JP5094225B2 - Zoom lens and imaging apparatus having the same - Google Patents
Zoom lens and imaging apparatus having the same Download PDFInfo
- Publication number
- JP5094225B2 JP5094225B2 JP2007159961A JP2007159961A JP5094225B2 JP 5094225 B2 JP5094225 B2 JP 5094225B2 JP 2007159961 A JP2007159961 A JP 2007159961A JP 2007159961 A JP2007159961 A JP 2007159961A JP 5094225 B2 JP5094225 B2 JP 5094225B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- zoom
- positive
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lenses (AREA)
Description
本発明はビデオカメラ、銀塩写真用カメラ、放送用カメラ、そしてデジタルスチルカメラ等に好適なズームレンズ及びそれを有する撮像装置に関する。 The present invention relates to a zoom lens suitable for a video camera, a silver salt photography camera, a broadcast camera, a digital still camera, and the like, and an imaging apparatus having the same.
近年、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ、放送用カメラ、そして銀塩フィルムを用いたスチルカメラ等の撮像装置においては、高機能化とともに装置全体の小型化がなされている。 In recent years, imaging devices such as a video camera using a solid-state imaging device, a digital still camera, a broadcasting camera, and a still camera using a silver halide film have been improved in function and downsized as a whole.
そしてそれに伴って、これらに用いる撮影光学系としては、レンズ全長が短くコンパクトでしかも高ズーム比のズームレンズであることが要求されている。 Along with this, a photographing optical system used for these is required to be a zoom lens with a short overall lens length and a high zoom ratio.
コンパクトで高ズーム比のズームレンズとして物体側より像側へ順に、正、負、正、正の屈折力のレンズ群より成り、各レンズ群を移動させてズーミングを行う4群ズームレンズが知られている(特許文献1〜3)。 As a compact zoom lens with a high zoom ratio, there is known a four-group zoom lens which is composed of lens groups having positive, negative, positive and positive refractive powers in order from the object side to the image side, and performs zooming by moving each lens group. (Patent Documents 1 to 3).
又、このような4群ズームレンズにおいて、第2レンズ群を負レンズと正レンズの2枚のレンズで構成した4群ズームレンズが知られている(特許文献4,5)。 Among such four-group zoom lenses, there is known a four-group zoom lens in which the second lens group is composed of two lenses, a negative lens and a positive lens (Patent Documents 4 and 5).
特許文献4では第3レンズ群を正レンズ、正レンズ、負レンズの独立した3つのレンズより成るズームレンズを開示している。 Patent Document 4 discloses a zoom lens including a third lens group including three independent lenses: a positive lens, a positive lens, and a negative lens.
特許文献5では第3レンズ群を正レンズ、正レンズと負レンズとの接合レンズの3つのレンズより成るズームレンズを開示している。
近年、カメラのコンパクト化とズームレンズの高ズーム比化の双方を達成する為に、沈胴式のズームレンズが用いられている。沈胴式のズームレンズとは、非使用時(非撮影時)に各レンズ群の間隔を撮影状態と異なる間隔まで縮小し、カメラ本体からのレンズの突出量を少なくするものである。 In recent years, a retractable zoom lens has been used to achieve both a compact camera and a high zoom ratio of the zoom lens. The retractable zoom lens reduces the projection amount of the lens from the camera body by reducing the distance between the lens groups to a different distance from the photographing state when not in use (when not photographing).
一般に、ズームレンズを構成する各レンズ群のレンズ枚数が多いと、各レンズ群の光軸上の長さが長くなる。 In general, when the number of lenses in each lens group constituting the zoom lens is large, the length of each lens group on the optical axis increases.
又、各レンズ群のズーミング及びフォーカシングにおける移動量が大きいとレンズ全長が長くなる。この結果、沈胴長が増大することになる。 Further, if the amount of movement of each lens group during zooming and focusing is large, the total lens length becomes long. As a result, the retractable length increases.
一方、撮像装置に用いるズームレンズでは、レンズ系全体の小型化を図って且つ所定のズーム比を有しつつ、全ズーム範囲にわたり良好なる光学性能を有していることも重要である。このためには、ズーミングに伴う各レンズ群の移動条件や各レンズ群の屈折力、各レンズ群のレンズ構成等を適切に設定する必要がある。例えばズームレンズの小型化に関しては、各レンズ群の屈折力を強めればズーミングにおける各レンズ群の移動量が少なくなり、レンズ全長の短縮化が可能となる。しかし、各レンズ群の屈折力を単に強めるとズーミングに伴う収差変動が大きくなり、これを良好に補正するのが難しくなってくる。 On the other hand, in a zoom lens used in an image pickup apparatus, it is also important that the entire lens system is downsized and has a predetermined zoom ratio and has good optical performance over the entire zoom range. For this purpose, it is necessary to appropriately set the movement condition of each lens group accompanying zooming, the refractive power of each lens group, the lens configuration of each lens group, and the like. For example, regarding the miniaturization of the zoom lens, if the refractive power of each lens group is increased, the amount of movement of each lens group during zooming is reduced, and the total lens length can be shortened. However, if the refracting power of each lens group is simply increased, aberration fluctuations accompanying zooming increase, and it becomes difficult to correct this well.
つまり、光学系の小型化と、良好な光学性能とは背反する条件であり、これを両立することがズームレンズにとって重要な課題である。 That is, the miniaturization of the optical system and the good optical performance are contradictory conditions, and it is an important issue for the zoom lens to achieve both of them.
本発明は、レンズ構成が簡易でコンパクトでありながら高ズーム比で、全ズーム領域にわたり高い光学性能を達成したズームレンズの提供を目的とする。 It is an object of the present invention to provide a zoom lens that achieves high optical performance over the entire zoom range with a high zoom ratio while having a simple and compact lens configuration.
本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、広角端に比べて望遠端において、前記第1レンズ群が物体側に位置し、前記第1レンズ群と前記第2レンズ群の間隔が変化し、前記第2レンズ群と前記第3レンズ群の間隔が小さくなり、前記第3レンズ群と前記第4レンズ群の間隔が大きくなるように、ズーミングに際して各レンズ群が移動するズームレンズにおいて、前記第2レンズ群は、物体側から像側へ順に、負レンズ、正レンズから成り、前記第3レンズ群は、物体側から像側へ順に、正レンズと負レンズを接合した接合レンズと正レンズから成り、前記第2レンズ群と前記第3レンズ群の光軸上の厚みを各々TD2、TD3、望遠端における全系の焦点距離をftとするとき、
0.28<(TD2+TD3)/ft<0.34
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power. The fourth lens group is configured such that the first lens group is located on the object side at the telephoto end compared to the wide-angle end, and the distance between the first lens group and the second lens group is changed, so that the second lens In the zoom lens in which each lens group moves during zooming so that the distance between the third lens group and the third lens group becomes smaller and the distance between the third lens group and the fourth lens group becomes larger, the second lens group is , in order from the object side to the image side, and a negative lens, a positive lens, said third lens group comprises, in order from the object side to the image side, a cemented lens and a positive lens obtained by cementing a positive lens and a negative lens, the second Thickness on the optical axis of the two lens groups and the third lens group Each TD2, TD3, and a focal length of the entire system at the telephoto end and ft,
0.28 <(TD2 + TD3) / ft <0.34
It is characterized by satisfying the following conditions .
本発明によれば、レンズ構成が簡易でコンパクトでありながら高ズーム比で、全ズーム領域にわたり高い光学性能を達成したズームレンズが得られる。 According to the present invention, it is possible to obtain a zoom lens that achieves high optical performance over the entire zoom range with a high zoom ratio while having a simple and compact lens configuration.
以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。 Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.
本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成されている。 The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power. It is composed of a fourth lens group.
そして、ズーミングに際して第1レンズ群と第2レンズ群の間隔が変化する。 第1レンズ群は、広角端に比べ望遠端において物体側に位置する。広角端に比べ望遠端で、第2レンズ群と第3レンズ群の間隔が小さく、第3レンズ群と第4レンズ群の間隔が大きくなるようにズーミングに際して各レンズ群が移動するズームレンズである。 The distance between the first lens group and the second lens group changes during zooming. The first lens group is located closer to the object side at the telephoto end than at the wide-angle end. This is a zoom lens in which each lens group moves during zooming so that the distance between the second lens group and the third lens group is smaller and the distance between the third lens group and the fourth lens group is larger at the telephoto end than at the wide-angle end. .
図1は本発明の実施例1のズームレンズのレンズ断面図である。図2(A)、(B)、(C)はそれぞれ実施例1のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離端)における収差図である。実施例1は、ズーム比4.76、Fナンバー3.24〜5.88のズームレンズである。 FIG. 1 is a lens cross-sectional view of a zoom lens according to Example 1 of the present invention. 2A, 2B, and 2C are aberration diagrams at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length end), respectively, of the zoom lens according to the first exemplary embodiment. The first embodiment is a zoom lens having a zoom ratio of 4.76 and an F number of 3.24 to 5.88.
図3は本発明の実施例2のズームレンズのレンズ断面図である。図4(A)、(B)、(C)はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例2は、ズーム比4.79、Fナンバー3.30〜5.69のズームレンズである。 FIG. 3 is a lens cross-sectional view of a zoom lens according to Example 2 of the present invention. 4A, 4B, and 4C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the second embodiment. The second embodiment is a zoom lens having a zoom ratio of 4.79 and an F number of 3.30 to 5.69 .
図5は本発明の実施例3のズームレンズのレンズ断面図である。図6(A)、(B)、(C)はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例3は、ズーム比4.79、Fナンバー2.93〜5.35のズームレンズである。 FIG. 5 is a lens cross-sectional view of a zoom lens according to Example 3 of the present invention. FIGS. 6A, 6B, and 6C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the third exemplary embodiment. The third exemplary embodiment is a zoom lens having a zoom ratio of 4.79 and F-numbers of 2.93 to 5.35 .
レンズ断面図において(A)は広角端、(B)は中間のズーム位置、(C)は望遠端を示す。 In the lens cross-sectional view, (A) shows the wide-angle end, (B) shows the intermediate zoom position, and (C) shows the telephoto end.
図7は本発明のズームレンズを備える撮像装置の要部概略図である。 FIG. 7 is a schematic diagram of a main part of an imaging apparatus including the zoom lens according to the present invention.
各実施例のズームレンズはデジタルスチルカメラや銀塩フィルムカメラ等の撮像装置に用いられる撮影レンズ系である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。 The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus such as a digital still camera or a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear).
尚、各実施例のズームレンズをプロジェクター等の投射レンズとして用いるときは、左方がスクリーン、右方が被投射画像となる。 When the zoom lens of each embodiment is used as a projection lens such as a projector, the left side is the screen and the right side is the projected image.
レンズ断面図において、L1は正の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に相当する光学ブロックである。 In the lens cross-sectional view, L1 is a first lens group having a positive refractive power (optical power = reciprocal of focal length), L2 is a second lens group having a negative refractive power, and L3 is a third lens group having a positive refractive power. , L4 is a fourth lens unit having a positive refractive power. G is an optical block corresponding to an optical filter, a face plate, a quartz low-pass filter, an infrared cut filter, or the like.
IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する。 IP is an image plane, and corresponds to an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor when used as a photographing optical system of a video camera or a digital still camera.
収差図において、FnoはFナンバー、d,gは各々d線及びg線、ΔM、ΔSはd線のメリディオナル像面、サジタル像面である。倍率色収差はg線によって表している。ωは半画角である。 In the aberration diagrams, Fno is the F number, d and g are the d-line and g-line, respectively, and ΔM and ΔS are the meridional image surface and sagittal image surface of the d-line. Lateral chromatic aberration is represented by the g-line. ω is a half angle of view.
尚、以下の各実施例において広角端と望遠端のズーム位置は、変倍用レンズ群が(第2、第3レンズ群)機構上、光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。 In each of the following embodiments, the zoom positions at the wide-angle end and the telephoto end are determined when the zoom lens unit is located at both ends of a range in which the zoom lens unit can move on the optical axis on the mechanism (second and third lens units). The zoom position.
各実施例では、広角端から望遠端へのズーミングに際して矢印のように、各レンズ群L1〜L4が移動している。 In each embodiment, the lens units L1 to L4 are moved as indicated by arrows during zooming from the wide-angle end to the telephoto end.
具体的には次のとおりである。 Specifically, it is as follows.
第1レンズ群L1は、像側に凸状の軌跡で移動している。そして広角端に比べて望遠端において、物体側に位置するように移動している。第2レンズ群L2は、像側へ凸状の軌跡で移動している。そして略中間のズーム位置において、最も像側に位置するように移動している。第3レンズ群L3は物体側へ単調移動している。第4レンズ群L4は、物体側へ凸状の軌跡を描くように移動している。 The first lens unit L1 moves along a locus convex toward the image side. And it moves so that it may be located in the object side in the telephoto end compared with the wide-angle end. The second lens unit L2 moves along a locus convex toward the image side. Then, the zoom lens moves so as to be located closest to the image side at a substantially intermediate zoom position. The third lens unit L3 moves monotonously toward the object side. The fourth lens unit L4 moves so as to draw a convex locus toward the object side.
第1レンズ群L1と第2レンズ群L2の間隔(第1レンズ群L1の後端から第2レンズ群L2の先端までの軸上距離)は、広角端から望遠端へのズーミングに際して、一端減少し、その後増大する。 The distance between the first lens unit L1 and the second lens unit L2 (the axial distance from the rear end of the first lens unit L1 to the front end of the second lens unit L2) decreases once during zooming from the wide-angle end to the telephoto end. And then increase.
このときの第1レンズ群L1と第2レンズ群L2との間隔が最小値d1minとなるズーム位置における全系の焦点距離を、以下faとする。 The focal length of the entire system at the zoom position where the distance between the first lens unit L1 and the second lens unit L2 at this time is the minimum value d1min is hereinafter referred to as fa.
又、各レンズ群は、広角端に比べて望遠端で、第1レンズ群L1と第2レンズ群L2の間隔が大きく、第2レンズ群L2と第3レンズ群L3の間隔が小さく、第3レンズ群L3と第4レンズ群L4の間隔が大きくなるように移動している。 In addition, each lens group has a telephoto end that is larger than a wide-angle end, and the distance between the first lens group L1 and the second lens group L2 is large, and the distance between the second lens group L2 and the third lens group L3 is small. The lens unit L3 and the fourth lens unit L4 are moved so that the distance between them is increased.
各実施例では、広角端において全体として略レトロフォーカスタイプの屈折力配置としている。又、望遠端では全体として略テレフォトタイプの屈折力配置としている。これにより高いズーム比(ズーム比5程度)を実現したズームレンズを得ている。 In each of the embodiments, a substantially retrofocus type refractive power arrangement is adopted as a whole at the wide-angle end. Further, the telephoto end has a substantially telephoto type refractive power arrangement as a whole. As a result, a zoom lens having a high zoom ratio (about 5 zoom ratio) is obtained.
また、全てのレンズ群を移動させてズーミング及び変倍に伴う像面変動の補正を行うことにより屈折力の効率的な分配を容易にしている。 In addition, efficient distribution of refractive power is facilitated by moving all the lens groups to correct image plane variation accompanying zooming and zooming.
更に、広角端にて光学全長を短くすることができ、例えばデジタルカメラ用として最適な高ズーム比で小型なズームレンズを構成している。 Furthermore, the optical total length can be shortened at the wide-angle end, and for example, a compact zoom lens is configured with a high zoom ratio optimum for a digital camera.
各実施例では、第4レンズ群L4を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。 In each embodiment, a rear focus type that performs focusing by moving the fourth lens unit L4 on the optical axis is employed.
望遠端において無限遠物体から近距離物体へフォーカスを行う場合には、矢印4cに示すように第4レンズ群を前方に繰り出す。第4レンズ群L4の実線の曲線4aと実線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに従う際の像面変動を補正するための、第4レンズ群L4の移動軌跡を示している。 When focusing from an infinitely distant object to a close object at the telephoto end, the fourth lens group is moved forward as indicated by an arrow 4c. A solid line curve 4a and a solid line curve 4b of the fourth lens unit L4 are for correcting image plane fluctuations when following zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and a short-distance object, respectively. The movement locus | trajectory of the 4th lens group L4 is shown.
各実施例では、軽量な第4レンズ群L4をフォーカスの為に移動することで迅速なフォーカスを容易にしている。 In each embodiment, quick focusing is facilitated by moving the lightweight fourth lens unit L4 for focusing.
各実施例において、各レンズ群は物体側から像側へ順に、以下のレンズ構成より成っている。第1レンズ群L1は負レンズと正レンズを接合した接合レンズより成っている。このとき接合レンズは、物体側が凸面のメニスカス形状である。 In each embodiment, each lens group has the following lens configuration in order from the object side to the image side. The first lens unit L1 includes a cemented lens in which a negative lens and a positive lens are cemented. At this time, the cemented lens has a meniscus shape having a convex surface on the object side.
第2レンズ群L2は負レンズと正レンズから成っている。そして負レンズの少なくとも1面が非球面形状である。具体的には物体側と像側の面が凹面(両凹形状)の負レンズと、物体側の面が凸面でメニスカス形状の正レンズより成っている。このとき負レンズの両面は非球面形状である。 The second lens unit L2 includes a negative lens and a positive lens. At least one surface of the negative lens is aspherical. Specifically, the object side and image side surfaces are composed of a concave (biconcave) negative lens, and the object side surface is a convex meniscus positive lens. At this time, both surfaces of the negative lens are aspherical.
第3レンズ群L3は正レンズと負レンズを接合した接合レンズと、両凸形状の正レンズより成っている。このとき接合レンズは物体側が凸面のメニスカス形状である。 The third lens unit L3 includes a cemented lens in which a positive lens and a negative lens are cemented, and a biconvex positive lens. At this time, the cemented lens has a meniscus shape having a convex surface on the object side.
第4レンズ群L4は物体側が凸面のメニスカス形状の単一の正レンズより成っている。 The fourth lens unit L4 includes a single positive meniscus lens having a convex surface on the object side.
以上のように各実施例では、全体として非常に少ないレンズ枚数で構成してズームレンズ全体の小型化を図りつつ高い光学性能を得ている。 As described above, in each of the embodiments, a high number of lenses as a whole is configured to achieve high optical performance while reducing the size of the entire zoom lens.
各実施例において、正の屈折力の第1レンズ群L1は、最も有効径大きくなるレンズ群
である。その第1レンズ群L1を2枚のレンズ構成とすることで、構成レンズ枚数を減ら
してコンパクトな光学系を実現している。
In each embodiment, the first lens unit L1 having a positive refractive power is a lens unit having the largest effective diameter. Since the first lens unit L1 has a two-lens configuration, the number of constituent lenses is reduced and a compact optical system is realized.
またその2枚のレンズを正レンズと負レンズの接合レンズとすることで、色消しを良好に行っている。特に広角端から望遠端までの倍率色収差、望遠端での軸上色収差を良好に補正している。 Further, the two lenses are used as a cemented lens of a positive lens and a negative lens, so that achromaticity is favorably performed. In particular, the lateral chromatic aberration from the wide-angle end to the telephoto end and the axial chromatic aberration at the telephoto end are corrected well.
各実施例における4つのレンズ群より成る4群ズームレンズにおいて、第2レンズ群L2を2枚のレンズ構成とした場合、3枚以上のレンズ構成とした場合と比較して、ズーミングによる画面周辺の像面湾曲変化の補正が、難しくなってくる。 In the four-group zoom lens composed of four lens groups in each embodiment, when the second lens unit L2 has a two-lens configuration, compared to a case where three or more lens configurations are used, the second lens unit L2 has a peripheral portion of the screen by zooming. Correction of field curvature changes becomes difficult.
本発明によれば、第1、第2レンズ群のズーミングにおけるズーム軌跡として前述のズーム軌跡を採用する事により、レンズ枚数が3枚以上の場合と同等程度のズーミングによる画面周辺の像面湾曲変化を良好に補正している。 According to the present invention, by adopting the aforementioned zoom locus as the zoom locus in zooming of the first and second lens groups, the curvature of field around the screen due to the zooming equivalent to the case where the number of lenses is three or more. Is corrected well.
負の屈折力の第2レンズ群L2は、変倍分担を一部担っており、負の屈折力も強く第2レンズ群L2内部での収差発生も大きくなる。 The second lens unit L2 having negative refracting power partially shares the variable magnification, and the negative refracting power is strong and the aberration generation inside the second lens unit L2 increases.
第2レンズ群L2を2群2枚のレンズ構成とすることで、強い負の屈折力を維持しながらも良好な収差補正を可能としている。特に簡素なレンズ構成でありながら高ズーム比でかつ高い光学性能を有したズームレンズを達成している。 Since the second lens unit L2 has a lens configuration of two lenses in two groups, it is possible to correct aberrations while maintaining a strong negative refractive power. In particular, a zoom lens having a high zoom ratio and high optical performance has been achieved with a simple lens configuration.
又該4群ズームレンズにおいては、第3レンズ群L3のレンズ構成を正、正、負レンズの3枚構成として主点を前側に配置させれば望遠端において第2レンズ群と第3レンズ群の主点間隔を小さくする事ができて小型化と高ズーム比化を両立させることができる。 In the four-group zoom lens, if the lens configuration of the third lens unit L3 is a three-lens configuration including a positive lens, a positive lens, and a negative lens and the principal point is disposed on the front side, the second lens unit and the third lens unit at the telephoto end. The distance between the principal points can be reduced, and both a reduction in size and a high zoom ratio can be achieved.
しかしながら第2レンズ群の構成を2枚のレンズ構成とした場合には、広角域において画面周辺部での収差補正が難しくなる。 However, when the configuration of the second lens group is a two-lens configuration, it is difficult to correct aberrations at the periphery of the screen in the wide angle region.
そこで各実施例では第3レンズ群を物体側より像側へ順に、正レンズと負レンズの接合レンズ、正レンズのレンズ構成とする事により、広角域において画面周辺部のコマフレアーを良好に補正している。 Therefore, in each embodiment, the third lens unit is constructed from a positive lens and a negative lens in order from the object side to the image side, so that coma flare at the periphery of the screen is corrected well in a wide angle range. is doing.
又、第3レンズ群が正、正、負レンズのレンズ構成より成る場合と比較すると、撮影時レンズ全長が、やや長くなるが沈胴時のレンズ全長は変わらない。そして5倍程度のズーム比の場合には、諸収差をより良好に補正することが出来るレンズ構成となっている。 Compared with the case where the third lens group is composed of positive, positive, and negative lenses, the total lens length is slightly longer at the time of photographing, but the total lens length at the time of retracting is not changed. In the case of a zoom ratio of about 5 times, the lens configuration can correct various aberrations better.
正の屈折力の第3レンズ群L3は、正レンズで発生する軸上収差を負レンズで補正する構成とし、前述の如く3枚のレンズで構成し、これによって良好な光学性能を得ている。 The third lens unit L3 having a positive refractive power is configured to correct on-axis aberration generated by the positive lens by the negative lens, and is configured by the three lenses as described above, thereby obtaining good optical performance. .
正の屈折力の第4レンズ群L4では、第3レンズ群L3では補正しきれなかった軸上収差や、軸外の諸収差を効率的に補正している。 The fourth lens unit L4 having positive refractive power efficiently corrects on-axis aberrations and off-axis aberrations that could not be corrected by the third lens unit L3.
以上のように各実施例によれば、レンズ枚数の削減を計り、レンズ全長の短縮化を達成したにもかかわらず、5倍程度のズーム比を有しつつ、明るく、高い光学性能のズームレンズが得られる。 As described above, according to each embodiment, a zoom lens having a high zoom ratio of about 5 times and a bright optical performance is achieved despite the reduction of the number of lenses and the shortening of the total lens length. Is obtained.
尚、各実施例のズームレンズおいて、良好なる光学性能を得るため、又はレンズ系全体の小型化を図るために、次の構成のうちの1つ以上を満足するようにしている。これにより各構成に相当する効果を得ている。 In the zoom lens according to each embodiment, one or more of the following configurations are satisfied in order to obtain good optical performance or to reduce the size of the entire lens system. Thereby, the effect equivalent to each structure is acquired.
第3レンズ群L3の最も物体側の正レンズの物体側と像側の面の曲率半径を各々R5a、R5bとする。 The curvature radii of the object side and image side surfaces of the positive lens closest to the object side in the third lens unit L3 are R5a and R5b, respectively.
第3レンズ群L3の負レンズの像側の面の曲率半径をR6bとする。 Let the radius of curvature of the image side surface of the negative lens of the third lens unit L3 be R6b.
第2レンズ群L2と第3レンズ群L3の光軸上の厚みを各々TD2、TD3とする。広角端と、望遠端における全系の焦点距離を各々fw、ftとする。 The thicknesses on the optical axis of the second lens unit L2 and the third lens unit L3 are TD2 and TD3, respectively. The focal lengths of the entire system at the wide-angle end and the telephoto end are denoted by fw and ft, respectively.
広角端と望遠端における第1レンズ群L1と第2レンズ群L2との間隔を各々d1w、d1tとする。第1レンズ群L1と第2レンズ群L2の間隔はズーミング途中で最小値をとり、このときの最小値をd1minとする。 The distances between the first lens unit L1 and the second lens unit L2 at the wide-angle end and the telephoto end are d1w and d1t, respectively. The interval between the first lens unit L1 and the second lens unit L2 takes a minimum value during zooming, and the minimum value at this time is d1min.
このとき
−0.9 <(R5a−R5b)/(R5a+R5b) < −0.1 ‥‥(1)
0.28 < (TD2+TD3)/ft < 0.34 ‥‥(2)
−1.9 < f2/fw < −1.3 ‥‥(3)
0.1<R6b/ft<0.17 ‥‥(4)
30 <(d1t−d1min)/(d1w−d1min)< 80 ‥‥(5)
なる条件式のうち1以上を満足している。
At this time, −0.9 <(R5a−R5b) / (R5a + R5b) <− 0.1 (1)
0.28 <(TD2 + TD3) / ft <0.34 (2)
-1.9 <f2 / fw <-1.3 (3)
0.1 <R6b / ft <0.17 (4)
30 <(d1t−d1min) / (d1w−d1min) <80 (5)
One or more of the following conditional expressions are satisfied.
次に各条件式の技術的意味について説明する。 Next, the technical meaning of each conditional expression will be described.
条件式(1)は第3群レンズL3中の正レンズのシェープファクター(レンズ形状)に関するものである。条件式(1)の上限値、又は下限値を越えると、広角域において画面周辺部でのコマフレアーの補正が困難となってくる。 Conditional expression (1) relates to the shape factor (lens shape) of the positive lens in the third lens group L3. When the upper limit value or lower limit value of conditional expression (1) is exceeded, it is difficult to correct coma flare at the periphery of the screen in the wide-angle range.
条件式(2)は、第2レンズ群L2と第3レンズ群L3の軸上厚の総和を望遠端の焦点距離で規格化したものである。 Conditional expression (2) is obtained by normalizing the sum of the axial thicknesses of the second lens unit L2 and the third lens unit L3 with the focal length at the telephoto end.
条件式(2)の上限値を越えて、第2レンズ群L2又は第3レンズ群L3の軸上厚が厚くなりすぎると、全系が大型化してくる。 If the upper limit of conditional expression (2) is exceeded and the axial thickness of the second lens unit L2 or the third lens unit L3 becomes too thick, the entire system becomes large.
条件式(2)の下限値を超えて第2レンズ群L2又は、第3レンズ群L3の軸上厚が薄くなりすぎると、第2レンズ群L2中の2つのレンズの空気間隔が狭くなりすぎ、2つのレンズの配置が難しくなる。又、広角領域での周辺コマ収差の補正が困難になるので良くない。 If the axial thickness of the second lens unit L2 or the third lens unit L3 becomes too thin beyond the lower limit value of the conditional expression (2), the air space between the two lenses in the second lens unit L2 becomes too narrow. The arrangement of the two lenses becomes difficult. Further, it is not good because it becomes difficult to correct the peripheral coma aberration in the wide angle region.
条件式(3)は第2レンズ群L2の焦点距離を広角端における全系の焦点距離で規格化したものである。 Conditional expression (3) is obtained by normalizing the focal length of the second lens unit L2 with the focal length of the entire system at the wide-angle end.
条件式(3)の上限値を超えて第2レンズ群L2の屈折力が緩くなり過ぎると、全系が大型化して来るので、良くない。 If the upper limit of conditional expression (3) is exceeded and the refractive power of the second lens unit L2 becomes too loose, the entire system will become large, which is not good.
条件式(3)の下限値を越えて、第2レンズ群の屈折力が強くなり過ぎると、広角領域における画面周辺部のコマフレアーを良好に補正する事が困難となってくる。 If the lower limit of conditional expression (3) is exceeded and the refractive power of the second lens group becomes too strong, it will be difficult to satisfactorily correct coma flare at the periphery of the screen in the wide-angle region.
条件式(4)は第3レンズ群L3の負レンズの像側の面、即ち接合レンズの像側の面の曲率半径を、望遠端の焦点距離で規格化したものである。 Conditional expression (4) is obtained by normalizing the radius of curvature of the image side surface of the negative lens of the third lens unit L3, that is, the image side surface of the cemented lens, with the focal length at the telephoto end.
条件式(4)の上限値を超えて接合レンズの像側の面の曲率半径が大きくなり過ぎると、中間のズーム位置から望遠域において、画面周辺部での、コマ収差が大きく変動している。この結果、中間のズーム位置から望遠域におけるコマ収差の補正が困難となる。 If the radius of curvature of the image side surface of the cemented lens becomes too large beyond the upper limit of conditional expression (4), the coma aberration at the periphery of the screen varies greatly from the intermediate zoom position to the telephoto range. . As a result, it becomes difficult to correct coma in the telephoto range from the intermediate zoom position.
条件式(4)の下限値を超えて接合レンズの像側の面の曲率半径が小さくなり過ぎると、即ち凹面の形状が強くなりすぎて負レンズの製造が難しくなってくる。 If the lower limit of conditional expression (4) is exceeded and the radius of curvature of the image side surface of the cemented lens becomes too small, that is, the shape of the concave surface becomes too strong, making it difficult to manufacture a negative lens.
各実施例では、第1レンズ群L1と第2レンズ群L2の間隔変化が、広角端近傍のズーム位置(焦点距離fa)で微小量だけ間隔が縮まり、その後大きく増大するようにしている。 In each embodiment, the change in the interval between the first lens unit L1 and the second lens unit L2 is reduced by a minute amount at the zoom position (focal length fa) near the wide-angle end, and then increases greatly.
具体的には条件式(5)を満足するようにしている。これによって広角端近傍のズーム位置において像面湾曲を良好に補正している。 Specifically, conditional expression (5) is satisfied. As a result, the curvature of field is favorably corrected at the zoom position near the wide-angle end.
条件式(5)の上限値を超えて広角領域における間隔変化が小さくくなり過ぎると、広角端近傍のズーム位置(焦点距離fa)での像面湾曲の補正が困難となってくる。 If the change in the interval in the wide-angle region becomes too small beyond the upper limit value of conditional expression (5), it becomes difficult to correct the curvature of field at the zoom position (focal length fa) near the wide-angle end.
条件式(5)の下限を超えて広角領域における間隔変化が大きくなりすぎると、広角端において第1レンズ群L1と第2レンズ群L2の間隔を十分長く確保する必要が生じ、全系が大型化してくるのでよくない。 If the change in the interval in the wide-angle region becomes too large beyond the lower limit of conditional expression (5), it is necessary to ensure a sufficiently long interval between the first lens unit L1 and the second lens unit L2 at the wide-angle end, and the entire system is large. It is not good because it will turn into a
各実施例において、更に好ましくは、条件式(1)〜(5)の数値範囲を次の如く設定するのが良い。 In each embodiment, it is more preferable to set the numerical ranges of conditional expressions (1) to (5) as follows.
−0.8 <(R5a−R5b)/(R5a+R5b) < −0.2 ‥‥(1a)
0.30 < (TD2+TD3)/ft < 0.34 ‥‥(2a)
−1.8 < f2/fw < −1.4 ‥‥(3a)
0.11<R6b/ft<0.15 ‥‥(4a)
33 <(d1t−d1min)/(d1w−d1min)< 70 ‥‥(5a) 尚、各実施例において、第1レンズ群L1の物体側や第4レンズ群L4の像側に屈折力の小さなレンズ群を付加しても良い。
−0.8 <(R5a−R5b) / (R5a + R5b) <− 0.2 (1a)
0.30 <(TD2 + TD3) / ft <0.34 (2a)
−1.8 <f2 / fw <−1.4 (3a)
0.11 <R6b / ft <0.15 (4a)
33 <(d1t−d1min) / (d1w−d1min) <70 (5a) In each embodiment, a lens having a small refractive power on the object side of the first lens unit L1 or the image side of the fourth lens unit L4. Groups may be added.
又、テレコンバーターレンズやワイドコンバーターレンズ等を物体側や像側に配置しても良い。 A teleconverter lens, a wide converter lens, or the like may be disposed on the object side or the image side.
以上のように各実施例によれば、各レンズ群のレンズ構成、ズーミングにおける各レンズ群の移動方法等を適切に設定している。これにより、少ないレンズ枚数で、レンズ全長の短縮化を図りつつ、5倍程度のズーム比を有しつつ、明るく、高い光学性能を有した、例えばデジタルスチルカメラ等に適したズームレンズを得ている。 As described above, according to each embodiment, the lens configuration of each lens group, the moving method of each lens group during zooming, and the like are appropriately set. As a result, a zoom lens suitable for, for example, a digital still camera having a bright and high optical performance while having a zoom ratio of about 5 times while reducing the total length of the lens with a small number of lenses can be obtained. Yes.
次に、本発明の数値実施例を示す。各数値実施例において、iは物体側から面の順序を示し、Riはi番目のレンズ面(第i面)の曲率半径、Diは第i面と第(i+1)面との間の間隔である。Niはd線に対しての屈折率、νiはアッベ数である。 Next, numerical examples of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the i-th lens surface (i-th surface), and Di is the distance between the i-th surface and the (i + 1) -th surface. is there. Ni is the refractive index with respect to the d-line, and νi is the Abbe number.
また、もっとも像側の2面は光学ブロックGを構成する面である。 The two surfaces closest to the image side are surfaces constituting the optical block G.
非球面形状は、光軸からの高さhの位置での光軸方向の変位を、面頂点を基準にしてxとするとき、
X=(h2 /R)/[1+{1−(1+k)(h/R)2}1/2]+
Ah2+Bh4 +Ch6+Dh8 +Eh10
で表される。
The aspherical shape is defined as x when the displacement in the optical axis direction at the position of the height h from the optical axis is x with respect to the surface vertex.
X = (h 2 / R) / [1+ {1− (1 + k) (h / R) 2 } 1/2 ] +
Ah 2 + Bh 4 + Ch 6 + Dh 8 + Eh 10
It is represented by
但し、kは円錐定数、A,B,C,D,Eは2次、4次、6次、8次、10次の非球面係数、Rは近軸曲率半径である。 Where k is a conic constant, A, B, C, D, and E are second-order, fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients, and R is a paraxial radius of curvature.
又、「e−0X」は「×10−x」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角を示す。 “E-0X” means “× 10 −x ”. f represents a focal length, Fno represents an F number, and ω represents a half angle of view.
又、前述の各条件式と各数値実施例との関係を表−1に示す。
数値実施例 1
f= 6.76〜 32.19 Fno= 3.24 〜 5.88 2ω=59.6〜13.6
R 1 = 36.425 D 1 = 0.90 N 1 = 1.846660 ν 1 = 23.9
R 2 = 20.870 D 2 = 2.60 N 2 = 1.804000 ν 2 = 46.6
R 3 = 423.219 D 3 = 可変
* R 4 = -120.928 D 4 = 1.65 N 3 = 1.848620 ν 3 = 40.0
* R 5 = 5.369 D 5 = 1.97
R 6 = 9.531 D 6 = 1.70 N 4 = 1.922860 ν 4 = 18.9
R 7 = 21.305 D 7 = 可変
* R 8 = 5.124 D 8 = 2.30 N 5 = 1.882997 ν 5 = 40.8
R 9 = 16.216 D 9 = 0.70 N 6 = 1.808095 ν 6 = 22.8
R10 = 4.203 D10 = 0.52
R11 = 10.171 D11 = 1.80 N 7 = 1.487490 ν 7 = 70.2
R12 = -14.353 D12 = 可変
R13 = 12.341 D13 = 1.80 N 8 = 1.487490 ν 8 = 70.2
R14 = 131.500 D14 = 可変
R15 = ∞ D15 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R16 = ∞
\焦点距離 6.76 14.94 32.19
可変間隔\
D 3 1.20 6.79 16.40
D 7 15.09 4.97 1.17
D12 5.85 11.02 21.19
D14 4.69 6.23 3.85
非球面係数
4面 : k=0.00000e+00 A=0 B=1.11274e-05
C=0.00000e+00 D=0.00000e+00 E=0.00000e+00
5面 : k=-2.79279e+00 A=0 B=1.72320e-03
C=-3.57723e-05 D=8.38261e-07 E=-9.90647e-09
8面 : k=-2.67014e-01 A=0 B=-9.28612e-05
C=2.70007e-06 D=-1.61409e-07 E=0.00000e+00
Table 1 shows the relationship between each conditional expression described above and each numerical example.
Numerical example 1
f = 6.76 to 32.19 Fno = 3.24 to 5.88 2ω = 59.6 to 13.6
R 1 = 36.425 D 1 = 0.90 N 1 = 1.846660 ν 1 = 23.9
R 2 = 20.870 D 2 = 2.60 N 2 = 1.804000 ν 2 = 46.6
R 3 = 423.219 D 3 = variable
* R 4 = -120.928 D 4 = 1.65 N 3 = 1.848620 ν 3 = 40.0
* R 5 = 5.369 D 5 = 1.97
R 6 = 9.531 D 6 = 1.70 N 4 = 1.922860 ν 4 = 18.9
R 7 = 21.305 D 7 = Variable
* R 8 = 5.124 D 8 = 2.30 N 5 = 1.882997 ν 5 = 40.8
R 9 = 16.216 D 9 = 0.70 N 6 = 1.808095 ν 6 = 22.8
R10 = 4.203 D10 = 0.52
R11 = 10.171 D11 = 1.80 N 7 = 1.487490 ν 7 = 70.2
R12 = -14.353 D12 = variable
R13 = 12.341 D13 = 1.80 N 8 = 1.487490 ν 8 = 70.2
R14 = 131.500 D14 = variable
R15 = ∞ D15 = 1.00 N 9 = 1.516 330 ν 9 = 64.1
R16 = ∞
\ Focal length 6.76 14.94 32.19
Variable interval \
D 3 1.20 6.79 16.40
D 7 15.09 4.97 1.17
D12 5.85 11.02 21.19
D14 4.69 6.23 3.85
Aspheric coefficient
4th: k = 0.00000e + 00 A = 0 B = 1.11274e-05
C = 0.00000e + 00 D = 0.00000e + 00 E = 0.00000e + 00
5th: k = -2.79279e + 00 A = 0 B = 1.72320e-03
C = -3.57723e-05 D = 8.38261e-07 E = -9.90647e-09
8th: k = -2.67014e-01 A = 0 B = -9.28612e-05
C = 2.70007e-06 D = -1.61409e-07 E = 0.00000e + 00
数値実施例 2
f= 6.76〜 32.35 Fno= 3.30 〜 5.69 2ω=59.6〜13.6
R 1 = 33.137 D 1 = 0.90 N 1 = 1.846660 ν 1 = 23.9
R 2 = 19.192 D 2 = 2.80 N 2 = 1.804000 ν 2 = 46.6
R 3 = 242.172 D 3 = 可変
* R 4 = -96.261 D 4 = 1.65 N 3 = 1.848620 ν 3 = 40.0
* R 5 = 5.396 D 5 = 1.89
R 6 = 9.316 D 6 = 1.80 N 4 = 1.922860 ν 4 = 18.9
R 7 = 20.239 D 7 = 可変
* R 8 = 5.232 D 8 = 2.10 N 5 = 1.882997 ν 5 = 40.8
R 9 = 8.992 D 9 = 0.90 N 6 = 1.922860 ν 6 = 18.9
R10 = 4.476 D10 = 0.49
R11 = 10.995 D11 = 1.70 N 7 = 1.603112 ν 7 = 60.6
R12 = -17.967 D12 = 可変
R13 = 11.887 D13 = 1.80 N 8 = 1.487490 ν 8 = 70.2
R14 = 91.923 D14 = 可変
R15 = ∞ D15 = 1.00 N 9 = 1.516330 ν 9 = 64.1
R16 = ∞
\焦点距離 6.76 15.26 32.35
可変間隔\
D 3 1.20 7.43 16.37
D 7 16.47 5.78 1.68
D12 7.50 12.19 20.99
D14 3.91 5.67 3.96
非球面係数
4面 : k=0.00000e+00 A=0 B=1.61717e-05
C=0.00000e+00 D=0.00000e+00 E=0.00000e+00
5面 : k=-2.66336e+00 A=0 B=1.62355e-03
C=-3.08981e-05 D=7.08247e-07 E=-8.07232e-09
8面 : k=-2.08095e-01 A=0 B=-1.18950e-04
C=7.75056e-07 D=-1.84441e-07 E=0.00000e+00
Numerical example 2
f = 6.76 to 32.35 Fno = 3.30 to 5.69 2ω = 59.6 to 13.6
R 1 = 33.137 D 1 = 0.90 N 1 = 1.846660 ν 1 = 23.9
R 2 = 19.192 D 2 = 2.80 N 2 = 1.804000 ν 2 = 46.6
R 3 = 242.172 D 3 = variable
* R 4 = -96.261 D 4 = 1.65 N 3 = 1.848620 ν 3 = 40.0
* R 5 = 5.396 D 5 = 1.89
R 6 = 9.316 D 6 = 1.80 N 4 = 1.922860 ν 4 = 18.9
R 7 = 20.239 D 7 = Variable
* R 8 = 5.232 D 8 = 2.10 N 5 = 1.882997 ν 5 = 40.8
R 9 = 8.992 D 9 = 0.90 N 6 = 1.922860 ν 6 = 18.9
R10 = 4.476 D10 = 0.49
R11 = 10.995 D11 = 1.70 N 7 = 1.603112 ν 7 = 60.6
R12 = -17.967 D12 = variable
R13 = 11.887 D13 = 1.80 N 8 = 1.487490 ν 8 = 70.2
R14 = 91.923 D14 = Variable
R15 = ∞ D15 = 1.00 N 9 = 1.516 330 ν 9 = 64.1
R16 = ∞
\ Focal length 6.76 15.26 32.35
Variable interval \
D 3 1.20 7.43 16.37
D 7 16.47 5.78 1.68
D12 7.50 12.19 20.99
D14 3.91 5.67 3.96
Aspheric coefficient
4th: k = 0.00000e + 00 A = 0 B = 1.61717e-05
C = 0.00000e + 00 D = 0.00000e + 00 E = 0.00000e + 00
5th: k = -2.66336e + 00 A = 0 B = 1.62355e-03
C = -3.08981e-05 D = 7.08247e-07 E = -8.07232e-09
8 sides: k = -2.08095e-01 A = 0 B = -1.18950e-04
C = 7.75056e-07 D = -1.84441e-07 E = 0.00000e + 00
数値実施例 3
f= 6.76〜 32.35 Fno= 2.93 〜 5.35 2ω=59.6〜13.6
R 1 = 37.196 D 1 = 0.90 N 1 = 1.846660 ν 1 = 23.9
R 2 = 21.532 D 2 = 2.70 N 2 = 1.804000 ν 2 = 46.6
R 3 = 440.672 D 3 = 可変
* R 4 = -107.214 D 4 = 1.65 N 3 = 1.848620 ν 3 = 40.0
* R 5 = 5.516 D 5 = 1.93
R 6 = 9.693 D 6 = 1.80 N 4 = 1.922860 ν 4 = 18.9
R 7 = 21.867 D 7 = 可変
* R 8 = 5.118 D 8 = 2.30 N 5 = 1.882997 ν 5 = 40.8
R 9 = 16.888 D 9 = 0.70 N 6 = 1.808095 ν 6 = 22.8
R10 = 4.211 D10 = 0.52
R11 = 10.186 D11 = 1.80 N 7 = 1.487490 ν 7 = 70.2
R12 = -14.473 D12 = 可変
R13 = 14.277 D13 = 1.80 N 8 = 1.603112 ν 8 = 60.6
R14 = 91.600 D14 = 可変
R15 = ∞ D15 = 0.50 N 9 = 1.516330 ν 9 = 64.1
R16 = ∞
\焦点距離 6.76 14.94 32.35
可変間隔\
D 3 1.20 7.61 17.46
D 7 14.85 4.83 1.01
D12 5.25 9.95 20.08
D14 4.84 6.36 3.70
非球面係数
4面 : k=0.00000e+00 A=0 B=6.10931e-06
C=0.00000e+00 D=0.00000e+00 E=0.00000e+00
5面 : k=-2.94241e+00 A=0 B=1.67564e-03
C=-3.45129e-05 D=7.52887e-07 E=-8.61464e-09
8面 : k=-2.30344e-01 A=0 B=-1.37478e-04
C=2.42068e-06 D=-2.36697e-07 E=0.00000e+00
Numerical example 3
f = 6.76 to 32.35 Fno = 2.93 to 5.35 2ω = 59.6 to 13.6
R 1 = 37.196 D 1 = 0.90 N 1 = 1.846660 ν 1 = 23.9
R 2 = 21.532 D 2 = 2.70 N 2 = 1.804000 ν 2 = 46.6
R 3 = 440.672 D 3 = variable
* R 4 = -107.214 D 4 = 1.65 N 3 = 1.848620 ν 3 = 40.0
* R 5 = 5.516 D 5 = 1.93
R 6 = 9.693 D 6 = 1.80 N 4 = 1.922860 ν 4 = 18.9
R 7 = 21.867 D 7 = Variable
* R 8 = 5.118 D 8 = 2.30 N 5 = 1.882997 ν 5 = 40.8
R 9 = 16.888 D 9 = 0.70 N 6 = 1.808095 ν 6 = 22.8
R10 = 4.211 D10 = 0.52
R11 = 10.186 D11 = 1.80 N 7 = 1.487490 ν 7 = 70.2
R12 = -14.473 D12 = variable
R13 = 14.277 D13 = 1.80 N 8 = 1.603112 ν 8 = 60.6
R14 = 91.600 D14 = variable
R15 = ∞ D15 = 0.50 N 9 = 1.516330 ν 9 = 64.1
R16 = ∞
\ Focal length 6.76 14.94 32.35
Variable interval \
D 3 1.20 7.61 17.46
D 7 14.85 4.83 1.01
D12 5.25 9.95 20.08
D14 4.84 6.36 3.70
Aspheric coefficient
4th: k = 0.00000e + 00 A = 0 B = 6.10931e-06
C = 0.00000e + 00 D = 0.00000e + 00 E = 0.00000e + 00
5th: k = -2.94241e + 00 A = 0 B = 1.67564e-03
C = -3.45129e-05 D = 7.52887e-07 E = -8.61464e-09
8 sides: k = -2.30344e-01 A = 0 B = -1.37478e-04
C = 2.42068e-06 D = -2.36697e-07 E = 0.00000e + 00
次に実施形態1〜3に示したようなズームレンズを撮影光学系として用いたデジタルスチルカメラの実施形態を図7を用いて説明する。 Next, an embodiment of a digital still camera using the zoom lens as shown in the first to third embodiments as a photographing optical system will be described with reference to FIG.
図7において、20はカメラ本体、21は実施例1〜4で説明したいずれかのズームレンズによって構成された撮影光学系である。22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。23は固体撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリである。24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。 In FIG. 7, reference numeral 20 denotes a camera body, and reference numeral 21 denotes a photographing optical system constituted by any of the zoom lenses described in the first to fourth embodiments. Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body. A memory 23 records information corresponding to a subject image photoelectrically converted by the solid-state imaging device 22. Reference numeral 24 denotes a finder for observing a subject image formed on the solid-state image sensor 22, which includes a liquid crystal display panel or the like.
このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置が実現できる。 In this way, by applying the zoom lens of the present invention to an imaging apparatus such as a digital still camera, a compact imaging apparatus having high optical performance can be realized.
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
IP 像面
d d線
g g線
ΔM d線のメリディオナル像面
ΔS d線のサジタル像面
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group IP image plane d d line g g line ΔM d line meridional image plane ΔS d line sagittal image plane
Claims (10)
0.28<(TD2+TD3)/ft<0.34
なる条件を満足することを特徴とするズームレンズ。 In order from the object side to the image side, the lens unit includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. The first lens group is located on the object side at the telephoto end compared to the wide-angle end, the distance between the first lens group and the second lens group is changed, and the second lens group and the third lens group In the zoom lens in which each lens group moves during zooming so that the distance between the third lens group and the fourth lens group increases, the second lens group moves from the object side to the image side. order, and a negative lens, a positive lens, said third lens group comprises, in order from the object side to the image side, a cemented lens and a positive lens obtained by cementing a positive lens and a negative lens, the said second lens group 3 The thickness of the lens group on the optical axis is TD2, TD3, When the focal length of the entire system at the far end and ft,
0.28 <(TD2 + TD3) / ft <0.34
A zoom lens characterized by satisfying the following conditions:
−0.9 <(R5a−R5b)/(R5a+R5b) < −0.1
なる条件を満足することを特徴とする請求項1に記載のズームレンズ。 When the curvature radii of the object side surface and the image side surface of the positive lens closest to the object side in the third lens group are R5a and R5b, respectively.
−0.9 <(R5a−R5b) / (R5a + R5b) <− 0.1
The zoom lens according to claim 1 , wherein the following condition is satisfied.
なる条件を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。 When the focal length of the second lens group is f2 and the focal length of the entire system at the wide angle end is fw, -1.9 <f2 / fw <-1.3.
The zoom lens according to any one of claims 1 to 5, characterized by satisfying the following condition.
0.1<R6b/ft<0.17
なる条件を満足することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 When the radius of curvature of the image side surface of the negative lens of the third lens group is R6b and the focal length of the entire system at the telephoto end is ft ,
0.1 <R6b / ft <0.17
The zoom lens according to any one of claims 1 to 6, characterized by satisfying the following condition.
30<(d1t−d1min)/(d1w−d1min)< 80
なる条件を満足することを特徴とする請求項1乃至7のいずれか1項に記載のズームレンズ。 Each the distance between the second lens group and the third lens group at the wide-angle end and the telephoto end d1w, d1t, the interval between the second lens group and the first lens group minimum between the wide-angle end and the telephoto end When the minimum value at this time is d1min ,
30 <(d1t−d1min) / (d1w−d1min) <80
The zoom lens according to any one of claims 1 to 7, characterized by satisfying the following condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007159961A JP5094225B2 (en) | 2007-06-18 | 2007-06-18 | Zoom lens and imaging apparatus having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007159961A JP5094225B2 (en) | 2007-06-18 | 2007-06-18 | Zoom lens and imaging apparatus having the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008310223A JP2008310223A (en) | 2008-12-25 |
JP2008310223A5 JP2008310223A5 (en) | 2010-07-22 |
JP5094225B2 true JP5094225B2 (en) | 2012-12-12 |
Family
ID=40237847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007159961A Expired - Fee Related JP5094225B2 (en) | 2007-06-18 | 2007-06-18 | Zoom lens and imaging apparatus having the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5094225B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3542552B2 (en) * | 2000-09-29 | 2004-07-14 | キヤノン株式会社 | Zoom lens and optical device using the same |
JP4441856B2 (en) * | 2003-12-02 | 2010-03-31 | ソニー株式会社 | Variable focal length lens system and imaging apparatus |
-
2007
- 2007-06-18 JP JP2007159961A patent/JP5094225B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008310223A (en) | 2008-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4902191B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4817699B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5173260B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6192338B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4773807B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5465000B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5495654B2 (en) | Zoom lens and optical apparatus having the same | |
JP5084775B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5207806B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2008039838A (en) | Zoom lens system, image pickup apparatus, and camera | |
JP5038028B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4847091B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5465018B2 (en) | Zoom lens and optical apparatus having the same | |
JP2007212537A (en) | Zoom lens and imaging apparatus having same | |
JP4708734B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2015232664A (en) | Zoom lens and imaging apparatus including the same | |
JP5522988B2 (en) | Zoom lens and imaging apparatus using the same | |
JP2017111172A (en) | Zoom lens and imaging device having the same | |
JP2006023679A (en) | Zoom lens and image pickup device equipped with same | |
JP6436653B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2014106390A (en) | Zoom lens and optical device using the same | |
JP4717429B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4921215B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5094225B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6141036B2 (en) | Zoom lens and imaging apparatus having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100608 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120918 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5094225 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |