JP5098109B2 - Film formation method - Google Patents
Film formation method Download PDFInfo
- Publication number
- JP5098109B2 JP5098109B2 JP2005093291A JP2005093291A JP5098109B2 JP 5098109 B2 JP5098109 B2 JP 5098109B2 JP 2005093291 A JP2005093291 A JP 2005093291A JP 2005093291 A JP2005093291 A JP 2005093291A JP 5098109 B2 JP5098109 B2 JP 5098109B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- powder
- combustion
- temperature
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 title 1
- 239000000843 powder Substances 0.000 claims abstract description 34
- 239000007789 gas Substances 0.000 claims abstract description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 20
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 9
- 238000010285 flame spraying Methods 0.000 claims abstract description 6
- 239000000567 combustion gas Substances 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000000112 cooling gas Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims 1
- 239000010936 titanium Substances 0.000 abstract description 30
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 13
- 239000011261 inert gas Substances 0.000 abstract description 11
- 230000003647 oxidation Effects 0.000 abstract description 7
- 238000007254 oxidation reaction Methods 0.000 abstract description 7
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Nozzles (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
本発明は、燃焼室のノズルから高速噴射した燃焼ガス中に粉末を混入し、当該燃焼ガスとともに前記粉末を基材表面に向かって噴射して、当該粉末からなる皮膜を基材表面に形成する皮膜形成方法に関するものである。 In the present invention, powder is mixed in the combustion gas jetted at high speed from the nozzle of the combustion chamber, and the powder is jetted toward the substrate surface together with the combustion gas to form a film made of the powder on the substrate surface. The present invention relates to a film forming method.
チタンは優れた耐食性を有するために海洋構造物やプラントの耐食材として重要であり、また、生体に対しての毒性がなく、インプラント材にも用いられている。この場合には、適当なポア(100ミクロン以上)が骨との結合に有効であるとされている。 Titanium is important as an anticorrosive material for offshore structures and plants because it has excellent corrosion resistance, and is not toxic to living organisms, and is also used as an implant material. In this case, an appropriate pore (100 microns or more) is said to be effective for bonding with bone.
溶射法によってこのような特徴のあるチタンの皮膜をコーティングする方法については従来より検討されてきているが、チタンは高温で酸素、窒素との反応性が高く、通常の溶射装置では大気中で溶射すると酸化物や窒化物が大部分で緻密度の低い膜しかできないという問題がある。 Although a method for coating a titanium film having such characteristics by a thermal spraying method has been studied in the past, titanium is highly reactive with oxygen and nitrogen at a high temperature. As a result, there is a problem that most of oxides and nitrides can be formed only with a low-density film.
現在、チタンを金属としてコーティングする溶射法には減圧プラズマ溶射とコールドスプレーが知られている。減圧プラズマ溶射では、チャンバー内を不活性減圧雰囲気にして、原料のチタン粉末をプラズマジェットによって溶融して成膜する。この方法は、実際には、チタン合金製生体インプラントにポーラスチタン層を付与するために使用されている。しかし、この減圧プラズマ溶射では、皮膜の品質は高いが、コストも非常に高いという問題がある。 At present, low-pressure plasma spraying and cold spray are known as thermal spraying methods for coating titanium as a metal. In the low pressure plasma spraying, the inside of the chamber is set to an inert low pressure atmosphere, and the raw material titanium powder is melted by a plasma jet to form a film. This method is actually used to apply a porous titanium layer to a titanium alloy bioimplant. However, this low-pressure plasma spraying has a problem that the quality of the coating is high but the cost is very high.
一方、コールドスプレーでは電気ヒータで500℃程度まで加熱した不活性ガスを加圧して超音速ノズルから噴出し、この中に原料粉末を供給し、加速して成膜する。この方法によれば、AlやCuなどの軟質金属では緻密な膜が得られる。しかしながら、チタンではポーラスな膜しか得られない。
つまり、従来の噴射法は、燃料の燃焼温度による噴射か、前記のような加熱による温度による噴射かの二者択一的な方法しか提供されておらず、これらの中間に位置する温度での噴射技術は存在しなかった。
On the other hand, in cold spray, an inert gas heated to about 500 ° C. with an electric heater is pressurized and ejected from a supersonic nozzle, and raw material powder is supplied into the nozzle and accelerated to form a film. According to this method, a dense film can be obtained with a soft metal such as Al or Cu. However, only a porous film can be obtained with titanium.
In other words, the conventional injection method provides only an alternative method of injection by fuel combustion temperature or injection by temperature as described above, and at a temperature located between these two methods. There was no injection technology.
灯油と酸素との混合ガスを燃焼させて生成させた燃焼ガス(高速フレーム)により金属、合金等の粉末を加熱して基材(基材)表面に高速で衝突させる高速フレーム溶射(HVOF)法について、発明者は実験的検証とその改良を詳しく検討し、すでにこれまでに、粉末供給後に不活性ガスを混合するガスシュラウド(Gas shroud)部を通過させる方法とその装置について特許を取得している(特開2003−183805)。
しかし、この方法では、燃焼ガスの温度を低下させることができるが粉末の温度を低下させることは困難であった。
High-speed flame spraying (HVOF) method in which powder of metal, alloy, etc. is heated with a combustion gas (high-speed flame) generated by burning a mixed gas of kerosene and oxygen and collides with the surface of the base material (base material) at high speed The inventor has examined the experimental verification and its improvement in detail, and has already obtained a patent for a method and apparatus for passing a gas shroud portion for mixing an inert gas after supplying powder. (Japanese Patent Laid-Open No. 2003-183805).
However, this method can reduce the temperature of the combustion gas, but it is difficult to reduce the temperature of the powder.
本発明は、このような実情に鑑み、従来公知の中間的な温度域での噴射を可能にする方法を提供することを目的とした。 In view of such circumstances, an object of the present invention is to provide a method that enables injection in a conventionally known intermediate temperature range.
本発明は、上記の課題を解決するものとして、以下の特徴を有する皮膜の形成方法を提供する。
発明1の皮膜形成方法は、高速酸素火炎溶射(HVOF)により、ノズルから高速噴射した燃焼ガス中に粉末を混入し、当該燃焼ガスとともに前記粉末を基材表面に向かって噴射して、当該粉末からなる皮膜を基材表面に形成する皮膜形成方法であって、燃焼室で発生した燃焼ガスに、前記燃焼室に直結したガス混合室で冷却用ガスを供給して、当該燃焼ガスの温度を低下し、この低温燃焼ガスを前記ガス混合室に直結したノズルから高速噴射することを特徴とする。発明2は、発明1の皮膜形成方法において、前記冷却用ガスの単位時間当たりの供給量を調整して、前記燃焼ガスの温度を調整することを特徴とする。
The present invention provides a method for forming a film having the following characteristics as a solution to the above-described problems.
Film-forming method of the invention 1, the high velocity oxygen flame spraying (HVOF), the powder is mixed into the combustion gas at high injection from Bruno nozzle, by spraying the powder with the combustion gases toward the substrate surface, the A film forming method for forming a film made of powder on a substrate surface , wherein a cooling gas is supplied to a combustion gas generated in a combustion chamber in a gas mixing chamber directly connected to the combustion chamber, and the temperature of the combustion gas The low-temperature combustion gas is jetted at high speed from a nozzle directly connected to the gas mixing chamber . Invention 2 is characterized in that, in the film forming method of Invention 1, the temperature of the combustion gas is adjusted by adjusting the supply amount of the cooling gas per unit time.
発明3は、発明1又は2の皮膜形成方法において、前記粉末がTi又はTi合金の粉末であることを特徴とする。 Invention 3 is characterized in that, in the film forming method of Invention 1 or 2, the powder is a powder of Ti or Ti alloy.
本発明では、燃焼室からそのノズルまでの間において燃焼ガス中に不活性ガスを供給して燃焼ガスの温度を低下するので、燃焼ガス全体が低温化し、粉末温度も、それに接触する燃焼ガス温度とともに低下せざるを得なくなる点に着目してなしたもので、粉末温度が、前記従来のいずれの方法でも得られなかった低温度でフレーム溶射を行うことができた。
また、その燃焼ガスの温度は、不活性ガスの不活性ガスの単位時間当たりの供給量に反比例することが実施例より明らかであるから、この供給量を調整することで粉末の基材への噴射時の温度を制御し得るに到った。
In the present invention, since the inert gas is supplied into the combustion gas from the combustion chamber to the nozzle to lower the temperature of the combustion gas, the temperature of the entire combustion gas is lowered, and the powder temperature is also the temperature of the combustion gas in contact with it. At the same time, the flame spraying can be performed at a low temperature that cannot be obtained by any of the conventional methods.
In addition, it is clear from the examples that the temperature of the combustion gas is inversely proportional to the supply amount of the inert gas per unit time of the inert gas. Therefore, by adjusting the supply amount, It came to be able to control the temperature at the time of injection.
さらに、耐食性構造材や生体関連材料等として有用な金属Ti(チタン)またはTi合金の皮膜を、Tiの酸化を抑え、耐食性に優れ、しかも緻密な組織を有する、酸素含有量1mass%以下、気孔率2vol%以下という特徴のある皮膜が形成可能とされる。 Furthermore, a metal Ti (titanium) or Ti alloy film useful as a corrosion-resistant structural material or a bio-related material has an oxygen content of 1 mass% or less and a pore structure that suppresses Ti oxidation, has excellent corrosion resistance, and has a dense structure. A film having a characteristic of a rate of 2 vol% or less can be formed.
本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。 The present invention has the features as described above, and an embodiment thereof will be described below.
本発明の高速酸素火炎溶射(以下「HVOF」とする)においては、その装置手段としては、たとえば図1に例示したように、灯油等の燃料と酸素ガスの混合による燃焼が行われる燃焼室(Chamber) と燃焼ガスに対して金属TiまたはTi合金の粉末(Powder)が供給されて加熱されるバレル(Barrel)部とを有し、全体として冷却水により冷却されるようにしたものがその基本的な構成となる。
In the high-speed oxygen flame spraying (hereinafter referred to as “HVOF”) according to the present invention, as the device means, for example, as illustrated in FIG. 1, a combustion chamber in which combustion is performed by mixing fuel such as kerosene and oxygen gas ( Chamber) and a barrel that is heated by supplying metal Ti or Ti alloy powder (Powder) to the combustion gas and is cooled by cooling water as a whole. It becomes a typical configuration.
このような構成の装置において、本発明の形成方法では、上記粉末の供給時のガス中の酸素濃度を5vol%に、また、ガス温度を1500℃以下に制御する。
以下の実施例では、この制御を、燃焼ガス中への不活性ガスの混合により行う。
In the apparatus having such a configuration, in the forming method of the present invention, the oxygen concentration in the gas when supplying the powder is controlled to 5 vol%, and the gas temperature is controlled to 1500 ° C. or lower.
In the following embodiments, this control is performed by mixing an inert gas into the combustion gas.
図1の装置構成の例では、燃焼室(Chamber) と粉末供給部との間にガス混合室を設け、ここに不活性ガスが供給混合されるようにしている。このための装置構成やその細部については各種の態様が考慮されてよいことは言うまでもない。 In the example of the apparatus configuration of FIG. 1, a gas mixing chamber is provided between the combustion chamber (Chamber) and the powder supply unit, and an inert gas is supplied and mixed therein. It goes without saying that various aspects may be taken into consideration for the device configuration and the details thereof.
不活性ガスの混合により、ガス温度と酸素濃度の制御が可能とされる。 The gas temperature and oxygen concentration can be controlled by mixing the inert gas.
そして、この時の図1に示した基材(Substrate) への加熱された粉末の衝突速度は、500m/s以上となる。 At this time, the collision speed of the heated powder to the substrate (Substrate) shown in FIG. 1 is 500 m / s or more.
酸素濃度が5vol%を超える場合、ガス温度が1500℃を超える場合、さらには衝突速度が500m/s未満の場合には、Tiの酸化を抑えることや、緻密な組織を得ることは難しくなる。一方、酸素濃度の下限については、高速フレームを生成させる燃焼反応後の酸素含有割合として可能な限り低いことが望ましい。ガス温度は、Ti金属またはその合金粉末の加熱状態と、その流速を左右する。その下限については装置のスケールや粉末の供給料、粉末の種類等によっても相違するが、一般的には900℃以上とすることが目安となる。 When the oxygen concentration exceeds 5 vol%, when the gas temperature exceeds 1500 ° C., and when the collision velocity is less than 500 m / s, it is difficult to suppress oxidation of Ti and obtain a dense structure. On the other hand, the lower limit of the oxygen concentration is desirably as low as possible as the oxygen content ratio after the combustion reaction that generates the high-speed flame. The gas temperature affects the heating state of the Ti metal or its alloy powder and its flow rate. The lower limit varies depending on the scale of the apparatus, the powder supply, the type of powder, and the like, but in general, the lower limit is 900 ° C. or more.
以上のことを考慮して、実際の操作では、装置スケール等をも考慮することで、不活性ガスの供給量、供給速度が定められることになる。 In consideration of the above, in the actual operation, the supply amount and supply speed of the inert gas are determined by considering the apparatus scale and the like.
不活性ガスの種類については、たとえば代表的にはN2(窒素ガス)や、Ar(アルゴン)、He(ヘリウム)等の希ガスが好適なものとして示される。また、条件によってはCO2等の他のものであってもよい。 As for the kind of the inert gas, for example, a rare gas such as N2 (nitrogen gas), Ar (argon), or He (helium) is typically shown as a preferable one. Also, other materials such as CO2 may be used depending on conditions.
そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。 Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.
灯油を燃料とするHVOF溶射装置を図1に示すように構成し、中段にガス混合室として、窒素を混合するための混合チャンバを設け、チタン粉末を投入する位置でのガス温度、組成、流速の制御を可能とした。これによりチタン粉末投入位置でのガス温度を3000℃から800℃まで、酸素濃度を15%から1%にまで制御可能とした。 A HVOF spraying apparatus using kerosene as a fuel is configured as shown in FIG. 1, a gas mixing chamber is provided in the middle as a mixing chamber for mixing nitrogen, and the gas temperature, composition and flow rate at the position where titanium powder is charged It was possible to control. As a result, the gas temperature at the titanium powder charging position can be controlled from 3000 ° C. to 800 ° C., and the oxygen concentration from 15% to 1%.
以上の装置を用い、次の表1の条件によって金属Ti皮膜を基材としての鉄の表面に形成した。 Using the above apparatus, a metal Ti film was formed on the surface of iron as a base material under the conditions shown in Table 1 below.
表2は、窒素混合時のガス温度とバレル内流速の計算値を例示したものである。この際には、表3の事項が仮定されている。 Table 2 exemplifies the calculated values of the gas temperature and the in-barrel flow rate during nitrogen mixing. At this time, the items in Table 3 are assumed.
図2は、窒素ガス流量と混合ガス温度との関係を例示したものである。窒素ガスを導入することによりガス温度が低下し、窒素ガスの導入によってガス温度の制御が可能であることがわかる。 FIG. 2 illustrates the relationship between the nitrogen gas flow rate and the mixed gas temperature. It can be seen that the introduction of nitrogen gas lowers the gas temperature, and the introduction of nitrogen gas allows the gas temperature to be controlled.
図3は、N2(窒素ガス)流量(slm)と図1の溶射距離(Spray distance):Dとを変化させた場合の形成されたTi皮膜の組織断面の写真とともに、細孔径と気孔率との関係を例示した図である。 FIG. 3 shows the pore diameter and the porosity along with a photograph of the cross section of the Ti film formed when the N2 (nitrogen gas) flow rate (slm) and the spray distance (D) in FIG. 1 are changed. It is the figure which illustrated the relationship.
窒素ガス流量が500slm未満ではガス温度、酸素濃度ともに高いために、膜中のチタン粉末の境界が酸化によって変色しているのが認められるが、1000slmでは酸化がかなり抑制され、1500、2000ではほとんど認められない。他方、皮膜の緻密度は窒素ガス流量を2000にすると顕著に低下する。従って、窒素流量1000から1500slm近辺で溶射距離を180mm近辺にした場合が酸化も少なく、緻密度の高いチタン皮膜が得られることがわかる。 When the nitrogen gas flow rate is less than 500 slm, both the gas temperature and the oxygen concentration are high, so it is recognized that the boundary of the titanium powder in the film is discolored due to oxidation, but the oxidation is considerably suppressed at 1000 slm, and almost 1500, 2000 unacceptable. On the other hand, when the nitrogen gas flow rate is 2000, the denseness of the film is significantly reduced. Therefore, it can be seen that when the spraying distance is about 180 mm in the vicinity of the nitrogen flow rate of 1000 to 1500 slm, there is little oxidation and a highly dense titanium film can be obtained.
たとえば以上のような結果を基礎として、Ti粉末の投入口部でのTi粉末の供給に際してのガス中での酸素ガス濃度、ガス温度(Tg)、そしてTi皮膜中の酸素含有量との関係を検証し、その結果を例示したものが図4である。図5は、基材へのTi粉末の衝突速度とガス温度(Tg)並びに気孔率との関係を例示した図である。なお、Tpは、二色温度計によって測定したTi粉末の表面温度を示している。 For example, based on the above results, the relationship between the oxygen gas concentration in the gas, the gas temperature (Tg), and the oxygen content in the Ti film when supplying the Ti powder at the inlet of the Ti powder is shown. FIG. 4 illustrates the result of verification. FIG. 5 is a diagram illustrating the relationship between the collision speed of Ti powder to the substrate, the gas temperature (Tg), and the porosity. In addition, Tp has shown the surface temperature of Ti powder measured with the two-color thermometer.
たとえば以上の結果から、Tiの酸化を抑えて、緻密なTi皮膜組織を、皮膜中の酸素含有量1mass%以下、気孔率2vol%以下の優れた特性を有するものとして形成するためには、ガス中の酸素濃度5vol%以下、ガス温度1500℃以下、基材への粉末衝突速度500m/s以上の条件とすることが望ましいことが確認された。 For example, from the above results, in order to suppress the oxidation of Ti and form a dense Ti film structure having excellent characteristics with an oxygen content of 1 mass% or less and a porosity of 2 vol% or less in the film, It was confirmed that it is desirable that the oxygen concentration is 5 vol% or less, the gas temperature is 1500 ° C. or less, and the powder collision speed to the substrate is 500 m / s or more.
また、最も緻密となる条件で800ミクロン厚まで溶射し、そのまま人工海水中で浸漬試験したところ、図6に示したように、3日で皮膜表面に基材の鉄から生成した赤錆が点状に現れた。皮膜に貫通気孔が存在するためと考えられる。 In addition, when sprayed to a thickness of 800 microns under the most dense conditions and subjected to an immersion test in artificial sea water as it is, red rust generated from the base iron on the surface of the film in 3 days as shown in FIG. Appeared in. This is thought to be due to the presence of through pores in the film.
そこで、この800ミクロンの皮膜を600ミクロン厚まで研磨して人工海水中で1ケ月浸漬試験した。その結果、図6に示したように、まったく腐食されないことが確認された。交流インピーダンス法によって測定した腐食抵抗値も105Ωcm2以上の値を維持した。 Therefore, this 800-micron film was polished to a thickness of 600 microns and immersed in artificial seawater for one month. As a result, as shown in FIG. 6, it was confirmed that no corrosion occurred. The corrosion resistance value measured by the AC impedance method also maintained a value of 10 5 Ωcm 2 or more.
Claims (3)
3. The film forming method according to claim 1, wherein the powder is Ti or Ti alloy powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005093291A JP5098109B2 (en) | 2005-03-28 | 2005-03-28 | Film formation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005093291A JP5098109B2 (en) | 2005-03-28 | 2005-03-28 | Film formation method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006277286A Division JP5071706B2 (en) | 2006-10-11 | 2006-10-11 | HVOF spraying equipment |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006274326A JP2006274326A (en) | 2006-10-12 |
JP2006274326A5 JP2006274326A5 (en) | 2009-11-05 |
JP5098109B2 true JP5098109B2 (en) | 2012-12-12 |
Family
ID=37209360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005093291A Active JP5098109B2 (en) | 2005-03-28 | 2005-03-28 | Film formation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5098109B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155564A1 (en) | 2017-02-24 | 2018-08-30 | 国立研究開発法人物質・材料研究機構 | Method for manufacturing aluminum circuit board |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5013364B2 (en) * | 2006-09-12 | 2012-08-29 | 独立行政法人物質・材料研究機構 | Cermet film forming method and cermet coating member obtained thereby |
JP4863487B2 (en) * | 2006-12-25 | 2012-01-25 | 独立行政法人物質・材料研究機構 | Warm spray method |
EP2172278B1 (en) * | 2007-07-13 | 2014-09-24 | National Institute for Materials Science | Method of resin coating |
RU2543117C2 (en) * | 2013-05-16 | 2015-02-27 | Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" (Фонд "Энергия без границ") | Method of manufacturing of protecting strengthening coating on shutdown valve parts |
JP6924990B2 (en) * | 2016-06-17 | 2021-08-25 | 吉川工業株式会社 | Thermal spray coating and thermal spray coating member |
CN111549309B (en) * | 2020-05-29 | 2022-04-12 | 中国人民解放军军事科学院国防科技创新研究院 | Low-temperature high-speed flame spraying gun |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5330798A (en) * | 1992-12-09 | 1994-07-19 | Browning Thermal Systems, Inc. | Thermal spray method and apparatus for optimizing flame jet temperature |
JP2983454B2 (en) * | 1995-08-31 | 1999-11-29 | 株式会社東芝 | High temperature resistant thermal spray coated member and method of manufacturing the same |
JPH09314032A (en) * | 1996-05-24 | 1997-12-09 | Suruzaameteko Japan Kk | Forming method of composite resin flame spray film |
JPH11129073A (en) * | 1997-10-30 | 1999-05-18 | Japan Steel & Tube Constr Co Ltd | Butt welding of titanium clad steel plate |
JP2938436B1 (en) * | 1998-02-06 | 1999-08-23 | 株式会社東芝 | Abrasion resistant coated part and method of manufacturing the same |
JP4628578B2 (en) * | 2001-04-12 | 2011-02-09 | トーカロ株式会社 | Low temperature sprayed coating coated member and method for producing the same |
JP3612568B2 (en) * | 2001-10-09 | 2005-01-19 | 独立行政法人物質・材料研究機構 | Metal film forming method and spraying apparatus by HVOF spray gun |
AU2003285268A1 (en) * | 2002-11-19 | 2004-06-15 | Erwin Dieter Huhne | Low-temperature high-velocity flame spraying system |
JP3978512B2 (en) * | 2003-08-28 | 2007-09-19 | 株式会社フジコー | High speed spraying device with variable spraying temperature |
JP5071706B2 (en) * | 2006-10-11 | 2012-11-14 | 独立行政法人物質・材料研究機構 | HVOF spraying equipment |
-
2005
- 2005-03-28 JP JP2005093291A patent/JP5098109B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155564A1 (en) | 2017-02-24 | 2018-08-30 | 国立研究開発法人物質・材料研究機構 | Method for manufacturing aluminum circuit board |
US11570901B2 (en) | 2017-02-24 | 2023-01-31 | National Institute For Materials Science | Method for manufacturing aluminum circuit board |
Also Published As
Publication number | Publication date |
---|---|
JP2006274326A (en) | 2006-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5098109B2 (en) | Film formation method | |
Kawakita et al. | Dense titanium coatings by modified HVOF spraying | |
Kuroda et al. | Warm spraying—a novel coating process based on high-velocity impact of solid particles | |
EP2011964B1 (en) | Method of Repairing a Turbine Component | |
US5277936A (en) | Oxide containing MCrAlY-type overlay coatings | |
JP3056548B2 (en) | Method of forming friction layer on wing surface | |
US9347126B2 (en) | Process of fabricating thermal barrier coatings | |
JP2013174014A (en) | Method for constructing thermal barrier coating | |
CA2482085A1 (en) | A plasma spraying method | |
EP0897019A1 (en) | Method and device for forming porous ceramic coatings, in particular thermal barrier coatings, on metal substrates | |
JPH0447018B2 (en) | ||
JP5568756B2 (en) | Cermet sprayed coating member excellent in corrosion resistance and plasma erosion resistance and method for producing the same | |
KR101171682B1 (en) | A method for Nitriding Surface of Aluminum or Aluminum Alloy by Cold Spray Method | |
JP5071706B2 (en) | HVOF spraying equipment | |
JP2009249645A (en) | Method for producing coating film | |
US6485792B1 (en) | Endurance of NiA1 coatings by controlling thermal spray processing variables | |
JP5489519B2 (en) | Coating material, coating method, and blade with shroud | |
US7429174B2 (en) | Clean atmosphere heat treat for coated turbine components | |
US6083330A (en) | Process for forming a coating on a substrate using a stepped heat treatment | |
US20110097504A1 (en) | Method for the Anti-Corrosion Processing of a Part by Deposition of a Zirconium and/or Zirconium Alloy Layer | |
JP4999721B2 (en) | Thermal spray coating coated member having excellent appearance and method for producing the same | |
Cao et al. | Comparison of a cold‐sprayed and plasma‐sprayed Fe25Cr20Mo1Si amorphous alloy coatings on 40Cr substrates | |
Dewald et al. | Cubic titanium trialuminide thermal spray coatings—a review | |
CN112941454A (en) | Laser remelting post-treatment method for preparing high-temperature oxidation corrosion resistant MCrAlY coating by supersonic flame thermal spraying | |
CN110616394A (en) | Preparation method for improving thermal shock resistance of double-ceramic-layer TBCs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5098109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |