   That is, in the present invention, the following configuration is adopted. As can be understood from FIG. 6, the upper rebar 7 is provided on the long side 6 of the pier in the newly reinforced concrete 3 between the pier height 2 from the pier base 2 of the existing reinforced concrete pier 1 to the short side width H of the pier. A truss reinforcing bar 10 formed by a lattice truss 9 with a pair of lower rebars 8 and 8 is arranged in a band reinforcing bar state.

その状態を図1、図2、図3及び図6に示す。図1は本発明により耐震補強がなされた既設鉄筋コンクリート橋脚1の概略横断面図であり、図7の従来例に示すように、橋脚長辺側面6、6に向かって貫通する貫通鉄筋5,5を配筋せず、その代替として、前記の橋脚長辺側面6、6に前記構成からなるトラス鉄筋10を埋設した状態を示したものである。   The state is shown in FIG. 1, FIG. 2, FIG. 3 and FIG. FIG. 1 is a schematic cross-sectional view of an existing reinforced concrete pier 1 that has been seismically reinforced according to the present invention. As shown in the conventional example of FIG. As an alternative, the truss reinforcement 10 having the above-described configuration is embedded in the long side surfaces 6 and 6 of the pier.

図3は図1のa部拡大図であり、前記橋脚長辺側面6に配筋されたトラス鉄筋10はその両端部が橋脚短辺側面11に配筋された帯鉄筋12と、例えばフレアー溶接などで連結されるものとなる。   FIG. 3 is an enlarged view of part a in FIG. 1. The truss reinforcing bar 10 arranged on the long side 6 of the pier is connected to the band reinforcing bar 12 whose both ends are arranged on the short side 11 of the pier, for example, flare welding. It will be connected by.

なお、図1及び図3において、符号4は軸方向鉄筋を示し、前記トラス鉄筋10は、その下段鉄筋8と軸方向鉄筋4が結束線などで連結されている。   In FIGS. 1 and 3, reference numeral 4 denotes an axial reinforcing bar, and the truss reinforcing bar 10 has a lower reinforcing bar 8 and an axial reinforcing bar 4 connected by a binding wire or the like.

ここで、図2は、既設鉄筋コンクリート橋脚1の橋脚基部2から橋脚の短辺側面幅Hまでの橋脚高さ箇所の間において、配筋されているトラス鉄筋10・・・の配筋状態を示す説明図であるが、図2から理解されるように、トラス鉄筋10は橋脚の軸方向、すなわち上下方向に向かって、複数列に配置されている。   Here, FIG. 2 shows a bar arrangement state of the truss reinforcing bars 10... Arranged between the pier height portions from the pier base 2 of the existing reinforced concrete pier 1 to the short side width H of the pier. As will be understood from FIG. 2, the truss reinforcing bars 10 are arranged in a plurality of rows in the axial direction of the pier, that is, in the vertical direction.

ここで、上下方向に隣り合うトラス鉄筋10、10間の間隔は任意で決定されるものであり、その間隔の大小は耐震補強の度合いによるとなる。すなわち、強固な耐震補強が必要な箇所には、間隔を狭めて複数のトラス鉄筋10が配置されるものとなる。なお、図において、符号14はアンカージベル筋を示す。   Here, the space | interval between the truss reinforcing bars 10 and 10 adjacent to an up-down direction is decided arbitrarily, and the magnitude | size of the space | interval will depend on the degree of seismic reinforcement. In other words, a plurality of truss reinforcing bars 10 are arranged at narrow intervals in places where strong seismic reinforcement is required. In the figure, reference numeral 14 indicates an anchor gibber line.

しかして、次に本発明によって、貫通鉄筋5及び橋脚長辺側面6の帯鉄筋13の配筋をトラス鉄筋10の配筋で代替した根拠につき説明する。   Then, next, the grounds for replacing the reinforcement of the penetrating rebar 5 and the reinforcing bar 13 of the long side 6 of the pier with the reinforcement of the truss reinforcement 10 according to the present invention will be described.

橋脚長辺側面6側に配筋された帯鉄筋13を、貫通鉄筋5で支持された単純梁として捉えると、貫通鉄筋5は帯鉄筋13の拘束長(単純梁の支間長)を短くすることによって、同一荷重に対する変形を小さくし、もって前記帯鉄筋13の曲げ剛度を増大させていると考えることができる(従来例として示す図7の場合は、貫通鉄筋5の配置により帯鉄筋13の曲げ剛度が50003/14003=45.6倍になっていることが理解できる)。   When the reinforcing bar 13 arranged on the side of the pier long side 6 is regarded as a simple beam supported by the penetrating rebar 5, the penetrating rebar 5 shortens the restraint length of the belt reinforcing bar 13 (the span length of the simple beam). Thus, it can be considered that the deformation with respect to the same load is reduced and the bending rigidity of the band rebar 13 is increased (in the case of FIG. 7 shown as a conventional example, the bending of the band rebar 13 due to the arrangement of the penetrating rebar 5). (It can be understood that the stiffness is 50003/14003 = 45.6 times).

しかして、貫通鉄筋5の直接の効果が「帯鉄筋13の曲げ剛度増大」であり、これが耐震性能の確保につながっているとすれば、これら鉄筋の代わりに断面二次モーメントが大きい材料をいわゆる「帯鉄筋13」の代替鉄筋として使用し、かかる代替鉄筋、本発明では前述のトラス鉄筋10によって、前記「貫通鉄筋5+帯鉄筋13」の帯鉄筋構造と同程度の曲げ剛度を確保すれば、貫通鉄筋の配筋行わずに所定の耐震性能を得ることができるものとなるのである。   Therefore, if the direct effect of the penetrating rebar 5 is “increase in the bending stiffness of the belt reinforcing bar 13”, which leads to securing the seismic performance, a material having a large cross-sectional secondary moment is used instead of these reinforcing bars. If it is used as an alternative reinforcing bar for the “reinforcing bar 13” and the alternative reinforcing bar, in the present invention, the above-described truss reinforcing bar 10 ensures a bending rigidity comparable to the band reinforcing bar structure of the “penetrating reinforcing bar 5 + band reinforcing bar 13”, The predetermined seismic performance can be obtained without arranging the penetration reinforcing bars.

そこで次に、図7の「貫通鉄筋5+帯鉄筋13」の代替鉄筋として、図1、図2、図3に示すように、トラス鉄筋10を、帯鉄筋状に横方向鋼材として配置した場合について、両者の曲げ剛度試算結果を以下に示す。   Then, next, as an alternative reinforcing bar of “penetrating reinforcing bar 5 + band reinforcing bar 13” in FIG. 7, as shown in FIGS. 1, 2 and 3, the truss reinforcing bar 10 is arranged as a horizontal steel material in the form of a band reinforcing bar. The results of trial calculation of the bending stiffness of both are shown below.

単純梁の曲げ剛度はK=P/δ=48EI/L3とする。
D19@100(貫通鉄筋) 拘束長1.4m K1=48×2.0×105×6397/14003=22.4N/mm

トラス鉄筋@160 拘束長5.0m K2=48×2.0×105×4.7×105/50003/1.6=22.6N/mm
The bending stiffness of simple beams is K = P / δ = 48EI / L3.
D19 @ 100 (penetrating rebar) Restraint length 1.4m K1 = 48 × 2.0 × 105 × 6397/14003 = 22.4N / mm

Truss rebar @ 160 Restraint length 5.0m K2 = 48 × 2.0 × 105 × 4.7 × 105/50003 / 1.6 = 22.6N / mm

ここで、6397とは、
D19の断面二次モーメント
=π×194/64=6397(mm4) を示す。

また、4.7×105 とは、図4に示すトラス鉄筋10の図心軸に関する断面二次モーメント(mm4)を示す。
Here, 6397 is
The cross-sectional second moment of D19 = π × 194/64 = 6397 (mm4).

Moreover, 4.7 × 105 indicates a cross-sectional secondary moment (mm 4) about the centroid of the truss reinforcing bar 10 shown in FIG.

しかして、上記の式で理解されるように、横方向鋼材の曲げ剛度が、貫通鉄筋の場合では22.4N/mm、トラス鉄筋の場合では、22.6N/mmと、ほぼ同程度であるため、両者の耐震性能は同等であると認識できるものとなる。
さらに、本発明では、トラス鉄筋10とトラス鉄筋10内部に浸透する新設コンクリートの一体化により、上記で試算したトラス鉄筋10単独の曲げ剛度よりさらに大きい曲げ剛度となる可能性が認識される。
As can be seen from the above formula, the bending stiffness of the transverse steel is about 22.4 N / mm in the case of the penetrating rebar and 22.6 N / mm in the case of the truss rebar, Both seismic performances can be recognized as equivalent.
Further, in the present invention, it is recognized that there is a possibility that the bending rigidity of the truss reinforcing bar 10 and the newly installed concrete that penetrates into the truss reinforcing bar 10 may be larger than the bending rigidity of the truss reinforcing bar 10 calculated as described above.

ところで、場合によっては、すなわち強固な耐震補強を施す場合には、前記新設鉄筋コンクリート1内の橋脚長辺の両側面6、6側のみならず、前記新設鉄筋コンクリート1内の橋脚短辺の両側面11、11側においても、前記トラス鉄筋10を、上下方向に向かって複数段帯鉄筋状に配筋することが考えられる。
By the way, in some cases, that is, when strong seismic reinforcement is applied, not only both sides 6 and 6 side of the long side of the pier in the new reinforced concrete 1 but also both sides 11 of the short side of the pier in the new reinforced concrete 1. , 11 side, it can be considered that the truss reinforcing bar 10 is arranged in a multi-tiered reinforcing bar shape in the vertical direction.

1 既設鉄筋コンクリート橋脚
2 橋脚基部
3 新設鉄筋コンクリート
4 軸方向鉄筋
5 貫通鉄筋
6 橋脚長辺側面
7 上段鉄筋
8 下段鉄筋
9 ラチス筋
10 トラス鉄筋
11 橋脚短辺側面
12 帯鉄筋
13 帯鉄筋
H 短辺側面幅
1 Existing Reinforced Concrete Pier 2 Pier Base 3 New Reinforced Concrete 4 Axial Reinforcing Bar 5 Reinforcing Bar 6 Pier Longer Side 7 Upper Rebar 8 Lower Rebar 9 Lattice Rebar 10 Truss Rebar 11 Bridge Pier Short Side 12 Band Rebar 13 Band Rebar H Short Side Side Width

Claims (4)

横断面略長方形状をなす既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造であって、前記既設鉄筋コンクリート橋脚の橋脚基部から、前記横断面略長方形状をなす既設鉄筋コンクリート橋脚の短辺側面幅と同等の長さをなす橋脚高さを塑性化領域とし、該塑性化領域である橋脚高さ箇所間で、軸方向鉄筋及び帯鉄筋を配筋すると共に、前記軸方向鉄筋のはらみだし防止及び帯鉄筋の変形防止用の貫通鉄筋につき、前記既設コンクリート橋脚内を貫通させて配筋し、新設の鉄筋コンクリートを巻いてなる既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造に替え、
前記新設鉄筋コンクリート内の橋脚長辺側面側に、上段鉄筋と一対の下段鉄筋とをラチス筋により立体トラス状に形成したトラス鉄筋を、上下方向に向かい、前記帯鉄筋に替えて、複数段帯鉄筋状に配筋し、該トラス鉄筋の両端部は、新設鉄筋コンクリート内の橋脚短辺側面側に配筋された帯鉄筋と連結してなり、前記既設コンクリート橋脚内を貫通する貫通鉄筋は配筋せずに新設の鉄筋コンクリートを巻いてなる、
ことを特徴とする既設鉄筋コンクリート橋脚耐震補強構造。
By winding a reinforced concrete newly established on the outer circumferential surface of the existing concrete pier forming a cross section substantially rectangular shape, wherein the existing reinforced concrete pier a existing reinforced concrete bridge pier seismic reinforcement structure for seismic reinforcement, the pier base of the existing reinforced concrete pier, said transverse The height of the pier that has the same length as the short side width of the existing reinforced concrete pier that has a substantially rectangular shape is defined as the plasticized region, and the axial and reinforcing bars are connected between the pier heights that are the plasticized region. In addition to the bar reinforcement, the penetration reinforcement for preventing the extension of the axial rebar and the deformation of the strip reinforcement is made by penetrating through the existing concrete pier, and the existing reinforced concrete pier formed by winding the new reinforced concrete is earthquake-proof. Replace with the existing reinforced concrete pier seismic reinforcement structure to be reinforced,
A pier long side surface side of the new in reinforced concrete, the truss rebar the upper reinforcing bars and a pair of lower reinforcing bars to form a three-dimensional truss-like by lattice muscle, paddle towards the vertical direction, instead of the band rebar, a plurality of stages bands Reinforcing bar reinforcement, both ends of the truss reinforcing bar are connected to the reinforcing bars placed on the side of the short side of the pier in the new reinforced concrete, and the penetrating reinforcing bar that penetrates the existing concrete pier is the reinforcing bar Without wrapping the new reinforced concrete without
The existing reinforced concrete pier seismic reinforcement structure characterized by that.
横断面略長方形状をなす既設鉄筋コンクリート橋脚の外周面に新設の鉄筋コンクリートを巻いて、前記既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造であって、前記既設鉄筋コンクリート橋脚の橋脚基部から、前記横断面略長方形状をなす既設鉄筋コンクリート橋脚の短辺側面幅と同等の長さをなす橋脚高さを塑性化領域とし、該塑性化領域である橋脚高さ箇所間で、軸方向鉄筋及び帯鉄筋を配筋すると共に、前記軸方向鉄筋のはらみだし防止及び帯鉄筋の変形防止用の貫通鉄筋につき、前記既設コンクリート橋脚内を貫通させて配筋し、新設の鉄筋コンクリートを巻いてなる既設鉄筋コンクリート橋脚を耐震補強する既設鉄筋コンクリート橋脚耐震補強構造に替え、
前記新設鉄筋コンクリート内の橋脚長辺側面側に、上段鉄筋と一対の下段鉄筋とをラチス筋により立体トラス状に形成したトラス鉄筋を、上下方向に向かい、前記帯鉄筋に替えて、複数段帯鉄筋状に配筋し、該トラス鉄筋の両端部は、新設鉄筋コンクリート内の橋脚短辺側面側に配筋された帯鉄筋と連結してなり、前記既設コンクリート橋脚内を貫通する貫通鉄筋は配筋せず、貫通孔削孔による既設コンクリート橋脚の損傷をきたすことなく新設の鉄筋コンクリートを巻いてなる、
ことを特徴とする既設鉄筋コンクリート橋脚耐震補強構造。
An existing reinforced concrete bridge pier seismic reinforcement structure in which a new reinforced concrete is wound around an outer peripheral surface of an existing reinforced concrete pier having a substantially rectangular cross section , and the existing reinforced concrete pier is seismically reinforced , and the crossing from the pier base of the existing reinforced concrete pier The height of the pier that has the same length as the short side width of the existing reinforced concrete pier that has a substantially rectangular shape is defined as the plasticized region, and the axial and reinforcing bars are connected between the pier heights that are the plasticized region. In addition to the bar reinforcement, the penetration reinforcement for preventing the extension of the axial rebar and the deformation of the strip reinforcement is made by penetrating through the existing concrete pier, and the existing reinforced concrete pier formed by winding the new reinforced concrete is earthquake-proof. Replace with the existing reinforced concrete pier seismic reinforcement structure to be reinforced,
A pier long side surface side of the new in reinforced concrete, the truss rebar the upper reinforcing bars and a pair of lower reinforcing bars to form a three-dimensional truss-like by lattice muscle, paddle towards the vertical direction, instead of the band rebar, a plurality of stages bands Reinforcing bar reinforcement, both ends of the truss reinforcing bar are connected to the reinforcing bars placed on the side of the short side of the pier in the new reinforced concrete, and the penetrating reinforcing bar that penetrates the existing concrete pier is the reinforcing bar Without wrapping the new reinforced concrete without causing damage to the existing concrete pier due to through-hole drilling,
The existing reinforced concrete pier seismic reinforcement structure characterized by that.
前記複数段帯鉄筋状に配筋された上下方向に隣り合う前記トラス鉄筋の間隔は、耐震補強の度合いにより任意で決定され、前記橋脚基部から橋脚の短辺側面幅までの塑性化領域である橋脚高さ箇所間のうち強固な耐震補強が必要な箇所には、間隔を狭めて前記複数のトラス鉄筋が配筋される、The interval between the truss reinforcing bars adjacent to each other in the vertical direction arranged in the form of multi-stage reinforcing bars is arbitrarily determined depending on the degree of seismic reinforcement, and is a plasticized region from the pier base to the short side width of the pier. In places where strong seismic reinforcement is required between the pier height locations, the truss rebars are arranged at narrow intervals.
ことを特徴とする請求項1または請求項2記載の既設鉄筋コンクリート橋脚耐震補強構造。The existing reinforced concrete bridge pier seismic reinforcement structure according to claim 1 or 2.
前記新設鉄筋コンクリート内の橋脚長辺の両側面側と、前記新設鉄筋コンクリート内の橋脚短辺の両側面側に、前記トラス鉄筋を、上下方向に向かって複数段帯鉄筋状に配筋した、
ことを特徴とする請求項1、請求項2または請求項3記載の既設鉄筋コンクリート橋脚耐震補強構造。
The truss rebars were arranged in a multi-step reinforced bar shape in the vertical direction on both sides of the long side of the pier in the newly reinforced concrete and on both sides of the short side of the pier in the newly reinforced concrete.
The existing reinforced concrete bridge pier seismic reinforcement structure according to claim 1, claim 2, or claim 3.
JP2009252594A 2009-11-04 2009-11-04 Seismic reinforcement structure for existing reinforced concrete bridge piers Active JP5099927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252594A JP5099927B2 (en) 2009-11-04 2009-11-04 Seismic reinforcement structure for existing reinforced concrete bridge piers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252594A JP5099927B2 (en) 2009-11-04 2009-11-04 Seismic reinforcement structure for existing reinforced concrete bridge piers

Publications (2)

Publication Number Publication Date
JP2011099201A JP2011099201A (en) 2011-05-19
JP5099927B2 true JP5099927B2 (en) 2012-12-19

Family

ID=44190597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252594A Active JP5099927B2 (en) 2009-11-04 2009-11-04 Seismic reinforcement structure for existing reinforced concrete bridge piers

Country Status (1)

Country Link
JP (1) JP5099927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427045B2 (en) * 2015-03-11 2018-11-21 三井住友建設株式会社 Reinforcement structure and reinforcement method of existing concrete structure
CN109518595B (en) * 2018-12-10 2023-09-22 中交第二航务工程局有限公司 Assembled hoop bracket suitable for special-shaped piers and method for constructing bent cap by utilizing same
CN114086461B (en) * 2021-12-10 2023-12-19 中铁四局集团有限公司 Rapid construction method for high pier combined assembly type steel bar inner support by matching with turnover formwork method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765882B2 (en) * 1995-09-27 2006-04-12 株式会社間組 Reinforcement structure of existing concrete columnar body
JPH10131130A (en) * 1996-10-29 1998-05-19 Sumikura Kozai Kk Reinforcing-bar arranging method of rc structure
JP3764657B2 (en) * 2001-05-08 2006-04-12 前田建設工業株式会社 Seismic reinforcement structure for reinforced concrete support columns
JP2005054532A (en) * 2003-08-07 2005-03-03 Sumitomo Mitsui Construction Co Ltd Reinforcing structure of concrete structure, and method of reinforcing concrete structure
JP2008088634A (en) * 2006-09-29 2008-04-17 Sumitomo Metal Ind Ltd Composite steel-concrete floor slab

Also Published As

Publication number Publication date
JP2011099201A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
KR100971736B1 (en) Shear reinforcement with dual anchorage function each up and down
KR101415253B1 (en) Hollow Core PC Composite Column for SRC Columns and SRC Structures Using the Same
KR100676627B1 (en) Shear reinforcement device arranged in the slab-column connection and the shear reinforcement structure using the device
JP5099927B2 (en) Seismic reinforcement structure for existing reinforced concrete bridge piers
KR101358878B1 (en) Reinforcement member and girder using the same
JP5091343B1 (en) Seismic isolation structure
KR101286112B1 (en) Composite girder with steel pipe and rahmen bridge construction method using the same
KR20140110491A (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP6441030B2 (en) How to add underground facilities
CN107630564B (en) Construction method for reinforced structure of concrete beam
JP5525475B2 (en) Reinforcement structure of existing reinforced concrete wall and reinforcement method of existing reinforced concrete wall
JP4429981B2 (en) Flat plate shear reinforcement structure
KR20120008667A (en) Beam construction method using deckplate end-reinforcing member
KR101315377B1 (en) Offshore structure and manufacturing method thereof and structuring method
JP6449080B2 (en) Building
JP6452349B2 (en) Bending reinforcement structure of existing tower structure
JP5690091B2 (en) Load-bearing material for protective structures such as rockfall, avalanche and earth and sand collapse
JP4352045B2 (en) Columnar structure
JP6591255B2 (en) Double bar arrangement of reinforced concrete foundation beams
JP6300228B2 (en) Flat slab structure
KR102341038B1 (en) Beam with prestressed by multi-tendon and the construction method thereof
KR101268802B1 (en) Shear Reinforcing Space Grid of RC Structural Members
JP6693692B2 (en) Reinforced concrete structure and construction method
JP3692461B1 (en) Shear reinforcement and reinforcement structure
JP5827158B2 (en) Underground structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350