JP5097886B1 - Circular ring reinforced metal flat plate - Google Patents
Circular ring reinforced metal flat plate Download PDFInfo
- Publication number
- JP5097886B1 JP5097886B1 JP2012097343A JP2012097343A JP5097886B1 JP 5097886 B1 JP5097886 B1 JP 5097886B1 JP 2012097343 A JP2012097343 A JP 2012097343A JP 2012097343 A JP2012097343 A JP 2012097343A JP 5097886 B1 JP5097886 B1 JP 5097886B1
- Authority
- JP
- Japan
- Prior art keywords
- flat plate
- circular ring
- shear
- metal flat
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Load-Bearing And Curtain Walls (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Panels For Use In Building Construction (AREA)
Abstract
【課題】面内せん断を受ける金属平板について、平板のせん断降伏荷重を確保し且つせん断降伏後の耐力維持を図り、設計上必要とされる塑性変形能力を付与する。
【解決手段】面内せん断を受ける金属平板の表裏両面乃至片面に略円形環を添接して補強し、略円形環内側の金属平板に対し張力場を構成して力学的安定を図る。(a)図は本補強構造の代表例であり、(b)図は加わるせん断荷重に応じせん断変形が進行した状態を模式的に表したもので、円形環は平板内の斜め45度の引張主応力+σ方向を長軸とする楕円形に変形する。面内せん断に伴う圧縮主応力−σは円形環のアーチ効果による部材軸力σcと釣合い、せん断力を受ける初期段階から引張主応力が支配する張力場となるため、金属平板のせん断降伏荷重を確保し且つ降伏後の耐力維持を図ることができる。略円形環は、円形の他直線部を含む擬似円形,正十二多角形等とし、これらの総称である。
【選択図】図1A metal flat plate subjected to in-plane shear is secured with a shear yield load of the flat plate and maintained in a proof stress after the shear yield, thereby imparting a plastic deformation ability required for design.
A metal plate subjected to in-plane shear is reinforced by attaching a substantially circular ring to both front and back surfaces or one side of the metal plate, and a tension field is formed on the metal plate inside the substantially circular ring to achieve mechanical stability. (a) is a typical example of this reinforcing structure, (b) is a schematic representation of the state where shear deformation has progressed in response to the applied shear load, and the circular ring is a 45 degree diagonal tension in the flat plate. Deforms into an elliptical shape with the major axis in the principal stress + σ direction. The compressive principal stress -σ due to in-plane shear balances with the member axial force σ c due to the arch effect of the circular ring, and becomes the tension field governed by the tensile principal stress from the initial stage of receiving the shear force, so the shear yield load of the metal plate The yield strength can be maintained after yielding. The substantially circular ring is a generic name of a pseudo-circular shape including a straight line other than a circular shape, a regular dodecagon, and the like.
[Selection] Figure 1
Description
本発明は、面内せん断を受け必要に応じ圧縮荷重を支える金属平板の補強構造で、金属系建物の壁面構成パネル,制振・耐震を目的とする間柱型乃至梁型せん断パネルや構造壁の全て乃至一部を構成するものまでを対象としている。せん断パネルはせん断降伏荷重を確保することと降伏後の大変形領域に至るまで降伏せん断耐力を維持することであり、これを達成するための補強構造を意図し、且つ出来るだけ簡略な方法を提案する。 The present invention is a reinforcing structure of a metal flat plate that receives in-plane shear and supports a compressive load as necessary. It is a wall-forming panel of a metal building, a pillar-type to beam-type shear panel or a structural wall for vibration suppression and earthquake resistance. It covers all or part of it. The shear panel is to secure the shear yield load and maintain the yield shear strength until it reaches the large deformation region after yielding, and intends the reinforcement structure to achieve this, and proposes a method as simple as possible To do.
面内せん断を受ける金属平板は、せん断座屈荷重がせん断降伏荷重を上回るようにしても降伏後せん断変形が進行する過程でせん断耐力を維持し且つ正負交番に繰り返されるせん断荷重に対し安定した履歴性状とすることは難しく、このため金属平板の幅厚比を小さくすることが必要となり、結果的には多くのスティフナ−を格子状に配して平板全域を細分化し補強することがこれまでの代表的な方法であった。 A flat metal plate subjected to in-plane shear maintains its shear strength in the process of shear deformation after yielding even if the shear buckling load exceeds the shear yield load, and has a stable history against repeated shear loads. Therefore, it is difficult to achieve the properties, and therefore it is necessary to reduce the width-thickness ratio of the metal flat plate. As a result, many stiffeners are arranged in a lattice shape to subdivide and reinforce the entire area of the flat plate so far. It was a representative method.
金属平板の降伏せん断荷重を確保し且つ降伏後のせん断耐力の維持を図るために、設計で要求されるせん断強度に対し降伏点応力度の低い材料を使うことで金属平板の板厚を上げて早期のせん断座屈を回避し降伏後の塑性変形能力を高める方法がある。この他、せん断パネルを波板や折板とするもの,平板面に補剛材を重ねたもの等、様々な制振・耐震のための補強構造が提案がされている。 In order to secure the yield shear load of the metal flat plate and maintain the shear strength after yielding, increase the plate thickness of the metal flat plate by using a material with a lower yield point stress than the shear strength required by the design. There are methods to avoid early shear buckling and increase the plastic deformation capacity after yielding. In addition, various reinforcement structures for vibration suppression and earthquake resistance have been proposed, such as those in which the shear panel is a corrugated plate or a folded plate, and those in which a stiffener is stacked on a flat plate surface.
解決しようとする課題は、面内せん断を受ける金属平板乃至面内せん断に加え圧縮荷重を支える金属平板について、平板のせん断降伏荷重を確保することは勿論せん断降伏後の大変形領域に至るまでせん断耐力を落すことなく設計上必要とされる塑性変形能力を付与することであり、しかも可能な限り簡単な補強構造とすることを前提に前記性能確保が確実となるよう意図している。 The problem to be solved is to secure a flat plate shear yield load for a flat metal plate subjected to in-plane shear or a flat metal plate that supports compressive load in addition to in-plane shear. It is intended to provide the plastic deformation ability required in the design without reducing the proof stress, and to ensure the performance on the assumption that the reinforcing structure is as simple as possible.
金属平板がせん断力を受けると、初期の純せん断場から徐々に圧縮主応力成分が消え引張主応力が支配する張力場へと移行する。この応力変化からは金属平板のせん断耐力低下は初期段階での圧縮主応力に起因していると考えられる。その後せん断変形に伴い引張主応力が支配する状態へ移行するため、圧縮主応力の金属平板への影響を遮断することで安定した力学的釣合いを確保できる。 When the metal flat plate is subjected to a shearing force, the compressive principal stress component gradually disappears from the initial pure shear field and shifts to a tension field governed by the tensile principal stress. From this change in stress, it is considered that the decrease in shear strength of the metal plate is due to the compressive principal stress in the initial stage. After that, the tensile main stress shifts to a state governed by shear deformation, so that a stable mechanical balance can be secured by blocking the influence of the compressive main stress on the metal flat plate.
面内せん断に伴う金属平板の圧縮主応力成分が平板の耐力低下に繋がらないことが重要であり、これに対する適切な補強構造を提案するものである。金属平板の表裏両面乃至片面に円形環補強材を添接し、平板面内の圧縮主応力をアーチ効果により前記補強材の軸力で対応し、円形環で囲まれる平板領域で引張主応力が支配する張力場として安定した力学的釣合いを保つようにする。 It is important that the compressive principal stress component of the metal flat plate accompanying in-plane shear does not lead to a decrease in the proof stress of the flat plate, and an appropriate reinforcing structure for this is proposed. A circular ring reinforcing material is attached to both the front and back sides or one side of a metal flat plate, the compression main stress in the flat plate surface is handled by the axial force of the reinforcing material by the arch effect, and the tensile main stress is dominated by the flat plate region surrounded by the circular ring. Keep a stable mechanical balance as a tension field.
図16は円形金属平板の外周に円形環枠組を設けた場合の面内応力の釣合いを示す模式図である。(a)図は円形環枠の上下左右からせん断力が作用する場合で、せん断変形の進行に伴い円形金属平板は斜め45度方向を軸とする楕円形に変形する。面内せん断に伴う点線矢印で示す圧縮主応力は円形環の部材軸力と釣合うため平板への影響はなく、加力の初期段階から降伏開始さらに塑性変形領域に至るまで実線矢印で示す引張主応力が支配する張力場となる。 FIG. 16 is a schematic diagram showing the balance of in-plane stress when a circular ring frame is provided on the outer periphery of a circular metal flat plate. (a) The figure shows a case where a shearing force is applied from the top, bottom, left, and right of the circular ring frame. As the shear deformation progresses, the circular metal flat plate is deformed into an ellipse having an angle of 45 degrees as an axis. The compressive principal stress indicated by the dotted arrow accompanying in-plane shear is balanced with the axial force of the circular ring member, so there is no effect on the flat plate, and the tension indicated by the solid arrow from the initial stage of the applied force to the start of yielding to the plastic deformation region. The tension field is dominated by the main stress.
図16(b)は円形環枠の上下部位から圧縮力が加わる場合で、圧縮力は円形環枠の部材軸力と釣合うことから平板面内は張力場を構成し左右横方向に広がり、円形金属平板は圧縮力で押し潰されて楕円形になり推移する。(a)図と(b)図とは加わる荷重は異なるものの円形金属平板の面内応力と変形の釣合いからは同じ状態と考えられ、引張主応力方向の違いにより楕円形の主軸方向が異なるだけである。 FIG. 16 (b) shows a case where a compressive force is applied from the upper and lower parts of the circular ring frame. Since the compressive force balances with the member axial force of the circular ring frame, the flat plate surface constitutes a tension field and spreads in the lateral direction. A circular metal flat plate is crushed by a compressive force and becomes an elliptical shape. Although the load applied to Fig. (a) and Fig. (b) is different, it is considered to be the same state from the balance of in-plane stress and deformation of the circular metal flat plate, and the main axis direction of the ellipse is only different due to the difference in tensile principal stress direction. It is.
図17は円形金属平板の周辺部から加わる荷重をせん断,圧縮,これら任意の組合せ荷重とした場合の非線形解析結果である。円形金属平板は直径1,200mm,板厚3.2mmで円形環枠は帯板150mmx25mmとし、平板は降伏点応力度σy=30kN/cm2,ヤング係数E=20,500kN/cm2であるが、枠材はσy=60kN/cm2として枠材の塑性化に伴う影響を排除している。縦軸は圧縮力,せん断力,組合せ力で、横軸は圧縮歪み以外はせん断変形角である。 FIG. 17 shows the result of nonlinear analysis when the load applied from the periphery of the circular metal flat plate is shear, compression, or any combination of these. The circular metal flat plate has a diameter of 1,200 mm and a plate thickness of 3.2 mm, and the circular ring frame has a strip plate of 150 mm x 25 mm. = 60kN / cm2 to eliminate the effect of plasticizing the frame material. The vertical axis represents compressive force, shear force, and combined force, and the horizontal axis represents shear deformation angle except for compressive strain.
(a)図のせん断力が作用する場合が下側実線で、円の直径で換算する降伏せん断荷重Qy=670kNとなる。上側破線は(b)図の圧縮力が加わる場合で、降伏開始時点は実線で示すせん断降伏荷重と略同じとなる。点線で示す結果は圧縮力とせん断力の比率が1.0:1.0,0.6:1.0,0.3:1.0の結果で、縦軸の値を両者のベクトル和とする合力とすればせん断降伏荷重と略同じとなる。このことは円形金属平板が円形から楕円形に変形する方向が異なるだけで、円形金属平板の降伏荷重は略同じ値になっている。 (a) The case where the shearing force shown in the figure acts is the lower solid line, and the yield shear load Qy = 670 kN converted in terms of the diameter of the circle. The upper broken line is the case where the compressive force in FIG. 5B is applied, and the yield start time is substantially the same as the shear yield load indicated by the solid line. The result shown by the dotted line is the result of the ratio of compressive force and shear force being 1.0: 1.0, 0.6: 1.0, 0.3: 1.0. If the value of the vertical axis is the resultant vector sum of the two, it is almost the same as the shear yield load. Become. This means that the yield load of the circular metal flat plate is substantially the same value only in the direction in which the circular metal flat plate is deformed from a circular shape to an elliptical shape.
面内せん断を受ける金属平板の表裏面に略円形環を添接して補強し、円形環内側の金属平板に対し張力場を構成するようにして力学的安定を図る。図1(a)は本補強構造の代表例であり、図1(b)は加わるせん断荷重に応じせん断変形が進行した状態を模式的に表したもので、円形環は引張主応力+σにより楕円形に変形する。面内せん断に伴う圧縮主応力−σはアーチ効果による円形環補強材の圧縮力σcと釣合い、せん断力を受ける初期段階から引張主応力が支配する安定した張力場が構成される。 A metal plate that is subjected to in-plane shear is reinforced by attaching a substantially circular ring to the front and back surfaces of the metal plate, and a mechanical field is formed by constructing a tension field for the metal plate inside the circular ring. Fig. 1 (a) is a typical example of this reinforcing structure, and Fig. 1 (b) schematically shows a state in which shear deformation progresses according to the applied shear load. The circular ring is elliptical due to the tensile principal stress + σ. It transforms into a shape. The compressive principal stress -σ associated with the in-plane shear is balanced with the compressive force σ c of the circular ring reinforcing material due to the arch effect, and a stable tension field in which the tensile principal stress dominates from the initial stage of receiving the shearing force.
図5(a)は、円形環補強材を平板片側面に添接し、逆側面には周辺枠と平行に且つ円形環の中心を通る突出リブを設けた例である。前記リブの添接部位は、図5(b)のように面内せん断により円形環補強材は斜め45度方向を軸とする楕円形へと変形し、金属平板の降伏せん断荷重への影響はない。本補強構造は平板表裏の剛性バランスを確保する以外に、十字リブ補強は周辺枠材と円形環補強材との連携を保ち円形環の径が小さい場合にも対応でき、また張力場となる薄板金属平板の力学的安定を確保できる。 FIG. 5 (a) is an example in which a circular ring reinforcing material is attached to the side surface of the flat plate piece, and a protruding rib passing through the center of the circular ring is provided on the opposite side surface in parallel with the peripheral frame. As shown in FIG. 5 (b), the circular ring reinforcing material is deformed into an elliptical shape with an angle of 45 degrees as an axis, and the influence on the yield shear load of the metal plate is as follows. Absent. In addition to ensuring a rigid balance between the front and back of the flat plate, this reinforcing structure can be used even when the diameter of the circular ring is small while maintaining the cooperation between the peripheral frame material and the circular ring reinforcing material, and a thin plate that serves as a tension field The mechanical stability of the metal flat plate can be ensured.
図7(a),(b)は、薄板金属平板においては円形環補強材と周辺枠材とに挟まれた領域での座屈を避けるため、周辺枠材として帯板乃至角管をその幅広面で添接し額縁状枠組とする。円形環補強材は周辺枠材に近接して配置することは重要であるが、平板片側面の円形環は枠材に近接し且つ他側面の円形環は同心円となるよう内側に配し二重輪とすることも考えられる。なお、帯板等を幅広面で構成する額縁状枠組では、周辺四隅では金属平板のせん断変形に伴う角度変形を拘束しないように配慮することが必要である。 7 (a) and 7 (b) show that, in a thin metal flat plate, in order to avoid buckling in a region sandwiched between a circular ring reinforcing member and a peripheral frame member, a band plate or a square tube is used as the peripheral frame member. The frame is framed to join. It is important to place the circular ring reinforcement close to the peripheral frame material, but the circular ring on one side of the flat plate is close to the frame material, and the circular ring on the other side is placed inside so that it is concentric. It can also be considered as a ring. It should be noted that in the frame-like frame structure in which the band plate or the like is configured with a wide surface, it is necessary to consider so as not to restrain the angular deformation accompanying the shear deformation of the metal flat plate at the peripheral four corners.
図12は、は円形金属平板の外周部を円形環で囲み且つ上下左右の部位からせん断力が作用する本構造の代表例である。せん断力に伴う平板面内の応力は実線矢印の斜め45度方向の引張主応力+σと、直交する点線矢印で示す圧縮主応力−σとで表現される。この圧縮主応力は円形環のアーチ効果による枠材の軸力と釣合って円形金属平板に影響を与えずに斜め方向に引張面が構成され、円形環枠組構造では加力の初期段階,せん断降伏時点,せん断降伏後の力学的釣合の全行程で張力場となる。 FIG. 12 shows a typical example of this structure in which the outer peripheral portion of a circular metal flat plate is surrounded by a circular ring and a shearing force is applied from the top, bottom, left and right portions. The stress in the flat plate surface due to the shearing force is expressed by a tensile principal stress + σ in the direction of 45 ° obliquely indicated by a solid line arrow and a compression principal stress −σ indicated by an orthogonal dotted line arrow. This compressive principal stress balances with the axial force of the frame material due to the arch effect of the circular ring, and the tensile surface is constructed in an oblique direction without affecting the circular metal flat plate. In the circular ring frame structure, the initial stage of applied force, shear The tension field occurs during the entire process of mechanical balance after yielding and after shear yielding.
図1(a)は代表的実施例で、900mmx900mmで板厚6.0mmの金属平板1.1に帯板150mmx16mmの突出フランジ1.2で囲み、直径750mmの円形環1.5を平板両面に添接する。円形環のせいと板厚が50mmx12mm,32mmx19mm,25mmx25mmと50mmx16mm、32mmx25mm,25mmx32mmで、断面積として前者は略12cm2,後者は略16cm2である。本明細書中の実施例では、金属材料は降伏点応力度σy=30kN/cm2,ヤング係数=20,500kN/cm2の鋼材としている。 FIG. 1 (a) shows a typical embodiment, in which a metal plate 1.1 of 900 mm × 900 mm and a plate thickness of 6.0 mm is surrounded by a projecting flange 1.2 of a strip plate 150 mm × 16 mm, and a circular ring 1.5 having a diameter of 750 mm is attached to both sides of the plate. Because of the circular ring and the plate thickness is 50mmx12mm, 32mmx19mm, 25mmx25mm and 50mmx16mm, 32mmx25mm, in 25Mmx32mm, approximately 12cm 2 the former as the cross-sectional area, the latter is approximately 16cm 2. In the examples herein, the metallic material yield stress of σ y = 30kN / cm 2, and the Young's modulus = 20,500kN / cm 2 of the steel material.
図2の解析結果では円形環のせい50mmの場合を実線で、円形環のせい32mmの場合を点線で示している。円形環の部材せいが50mm,32mmと異なっても、せん断降伏荷重はQy=900kNを確保でき、円形環の断面積で略同じであれば塑性変形能力も同程度となっている。破線で示す円形環の部材せいが25mmの場合は、断面積が同じでも塑性変形能力は若干劣る。降伏後の耐力維持は平板面内の引張力との釣合上円形環の断面積との関りは強く、曲げ剛性乃至捩り剛性との関りは弱い。 In the analysis result of FIG. 2, the case where the circular ring is 50 mm is indicated by a solid line, and the case where the circular ring is 32 mm is indicated by a dotted line. Even if the circular ring member is different from 50mm and 32mm, the shear yield load can be secured to Qy = 900kN, and the plastic deformation ability is about the same if the cross-sectional area of the circular ring is almost the same. When the circular ring member indicated by the broken line is 25 mm, the plastic deformation ability is slightly inferior even if the cross-sectional area is the same. In maintaining the yield strength after yielding, the relationship between the tensile force in the flat plate surface and the cross-sectional area of the circular ring is strong, and the relationship between bending rigidity and torsional rigidity is weak.
円形環補強材に対し 図3(a)は八角形,(b)は十二角形の正多角形環1.6とする例である。面内せん断を受ける正方形金属平板1.1の両対角線上に前記正多角形の頂点を合わせているが、これは面内せん断に伴う斜め45度方向の圧縮主応力に対して力の釣合い上効果的と考えたからである。前実施例と同じ構成の金属平板1.1に対し、直径750mmの円周に外接する正多角形とし、正八角形環は帯板50mmx19mm,32mmx30mm,正十二角形環は帯板50mmx16mm,32mmx25mmの各2種である。 3A is an example of an octagonal shape, and FIG. 3B is an example of a dodecagonal regular polygonal ring 1.6. The vertices of the regular polygon are aligned on both diagonals of the square metal plate 1.1 subjected to in-plane shearing, which is effective in terms of force balance against compressive principal stress in the direction of 45 degrees obliquely due to in-plane shearing. Because I thought. For the metal flat plate 1.1 with the same configuration as the previous embodiment, it is a regular polygon circumscribing the circumference with a diameter of 750 mm. It is a seed.
図4の解析結果では正多角形環のせい50mmに対しては実線で,32mmに対しては点線で示している。比較として円形環の結果も載せたが、正十二角形環の塑性変形能力は円形環と略同じとなるが、正八角形環では部材断面を上げても前斜の両結果からは劣っている。多角形環では一辺の部材長さに応じ発生する局所的曲げが大きく関与していると考えられ、補強材を多角形とする場合には略正十二角形乃至それ以上とすることが望ましい。 In the analysis result of FIG. 4, the regular polygonal ring is indicated by a solid line for 50 mm and a dotted line for 32 mm. As a comparison, the result of a circular ring is also included. However, the plastic deformation capacity of a regular dodecagonal ring is almost the same as that of a circular ring, but the regular octagonal ring is inferior to both results of anterior tilt even if the member cross section is raised. . In the polygonal ring, local bending generated according to the length of a member on one side is considered to be greatly involved, and when the reinforcing material is a polygon, it is desirable that the polygonal ring has a substantially regular dodecagon or more.
図5(a)の実施例は、900mmx900mmで板厚6.0mmの金属平板1.1,帯板150mmx16mmを突出フランジとする周辺枠1.2で、円形環補強材1.5及び十字リブ補強材1.7は同じ帯板50mmx16mmとして平板表裏面に分け添接し剛性のバランスをとっている。図で示すリブ補強材の添接部位は、円形環が斜め45度方向を長短両軸とする楕円形への変形を拘束することはない。円形環直径は750mm,700mm,650mmとしたが、円形環と十字リブを組合わせることで円形環の大きさにある程度の幅が許容される。
The embodiment of FIG. 5 (a) is a metal plate 1.1 having a thickness of 900 mm × 900 mm and a thickness of 6.0 mm, a peripheral frame 1.2 having a strip 150 mm × 16 mm as a protruding flange, and the circular ring reinforcement 1.5 and the cross rib reinforcement 1.7 are the
図6の解析結果で、点線で示す3本の結果にはあまり差異はなく、力学的挙動は十字リブ補強により円形環の大きさには殆ど左右されない。実線は円形環を表裏両面から重ねて配置した場合であるが、塑性変形能力としては点線で示す補強構造は僅かに下回る。図中下部の破線は平板片側面からだけに円形環の板厚を2倍にして添接した結果であるが、金属平板表裏両面での曲げ剛性の偏りは金属平板の降伏荷重の確保及び降伏後のせん断耐力維持を困難にしている。 In the analysis result of FIG. 6, there is not much difference between the three results shown by the dotted lines, and the mechanical behavior is hardly influenced by the size of the circular ring due to the cross rib reinforcement. The solid line is the case where the circular rings are arranged overlapping both front and back surfaces, but the reinforcing structure shown by the dotted line is slightly lower than the plastic deformation capability. The broken line at the bottom of the figure is the result of doubling the thickness of the circular ring only from the side of the flat plate, but the bending stiffness bias on both sides of the flat metal plate ensures the yield load of the flat metal plate and yields. It is difficult to maintain the shear strength later.
図7の実施例は、900mmx900mmで板厚3.2mmの金属平板1.1に対し上下加力部枠材1.3として帯板75mmx12mmをその幅広面で平板表裏両面に添接し、左右両側辺部枠材1.4にはC形断面部材75mmx45mmx2.3mmを平板面に被せるように添接する。左右両側辺枠に空洞部のある管状体とすることで、捩り剛性を大幅に上げて力学的安定を図っている。(a)図は円形環補強材として棒鋼25mmx25mmを表裏両面から重ねる場合、(b)図は平板表裏面で円形環径を変え二重輪とする場合である。 In the embodiment of FIG. 7, a metal plate 1.1 having a thickness of 900 mm × 900 mm and a thickness of 3.2 mm is attached to a plate plate 75 mm × 12 mm as the upper and lower force applied portion frame material 1.3 on both sides of the flat plate with its wide surface. Is attached so that a flat plate surface is covered with a C-shaped cross-section member of 75 mm × 45 mm × 2.3 mm. By adopting a tubular body with cavities in the left and right side frames, the torsional rigidity is greatly increased to achieve mechanical stability. (a) The figure shows the case where steel bars 25 mm x 25 mm are overlapped from both front and back surfaces as a circular ring reinforcing material, and (b) the figure shows the case where the circular ring diameter is changed on the front and back surfaces of the flat plate to form a double ring.
図8に示す解析結果では、実線は(a)図の表裏同じ円形環とし直径を700mm,650mm,600mmとする場合、点線は(b)図の表面には直径を700mmとして周辺枠材に近づけ且つ裏面には直径を600mm,550mm,500mmとし二重輪とする場合である。実線では円形環の直径を小さく周辺枠組から離れると降伏初期段階で耐力低下が見られる。点線は直径の異なる円形環を添接し二重輪とした場合であるが、全て降伏せん断荷重に到達して降伏以降せん断耐力は安定して維持される。 In the analysis result shown in FIG. 8, the solid line is the same circular ring as in (a) and the diameter is 700 mm, 650 mm, and 600 mm, and the dotted line is (b) 700 mm in diameter on the surface and close to the peripheral frame material. And on the back, the diameter is 600mm, 550mm, 500mm, and it is a case where it is a double wheel. In the solid line, if the diameter of the circular ring is small and away from the surrounding framework, the yield strength decreases at the initial stage of yielding. The dotted line shows a case where circular rings with different diameters are attached to form a double ring, but all reach the yield shear load and the shear strength is stably maintained after yielding.
図9(a)の間柱型せん断パネル1.1は板厚3.2mmの長方形金属平板2,700mmx900mmで、円形環を囲む周辺枠材1.2は150mmx16mm,直径750mmの円形環補強材1.5と円形環中心を通るリブ1.7は50mmx12mmとし長手方向の平板表裏面交互に添接している。長方形平板上下端部から水平せん断力が加わる場合と一定圧縮軸力下でせん断力が加わる場合に対し、長手方向両側枠材は平板面外への変形を自由としているが、突出フランジ枠材は捩りに弱いために円形環の中心を通る横方向リブを設けて補強している。 Fig. 9 (a) shows a columnar shear panel 1.1 with a rectangular metal plate of 2,700mm x 900mm with a thickness of 3.2mm. 1.7 is 50 mm x 12 mm, and the front and back surfaces of the plate in the longitudinal direction are alternately attached. In contrast to the case where horizontal shearing force is applied from the upper and lower ends of the rectangular flat plate and the case where shearing force is applied under a constant compression axial force, the frame material on both sides in the longitudinal direction is free to deform out of the flat plate surface, but the protruding flange frame material is In order to be weak against torsion, a lateral rib passing through the center of the circular ring is provided for reinforcement.
図9(b)も同じ板厚,形状の長方形金属平板1.1で、長手方向両側枠材1.4は平板片側面から帯板75mmx19mmをその幅広面添接し且つ他側面に正方形角管75mmx3.2mmを添接し、短手方向枠材1.3は帯板150mmx19mmを長手方向側辺部と中間部に配して上下二段に区分する。直径700mmの円形環補強材1.5は上下各平板面の中央位置に配置し且つ長手方向角管枠側の深い懐内に収まるように帯板50mmx25mmを平板片面から偏心して添接している。作用荷重及び境界条件は前記解析例と同じとしている。
9 (b) is also a rectangular metal flat plate 1.1 having the same thickness and shape, and both side frame members 1.4 in the longitudinal direction are attached with a strip 75mm x 19mm wide from one side of the flat plate and a square square tube 75mm x 3.2mm on the other side. The short direction frame member 1.3 is divided into two upper and lower stages by arranging a strip 150 mm × 19 mm on the side and the middle in the longitudinal direction. A circular ring reinforcing member 1.5 having a diameter of 700 mm is arranged at the center position of the upper and lower flat plate surfaces, and a
図10は前(a)図の解析結果で、縦軸は間柱上下のせん断力,横軸を間柱せいに対するせん断変形角として解析結果を示している。円形環補強材を表裏両面に重ねた場合を破線で示し、横方向リブで構成する場合を上側実線で,縦方向リブで構成する場合を下側実線でそれぞれ表している。点線は長手方向両枠材断面積で換算される降伏軸力の略20%であるP=300kNとする一定圧縮軸力下での解析結果である。これら全ての結果から見てリブ補強材の配置が縦方向より横方向がより有効であることが判る。 FIG. 10 shows the analysis result of the previous figure (a), where the vertical axis indicates the shear force above and below the stud and the horizontal axis indicates the shear deformation angle with respect to the stud. A case where the circular ring reinforcing material is overlapped on both the front and back surfaces is indicated by a broken line, a case where the circular ring reinforcing material is constituted by a lateral rib is indicated by an upper solid line, and a case where the circular ring reinforcing material is constituted by a longitudinal rib is indicated by a lower solid line. The dotted line is the analysis result under a constant compression axial force where P = 300 kN, which is approximately 20% of the yield axial force converted by the cross-sectional area of both frame members in the longitudinal direction. From all these results, it can be seen that the rib reinforcement is more effective in the horizontal direction than in the vertical direction.
図11は前(b)図の解析結果で、実線は円形環補強材を平板片面から偏心して添接した場合、破線は同じ断面積の円形環補強材を平板両面から剛性バランスをとって添接した場合で、両者の結果は殆ど変りはない。点線は同じ例題に対しP=300kNの一定圧縮軸力下の挙動で、前記軸力は長手方向両枠材断面積の降伏軸力の略20%である。円形環補強材を短辺方向枠材に近づければ長手方向にはある程度離れた配置が許容されるが、円形環外側で平板座屈に伴う耐力低下がないことが前提である。 Fig. 11 shows the analysis result of Fig. 11 (b). The solid line indicates the case where the circular ring reinforcement is eccentrically attached from one side of the flat plate, and the broken line indicates that the circular ring reinforcing material having the same cross-sectional area is attached with the rigidity balance from both sides of the flat plate. In the case of contact, the results of both are almost unchanged. The dotted line is the behavior under the constant compression axial force of P = 300 kN for the same example, and the axial force is about 20% of the yield axial force of the longitudinal cross-sectional areas of both frames. If the circular ring reinforcing material is brought close to the short-side direction frame member, disposition to some extent in the longitudinal direction is allowed, but it is assumed that there is no decrease in yield strength due to flat plate buckling outside the circular ring.
図12(a)は、円形金属平板2.1の外周部を円形環2.2で囲み且つ上下左右の加力部位2.3からせん断力が作用する円形環枠組構造である。せん断力に伴う平板は斜め方向に純引張面が構成され、加力初期段階からせん断降伏時点更にせん断降伏後の全行程で張力場となる。実施例として円形金属平板の直径1,200mm,板厚3.2mm,2.3mm,1.6mm,1.2mmに対し円形環枠のフランジ幅150mm,フランジ厚25mm,22mm,19mm,16mmとしている。円形金属平板の直径を幅として換算される幅厚比は375,520,750,1,000である。 FIG. 12A shows a circular ring frame structure in which a circular metal flat plate 2.1 is surrounded by a circular ring 2.2 and a shearing force is applied from the upper, lower, left and right applied parts 2.3. The flat plate associated with the shearing force has a pure tensile surface in an oblique direction, and becomes a tension field from the initial stage of applying force to the point of shear yielding and all the steps after shearing yielding. As an example, the diameter of the circular metal plate is 1,200 mm, the plate thickness is 3.2 mm, 2.3 mm, 1.6 mm, and 1.2 mm, and the flange width of the circular ring frame is 150 mm, and the flange thickness is 25 mm, 22 mm, 19 mm, and 16 mm. The width-thickness ratio converted to the diameter of the circular metal plate is 375, 520, 750, 1,000.
図13は、縦軸はせん断降伏荷重Qyで無次元化した値,横軸はせん断変形角で、平板各板厚の解析結果が実線であり、点線はせん断変形角を10倍に拡大して表現し且つ目盛は1/10の値に対応する。実線の結果全て降伏以後大変形領域に至るも耐力低下することなく安定的に推移している。点線で示す降伏前後の力学的挙動ではせん断降伏荷重に至るまで直線状の荷重変形関係にあり、せん断降伏後は略水平に推移し耐力が維持される。円形金属平板のせん断降伏変形角は正方形金属平板の略1.5倍である。 In FIG. 13, the vertical axis is the dimensionless value with the shear yield load Qy, the horizontal axis is the shear deformation angle, the analysis result of each plate thickness is a solid line, and the dotted line is the shear deformation angle expanded 10 times Expressed and scale corresponds to 1/10 value. As a result of the solid line, all of them reached the large deformation region after yielding, but they remained stable without decreasing the yield strength. In the mechanical behavior before and after the yield indicated by the dotted line, there is a linear load deformation relationship until the shear yield load, and after the shear yield, it changes substantially horizontally and the proof stress is maintained. The shear yield deformation angle of a circular metal plate is approximately 1.5 times that of a square metal plate.
図14は単位円形環枠組金属平板2.1を四面として合成壁板を構成したもので、壁板の上下左右に相隣なる円形環枠2.2を結び且つせん断加力用に部分的枠材2.3を設け、更に金属平板表裏両面から縦・横に十字状補強材2.4を配置している。本実施例としては壁板を構成する単位円形金属平板を直径1,200mm,板厚2.3mmで幅厚比520とし、これを2行2列に並べ且つ上下左右にT形断面部材を配し加力枠組としている。各円形環枠材は帯板150mmx19mmで十字補強材は帯板50mmx12mmである。
FIG. 14 shows a composite wall plate having four unit circular ring framed metal plates 2.1 as four sides, and adjacent circular ring frames 2.2 are connected to the upper, lower, left and right sides of the wall plate, and a partial frame member 2.3 is provided for shearing force. Furthermore, a cross-shaped reinforcing material 2.4 is arranged vertically and horizontally from both sides of the metal flat plate. In this embodiment, the unit circular metal plate constituting the wall plate has a diameter of 1,200 mm, a plate thickness of 2.3 mm, and a width-thickness ratio of 520, which are arranged in two rows and two columns, and T-shaped cross-section members are arranged vertically and horizontally. It is a force framework. Each circular ring frame material is a strip plate 150 mm x 19 mm, and the cross reinforcing member is a
図15は縦軸として壁板全面のせん断力,横軸として壁板せい略2,400mmに対するせん断変形角とする解析結果である。複合壁板の上下左右の加力用枠組から面内せん断を受ける場合の力学的挙動を2本の実線で示しているが、上段の実線は平板の表裏面に十字リブ補強とする場合、下段の実線はリブ補強材を平板表裏面で縦方向に重ねた場合である。塑性変形能力の観点では十字補強材により平板加力位置4箇所で円形環枠を拘束する方が良く、枠材の局所的円弧を崩さないことに効果があったと考えられる。 FIG. 15 shows an analysis result in which the vertical axis represents the shear force of the entire wall plate and the horizontal axis represents the shear deformation angle with respect to the wall plate of about 2,400 mm. The mechanical behavior when in-plane shear is applied from the upper, lower, left, and right force frames of the composite wall plate is shown by two solid lines. The solid line indicates the case where the rib reinforcements are stacked vertically on the front and back surfaces of the flat plate. From the viewpoint of plastic deformation capability, it is better to constrain the circular ring frame at the four plate loading positions with the cross reinforcing material, and it is considered that there was an effect in not breaking the local arc of the frame material.
更に図15には、枠材断面積の降伏軸力の略15%,P=400kNの一定圧縮軸力下で面内せん断を受ける場合の結果を2本の点線で示しているが、縦方向に圧縮軸力が作用する場合であっても十字補強により円形環枠を4箇所で拘束する方が有効である。図中破線で示す解析結果は円形金属平板のリブ補強材を全て外し且つ一定圧縮軸力をP=200kNと前出の半分とした場合であるが、これは軸力全てが円形環枠を通って流れるために枠材が早期に降伏したことによる。 Further, FIG. 15 shows the result of in-plane shear under a constant compression axial force of about 15% of the yield axial force of the frame cross-sectional area and P = 400 kN. Even when a compression axial force is applied to the circular ring frame, it is more effective to constrain the circular ring frame at four locations by cross reinforcement. The analysis result indicated by the broken line in the figure is the case where all the rib reinforcing members of the circular metal flat plate are removed and the constant compression axial force is P = 200 kN, which is half of the above, but this is all axial force passes through the circular ring frame. This is due to the early yielding of the frame material.
本発明は面内せん断を受ける矩形金属平板に対する補強構造を提案したもので、平板の安定的釣合いを確保するため面内主応力を意識した補強構造である。平板面に円形環を添接することで圧縮主応力の平板への影響が消えて張力場となるため従前の格子状補強方法と比べ単純な構造となり、簡単に製作でき且つコスト安が見込まれるため金属系建物の壁面構成パネル,制振ないし耐震を目的とするせん断パネルとして最適である。 The present invention proposes a reinforcing structure for a rectangular metal flat plate subjected to in-plane shearing, and is a reinforcing structure in consideration of in-plane principal stress in order to ensure a stable balance of the flat plate. By attaching a circular ring to the flat plate surface, the influence of the compressive principal stress on the flat plate disappears and becomes a tension field, so it has a simple structure compared to the conventional grid reinforcement method, and it can be easily manufactured and the cost is expected to be low It is most suitable as a wall panel for metal buildings and as a shear panel for damping or earthquake resistance.
面内せん断を受ける極めて薄い金属平板に対しては円形環枠組で囲まれた円形金属平板とすることで理想的な斜張力場が構成でき、せん断降伏荷重に至るまで理想的な弾性勾配となり更に降伏後もせん断大変形領域までせん断耐力が下がることなく安定的に維持する。この簡潔な構造は特に薄板金属平板に向き更に金属箔への可能性もあり、金属材料についても各種鋼材,軽金属材料に対しても有力な補強構造となり得ると考えられる。 For an extremely thin metal plate subjected to in-plane shear, an ideal oblique tension field can be constructed by using a circular metal plate surrounded by a circular ring framework, resulting in an ideal elastic gradient up to the shear yield load. Even after yielding, the shear strength is stably maintained without decreasing to the large shear deformation region. This simple structure is particularly suitable for a thin metal plate and may be a metal foil, and it can be considered to be a powerful reinforcement structure for metal materials as well as various steel materials and light metal materials.
本発明は面内せん断を受ける長方形金属平板に対する補強構造としては 平板面内に複数の円形環補強材を添接することで初期のせん断降伏荷重を確保できる。降伏後のせん断耐力の維持は金属平板長手方向の両側辺部に角管等を添接し塑性捩り荷重を上げることで叶えられ、長手方向枠の面外変形を拘束する必要はなくなり建物構成上簡便であり建築施工上の観点からも有利な構造と考えられる。 In the present invention, as a reinforcing structure for a rectangular metal flat plate subjected to in-plane shear, an initial shear yield load can be ensured by attaching a plurality of circular ring reinforcing members in the flat plate surface. Maintaining the shear strength after yielding can be achieved by attaching a square tube etc. to both sides of the metal plate in the longitudinal direction and increasing the plastic torsional load. It is considered to be an advantageous structure from the viewpoint of construction work.
本発明の円形環補強材及び円形環枠部材は、形状として円形の他直線部を含む擬似円形,正十二多角形等が考えられ、これらを総称して略円形環としているが、円形環を構成する円弧部位と直線部位との力学的差異を把握すれば円形環と同様の機能が期待できるため、設計,製作,組立等に於いて有利となる形の選択は自由である。 The circular ring reinforcing material and the circular ring frame member of the present invention can be considered to be a pseudo-circular shape including a straight other straight portion, a regular twelve polygonal shape, etc., and these are collectively referred to as a substantially circular ring. Since the same function as a circular ring can be expected by grasping the mechanical difference between the circular arc portion and the straight line portion constituting the shape, it is possible to freely select a shape that is advantageous in design, manufacture, assembly, and the like.
1.1 面内せん断を受ける金属平板
1.2 突出フランジ型周辺枠材
1.3 帯板幅広面で添接した周辺枠材
1.4 角管等閉鎖断面を構成する枠材
1.5 金属平板に添接する円形環補強材
1.6 金属平板に添接する多角形環補強材
1.7 円形環中心を通る直線リブ補強材
2.1 面内せん断を受ける円形金属平板
2.2 突出フランジ型円形環周辺枠材
2.3 円形環の加力のための部分枠材
2.4 円形環中心を通る直線リブ補強材
1.1 Metal plate subjected to in-plane shear
1.2 Peripheral flange type peripheral frame material
1.3 Peripheral frame material joined with wide strip
1.4 Frame material that forms a closed cross-section such as a square tube
1.5 Circular ring reinforcement attached to a metal flat plate
1.6 Polygonal ring reinforcement attached to a metal plate
1.7 Straight rib reinforcement through the center of the circular ring
2.1 Circular metal plate subjected to in-plane shear
2.2 Frame material around protruding flange type circular ring
2.3 Partial frame material for circular ring force
2.4 Straight rib reinforcement through the center of the circular ring
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012097343A JP5097886B1 (en) | 2012-04-23 | 2012-04-23 | Circular ring reinforced metal flat plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012097343A JP5097886B1 (en) | 2012-04-23 | 2012-04-23 | Circular ring reinforced metal flat plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5097886B1 true JP5097886B1 (en) | 2012-12-12 |
JP2013224551A JP2013224551A (en) | 2013-10-31 |
Family
ID=47469549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012097343A Expired - Fee Related JP5097886B1 (en) | 2012-04-23 | 2012-04-23 | Circular ring reinforced metal flat plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5097886B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6384905B2 (en) * | 2014-04-23 | 2018-09-05 | 株式会社竹中工務店 | Rigid plate shear wall and frame mechanism with rigid plate shear wall |
JP6540427B2 (en) * | 2015-09-25 | 2019-07-10 | 日本製鉄株式会社 | Seismic wall structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270598A (en) * | 2006-03-06 | 2007-10-18 | Taisei Corp | Structural wall |
JP4829384B1 (en) * | 2011-05-20 | 2011-12-07 | 株式会社 構造材料研究会 | Four corner reinforcement structure of rectangular metal flat plate |
-
2012
- 2012-04-23 JP JP2012097343A patent/JP5097886B1/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270598A (en) * | 2006-03-06 | 2007-10-18 | Taisei Corp | Structural wall |
JP4829384B1 (en) * | 2011-05-20 | 2011-12-07 | 株式会社 構造材料研究会 | Four corner reinforcement structure of rectangular metal flat plate |
Also Published As
Publication number | Publication date |
---|---|
JP2013224551A (en) | 2013-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004340301A (en) | Seismic isolator | |
Wang et al. | Experimental investigation on seismic behavior of square CFT columns with different shear stud layout | |
JP4829384B1 (en) | Four corner reinforcement structure of rectangular metal flat plate | |
JP5510597B1 (en) | Circular ring reinforcing beam member | |
JP5097886B1 (en) | Circular ring reinforced metal flat plate | |
JP4819605B2 (en) | Precast prestressed concrete beams using tendons with different strength at the end and center | |
JP4688234B1 (en) | Rectangular metal plate square tube reinforcement structure | |
JP2013170386A (en) | Building having composite beam | |
JP5500472B1 (en) | Cross-section corner reinforcement structural member | |
JP5654060B2 (en) | Damper brace and damping structure | |
JP5492163B2 (en) | Reinforced concrete wall column | |
JP6216644B2 (en) | Wall pillar structure and building | |
JP5110482B1 (en) | Circular ring framework structure of multi-layer circular metal flat plate | |
JP2014173223A (en) | Reinforcement structure | |
WO2010116660A1 (en) | Anisotropic reinforcing metal plate | |
JP6434765B2 (en) | Design method for reinforced concrete structures | |
JP2020012329A (en) | Beam joint structure | |
JP5971545B2 (en) | Structure of pipe brace intersection of spherical tank legs | |
JP5098034B2 (en) | Plane stiffening structure of rectangular metal plate | |
JP6568388B2 (en) | Design method of reinforced concrete structure and reinforced concrete structure | |
JP7127244B2 (en) | Seismic reinforcement structure | |
JP5330698B2 (en) | BUILDING STRUCTURE AND BUILDING STRUCTURE DESIGN METHOD | |
JP5769458B2 (en) | Reinforcement structure of frame | |
JP6193543B2 (en) | Rebar structure | |
JP5706025B2 (en) | building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20181005 Year of fee payment: 6 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |