JP5098660B2 - Carbon nanotube sheet, method for producing the same, and electronic device - Google Patents

Carbon nanotube sheet, method for producing the same, and electronic device Download PDF

Info

Publication number
JP5098660B2
JP5098660B2 JP2008010042A JP2008010042A JP5098660B2 JP 5098660 B2 JP5098660 B2 JP 5098660B2 JP 2008010042 A JP2008010042 A JP 2008010042A JP 2008010042 A JP2008010042 A JP 2008010042A JP 5098660 B2 JP5098660 B2 JP 5098660B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
plating
bundle
tip
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008010042A
Other languages
Japanese (ja)
Other versions
JP2009170828A (en
Inventor
育生 曽我
大雄 近藤
佳孝 山口
大介 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008010042A priority Critical patent/JP5098660B2/en
Publication of JP2009170828A publication Critical patent/JP2009170828A/en
Application granted granted Critical
Publication of JP5098660B2 publication Critical patent/JP5098660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

本発明はカーボンナノチューブシート、その製造方法、及び、電子装置に関し、特に、半導体パッケージにおける熱伝播部材として用いられるヒートスプレッダー等の放熱シートとして高い熱伝導性・電気伝導性・許容電流密度等の特性を有するカーボンナノチューブを用いる際の被放熱部材との接触界面の熱抵抗を低減するための構成に関するものである。   The present invention relates to a carbon nanotube sheet, a method for manufacturing the same, and an electronic device, and in particular, characteristics such as high heat conductivity, electrical conductivity, and allowable current density as a heat dissipation sheet such as a heat spreader used as a heat propagation member in a semiconductor package. It is related with the structure for reducing the thermal resistance of the contact interface with the to-be-heat-dissipated member at the time of using the carbon nanotube which has this.

カーボンナノチューブ(CNT)は、高い熱伝導率を有するため、CNTを含有した放熱シートの作製が行なわれている(例えば、特許文献1或いは特許文献2参照)。   Since carbon nanotubes (CNT) have a high thermal conductivity, a heat-dissipating sheet containing CNTs is produced (for example, see Patent Document 1 or Patent Document 2).

この様なカーボンナノチューブ放熱シートに求められる重要な機能としては、
a.高熱伝導特性、
b.低熱抵抗、及び、
c.密着性
が求められている。
As an important function required for such a carbon nanotube heat dissipation sheet,
a. High thermal conductivity,
b. Low thermal resistance and
c. Adhesion is required.

例えば、特許文献2においては、カーボンナノチューブを樹脂を用いてカーボンナノチューブ繊維としてヒートシンクにしたり、或いは、カーボンナノチューブ繊維を組み合わせて容器状にしている。
特開2005−277096号公報 特開2005−116839号公報
For example, in Patent Document 2, a carbon nanotube is used as a heat sink as a carbon nanotube fiber using a resin, or a carbon nanotube fiber is combined into a container shape.
JP 2005-277096 A JP 2005-116839 A

しかし、高熱伝導特性を得るためには、熱を逃がしたい方向とカーボンナノチューブの配向方向を揃える必要があるが、上述の特許文献2のような構成では、そのような配向配置が不可能であるという問題がある。   However, in order to obtain high heat conduction characteristics, it is necessary to align the direction in which heat is desired to escape with the orientation direction of the carbon nanotubes. However, in the configuration as described in Patent Document 2, such orientation arrangement is impossible. There is a problem.

また、低熱抵抗特性を得るためには、放熱シートと発熱体、もしくは、放熱シートと放熱体の接触界面の熱抵抗を可能な限り小さくする必要があるが、そのためには、放熱体或いは発熱体との密着性を改善する必要がある。   In addition, in order to obtain low thermal resistance characteristics, it is necessary to make the thermal resistance of the heat dissipation sheet and the heating element or the contact interface between the heat dissipation sheet and the heat dissipation element as small as possible. It is necessary to improve the adhesion.

しかしながら、配向方向を揃えたカーボンナノチューブを用いた場合には、カーボンナノチューブの先端と発熱体との間の接触が不十分であり、この界面において熱抵抗が最も高くなるという問題が発生する。   However, when carbon nanotubes having the same orientation direction are used, the contact between the tips of the carbon nanotubes and the heating element is insufficient, and there arises a problem that the thermal resistance becomes the highest at this interface.

したがって、本発明は、配向方向の揃ったカーボンナノチューブシートと被放熱部材或いは発熱部材との接触界面の熱抵抗を低減することを目的とする。   Accordingly, an object of the present invention is to reduce the thermal resistance of the contact interface between a carbon nanotube sheet having a uniform alignment direction and a heat radiating member or a heat generating member.

このカーボンナノチューブシートにおいては、カーボンナノチューブ束の群とめっき金属からなり、前記カーボンナノチューブ束の配向方向がシートの垂直方向に保持されているとともに、前記カーボンナノチューブ束の少なくとも先端部が前記めっき金属により結合されており、且つ、前記カーボンナノチューブ束の先端部と反対側に空洞を有することを要件とする。   The carbon nanotube sheet is composed of a group of carbon nanotube bundles and a plating metal, the orientation direction of the carbon nanotube bundle is held in the vertical direction of the sheet, and at least the tip of the carbon nanotube bundle is made of the plating metal. It is a requirement that they are bonded and have a cavity on the side opposite to the tip of the carbon nanotube bundle.

また、別の観点からは、カーボンナノチューブシートの製造方法としては、基板上にめっきシード用金属膜を形成する工程と、前記シード用金属膜上に触媒層を所定の間隔で規則正しく配置する工程と、前記触媒層上にカーボンナノチューブ束を成長する工程と、前記カーボンナノチューブ束の少なくとも先端部にめっき金属を電解めっきして前記カーボンナノチューブ束の少なくとも先端部を前記めっき金属により結合するとともに、前記カーボンナノチューブ束の先端部と反対側に空洞を形成する工程と、前記基板を除去する工程とを有することを要件とする。   From another point of view, the carbon nanotube sheet manufacturing method includes a step of forming a plating seed metal film on a substrate, and a step of regularly arranging catalyst layers on the seed metal film at predetermined intervals. A step of growing a carbon nanotube bundle on the catalyst layer; and an electrolytic plating of a plating metal on at least a tip portion of the carbon nanotube bundle to bond at least the tip portion of the carbon nanotube bundle with the plating metal; It is a requirement to have a step of forming a cavity on the opposite side of the tip of the nanotube bundle and a step of removing the substrate.

さらに、別の観点からは、電子装置としては、上述のカーボンナノチューブシートを電子デバイスと放熱体との間に密着させて配置することを要件とする。   Furthermore, from another point of view, as an electronic device, the above-described carbon nanotube sheet is required to be disposed in close contact between the electronic device and the heat radiator.

開示のカーボンナノチューブシートによれば、放熱シートの垂直方向に沿ってカーボンナノチューブが配向しているため、垂直方向への高い熱放散性を実現することができる。   According to the disclosed carbon nanotube sheet, since the carbon nanotubes are oriented along the vertical direction of the heat radiating sheet, high heat dissipation in the vertical direction can be realized.

また、カーボンナノチューブと発熱体との界面となるカーボンナノチューブの先端部にめっきを用いて金属を成膜しているため、発熱体とカーボンナノチューブとの接触熱抵抗を大幅に抑制することができる。   In addition, since the metal film is formed by using plating at the tip of the carbon nanotube that becomes the interface between the carbon nanotube and the heating element, the contact thermal resistance between the heating element and the carbon nanotube can be significantly suppressed.

ここで、図1乃至図6を参照して、本発明の実施の形態を説明する。
図1は、本発明のカーボンナノチューブシートの概略的断面図であり、めっきシード用金属膜11上に、所定の間隔で規則正しく触媒12を配置し、この触媒12を成長核としてカーボンナノチューブをめっきシード用金属膜11に対して垂直方向に配向成長させてカーボンナノチューブ束13を形成し、次いで、電解メッキによりめっき金属14をめっきしてカーボンナノチューブ束13同士を結合させるとともに、触媒12側に空洞15を設ける。
Here, with reference to FIG. 1 thru | or FIG. 6, embodiment of this invention is described.
FIG. 1 is a schematic cross-sectional view of a carbon nanotube sheet of the present invention. Catalysts 12 are regularly arranged at predetermined intervals on a metal film 11 for plating seeds, and carbon nanotubes are seeded by plating with the catalyst 12 as a growth nucleus. The carbon nanotube bundle 13 is formed by being oriented and grown in the vertical direction with respect to the metal film 11, and then the plated metal 14 is plated by electrolytic plating to bond the carbon nanotube bundles 13 to each other, and the cavity 15 is formed on the catalyst 12 side. Is provided.

この場合の触媒12を構成する触媒層は、めっきシード用金属膜11の材質によるが、単独のFe膜、或いは、Fe膜/Al膜、Fe膜/Al膜/Ta膜、Co膜/TiN膜等の積層構造を用い、カーボンナノチューブ成長の際に、最表面のFe或いはCoが微粒子化して成長核となる。   The catalyst layer constituting the catalyst 12 in this case depends on the material of the plating seed metal film 11, but is a single Fe film, Fe film / Al film, Fe film / Al film / Ta film, Co film / TiN film or the like. When a carbon nanotube is grown using a laminated structure such as the above, Fe or Co on the outermost surface is finely divided to become a growth nucleus.

この場合、成長するカーボンナノチューブ束13の平面形状は、触媒層の形状で決まり、また、カーボンナノチューブ束13のCNT密度は、放熱性の観点からは、1×1010本/cm2 以上が好ましい。
また、カーボンナノチューブ束13の長さは、特に限定されるものではないが、実用上の観点からは、5μm〜500μmの範囲が好ましい。
In this case, the planar shape of the growing carbon nanotube bundle 13 is determined by the shape of the catalyst layer, and the CNT density of the carbon nanotube bundle 13 is preferably 1 × 10 10 pieces / cm 2 or more from the viewpoint of heat dissipation. .
The length of the carbon nanotube bundle 13 is not particularly limited, but is preferably in the range of 5 μm to 500 μm from a practical viewpoint.

なお、カーボンナノチューブの熱伝導は電子ではなく格子振動によって行われるので、成長するカーボンナノチューブは単層カーボンナノチューブ(SWCNT)でも多層カーボンナノチューブ(MWCNT)でも良い。   In addition, since the heat conduction of the carbon nanotube is performed not by electrons but by lattice vibration, the growing carbon nanotube may be a single-walled carbon nanotube (SWCNT) or a multi-walled carbon nanotube (MWCNT).

図2は、触媒層の形状の一例の説明図であり、図に示すように、例えば、円、三角形、四角形、六角形、或いは、ストライプ状パターンなどが挙げられるが、形状は何でも良く、特に限定されるものではない。   FIG. 2 is an explanatory diagram of an example of the shape of the catalyst layer, and as shown in the figure, for example, a circle, a triangle, a quadrangle, a hexagon, or a stripe pattern can be mentioned, but the shape may be anything, especially It is not limited.

図3は、触媒層の配置例の説明図であり、図3(a)は円パターンをマトリクス状に配置した例であり、図3(b)は円パターンを最密充填パターンに配置した例であり、図3(c)は三角形パターンを六方最密充填パターン状に配置した例であり、図3(d)は正方形パターンをマトリクス状に配置した例であり、図3(e)は櫛歯状パターンを組み合わせて配置した例であり、図3(f)は円形抜きパターンをマトリクス状に配置した例である。   FIG. 3 is an explanatory diagram of an arrangement example of the catalyst layer, FIG. 3 (a) is an example in which circular patterns are arranged in a matrix, and FIG. 3 (b) is an example in which circular patterns are arranged in a close-packed pattern. 3 (c) is an example in which triangular patterns are arranged in a hexagonal close-packed pattern, FIG. 3 (d) is an example in which square patterns are arranged in a matrix, and FIG. 3 (e) is a comb. FIG. 3 (f) shows an example in which circular patterns are arranged in a matrix.

図4は、触媒層の配置間隔の一例の説明図であり、直径が1μm〜20mmの円形パターンを1μm〜20μmの間隔で規則正しくマトリクス状に配置した例であり、間隔は、カーボンナノチューブ束の先端部に形成するめっき金属の膜厚の2倍以下になるように設定する。   FIG. 4 is an explanatory diagram of an example of the arrangement interval of the catalyst layers, which is an example in which circular patterns having a diameter of 1 μm to 20 mm are regularly arranged in a matrix form at intervals of 1 μm to 20 μm. The thickness is set to be not more than twice the thickness of the plating metal formed on the part.

図5は、触媒層の配置間隔の他の一例の説明図であり、一辺が1μm〜20mmの正方形パターンを1μm〜20μmの間隔で規則正しくマトリクス状に配置した例であり、間隔は、カーボンナノチューブ束の先端部に形成するめっき金属の膜厚の2倍以下になるように設定する。   FIG. 5 is an explanatory diagram of another example of the arrangement interval of the catalyst layers, and is an example in which square patterns with sides of 1 μm to 20 mm are regularly arranged in a matrix at intervals of 1 μm to 20 μm. It is set so as to be not more than twice the film thickness of the plating metal formed on the tip of the metal.

図6は、触媒層の配置間隔のさらに他の一例の説明図であり、短辺が1μm〜20mmで、長辺が1μm〜20mmのストライプ状パターンを1μm〜20μmの間隔で規則正しくラインアンドスペース(L&S)状に配置した例であり、この場合も間隔は、カーボンナノチューブ束の先端部に形成するめっき金属の膜厚の2倍以下になるように設定する。   FIG. 6 is an explanatory view of still another example of the arrangement interval of the catalyst layers. A stripe pattern having a short side of 1 μm to 20 mm and a long side of 1 μm to 20 mm is regularly arranged in a line and space (1 μm to 20 μm interval). In this case, the interval is set so as to be not more than twice the film thickness of the plating metal formed at the tip of the carbon nanotube bundle.

めっき金属は電気伝導の良い部分、即ち、カーボンナノチューブ束13の先端に近い部分からめっきが進むため、隣接するカーボンナノチューブ束13の先端部に成膜しためっき金属が横方向にも成膜してめっき金属同士が最終的に連絡して一体のメッキ金属14となる。
一方、隣接するカーボンナノチューブ束13の間の根元近傍にはめっきされていない空洞15が形成され、この空洞15が変形することにより、発熱体と放熱体の凹凸を吸収し密着性が向上する。
Since plating proceeds from a portion with good electrical conductivity, that is, a portion close to the tip of the carbon nanotube bundle 13, the plating metal formed on the tip of the adjacent carbon nanotube bundle 13 is also formed in the lateral direction. The plated metals finally contact each other to form an integral plated metal 14.
On the other hand, an unplated cavity 15 is formed in the vicinity of the root between adjacent carbon nanotube bundles 13, and the cavity 15 is deformed to absorb unevenness of the heating element and the heat dissipation element, thereby improving the adhesion.

この場合のめっき金属としては電解めっきが可能であれば何でも良く、例えば、金、銅、銀、ニッケル、亜鉛、クロム、白金、半田、スズ等が挙げられる。   The plating metal in this case may be anything as long as electrolytic plating is possible, and examples thereof include gold, copper, silver, nickel, zinc, chromium, platinum, solder, and tin.

以上を前提として、次に、図7を参照して本発明の実施例1のカーボンナノチューブシートの製造工程を説明する。
まず、図7(a)に示すように、表面にSiO2 膜22を形成したシリコン基板21上に、厚さが、例えば、100nmのAu膜からなるめっきシード層23を形成する。
Based on the above, next, the manufacturing process of the carbon nanotube sheet of Example 1 of the present invention will be described with reference to FIG.
First, as shown in FIG. 7A, a plating seed layer 23 made of an Au film having a thickness of, for example, 100 nm is formed on a silicon substrate 21 on which a SiO 2 film 22 is formed.

次いで、めっきシード層23上に、厚さが、例えば、5nmのTa膜25、厚さが、例えば、10nmのAl膜26、及び、厚さが、例えば、2.5nmのFe膜27を順次成膜したのち、所定のパターンにエッチングすることにより触媒パターン24を形成する。
この場合の触媒パターン24は、例えば、一辺が100μmの正方形パターンとし、その間隔を2μmとしてマトリクス状に規則正しく配置する。
Next, a Ta film 25 having a thickness of, for example, 5 nm, an Al film 26 having a thickness of, for example, 10 nm, and an Fe film 27 having a thickness of, for example, 2.5 nm are sequentially formed on the plating seed layer 23. After the film formation, the catalyst pattern 24 is formed by etching into a predetermined pattern.
In this case, the catalyst pattern 24 is, for example, a square pattern having a side of 100 μm and is regularly arranged in a matrix with an interval of 2 μm.

次いで、図7(b)に示すように、例えば、熱フィラメントCVD法を用いてMWCNTの成長を行い、触媒パターン26上に触媒パターン24の形状に依存したカーボンナノチューブ束28を例えば、100μmの高さに成長させる。
なお、熱フィラメントCVD法の成長条件としては、例えば、成長ガスとしてアセチレン: アルゴン=1sccm:9sccmを導入し、圧力1kPa、成長温度620℃とする。
Next, as shown in FIG. 7B, MWCNT growth is performed using, for example, a hot filament CVD method, and a carbon nanotube bundle 28 depending on the shape of the catalyst pattern 24 is formed on the catalyst pattern 26 at a height of, for example, 100 μm. Let it grow.
As the growth conditions of the hot filament CVD method, for example, acetylene: argon = 1 sccm: 9 sccm is introduced as the growth gas, the pressure is 1 kPa, and the growth temperature is 620 ° C.

次いで、図7(c)に示すように、電解メッキ法を用いて例えば、カーボンナノチューブ束28に対してNiめっき膜29を形成する。
この時、めっきは電気伝導の良いカーボンナノチューブ束28の先端近傍から進むため、成膜終期において、各カーボンナノチューブ束28の先端近傍に成長したNiめっき膜29同士が連絡した一体のNiめっき膜29となる。
また、電気伝導の悪いカーボンナノチューブ束28の根元部分には、殆どめっきがされないので空洞30ができる。
Next, as shown in FIG. 7C, for example, a Ni plating film 29 is formed on the carbon nanotube bundle 28 by using an electrolytic plating method.
At this time, since the plating proceeds from the vicinity of the tips of the carbon nanotube bundles 28 having good electrical conductivity, the Ni plating films 29 grown in the vicinity of the tips of the carbon nanotube bundles 28 are in contact with each other at the end of the film formation. It becomes.
In addition, the base portion of the carbon nanotube bundle 28 having poor electrical conductivity is hardly plated, so that a cavity 30 is formed.

次いで、図7(d)に示すように、めっきされたカーボンナノチューブ束28の群を基板上から剥離しカーボンナノチューブのシート化を行うために、例えば、フッ酸水溶液中に基板ごと浸漬してSiO2 膜22を選択的にエッチングして、シリコン基板21とめっきシード層23とを剥離することにより、本発明のカーボンナノチューブシート20の基本構成が得られる。 Next, as shown in FIG. 7 (d), in order to separate the group of plated carbon nanotube bundles 28 from the substrate and form a sheet of carbon nanotubes, for example, the entire substrate is immersed in a hydrofluoric acid aqueous solution to form SiO. The basic structure of the carbon nanotube sheet 20 of the present invention can be obtained by selectively etching the two films 22 and separating the silicon substrate 21 and the plating seed layer 23.

本発明のカーボンナノチューブシートによれば、基板上に配向成長させたカーボンナノチューブを用いているので、基板の垂直方向への高い熱放散性を実現することができる。   According to the carbon nanotube sheet of the present invention, since the carbon nanotubes oriented and grown on the substrate are used, high heat dissipation in the vertical direction of the substrate can be realized.

また、カーボンナノチューブシートと発熱体との界面となるカーボンナノチューブ束の先端部にめっきを用いて金属を成膜しているため、発熱体とカーボンナノチューブとの接触熱抵抗を大幅に小さくすることができる。   In addition, since the metal film is formed by plating at the tip of the carbon nanotube bundle that becomes the interface between the carbon nanotube sheet and the heating element, the contact thermal resistance between the heating element and the carbon nanotube can be significantly reduced. it can.

また、隣接するカーボンナノチューブ束の間の根元近傍に空洞を設けているので、この洞が変形することにより、発熱体と放熱体の凹凸を吸収して密着性を向上することができる。   In addition, since a cavity is provided in the vicinity of the root between adjacent carbon nanotube bundles, deformation of the sinus can absorb the unevenness of the heat generating body and the heat radiating body, thereby improving adhesion.

次に、図8を用いて本発明の実施例2のカーボンナノチューブシートを用いた半導体モジュールを説明する。
図8は本発明の実施例2のカーボンナノチューブシートを用いた半導体モジュールの概略的断面図であり、半導体チップ41をインジウム半田42を介してヒートスプレッダーとなるカーボンナノチューブシート20に取り付けたのち、半田バンプ43を介して回路基板44にフリップチップボンディングする。
Next, a semiconductor module using the carbon nanotube sheet of Example 2 of the present invention will be described with reference to FIG.
FIG. 8 is a schematic cross-sectional view of a semiconductor module using the carbon nanotube sheet of Example 2 of the present invention. After the semiconductor chip 41 is attached to the carbon nanotube sheet 20 serving as a heat spreader via the indium solder 42, the solder Flip chip bonding is performed to the circuit board 44 through the bumps 43.

次いで、この半導体装置を半田バンプ45を介してプリント配線基板46に実装するとともに、カーボンナノチューブシート20の他方の面に放熱フィンを備えたヒートシンク47をインジウム半田48を介してを取り付けることによって、本発明の実施例2の半導体モジュールが完成する。   Next, the semiconductor device is mounted on the printed wiring board 46 via the solder bumps 45, and the heat sink 47 provided with heat radiation fins on the other surface of the carbon nanotube sheet 20 is attached via the indium solder 48. The semiconductor module of Example 2 of the invention is completed.

このように、本発明の実施例2の半導体モジュールにおいては、半導体チップとヒートシンクとの間にカーボンナノチューブシートを密着挿入しているので、半導体チップの放熱を効果的に行うことができる。   Thus, in the semiconductor module of Example 2 of the present invention, since the carbon nanotube sheet is closely inserted between the semiconductor chip and the heat sink, the semiconductor chip can be effectively dissipated.

また、半導体チップとヒートシンクとの間にカーボンナノチューブシートを密着挿入する際に、半導体チップ或いはヒートシンクの表面の凹凸はカーボンナノチューブシートに設けられ空洞の変形により吸収されるので、密着性をより高めることができる。   In addition, when the carbon nanotube sheet is closely inserted between the semiconductor chip and the heat sink, the unevenness on the surface of the semiconductor chip or the heat sink is provided on the carbon nanotube sheet and absorbed by the deformation of the cavity, so that the adhesion is further improved. Can do.

以上、本発明の実施の形態及び各実施例を説明してきたが、本発明は実施の形態及び各実施例に記載された構成・条件等に限られるものではなく各種の変更が可能である。例えば、上記の実施例1においては、触媒層をFe/Al/Taの積層構造で構成しているが、Fe単独、Fe/Al積層構造、或いは、Co/TiN積層構造を用いても良く、例えば、Co/TiN積層構造を用いる場合には、例えば、TiN:Co=5nm:3.8nmとする。   Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the configurations and conditions described in the embodiments and examples, and various modifications can be made. For example, in Example 1 described above, the catalyst layer is composed of a laminated structure of Fe / Al / Ta, but Fe alone, a Fe / Al laminated structure, or a Co / TiN laminated structure may be used, For example, when a Co / TiN laminated structure is used, for example, TiN: Co = 5 nm: 3.8 nm.

また、上記実施の形態或いは実施例においては説明していないが、カーボンナノチューブ束の先端部にグラフェンが成長する場合にも同様に適用されるものである。   Although not described in the above embodiment or examples, the present invention is similarly applied to the case where graphene grows at the tip of the carbon nanotube bundle.

また、上記の実施例2においては、カーボンナノチューブシートを半導体チップとヒートシンクとの間に密着挿入する際に、めっき金属側をヒートシンクに接触させているが、反対に、めっき金属側を半導体チップに接触させるようにしても良い。   In Example 2 above, when the carbon nanotube sheet is tightly inserted between the semiconductor chip and the heat sink, the plated metal side is brought into contact with the heat sink. You may make it contact.

また、上記の実施例2においては、カーボンナノチューブシートを半導体チップとヒートシンクとの間に密着挿入しているが、パッケージと半導体チップとの間に密着挿入しても良いものである。
半導体チップをパッケージ基板にフェイスアップボンディングする場合には、パッケージ基板と半導体チップとの間に挿入すれば良い。
また、半導体チップをパッケージ基板にフリップチップボンディングする場合には、パッケージの上蓋部材と半導体チップとの間に挿入すれば良い。
In the second embodiment, the carbon nanotube sheet is closely inserted between the semiconductor chip and the heat sink. However, the carbon nanotube sheet may be closely inserted between the package and the semiconductor chip.
When the semiconductor chip is face-up bonded to the package substrate, it may be inserted between the package substrate and the semiconductor chip.
Further, when flip chip bonding of the semiconductor chip to the package substrate, it may be inserted between the upper lid member of the package and the semiconductor chip.

また、上記の実施例2においては、カーボンナノチューブシートを用いる対象として半導体チップを挙げているが、このような半導体チップとしてはCPU等の半導体集積回路装置や無線通信基地局用高出力増幅器、無線通信端末用高出力増幅器、電気自動車用高出力スイッチが挙げられる。   In the second embodiment, a semiconductor chip is used as an object to use the carbon nanotube sheet. As such a semiconductor chip, a semiconductor integrated circuit device such as a CPU, a high-power amplifier for a radio communication base station, a radio High-power amplifiers for communication terminals, high-power switches for electric vehicles, and the like.

また、カーボンナノチューブシートを用いる対象は半導体チップに限られるものではなく、強誘電体を用いた光偏向装置等の他の電子デバイスチップにも適用されるものであり、さらには、単独のチップではなく、サーバー、PCなど製品に用いる放熱・導電シートにも適用されるものである。   In addition, the object of using the carbon nanotube sheet is not limited to the semiconductor chip, but can be applied to other electronic device chips such as an optical deflecting device using a ferroelectric material. It can also be applied to heat-dissipating / conductive sheets used in products such as servers and PCs.

本発明のカーボンナノチューブシートの概略的断面図である。It is a schematic sectional drawing of the carbon nanotube sheet of the present invention. 触媒層の形状の一例の説明図である。It is explanatory drawing of an example of the shape of a catalyst layer. 触媒層の配置例の説明図である。It is explanatory drawing of the example of arrangement | positioning of a catalyst layer. 触媒層の配置間隔の一例の説明図である。It is explanatory drawing of an example of the arrangement | positioning space | interval of a catalyst layer. 触媒層の配置間隔の他の一例の説明図である。It is explanatory drawing of another example of the arrangement | positioning space | interval of a catalyst layer. 触媒層の配置間隔のさらに他の一例の説明図である。It is explanatory drawing of another example of the arrangement | positioning space | interval of a catalyst layer. 本発明の実施例1のカーボンナノチューブシートの製造工程の説明図である。It is explanatory drawing of the manufacturing process of the carbon nanotube sheet | seat of Example 1 of this invention. 本発明の実施例2のカーボンナノチューブシートを用いた半導体モジュールの概略的断面図である。It is a schematic sectional drawing of the semiconductor module using the carbon nanotube sheet | seat of Example 2 of this invention.

符号の説明Explanation of symbols

11 めっきシード用金属膜
12 触媒
13 カーボンナノチューブ束
14 めっき金属
15 空洞
20 カーボンナノチューブシート
21 シリコン基板
22 SiO2
23 めっきシード層
24 触媒パターン
25 Ta膜
26 Al膜
27 Fe膜
28 カーボンナノチューブ束
29 Niめっき膜
30 空洞
41 半導体チップ
42 インジウム半田
43 半田バンプ
44 回路基板
45 半田バンプ
46 プリント配線基板
47 ヒートシンク
48 インジウム半田
11 Plating seed metal film 12 Catalyst 13 Carbon nanotube bundle 14 Plating metal 15 Cavity 20 Carbon nanotube sheet 21 Silicon substrate 22 SiO 2 film 23 Plating seed layer 24 Catalyst pattern 25 Ta film 26 Al film 27 Fe film 28 Carbon nanotube bundle 29 Ni Plating film 30 Cavity 41 Semiconductor chip 42 Indium solder 43 Solder bump 44 Circuit board 45 Solder bump 46 Printed wiring board 47 Heat sink 48 Indium solder

Claims (6)

カーボンナノチューブ束の群と該カーボンナノチューブ束のそれぞれを埋め込むめっき金属からなり、前記カーボンナノチューブ束の配向方向がシートの垂直方向に保持されているとともに、前記カーボンナノチューブ束の少なくとも先端部が前記めっき金属により結合されており、且つ、前記カーボンナノチューブ束の先端部と反対側に空洞を有するカーボンナノチューブシート。 The carbon nanotube bundle is composed of a group of carbon nanotube bundles and a plating metal that embeds each of the carbon nanotube bundles, and the orientation direction of the carbon nanotube bundle is held in the vertical direction of the sheet, and at least the tip of the carbon nanotube bundle is the plating metal And a carbon nanotube sheet having a cavity on the side opposite to the tip of the carbon nanotube bundle. 前記カーボンナノチューブ束が、所定の間隔で規則正しく配置されている請求項1記載のカーボンナノチューブシート。 The carbon nanotube sheet according to claim 1, wherein the carbon nanotube bundles are regularly arranged at a predetermined interval. 前記カーボンナノチューブ束の先端部と反対側に、めっきシード用金属膜を有する請求項1または2に記載のカーボンナノチューブシート。 The carbon nanotube sheet according to claim 1, wherein a metal film for plating seed is provided on a side opposite to a tip portion of the carbon nanotube bundle. 前記めっき金属が、金、銅、銀、ニッケル、亜鉛、クロム、白金、半田、或いは、スズのいずれかからなる請求項1乃至3のいずれか1項に記載のカーボンナノチューブシート。 The carbon nanotube sheet according to any one of claims 1 to 3, wherein the plated metal is made of any one of gold, copper, silver, nickel, zinc, chromium, platinum, solder, or tin. 基板上にめっきシード用金属膜を形成する工程と、前記シード用金属膜上に触媒層を所定の間隔で規則正しく配置する工程と、前記触媒層上にカーボンナノチューブ束を成長する工程と、前記カーボンナノチューブ束の少なくとも先端部にめっき金属を電解めっきして前記カーボンナノチューブ束の少なくとも先端部を前記めっき金属により結合するとともに、前記カーボンナノチューブ束の先端部と反対側に空洞を形成する工程と、前記基板を除去する工程とを有するカーボンナノチューブシートの製造方法。 Forming a plating seed metal film on a substrate; regularly arranging catalyst layers on the seed metal film at predetermined intervals; growing a carbon nanotube bundle on the catalyst layer; and A step of electrolytically plating a plating metal on at least the tip of the nanotube bundle to bond at least the tip of the carbon nanotube bundle with the plating metal and forming a cavity on the opposite side of the tip of the carbon nanotube bundle; A method for producing a carbon nanotube sheet, comprising a step of removing a substrate. 請求項1乃至4のいずれか1項に記載のカーボンナノチューブシートを電子デバイスと放熱体との間に密着させて配置した電子装置。 An electronic apparatus in which the carbon nanotube sheet according to any one of claims 1 to 4 is disposed in close contact between an electronic device and a radiator.
JP2008010042A 2008-01-21 2008-01-21 Carbon nanotube sheet, method for producing the same, and electronic device Active JP5098660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010042A JP5098660B2 (en) 2008-01-21 2008-01-21 Carbon nanotube sheet, method for producing the same, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010042A JP5098660B2 (en) 2008-01-21 2008-01-21 Carbon nanotube sheet, method for producing the same, and electronic device

Publications (2)

Publication Number Publication Date
JP2009170828A JP2009170828A (en) 2009-07-30
JP5098660B2 true JP5098660B2 (en) 2012-12-12

Family

ID=40971649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010042A Active JP5098660B2 (en) 2008-01-21 2008-01-21 Carbon nanotube sheet, method for producing the same, and electronic device

Country Status (1)

Country Link
JP (1) JP5098660B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356972B2 (en) 2009-10-20 2013-12-04 新光電気工業株式会社 Heat dissipating component, manufacturing method thereof, and semiconductor package
KR101715761B1 (en) * 2010-12-31 2017-03-14 삼성전자주식회사 Semiconductor packages and methods for fabricating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
JP4167212B2 (en) * 2004-10-05 2008-10-15 富士通株式会社 Carbon nanotube structure, semiconductor device, and semiconductor package

Also Published As

Publication number Publication date
JP2009170828A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5104688B2 (en) Sheet-like structure, method for producing the same, and electronic device
JP5146256B2 (en) Sheet-like structure and manufacturing method thereof, and electronic device and manufacturing method thereof
JP6132768B2 (en) Heat dissipation material and manufacturing method thereof
US20180158753A1 (en) Heat dissipating structure and manufacture
JP4763707B2 (en) Unidirectional conductive adhesive tape, integrated circuit device and manufacturing method thereof
JP5276565B2 (en) Heat dissipation parts
WO2009107229A1 (en) Sheet structure, semiconductor device and method of growing carbon structure
JP2013239623A (en) Sheet-like structure, manufacturing method thereof, electronic equipment and manufacturing method thereof
JP5746808B2 (en) Package and electronic device using carbon nanotube
ITTO20100555A1 (en) ELECTRONIC DEVICE INCLUDING A LAYER OF CONNECTION INTERFACE BASED ON NANOTUBES, AND MANUFACTURING PROCEDURE
JP2008210954A (en) Carbon nanotube bump structure, its manufacturing method and semiconductor device using the same
JP5013116B2 (en) Sheet-like structure, method for producing the same, and electronic device
JP5293561B2 (en) Thermally conductive sheet and electronic device
JP2015216199A (en) Semiconductor device, heat conduction member, and method for manufacturing semiconductor device
JP6202104B2 (en) Sheet-like structure, electronic device using the same, method for producing sheet-like structure, and method for producing electronic device
JP2020043261A (en) Heat dissipation structure, electronic device, and manufacturing method of heat dissipation structure
JP2011222746A (en) Electronic device manufacturing method
JP2010171200A (en) Heat radiator of semiconductor package
JP5343620B2 (en) Heat dissipation material and method for manufacturing the same, electronic device and method for manufacturing the same
JP5098660B2 (en) Carbon nanotube sheet, method for producing the same, and electronic device
JP6223903B2 (en) Carbon nanotube sheet, electronic device, method of manufacturing carbon nanotube sheet, and method of manufacturing electronic device
JP5760668B2 (en) Sheet-like structure, manufacturing method thereof, electronic device, and manufacturing method thereof
KR20090040847A (en) Sheet structure and method of manufacturing the same, and electronic instrument
JP5018419B2 (en) Module structure, manufacturing method thereof, and semiconductor device
JP5768786B2 (en) Sheet-like structure and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150