JP5096727B2 - Aggregate type determination method and apparatus - Google Patents

Aggregate type determination method and apparatus Download PDF

Info

Publication number
JP5096727B2
JP5096727B2 JP2006299294A JP2006299294A JP5096727B2 JP 5096727 B2 JP5096727 B2 JP 5096727B2 JP 2006299294 A JP2006299294 A JP 2006299294A JP 2006299294 A JP2006299294 A JP 2006299294A JP 5096727 B2 JP5096727 B2 JP 5096727B2
Authority
JP
Japan
Prior art keywords
aggregate
type
distance
conveyor
distance data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006299294A
Other languages
Japanese (ja)
Other versions
JP2008114459A (en
Inventor
良治 深光
昌弘 甲谷
信吾 大平
剛 小笠原
哲也 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2006299294A priority Critical patent/JP5096727B2/en
Publication of JP2008114459A publication Critical patent/JP2008114459A/en
Application granted granted Critical
Publication of JP5096727B2 publication Critical patent/JP5096727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Description

本発明は、ダム建設工事等の工事現場においてコンクリートの製造に使用される複数種の骨材の種別を判定する骨材種別判定方法およびその装置に関する。   The present invention relates to an aggregate type determination method and apparatus for determining the types of multiple types of aggregate used for concrete production at a construction site such as dam construction.

従来より、コンクリートの製造には粒径を異にする複数種の骨材(たとえば、G1の骨材(粒径150〜80mm)、G2の骨材(粒径80〜40mm)、G3の骨材(粒径40〜20mm)、G4の骨材(粒径20〜5mm)、および、Sの骨材(粒径5mm以下)の5種別の骨材)が用いられるが、ダム建設工事等においては、図4に示すように、骨材は、工事現場内の骨材貯蔵設備1内に並設された複数の骨材ビン2a〜2fに種別ごとに仕分けされて一定量が貯蔵保管されるとともに、コンクリートの製造に際しては、各骨材ビンから同現場内のコンクリート製造設備(バッチャープラント)へ必要な骨材を必要な量だけ送給して各骨材を配合することが行われている。   Conventionally, a plurality of types of aggregates having different particle sizes (for example, G1 aggregate (particle size 150 to 80 mm), G2 aggregate (particle size 80 to 40 mm), and G3 aggregate are used for the production of concrete. (Grain size of 40 to 20 mm), G4 aggregate (particle size of 20 to 5 mm), and S aggregate (5 types of aggregates of particle size of 5 mm or less) are used. As shown in FIG. 4, the aggregate is sorted into a plurality of aggregate bins 2a to 2f arranged in parallel in the aggregate storage facility 1 in the construction site, and a certain amount is stored and stored. When producing concrete, each aggregate bin is fed with the necessary amount of aggregate from each aggregate bin to a concrete production facility (batcher plant) in the same site to mix each aggregate. .

上記骨材貯蔵設備1には、骨材を受入するホッパ3と、そのホッパ3に受入された骨材を搬送する搬送コンベア4と、その搬送コンベア4の終端から落下供給される骨材をその種別に応じて上記各骨材ビン2a〜2fのいずれかに投入できるよう、上記各骨材ビン2a〜2fの上方に左右移動可能に設置されかつコンベアベルトを正逆転可能にしたシャトルコンベア5が設置されており(図4)、上記ホッパ3より投入される上記各種別の骨材は、作業員がその種別を判定したうえで、上記搬送コンベア4およびシャトルコンベア5を適宜操作することによって、上記各骨材ビン2a〜2fへ仕分けられる。   The aggregate storage facility 1 includes a hopper 3 that receives aggregate, a transport conveyor 4 that transports the aggregate received in the hopper 3, and an aggregate that is dropped and supplied from the end of the transport conveyor 4. A shuttle conveyor 5 is installed above each of the aggregate bins 2a to 2f so as to be movable left and right so that the conveyor belt can be rotated forward and backward so that it can be put into any of the aggregate bins 2a to 2f depending on the type. The various aggregates that are installed (FIG. 4) and are input from the hopper 3 are determined by the operator, and then the conveyor 4 and the shuttle conveyor 5 are appropriately operated. The above-mentioned aggregate bins 2a to 2f are sorted.

近年、上記のように骨材貯蔵設備1において貯蔵される骨材は、工事現場内で生産されるほか、工事現場外部の骨材納入業者から購入して搬入されることもあるが、外部から搬入された場合に骨材を上記各骨材ビン2a〜2fに仕分けて投入する手順は、具体的には以下のようなものである。   In recent years, the aggregate stored in the aggregate storage facility 1 as described above is not only produced on the construction site, but also purchased from an aggregate supplier outside the construction site and brought in from the outside. The procedure for sorting and loading the aggregates into the above-described aggregate bins 2a to 2f when carried in is specifically as follows.

まず、骨材を搬入するダンプトラックの運転手は、当該ダンプトラックに積載してきた骨材の種別を記載した伝票を、上記骨材貯蔵設備の作業員に手渡しし、これを受け取った作業員はその伝票に記載された骨材の種別に基づいて、その骨材を投入すべき骨材ビン2a〜2fを特定する。   First, the dump truck driver who carries the aggregate hands the slip that describes the type of aggregate loaded on the dump truck to the worker of the aggregate storage facility, and the worker who receives the slip Based on the type of aggregate described in the slip, the aggregate bins 2a to 2f into which the aggregate is to be input are specified.

そして、上記作業員が、上記ホッパ3に受入される骨材が、その種別のものを貯蔵する所定の骨材ビン2a〜2fに投入されるよう、シャトルコンベア5を操作しその位置を調整して骨材投入準備を行う。
たとえば、図4において右方の骨材ビン2d〜2fに骨材を投入する場合には、シャトルコンベア5を移動させてその右端を該当する骨材ビン2d〜2fの上方に位置させる。また、左方の骨材ビン2a〜2dに骨材を投入する場合には、シャトルコンベア5を移動させてその左端を該当する骨材ビン2a〜2cの上方に位置させる。
And the said operator operates the shuttle conveyor 5 and adjusts the position so that the aggregate received in the said hopper 3 may be thrown into the predetermined aggregate bins 2a-2f which store the thing of the kind. Prepare the aggregate.
For example, when the aggregate is put into the right aggregate bins 2d to 2f in FIG. 4, the shuttle conveyor 5 is moved so that the right end thereof is positioned above the corresponding aggregate bins 2d to 2f. Moreover, when putting an aggregate into the left aggregate bins 2a to 2d, the shuttle conveyor 5 is moved so that the left end is positioned above the corresponding aggregate bins 2a to 2c.

そして、骨材投入準備が完了した後、ダンプトラックに積載した骨材を上記ホッパ3に投入し搬送コンベア4とシャトルコンベア5を運転することにより、骨材は、所定の骨材ビン2a〜2fに仕分けられる。
なお、従来上記のように伝票を用いて骨材の種別を判定し、シャトルコンベア5の操作をしていたことについて、出願人において適当な文献を発見することはできなかった。
Then, after the preparation for the aggregate input is completed, the aggregate loaded on the dump truck is input into the hopper 3 and the conveyor 4 and the shuttle conveyor 5 are operated, so that the aggregate is a predetermined aggregate bin 2a to 2f. Sorted into
In addition, it was not possible for the applicant to find an appropriate document about the fact that the type of aggregate was determined using a slip as described above and the shuttle conveyor 5 was operated.

しかし、この、ホッパ3に投入される骨材をその種別に応じて所定の骨材ビン2a〜2fに投入する作業は、上記のように、作業員がその都度伝票に基づいて骨材の種別を判定し、シャトルコンベア5を操作するという人為的方法により行わざるを得なかったので、その伝票の読み違いや、シャトルコンベア5の操作ミス等によって、骨材を、本来投入すべき骨材ビン2a〜2f以外の他の骨材ビン2a〜2fに投入してしまうおそれがあった。   However, as described above, the operation of loading the aggregate to be loaded into the hopper 3 into the predetermined aggregate bins 2a to 2f according to the type is performed by the worker based on the slip each time. Therefore, it is unavoidable to use an artificial method of operating the shuttle conveyor 5, so that the aggregate bin is to be thrown in due to misreading of the slip or an operation mistake of the shuttle conveyor 5. There was a possibility of throwing into other aggregate bins 2a to 2f other than 2a to 2f.

特に、ダム等の建設にあたって使用するコンクリートは、その打設箇所に応じて骨材の配合を調整して所要の強度にして製造する必要があり、骨材の配合ミスは許されないものであるところ、特定の種別の骨材が貯蔵されているべき骨材ビンに他種別の骨材が混入していると、コンクリート製造に際して骨材の配合ミスが生じてしまうことになる。
仮に、他種別の骨材が混入していることが判明した場合であっても、その分級には多大な労力と時間が必要となり、工事の進捗にも影響を与えるだけでなく工事コストも上昇する。
In particular, concrete used in the construction of dams, etc. must be manufactured to the required strength by adjusting the composition of the aggregate according to the placement site, and it is not permitted to mix the aggregate. If another type of aggregate is mixed in the aggregate bin in which the specific type of aggregate is to be stored, an aggregate mixing error may occur during concrete production.
Even if other types of aggregate are found to be mixed, the classification requires a lot of labor and time, which not only affects the progress of the construction but also increases the construction cost. To do.

また、骨材製造プラントにおいては、製造される骨材の粒径を常時監視することができれば、骨材の品質の向上に資するし、また、骨材貯蔵設備からコンクリート製造設備への骨材供給に際しても、骨材の粒径を監視することができれば、コンクリートの品質の向上に資する。   In addition, in an aggregate production plant, if the particle size of the produced aggregate can be constantly monitored, it will contribute to the improvement of the quality of the aggregate, and the aggregate supply from the aggregate storage facility to the concrete production facility At that time, if the particle size of the aggregate can be monitored, it will contribute to the improvement of the quality of the concrete.

そこで、本発明は、骨材種別の判定の際の上記のような人為的なミスを未然に防止するとともに、発生したミスを発見し易くし、さらにまた、骨材製造時等の粒径監視にも用いることのできる骨材種別判定方法およびその装置の提供を課題とする。   Accordingly, the present invention prevents the above-described artificial mistakes when determining the type of aggregate, makes it easy to find the mistake that has occurred, and further monitors the particle size during aggregate production and the like. It is an object of the present invention to provide an aggregate type determination method and apparatus that can also be used.

請求項1記載の本発明は、種別を判定しようとする骨材7の上面に対向させて配置されその骨材7との距離を骨材距離データとして検出する距離センサ8を、骨材を搬送するコンベアの上方に設置するとともに、そのコンベアにより搬送される上記骨材7の上面を走査し、複数の骨材距離データを連続的に検出することによりその凹凸形状を検出して骨材の種別を判定する骨材種別判定方法であって、粒径を異にする各種の骨材の種別ごとに、予め所定の範囲の閾値を設定しておき、上記距離センサにより検出された複数の骨材距離データの平均偏差が、いずれの閾値の範囲に含まれるかによって骨材の種別を判定する骨材種別判定方法である。 In the first aspect of the present invention, the distance sensor 8 which is arranged to face the upper surface of the aggregate 7 whose type is to be determined and detects the distance to the aggregate 7 as aggregate distance data is conveyed to the aggregate. The upper and lower surfaces of the aggregate 7 conveyed by the conveyor are scanned, and the uneven shape is detected by continuously detecting a plurality of aggregate distance data. A plurality of aggregates detected by the distance sensor , wherein a threshold value in a predetermined range is set in advance for each type of various aggregates having different particle sizes. This is an aggregate type determination method for determining the type of aggregate according to which threshold range the average deviation of the distance data is included .

請求項記載の本発明は、種別を判定しようとする骨材7の上面との間の距離を骨材距離データとして検出する距離センサ8と、上記距離センサ8が、骨材7を搬送するコンベアの上方に設置され、そのコンベアにより搬送される骨材7の上面を走査し、この距離センサ8において検出した複数の骨材距離データの平均偏差が、粒径を異にする各種の骨材の種別ごとに予め設定された所定の範囲の閾値のうち、いずれの閾値の範囲に含まれるかによって、骨材の種別を判定する演算手段9とからなる骨材種別判定装置である。 According to the second aspect of the present invention, the distance sensor 8 that detects the distance between the upper surface of the aggregate 7 whose type is to be determined as aggregate distance data, and the distance sensor 8 conveys the aggregate 7. Various aggregates whose average deviation of a plurality of aggregate distance data detected by the distance sensor 8 is set on the upper surface of the conveyor and scanned on the upper surface of the aggregate 7 conveyed by the conveyor are different in particle diameter. This is an aggregate type determination device including a calculation unit 9 that determines an aggregate type depending on which threshold range is included in a predetermined range of threshold values preset for each type .

本発明によれば、骨材種別の判定等の際の人為的なミスを未然に防止するとともに、発生したミスを発見し易くすることができ、また、骨材製造時の粒径監視等も容易に行える。   According to the present invention, it is possible to prevent an artificial mistake in determining the type of aggregate and the like, and to make it easier to find an error that has occurred. Easy to do.

以下、本発明を実施例により説明するが、本発明はこれに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.

本発明の一実施例として、ダム建設工事の工事現場の骨材貯蔵設備に設置される骨材種別判定装置を、図面に基づいて説明する。   As an embodiment of the present invention, an aggregate type determination device installed in an aggregate storage facility at a construction site of a dam construction work will be described with reference to the drawings.

本実施例の骨材貯蔵設備1’は、従来の骨材貯蔵設備と同様に、ホッパ3に投入される複数種の骨材を、その種別に応じ、複数の骨材ビン2a〜2fに仕分け投入して貯蔵するものである(なお、図4に示した従来の骨材貯蔵設備と同一の箇所には同一の符号を付した)。
具体的には、G1の骨材(粒径150〜80mm)を上記骨材ビン2aに、G2の骨材(粒径80〜40mm)を上記骨材ビン2bに、G3の骨材(粒径40〜20mm)を上記骨材ビン2cに、G4の骨材(粒径20〜5mm)を上記骨材ビン2dに、また、Sの骨材(粒径5mm以下)を骨材ビン2eまたは2fにそれぞれ仕分け投入し貯蔵する。
The aggregate storage facility 1 'of the present embodiment sorts a plurality of types of aggregates that are put into the hopper 3 into a plurality of aggregate bins 2a to 2f according to the type, as in the conventional aggregate storage facility. (The same parts as those in the conventional aggregate storage facility shown in FIG. 4 are denoted by the same reference numerals).
Specifically, G1 aggregate (particle size 150 to 80 mm) is used in the aggregate bin 2a, G2 aggregate (particle size 80 to 40mm) is used in the aggregate bin 2b, and G3 aggregate (particle size is used). 40-20 mm) in the aggregate bin 2c, G4 aggregate (particle size 20-5 mm) in the aggregate bin 2d, and S aggregate (particle size 5 mm or less) in the aggregate bin 2e or 2f. Each of them is sorted and stored.

上記骨材貯蔵設備は、上記骨材ビン2a〜2fの上方に、ホッパ3に受入された骨材を搬送する搬送コンベア4と、その搬送コンベア4の搬送終端から落下供給される骨材を、その種別に応じた所定の上記骨材ビン2a〜2fへ搬送投入するための、左右への水平移動および正逆回転を制御可能にしたシャトルコンベア5とを備えている。   The aggregate storage facility includes a transport conveyor 4 that transports the aggregate received in the hopper 3 above the aggregate bins 2a to 2f, and an aggregate that is dropped and supplied from the transport end of the transport conveyor 4. There is provided a shuttle conveyor 5 capable of controlling horizontal movement to the left and right and forward / reverse rotation for feeding and feeding to the predetermined aggregate bins 2a to 2f according to the type.

本実施例の骨材種別判定方法に用いる骨材種別判定装置6は、上記搬送コンベア4のコンベアベルト4’の上方たとえば50cmの位置に設置され、該搬送コンベア4上を搬送される骨材7に向けてレーザ光を発射しその反射光を検出することにより上記骨材7の上面までの距離を検出する距離センサたるレーザ変位計8と、このレーザ変位計8を制御するとともに該レーザ変位計8の検出値に基づいて骨材種別の判定のための所要の演算を行う、演算手段たるPLC(Programable logic controler)9とからなる。
なお、演算手段としては、PLCに代えて、パーソナルコンピュータを使用することもできる。
The aggregate type determination device 6 used in the aggregate type determination method of the present embodiment is installed at a position of, for example, 50 cm above the conveyor belt 4 ′ of the transport conveyor 4 and is transported on the transport conveyor 4. A laser displacement meter 8 that is a distance sensor that detects the distance to the upper surface of the aggregate 7 by emitting a laser beam toward the surface and detecting the reflected light, and controls the laser displacement meter 8 and the laser displacement meter 8 includes a programmable logic controller (PLC) 9 that performs a required calculation for determining the aggregate type based on the detected value of 8.
As a calculation means, a personal computer can be used instead of the PLC.

上記レーザ変位計8は、上記骨材7の上面との間の距離を所要の微小検出周期ごとに間欠的に、骨材距離データとして検出する。
その検出周期を微小時間とすることにより、上記骨材距離データを連続的に検出し、結果として、搬送コンベア4上を搬送される骨材7の上面を線状に走査し、その凹凸形状(縦断面形状)を検出することができる。
The laser displacement meter 8 intermittently detects the distance from the upper surface of the aggregate 7 as aggregate distance data at every required minute detection period.
By making the detection cycle a minute time, the above-mentioned aggregate distance data is continuously detected. As a result, the upper surface of the aggregate 7 conveyed on the conveyor 4 is scanned linearly, and the uneven shape ( Vertical cross-sectional shape) can be detected.

上記PLC9は、数秒程度の測定時間のあいだに、上記レーザ変位計8によって連続して検出される多数の上記骨材距離データまたはその骨材距離データから抽出した所要数の抽出データ(以下、「骨材距離データ群」という。)について、下記の数式1により平均偏差(Mdev)を求める。
The PLC 9 has a large number of aggregate distance data detected continuously by the laser displacement meter 8 during a measurement time of about several seconds or a required number of extracted data extracted from the aggregate distance data (hereinafter referred to as “ For the “aggregate distance data group”), an average deviation (Mdev) is obtained by the following formula 1.

Figure 0005096727
(ここで、nは骨材距離データ群に含まれる全骨材距離データの数、Xiはi個目の骨材距離データの値、Xaveはn個の全骨材距離データの平均値である。)
Figure 0005096727
(Where n is the number of total aggregate distance data included in the aggregate distance data group, Xi is the value of the i-th aggregate distance data, and Xave is the average value of the n total aggregate distance data. .)

上記のようにして求められる平均偏差は、搬送される骨材の上面の凹凸形状についての、上下振動の幅(振幅)の平均値に相当するから、骨材7の粒径との間に強い相関が認められ、骨材7の粒径が大きくなればその値は大きくなり、逆にその粒径が小さくなれば小さくなる。
したがって、その平均偏差が、骨材の各種別ごとに適宜設定した所定の閾値の範囲内にあるか否かを判定することで骨材種別を判定することができる。
Since the average deviation obtained as described above corresponds to the average value of the width (amplitude) of the vertical vibration of the uneven shape on the upper surface of the aggregate to be conveyed, it is strong between the particle size of the aggregate 7. A correlation is recognized, and the value increases as the particle size of the aggregate 7 increases, and conversely decreases as the particle size decreases.
Therefore, the aggregate type can be determined by determining whether or not the average deviation is within a predetermined threshold range appropriately set for each type of aggregate.

すなわち、PLC9は、各種別の骨材それぞれについて予め設定される所要範囲の閾値と上記平均偏差とを比較し、その平均偏差が、何れの種別の骨材の閾値の範囲に含まれるかを判断することによって骨材の種別を判定し、その結果を骨材種別信号として出力する。   That is, the PLC 9 compares the threshold value of the required range set in advance for each of the various aggregates with the average deviation, and determines which type of aggregate the threshold value is included in the threshold value range. Thus, the type of aggregate is determined, and the result is output as an aggregate type signal.

したがって、たとえば上記骨材信号を骨材種別を表示する表示器に入力することとし、その表示器を上記シャトルコンベア5を操作する作業員がその表示を目視できる場所に設置して骨材種別を表示させるようにすれば、従来のように作業員が伝票に基づいてシャトルコンベア5を操作する場合であっても、その表示器の骨材種別の表示を再度確認することで伝票の読み違いやシャトルコンベア5の操作ミスを防止し易くなり、また、仮にミスがあった場合でもそのミスを発見し易い。   Therefore, for example, the aggregate signal is input to an indicator that displays the aggregate type, and the indicator is installed in a place where an operator who operates the shuttle conveyor 5 can visually check the aggregate type. If it is made to display, even if it is a case where an operator operates the shuttle conveyor 5 based on a slip as in the prior art, the misreading of the slip can be confirmed by reconfirming the display of the aggregate type of the indicator. It becomes easy to prevent an operation mistake of the shuttle conveyor 5, and even if there is a mistake, it is easy to find the mistake.

また、作業員は、その表示器の表示のみによって骨材7の種別を確認し、上記シャトルコンベア5を操作することとすれば、従来のような伝票の受け渡しを省略することが可能である。   Further, if the worker confirms the type of the aggregate 7 only by displaying the display and operates the shuttle conveyor 5, it is possible to omit the conventional delivery of slips.

また、この骨材種別信号を、上記シャトルコンベア5を制御する図示しない制御装置に直接入力し、作業員の操作なしに自動運転させるようにすれば、人為的ミスを発生させることなく骨材7をその種別に基づいて確実に仕分けることができる。   Further, if the aggregate type signal is directly input to a control device (not shown) that controls the shuttle conveyor 5 and is automatically operated without an operator's operation, the aggregate 7 is generated without causing human error. Can be reliably sorted based on the type.

図3に、本実施例の骨材種別判定装置6により行った骨材種別判定試験の結果を示した。
この試験では、各種骨材7を上記搬送コンベア4により100m/minのスピードで搬送しつつ、上記レーザ変位計8により、その骨材7の上面までの距離(骨材距離データ)を、検出周期500μ秒間隔で5秒間、10000個の測点において計測した。したがってこの場合、搬送される骨材7の上面の凹凸形状を0.1667mm間隔の測点において計測したことになる。
FIG. 3 shows the result of the aggregate type determination test performed by the aggregate type determination apparatus 6 of this example.
In this test, the various aggregates 7 are conveyed by the conveyor 4 at a speed of 100 m / min, and the distance to the upper surface of the aggregate 7 (aggregate distance data) is detected by the laser displacement meter 8 as a detection cycle. Measurements were taken at 10,000 measuring points for 5 seconds at 500 μs intervals. Therefore, in this case, the concavo-convex shape on the upper surface of the aggregate 7 to be conveyed is measured at measuring points at intervals of 0.1667 mm.

この試験は、図3に示したように、G1の骨材について5回(試験1〜5)、G2の骨材について4回(試験6〜9)、G3の骨材について2回(試験10,11)、G4の骨材について同じく2回(試験12,13)、Sの骨材について2回(試験14,15)行った。なお、試験16は、搬送コンベア4上に骨材がない状態でそのコンベアベルト4’の上面の位置を計測したものである。
なお、図3において、測定された骨材距離データは、コンベアベルト4’上の所定高さに仮想的に設定した基準位置からの距離(単位:mm)で示してある。
As shown in FIG. 3, this test was performed five times for the G1 aggregate (tests 1 to 5), four times for the G2 aggregate (tests 6 to 9), and twice for the G3 aggregate (test 10). 11), and G4 aggregate (tests 12 and 13) and S aggregate (tests 14 and 15) twice. Note that the test 16 is a measurement of the position of the upper surface of the conveyor belt 4 ′ with no aggregate on the conveyor 4.
In FIG. 3, the measured aggregate distance data is indicated by a distance (unit: mm) from the reference position virtually set at a predetermined height on the conveyor belt 4 ′.

上記のようにして得た試験1〜16の各骨材距離データ群について、上記数式1により平均偏差を求めるとともに、さらに、その各骨材距離データ群から1000個の骨材距離データを抽出したデータ群、2000個の骨材距離データをを抽出したデータ群、4000個の骨材距離データを抽出したデータ群、6000個の骨材距離データをを抽出したデータ群、および、8000個の骨材距離データを抽出したデータ群についても、上記数式1により平均偏差を演算した。   About each aggregate distance data group of tests 1-16 obtained as mentioned above, while obtaining an average deviation by the above-mentioned numerical formula 1, 1000 aggregate distance data were extracted from each aggregate distance data group. Data group, data group obtained by extracting 2000 aggregate distance data, data group obtained by extracting 4000 aggregate distance data, data group obtained by extracting 6000 aggregate distance data, and 8000 bones For the data group from which the material distance data was extracted, the average deviation was calculated by the above formula 1.

そして、求められた平均偏差を、予め設定した閾値(図3に示したとおり、G1の骨材については50.0〜25.0、G2の骨材については24.9〜14.0、G3の骨材については13.9〜7.0、G4の骨材については6.9〜4.4、Sの骨材については4.3〜2.0、骨材なしの場合1.9〜0とした。いずれも単位は[mm]。)と比較することにより、骨材の種別(およびその有無)を判定した。
なお、上記の閾値の範囲は、適宜変更して判定の精度をより高めることができる場合がある。
The obtained average deviation is set to a preset threshold value (as shown in FIG. 3, 50.0 to 25.0 for the G1 aggregate, 24.9 to 14.0 for the G2 aggregate, and 13.9 to 7.0 for the G3 aggregate). , G4 aggregate is 6.9 to 4.4, S aggregate is 4.3 to 2.0, and no aggregate is 1.9 to 0. All units are in [mm]. The type (and presence / absence) was determined.
Note that the above-described threshold range may be changed as appropriate to further increase the accuracy of determination.

G1の骨材について行った試験2と試験5において、2000個および1000個の骨材距離データからなる骨材距離データ群について求めた平均偏差(図3中、*印を付したもの)は、G1の骨材の閾値である50.0〜25.0の範囲から外れたので、これによっては骨材種別を正確に判定できなかった。
しかし、試験1〜試験16の全てにおいて、4000個以上の骨材距離データからなるデータ群について求めた平均偏差は、各骨材の種別に応じた閾値の範囲に収まったので、これに基づいて、正確に骨材種別を判定することができた。
したがって、100m/minのスピードの搬送コンベア4上での骨材種別の判定は、4000個以上の骨材距離データからなる骨材距離データ群に基づいて行うのが好ましい。搬送コンベア4のスピードが異なる場合には、適宜骨材距離データ群のデータ数を増減することで、演算処理すべきデータ量を過大にすることなく十分な精度の判定ができる。
In Test 2 and Test 5 performed on the aggregate of G1, the average deviation (marked with * in FIG. 3) obtained for the aggregate distance data group consisting of 2000 and 1000 aggregate distance data is: Since it deviated from the range of 50.0 to 25.0 which is the threshold value of the aggregate of G1, the aggregate type could not be accurately determined.
However, in all of Test 1 to Test 16, the average deviation obtained for the data group consisting of 4000 or more aggregate distance data was within the threshold range according to the type of each aggregate. It was possible to accurately determine the aggregate type.
Therefore, it is preferable to determine the aggregate type on the transport conveyor 4 at a speed of 100 m / min based on an aggregate distance data group including 4000 or more aggregate distance data. When the speed of the conveyor 4 is different, by appropriately increasing / decreasing the number of data of the aggregate distance data group, it is possible to determine with sufficient accuracy without excessively increasing the amount of data to be calculated.

上記レーザ変位計8の設置高さ(搬送コンベア4のコンベアベルト4’からの上方への距離)は、適宜変更することが可能である。また、レーザ変位計8に代えて他の各種の距離センサ、例えば赤外線センサ等を使用することも可能である。   The installation height of the laser displacement meter 8 (the distance above the conveyor belt 4 'from the conveyor belt 4') can be changed as appropriate. In addition, various other distance sensors such as an infrared sensor can be used instead of the laser displacement meter 8.

上記では、距離センサを搬送コンベア4上に設置した例を示したが、距離センサの位置は適宜変更可能である。たとえば、骨材がホッパへ投入される前に、ダンプトラックの荷台に積載されている骨材の種別を判定することも可能である。その場合、たとえば、ロボットアームの腕に距離センサを設けこれを移動可能に支持しておき、このセンサを一定速度で移動させつつ、ダンプトラックの荷台上の骨材の上面を走査すればよい。   Although the example which installed the distance sensor on the conveyance conveyor 4 was shown above, the position of a distance sensor can be changed suitably. For example, it is possible to determine the type of aggregate loaded on the loading platform of the dump truck before the aggregate is put into the hopper. In this case, for example, a distance sensor may be provided on the arm of the robot arm so as to be movable, and the upper surface of the aggregate on the loading platform of the dump truck may be scanned while moving the sensor at a constant speed.

また、本発明骨材種別判定装置は、骨材貯蔵設備における異種の骨材混入を防止のために用いる他、バッチャープラントへの骨材搬出用コンベア上において骨材の種別を判定することによって、骨材の粒径の監視にも用いることができ、さらには、骨材製造設備においてもコンベア上で粒径を監視して品質管理に役立てることも可能である。   In addition, the aggregate type determination device of the present invention is used to prevent mixing of different types of aggregates in the aggregate storage facility, and by determining the type of aggregate on the conveyor for carrying out aggregates to the batcher plant. It can also be used for monitoring the particle size of the aggregate, and it can also be used for quality control by monitoring the particle size on the conveyor in the aggregate production facility.

本発明の実施例に係る骨材種別判定装置を備えた骨材貯蔵設備の説明図である。It is explanatory drawing of the aggregate storage equipment provided with the aggregate classification determination apparatus which concerns on the Example of this invention. 同上の要部拡大断面図である。It is a principal part expanded sectional view same as the above. 本実施例による実験結果を示した表である。It is the table | surface which showed the experimental result by a present Example. 従来の骨材貯蔵設備の説明図である。It is explanatory drawing of the conventional aggregate storage equipment.

符号の説明Explanation of symbols

1,1’ 骨材貯蔵設備
2a〜2f 骨材ビン
3 ホッパ
4 搬送コンベア
5 シャトルコンベア
6 骨材種別判定装置
7 骨材
8 レーザ変位計(距離センサ)
9 PLC
1, 1 'Aggregate storage facilities 2a to 2f Aggregate bin 3 Hopper 4 Conveyor 5 Shuttle conveyor 6 Aggregate type determination device 7 Aggregate 8 Laser displacement meter (distance sensor)
9 PLC

Claims (2)

種別を判定しようとする骨材の上面に対向させて配置されその骨材との距離を骨材距離データとして検出する距離センサを、骨材を搬送するコンベアの上方に設置するとともに、そのコンベアにより搬送される上記骨材の上面を走査し、複数の骨材距離データを連続的に検出することによりその凹凸形状を検出して骨材の種別を判定する骨材種別判定方法であって、
粒径を異にする各種の骨材の種別ごとに、予め所定の範囲の閾値を設定しておき、上記距離センサにより検出された複数の骨材距離データの平均偏差が、いずれの閾値の範囲に含まれるかによって骨材の種別を判定することを特徴とする骨材種別判定方法。
A distance sensor that is arranged opposite to the upper surface of the aggregate whose type is to be determined and detects the distance to the aggregate as aggregate distance data is installed above the conveyor that conveys the aggregate. An aggregate type determination method for scanning the upper surface of the aggregate to be conveyed and detecting the uneven shape by continuously detecting a plurality of aggregate distance data, and determining the type of the aggregate,
A threshold value in a predetermined range is set in advance for each type of aggregate having different particle sizes, and the average deviation of the plurality of aggregate distance data detected by the distance sensor is in any threshold range. An aggregate type determination method, wherein the type of aggregate is determined depending on whether it is included in the aggregate.
種別を判定しようとする骨材の上面との間の距離を骨材距離データとして検出する距離センサと、上記距離センサが、骨材を搬送するコンベアの上方に設置され、そのコンベアにより搬送される骨材の上面を走査し、この距離センサにおいて検出した複数の骨材距離データの平均偏差が、粒径を異にする各種の骨材の種別ごとに予め設定された所定の範囲の閾値のうち、いずれの閾値の範囲に含まれるかによって骨材の種別を判定する演算手段とからなることを特徴とする骨材種別判定装置。 The distance sensor for detecting the distance between the upper surface of the aggregate whose type is to be determined as aggregate distance data and the distance sensor are installed above the conveyor for conveying the aggregate and are conveyed by the conveyor. The average deviation of a plurality of aggregate distance data detected by scanning the upper surface of the aggregate and detected by the distance sensor is within a predetermined range of threshold values set in advance for each type of aggregate having different particle sizes. An aggregate type determining apparatus comprising: calculating means for determining an aggregate type depending on which threshold range is included .
JP2006299294A 2006-11-02 2006-11-02 Aggregate type determination method and apparatus Active JP5096727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299294A JP5096727B2 (en) 2006-11-02 2006-11-02 Aggregate type determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299294A JP5096727B2 (en) 2006-11-02 2006-11-02 Aggregate type determination method and apparatus

Publications (2)

Publication Number Publication Date
JP2008114459A JP2008114459A (en) 2008-05-22
JP5096727B2 true JP5096727B2 (en) 2012-12-12

Family

ID=39500828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299294A Active JP5096727B2 (en) 2006-11-02 2006-11-02 Aggregate type determination method and apparatus

Country Status (1)

Country Link
JP (1) JP5096727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174335B2 (en) * 2013-02-21 2017-08-02 株式会社熊谷組 Control method for aggregate transportation and storage system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954595B2 (en) * 1989-01-12 1999-09-27 富士写真フイルム株式会社 Processing method of photosensitive material
JPH06180279A (en) * 1992-12-14 1994-06-28 Onoda Cement Co Ltd Discriminating method and device for particulate matter
JPH07100823A (en) * 1993-10-04 1995-04-18 Nikko Co Ltd Distinguishing method of type of transported aggregate
JP2000340538A (en) * 1999-05-31 2000-12-08 Hitachi Ltd Method and device for substrate flattening, and manufacture of semiconductor device thereby
JP4143998B2 (en) * 2002-04-16 2008-09-03 光洋機械産業株式会社 Aggregate identification device for concrete
JP2004098549A (en) * 2002-09-11 2004-04-02 Okumura Corp Method for producing ready-mixed concrete
JP2004216781A (en) * 2003-01-16 2004-08-05 Pacific Technos Corp Aggregate sorting system
JP2006194698A (en) * 2005-01-12 2006-07-27 Macnica Inc Device and method for determining stop of car body for speed calculation device

Also Published As

Publication number Publication date
JP2008114459A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US6437255B1 (en) Conveyor scale
JP6022860B2 (en) Article inspection apparatus and article inspection method
KR100846357B1 (en) Cutting and supply system for block rubber and method thereof
JP5566012B2 (en) Weight sorter
CN103728150B (en) The fault detection system of a kind of concrete mixing plant and method
HUE035901T2 (en) A method and a system for production of rod-shaped articles
JP4724462B2 (en) Article inspection device, weight inspection device, and foreign matter inspection device
JP4668681B2 (en) Weighing device
CN110864794B (en) Batching belt scale online detection device and method thereof
Ambriško et al. Determination the effect of factors affecting the tensile strength of fabric conveyor belts
JP5096727B2 (en) Aggregate type determination method and apparatus
JPH10305260A (en) Weight sorting device
JP6686649B2 (en) Aggregate identification method, aggregate identification device, and aggregate transport storage device
US20240024891A1 (en) Rock processing system with at least two value grain grading curves and automated operation dependent on the grading curve discharges
KR101796747B1 (en) Constant feed weigher for raw material and constant feeding method for the same
JP2638742B2 (en) Quantitative material supply method and device
JP4576174B2 (en) Aggregate discrimination device
CN112476750A (en) Concrete mixing plant measurement calibration system
JP2006201049A (en) Measuring apparatus
JP4758128B2 (en) Quality control system in product manufacturing and storage process
JPH052245B2 (en)
JPH07100823A (en) Distinguishing method of type of transported aggregate
JPH09145348A (en) Automatic inspection apparatus for quality of aggregate
JP7511225B2 (en) Agricultural product sorting equipment
JPH0339802B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350