JP2006023679A - Zoom lens and image pickup device equipped with same - Google Patents

Zoom lens and image pickup device equipped with same Download PDF

Info

Publication number
JP2006023679A
JP2006023679A JP2004203858A JP2004203858A JP2006023679A JP 2006023679 A JP2006023679 A JP 2006023679A JP 2004203858 A JP2004203858 A JP 2004203858A JP 2004203858 A JP2004203858 A JP 2004203858A JP 2006023679 A JP2006023679 A JP 2006023679A
Authority
JP
Japan
Prior art keywords
lens
zoom
refractive power
zoom lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004203858A
Other languages
Japanese (ja)
Other versions
JP4617108B2 (en
JP2006023679A5 (en
Inventor
Yoshiaki Ito
良紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004203858A priority Critical patent/JP4617108B2/en
Publication of JP2006023679A publication Critical patent/JP2006023679A/en
Publication of JP2006023679A5 publication Critical patent/JP2006023679A5/ja
Application granted granted Critical
Publication of JP4617108B2 publication Critical patent/JP4617108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens which has few number of constituting lenses, which is compact, and which has superior optical performance, and to provide an imaging device that has the same. <P>SOLUTION: A zoom lens has a first lens group L1 of negative refractive power and a second lens group L2 of positive refractive power, in this order starting from the object side to an image side, and its spacing of both of the lens groups changes in zooming. The first lens group L1 consists of an eleventh lens G11 of negative refracting power and a twelfth lens G12 of a positive refracting power. The second lens group L2 consists of a twenty-first lens G21 of positive refractive power and a twenty-second lens G22 of negative refractive power. When the Abbe number of the materials of the twenty-first lens G21 and the twenty-second lens G22 is given as ν21 and ν22 respectively, it is so constituted as to satisfy the condition 45<ν21-ν22<50. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はズームレンズに関し、例えば、デジタルスチルカメラ、ビデオカメラ、或いは監視カメラ等のように固体撮像素子を用いた撮像装置に好適なものである。   The present invention relates to a zoom lens, and is suitable for an imaging apparatus using a solid-state imaging device such as a digital still camera, a video camera, or a surveillance camera.

近年、デジタルスチルカメラ、ビデオカメラなどの撮像装置では、それに用いられるCCDなどの固体撮像素子の著しい技術進歩や、撮像装置の小型化に伴い、より高い光学性能を持ち、しかも小型化、薄型化、軽量化を果たした撮影レンズが要望されている。   In recent years, imaging devices such as digital still cameras and video cameras have higher optical performance, and have become smaller and thinner due to remarkable technological progress of solid-state imaging devices such as CCDs used therein and downsizing of imaging devices. Therefore, there is a demand for a photographic lens that has been reduced in weight.

比較的高い光学性能が得られ、しかもレンズ系全体が小型のズームレンズとして、物体側より像側へ順に、負の屈折力を持つ第1レンズ群L1と正の屈折力の第2レンズ群よりなり、それら2つのレンズ群の空気間隔を変化させてズーミングを行う2群ズームレンズがある。   Relatively high optical performance is obtained, and the entire lens system is a small zoom lens, and in order from the object side to the image side, the first lens unit L1 having a negative refractive power and the second lens unit having a positive refractive power. Thus, there is a two-group zoom lens that performs zooming by changing the air gap between the two lens groups.

この2群ズームレンズは比較的少ないレンズ枚数でレンズ系が構成出来るため、小型化を狙うズームタイプのレンズ系によく利用されている。   Since this two-group zoom lens can be configured with a relatively small number of lenses, it is often used for a zoom type lens system aiming at miniaturization.

2群ズームレンズとして、第1レンズ群が負レンズと正レンズから成り、第2レンズ群が正レンズと負レンズから成る小型の2群ズームレンズが知られている(特許文献1〜3)。   As a two-group zoom lens, a small two-group zoom lens is known in which a first lens group includes a negative lens and a positive lens, and a second lens group includes a positive lens and a negative lens (Patent Documents 1 to 3).

又、2群ズームレンズにおいて、第2レンズ群が正の屈折力の第2aレンズ群と正の屈折力の第2bレンズ群より成り、第2bレンズ群でフォーカスをする2群ズームレンズが知られている(特許文献4)。   Further, in the two-group zoom lens, there is known a two-group zoom lens in which the second lens group includes a second-a lens group having a positive refractive power and a second-b lens group having a positive refractive power, and focusing is performed by the second-b lens group. (Patent Document 4).

一方で、高画質化が進み高解像度の撮像素子を搭載した小型の撮像装置に対応したズームレンズとして、負、正、正の屈折力のレンズ群より成る3群ズームレンズが知られている(特許文献5、6)。   On the other hand, as a zoom lens compatible with a small image pickup apparatus equipped with a high-resolution image pickup device with higher image quality, a three-group zoom lens made up of lens groups having negative, positive, and positive refractive powers is known ( Patent Documents 5 and 6).

3群ズームレンズにおいて、第2レンズ群を正レンズと負レンズで構成した小型の3群ズームレンズが知られている(特許文献7)。
特開平6−273670号公報 特開平9−033810号公報 特開平11−052235号公報 特開2000−9977号公報 特開2000−147381号公報 特開2000−284177号公報 特開2000−9999号公報
In the three-group zoom lens, there is known a small three-group zoom lens in which the second lens group includes a positive lens and a negative lens (Patent Document 7).
JP-A-6-273670 JP 9-033810 A Japanese Patent Laid-Open No. 11-052235 JP 2000-9777 A JP 2000-147381 A JP 2000-284177 A JP 2000-9999 A

上述した各特許文献で提案されている2群ズームレンズ及び3群ズームレンズは、小型で高解像度の撮像装置用としては、光学性能的に多少改善の余地がある。   The two-group zoom lens and the three-group zoom lens proposed in each of the above-described patent documents have room for improvement in optical performance for a small and high-resolution imaging device.

本発明は、例えば固体撮像素子を用いた撮影系に好適な、コンパクトで、優れた光学性能を有するズームレンズの提供を目的とする。   An object of the present invention is to provide a compact zoom lens having excellent optical performance, which is suitable for an imaging system using a solid-state image sensor, for example.

本発明のズームレンズは、物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群を有し、ズーミングに際し、双方のレンズ群の間隔が変わるズームレンズにおいて、該第1レンズ群は、負の屈折力の第11レンズと、正の屈折力の第12レンズより成り、第2レンズ群は、正の屈折力の第21レンズと負の屈折力の第22レンズより成り、該第21レンズと第22レンズの材料のアッベ数を各々ν21、ν22とするとき、
45<ν21−ν22<50
なる条件を満足することを特徴としている。
The zoom lens of the present invention includes a first lens unit having a negative refractive power and a second lens group having a positive refractive power in order from the object side to the image side, and the distance between both lens groups changes during zooming. In the zoom lens, the first lens group includes an eleventh lens having a negative refractive power and a twelfth lens having a positive refractive power, and the second lens group includes a twenty-first lens having a positive refractive power and a negative refraction. When the Abbe numbers of the materials of the 21st lens and the 22nd lens are ν21 and ν22, respectively,
45 <ν21−ν22 <50
It is characterized by satisfying the following conditions.

本発明によれば、コンパクトで、優れた光学性能を有するズームレンズが得られる。   According to the present invention, a zoom lens that is compact and has excellent optical performance can be obtained.

以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。   Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1(A)、(B)、(C)は、本発明の実施例1のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離)におけるレンズ断面図である。図2、図3、図4は、それぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例1はズーム比1.91、開口比3.28〜4.69程度のズームレンズである。   FIGS. 1A, 1B, and 1C are cross-sectional views of the zoom lens of Embodiment 1 of the present invention at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length). It is. 2, 3, and 4 are aberration diagrams of the zoom lens of Example 1 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. Example 1 is a zoom lens having a zoom ratio of 1.91 and an aperture ratio of about 3.28 to 4.69.

図5(A)、(B)、(C)は、本発明の実施例2のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離)におけるレンズ断面図である。図6、図7、図8は、それぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例2はズーム比1.91、開口比3.28〜4.67程度のズームレンズである。   5A, 5B, and 5C are lens cross-sectional views at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length) of the zoom lens according to Embodiment 2 of the present invention. It is. 6, 7, and 8 are aberration diagrams of the zoom lens of Example 2 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. The second exemplary embodiment is a zoom lens having a zoom ratio of 1.91 and an aperture ratio of about 3.28 to 4.67.

図9(A)、(B)、(C)は、本発明の実施例3のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離)におけるレンズ断面図である。図10、図11、図12は、それぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例3はズーム比1.96、開口比3.28〜4.54程度のズームレンズである。   FIGS. 9A, 9B, and 9C are lens cross-sectional views at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length) of the zoom lens according to Embodiment 3 of the present invention. It is. FIGS. 10, 11, and 12 are aberration diagrams of the zoom lens of Example 3 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. The third embodiment is a zoom lens having a zoom ratio of 1.96 and an aperture ratio of about 3.28 to 4.54.

図13(A)、(B)、(C)は、本発明の実施例4のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離)におけるレンズ断面図である。図14、図15、図16は、それぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例4はズーム比1.91、開口比3.28〜4.83程度のズームレンズである。   FIGS. 13A, 13B, and 13C are lens cross-sectional views at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length) of the zoom lens according to the fourth exemplary embodiment of the present invention. It is. FIGS. 14, 15, and 16 are aberration diagrams of the zoom lens of Example 4 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. The fourth embodiment is a zoom lens having a zoom ratio of 1.91 and an aperture ratio of about 3.28 to 4.83.

図17(A)、(B)、(C)は、本発明の実施例5のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離)におけるレンズ断面図である。図18、図19、図20は、それぞれ実施例5のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。実施例5はズーム比1.91、開口比2.88〜4.07程度のズームレンズである。   FIGS. 17A, 17B, and 17C are lens cross-sectional views at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length) of the zoom lens according to Embodiment 5 of the present invention. It is. 18, 19 and 20 are aberration diagrams of the zoom lens of Example 5 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. The fifth embodiment is a zoom lens having a zoom ratio of 1.91 and an aperture ratio of about 2.88 to 4.07.

図21は本発明のズームレンズを備えるデジタルスチルカメラ(撮像装置)要部概略図である。   FIG. 21 is a schematic diagram of a main part of a digital still camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、左方が物体側で、右方が像側である。   The zoom lens of each embodiment is a photographic lens system used in an imaging apparatus, and in the lens cross-sectional view, the left side is the object side and the right side is the image side.

図1、図5、図9、図13、図17のレンズ断面図において、L1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は正の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群である。SPは開口絞りであり、実施例1〜3、5は第2レンズ群L2の物体側に、実施例4では像側に位置している。   In the lens cross-sectional views of FIGS. 1, 5, 9, 13, and 17, L1 is a first lens unit having a negative refractive power (optical power = reciprocal of focal length), and L2 is a positive refractive power. The second lens group, L3, is a third lens group having a positive refractive power. SP is an aperture stop, and Examples 1 to 3 and 5 are located on the object side of the second lens unit L2, and Example 4 is located on the image side.

Gは光学フィルター、フェースプレート、水晶ローパスフィルター、赤外カットフィルター等に対応して光学設計上設けられた光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面にが置かれている。   G is an optical block provided for optical design corresponding to an optical filter, a face plate, a crystal low-pass filter, an infrared cut filter, and the like. IP is an image plane, which is placed on an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor when used as a photographing optical system of a video camera or a digital still camera.

収差図において、d、gは各々d線及びg線、ΔM、ΔSはメリディオナル像面、サジタル像面、倍率色収差はg線によって表わしている。   In the aberration diagrams, d and g are represented by d-line and g-line, respectively, ΔM and ΔS are represented by meridional image surface, sagittal image surface, and lateral chromatic aberration are represented by g-line.

又、OBJは像面から測ったときの物体距離である。   OBJ is an object distance measured from the image plane.

尚、以下の各実施例において広角端と望遠端のズーム位置は変倍用レンズ群(第2レンズ群)が機構上、光軸上移動な範囲の両端に位置したときのズーム位置をいう。   In the following embodiments, the zoom positions at the wide-angle end and the telephoto end are zoom positions when the zoom lens unit (second lens unit) is positioned at both ends of a range that moves on the optical axis due to the mechanism.

図1、図5、図9、図13の実施例1〜4のズームレンズでは、広角端から望遠端のズーム位置へのズーミングに際して、第1レンズ群L1は像側に凸状の軌跡の一部を描くように移動し、第2レンズ群L2は物体側に移動している。   In the zoom lenses of Embodiments 1 to 4 in FIGS. 1, 5, 9, and 13, the first lens unit L1 has a locus convex to the image side during zooming from the wide-angle end to the telephoto end zoom position. The second lens unit L2 moves to the object side.

図17の実施例5のズームレンズでは、広角端から望遠端へのズーミングに際して、第1レンズ群L1は、像側へ凸状の軌跡の一部を描くように移動し、第2レンズ群L2は、第1レンズ群L1との間隔が小さくなるように物体側へ移動し、第3レンズ群L3は第2レンズ群L2との間隔が大きくなるように物体側へ移動している。   In the zoom lens of Example 5 in FIG. 17, during zooming from the wide-angle end to the telephoto end, the first lens unit L1 moves so as to draw a part of a convex locus toward the image side, and the second lens unit L2 Is moved to the object side so that the distance from the first lens group L1 is small, and the third lens group L3 is moved to the object side so that the distance from the second lens group L2 is large.

開口絞りSPは、いずれの実施例においても、ズーミングに際して第2レンズ群L2と共に移動している。   In any of the embodiments, the aperture stop SP moves together with the second lens unit L2 during zooming.

各実施例のズームレンズでは、第2レンズ群L2の移動により主な変倍を行い、第1レンズ群L1の移動によって変倍に伴う像点の移動を補正している。   In the zoom lens of each embodiment, main zooming is performed by moving the second lens unit L2, and movement of the image point accompanying zooming is corrected by moving the first lens unit L1.

実施例1〜4では、第1レンズ群L1でフォーカスを行っている。実施例5では、第3レンズ群L3でフォーカスを行っている。   In Examples 1 to 4, focusing is performed by the first lens unit L1. In the fifth embodiment, focusing is performed by the third lens unit L3.

このとき第1レンズ群L1によるフォーカスは、ズーミング用のカム軌跡を階段状に形成し、ズーミング用の延長軌跡を用いても良い。   At this time, the focusing by the first lens unit L1 may form a zooming cam locus in a step shape and use an extended locus for zooming.

一般に、2群ズームレンズや3群ズームレンズにおいて、全ズーム範囲にわたり、良好な光学性能を有し、かつレンズ枚数を削減して、レンズ系の薄型化を図るには、非球面をレンズ系中の適切な箇所に用いることが有効である。   In general, in a 2 group zoom lens or a 3 group zoom lens, an aspherical surface is used in the lens system in order to achieve a good optical performance over the entire zoom range and to reduce the number of lenses to reduce the thickness of the lens system. It is effective to use it at an appropriate place.

更にズーミングの際の移動量が比較的大きくなる第2レンズ群のレンズ構成及び変倍による像面変動を補正する第1レンズ群のレンズ構成を適切に設定して、ズーミングにおける収差変動を極力抑える必要がある。   Further, by appropriately setting the lens configuration of the second lens group, in which the amount of movement during zooming is relatively large, and the lens configuration of the first lens group that corrects image plane variation due to zooming, aberration variation during zooming is suppressed as much as possible. There is a need.

そこで各実施例では、第1レンズ群L1を像側の面が非球面形状で、物体側が凸面のメニスカス形状の負の屈折力の第11レンズG11と、物体側の面が凸面のメニスカス形状の正の屈折力の第12レンズG12とで構成している。   Therefore, in each embodiment, the first lens unit L1 has a meniscus negative eleventh lens G11 having an aspheric surface on the image side and a convex surface on the object side, and a meniscus shape having a convex surface on the object side. The twelfth lens G12 has a positive refractive power.

第12レンズG12に、高屈折率、高分解の材料を用いている。   A material having a high refractive index and high resolution is used for the twelfth lens G12.

第2レンズ群L2は、屈折力の絶対値が像側の面に比べ、物体側の面が大きく、かつ物体側の面が非球面形状でかつ両レンズ面が凸形状の正の屈折力の第21レンズG21、屈折力の絶対値が物体側の面に比べ像側の面が大きく、像側の面が非球面形状でかつメニスカス形状の負の屈折力の第22レンズG22より成っている。   The second lens unit L2 has a positive refractive power in which the absolute value of the refractive power is larger than the image-side surface, the object-side surface is large, the object-side surface is aspherical, and both lens surfaces are convex. The twenty-first lens G21 is composed of a twenty-second lens G22 having a negative refractive power in which the absolute value of refractive power is larger on the image side than on the object-side surface, and the image-side surface is aspherical and meniscus. .

第21レンズG21に低屈折率、低分解の材料を用い、第22レンズG22に高屈折率、高分解の材料を用いている。   A low refractive index and low resolution material is used for the twenty-first lens G21, and a high refractive index and high resolution material is used for the twenty-second lens G22.

これによって軸上色収差を良好に補正している。   This corrects axial chromatic aberration well.

実施例5では、第3レンズ群L3は、1つの正の屈折力の第31レンズより成っている。   In the fifth embodiment, the third lens unit L3 includes one positive refractive power 31st lens.

又、各実施例では、次の条件式のうち1以上を満足するようにしており、これによって各条件式に対応した効果を得ている。   In each embodiment, one or more of the following conditional expressions are satisfied, thereby obtaining an effect corresponding to each conditional expression.

第21レンズと、第22レンズの材料のアッベ数を各々ν21、ν22、第21レンズG21の物体側と像側の面の曲率半径を各々R21a、R21b、第22レンズG22の物体側と像側の面の曲率半径を各々R22a、R22bとするとき、
45<ν21−ν22<50・・・・(1)
The Abbe numbers of the materials of the 21st lens and the 22nd lens are ν21 and ν22, respectively, and the radii of curvature of the object side and image side surfaces of the 21st lens G21 are R21a and R21b, respectively, and the object side and image side of the 22nd lens G22. When the curvature radii of the surfaces of R22a and R22b are respectively
45 <ν21−ν22 <50 (1)

Figure 2006023679
Figure 2006023679

なる条件式を満足している。 The following conditional expression is satisfied.

なお、条件式(1)において、アッベ数はd線を基準としたものであり、アッベ数νdは以下の式によって表される。   In conditional expression (1), the Abbe number is based on the d line, and the Abbe number νd is expressed by the following expression.

νd=(Nd−1)/(NF−NC)
Nd:d線に対するその材料の屈折率
NF:F線に対するその材料の屈折率
NC:C線に対するその材料の屈折率
次に各条件式の技術的意味について説明する。
νd = (Nd−1) / (NF−NC)
Nd: Refractive index of the material with respect to d-line
NF: Refractive index of the material with respect to F-line
Next, the technical meaning of each conditional expression will be described.

条件式(1)は、第2レンズ群L2中の第21レンズG21と第22レンズG22の材料のアッベ数に関するものである。条件式(1)の上限値、又は下限値を超えてアッベ数の差が適度でなくなると、望遠域における軸上色収差の補正が困難となってくる。   Conditional expression (1) relates to the Abbe number of the materials of the 21st lens G21 and the 22nd lens G22 in the second lens unit L2. If the upper limit or lower limit of conditional expression (1) is exceeded and the Abbe number difference is not appropriate, it is difficult to correct axial chromatic aberration in the telephoto range.

条件式(2)は、第2レンズ群L2中の第22レンズG22のシェイプファクタ(形状因子)に関するものである。条件式(2)の上限値又は下限値を超えると、望遠域における、画面周辺部のコマフレアーの補正が困難になってくる。   Conditional expression (2) relates to the shape factor of the twenty-second lens G22 in the second lens unit L2. When the upper limit value or lower limit value of conditional expression (2) is exceeded, it becomes difficult to correct coma flare around the screen in the telephoto range.

条件式(3)は、第2レンズ群L2中の第21レンズG21のシェイプファクタに関するものである。条件式(3)の上限値又は、下限値を越えると、全変倍範囲にわたり、画面周辺部のコマフレアーの補正が難しくなってくる。   Conditional expression (3) relates to the shape factor of the twenty-first lens G21 in the second lens unit L2. If the upper limit value or lower limit value of conditional expression (3) is exceeded, it will be difficult to correct coma flare in the periphery of the screen over the entire zoom range.

更に好ましくは各条件式の数値範囲を次の如く設定するのが良い。   More preferably, the numerical range of each conditional expression is set as follows.

Figure 2006023679
Figure 2006023679

なる条件を満足するのが良い。 It is good to satisfy the condition.

又、各実施例において、更に好ましくは、次の条件式のうち1以上を満足するのが良い。   In each embodiment, more preferably, one or more of the following conditional expressions should be satisfied.

これによって各条件式に対応した効果を得ている。   As a result, an effect corresponding to each conditional expression is obtained.

第11レンズG11と第12レンズG12の焦点距離を各々f11、f12、第1レンズ群L1の焦点距離をf1、広角端のズーム位置における全系の焦点距離をfw、第11レンズG11の材料のd線に対するアッベ数をν11、第12レンズG12の材料のd線に対する屈折率とアッベ数を各々N12、ν12、第21レンズG21と第22レンズG22の材料のd線に対するアッベ数を各々ν21、ν22、第1レンズ群L1の第1レンズ面(最も物体側の面)から第1レンズ群L1の最終レンズ面(最も像側の面)までの長さをDaとするとき、   The focal lengths of the eleventh lens G11 and the twelfth lens G12 are f11 and f12, the focal length of the first lens unit L1 is f1, the focal length of the entire system at the zoom position at the wide angle end is fw, and the material of the eleventh lens G11 Abbe number with respect to the d line is ν11, refractive index and Abbe number with respect to the d line of the material of the twelfth lens G12 are N12 and ν12, respectively, Abbe number with respect to the d line of the materials of the 21st lens G21 and the 22nd lens G22 is ν21, respectively. ν22, when the length from the first lens surface (most object side surface) of the first lens unit L1 to the final lens surface (most image side surface) of the first lens unit L1 is Da,

Figure 2006023679
Figure 2006023679

7<ν11−ν12<15・・・・・(5)
1.8<N12・・・・(6)
26<ν12・・・・・(7)
−0.39<Da/f1<−0.3・・・・・(8)
−2.4<f1/fw<−1.5・・・・・(9)
なる条件式を満足している。
7 <ν11−ν12 <15 (5)
1.8 <N12 (6)
26 <ν12 (7)
−0.39 <Da / f1 <−0.3 (8)
-2.4 <f1 / fw <-1.5 (9)
The following conditional expression is satisfied.

次に各条件式の技術的意味について説明する。   Next, the technical meaning of each conditional expression will be described.

条件式(4)は第1レンズ群L1中を構成する第11レンズG11と第12レンズG12の焦点距離に関するものである。条件式(5)は第1レンズ群L1中を構成する第11レンズG11と第12レンズG12の材料のアッベ数に関するものである。   Conditional expression (4) relates to the focal lengths of the eleventh lens G11 and the twelfth lens G12 constituting the first lens unit L1. Conditional expression (5) relates to the Abbe number of the materials of the eleventh lens G11 and the twelfth lens G12 constituting the first lens unit L1.

ズーム全域におけるコマフレアーと色収差の補正を両立させる為に、条件式(4)、(5)を同時に満足させるのが良い。   In order to achieve both correction of coma flare and chromatic aberration in the entire zoom range, it is preferable to satisfy the conditional expressions (4) and (5) at the same time.

条件式(4)、(5)においては、第1レンズ群L1を構成する2枚のレンズの屈折力を各々適度に強め、かつ各レンズのパワーがある程度強い状態において色収差のバランスを保つために、第1レンズ群L1を構成する2枚のレンズの材料のアッベ数の差を適度に保つ必要があり、そのための条件を数式で表したものである。   In conditional expressions (4) and (5), in order to maintain the balance of chromatic aberration in a state where the refractive powers of the two lenses constituting the first lens unit L1 are moderately strengthened and the power of each lens is strong to some extent. The difference between the Abbe numbers of the materials of the two lenses constituting the first lens unit L1 needs to be kept moderate, and the conditions for this are expressed in mathematical formulas.

条件式(4)の上限を超えて各レンズの屈折力が強くなりすぎると、広角域において軸外収差の良好な補正が困難になってくる。条件式(4)の下限を超えて各レンズの屈折力が弱くなり過ぎると、レンズ系全体が大型化してくるので良くない。   If the refractive power of each lens becomes too strong beyond the upper limit of conditional expression (4), it will be difficult to satisfactorily correct off-axis aberrations in the wide-angle range. If the lower limit of conditional expression (4) is exceeded and the refractive power of each lens becomes too weak, the entire lens system will become large, which is not good.

条件式(4)の範囲内のパワー配置において、条件式(5)の上限又は、下限を超えると、レンズ系全体における倍率色収差の補正が困難になってくる。   In a power arrangement within the range of conditional expression (4), if the upper limit or lower limit of conditional expression (5) is exceeded, it will be difficult to correct lateral chromatic aberration in the entire lens system.

条件式(5)の上限値を超えると、倍率色収差のバランスを保つために第1レンズ群L1を構成する各レンズの屈折力を弱める必要があり、結果として条件式(4)の数値範囲を外れることにより、ズーム全域においてコマフレアーが増大する。   When the upper limit value of conditional expression (5) is exceeded, it is necessary to weaken the refractive power of each lens constituting the first lens unit L1 in order to maintain the balance of lateral chromatic aberration, and as a result, the numerical range of conditional expression (4) is reduced. By deviating, coma flare increases in the entire zoom range.

条件式(5)の下限を超えると、第1レンズ群L1を構成する各レンズの屈折力を強める必要があり、第1レンズ群L1中の第12レンズG12のコバを確保することが困難になってくる。   When the lower limit of conditional expression (5) is exceeded, it is necessary to increase the refractive power of each lens constituting the first lens unit L1, and it is difficult to secure the edge of the twelfth lens G12 in the first lens unit L1. It becomes.

条件式(6)は第1レンズ群L1中の第12レンズG12の材料の屈折率に関するものである。条件式(6)の下限値を超えて屈折率が低くなると第1レンズ群L1のレンズ径が大型化し、更に広角域におけるコマフレアーの補正が困難になってくる。   Conditional expression (6) relates to the refractive index of the material of the twelfth lens G12 in the first lens unit L1. When the refractive index is lowered beyond the lower limit of conditional expression (6), the lens diameter of the first lens unit L1 increases, and it becomes difficult to correct coma flare in a wide angle region.

条件式(7)は、第1レンズ群L1中の第12レンズG12の材料のアッベ数に関するものである。条件式(7)の下限を超えるとレンズ系全体における倍率色収差の補正が困難になってくる。   Conditional expression (7) relates to the Abbe number of the material of the twelfth lens G12 in the first lens unit L1. Exceeding the lower limit of conditional expression (7) makes it difficult to correct lateral chromatic aberration in the entire lens system.

条件式(8)は、第1レンズ群L1中のレンズの厚さと各レンズ間の間隔の総和に関するものである。条件式(8)の上限を超えると第1レンズ群L1の厚みの増大により前玉径が大型化しレンズ系全体が大型化してくるので良くない。   Conditional expression (8) relates to the total thickness of the lenses in the first lens unit L1 and the distance between the lenses. If the upper limit of conditional expression (8) is exceeded, the thickness of the first lens unit L1 increases, so the front lens diameter increases and the entire lens system increases in size.

条件式(8)の下限を超えて第1レンズ群L1の厚みが薄くなると、第11レンズG11と第12レンズG12間に存在すべきレンズ固定用のホルダーが薄くなるので、強度が不足してくるので良くない。
条件式(9)は、第1レンズ群L1の焦点距離に関するものである。条件式(9)の上限を超えると、全ズーム域において像面湾曲の補正が困難になってくる。条件式(9)の下限を超えると、広角端におけるレンズ全長が増大する傾向にあり良くない。
If the thickness of the first lens unit L1 is reduced beyond the lower limit of the conditional expression (8), the lens fixing holder that should exist between the eleventh lens G11 and the twelfth lens G12 becomes thin, so that the strength is insufficient. It's not good because it comes.
Conditional expression (9) relates to the focal length of the first lens unit L1. Exceeding the upper limit of conditional expression (9) makes it difficult to correct curvature of field in the entire zoom range. If the lower limit of conditional expression (9) is exceeded, the total lens length at the wide-angle end tends to increase, which is not good.

更に好ましくは各条件式の数値範囲を次の如く設定するのが良い。   More preferably, the numerical range of each conditional expression is set as follows.

Figure 2006023679
Figure 2006023679

なる条件式を満足するのが良い。 It is good to satisfy the following conditional expression.

尚、以上の各実施例においては、第1レンズ群L1の物体側にフィルター、コンバーターレンズを又は/及び第2レンズ群L2又は第3レンズ群L3の像側にフィールドレンズ等の屈折力の小さなレンズ群を付加してもよい。   In each of the above embodiments, a filter and a converter lens are provided on the object side of the first lens unit L1, and / or a field lens or the like having a small refractive power is provided on the image side of the second lens unit L2 or the third lens unit L3. A lens group may be added.

以上のように各実施例によれば、物体側より像側へ順に、負の屈折力の第1レンズ群と
正の屈折力の第2レンズ群を有し、ズーミングに際し、双方のレンズ群の間隔が変わるズームレンズにおいて、前述の如く各レンズ群のレンズ構成、非球面の位置、ズーミングの際の移動方法等を最適に設定し、又フォーカシング方法を最適に設定した。これにより、レンズ枚数の削減を計り、レンズ全長の短縮化を達成したにもかかわらず、2倍程度のズーム比を有しつつ、明るく、高い光学性能を有した、デジタルスチルカメラに適したズームレンズを達成している。
As described above, according to each embodiment, in order from the object side to the image side, the first lens unit having the negative refractive power and the second lens group having the positive refractive power are provided. In the zoom lens in which the interval changes, as described above, the lens configuration of each lens group, the position of the aspheric surface, the moving method during zooming, and the like are optimally set, and the focusing method is optimally set. This makes it possible to reduce the number of lenses and achieve a reduction in the overall length of the lens, but with a zoom ratio of about 2 times, a zoom that is bright and has high optical performance, suitable for digital still cameras. Has achieved the lens.

次に本発明のズームレンズを撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施例を図21を用いて説明する。   Next, an embodiment of a digital still camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.

図21において、20はビデオカメラ本体、21は本発明のズームレンズによって構成された撮影光学系、22は撮影光学系21によって被写体像を受光するCCDセンサやCCMOSセンサ等の固体撮像素子(光電変換素子)、23は撮像素子22が受光した被写体像を記録するメモリ、24は不図示の表示素子に表示された被写体像を観察するためのファインダーである。   In FIG. 21, reference numeral 20 denotes a video camera body, 21 denotes a photographing optical system constituted by the zoom lens of the present invention, 22 denotes a solid-state image pickup device (photoelectric conversion) such as a CCD sensor or a CCMOS sensor that receives a subject image by the photographing optical system 21. Element) 23, a memory for recording a subject image received by the image sensor 22, and a viewfinder 24 for observing the subject image displayed on a display element (not shown).

上記表示素子は液晶パネル等によって構成され、撮像素子22上に形成された被写体像
が表示される。
The display element is constituted by a liquid crystal panel or the like, and a subject image formed on the image sensor 22 is displayed.

このように本発明のズームレンズをデジタルスチルカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置を実現している。   Thus, by applying the zoom lens of the present invention to an image pickup apparatus such as a digital still camera, a small image pickup apparatus having high optical performance is realized.

次に本発明の数値実施例を示す。各数値実施例において、iは物体側からの面の順序を
示し、Riはレンズ面の曲率半径、Diは第i面と第i+1面との間のレンズ肉厚及び間隔、Ni、νiはそれぞれd線を基準とした屈折率、アッベ数を示す。
Next, numerical examples of the present invention will be shown. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the lens thickness and interval between the i-th surface and the i + 1-th surface, and Ni and νi are respectively The refractive index and Abbe number with respect to the d-line are shown.

また、最も像側の2つの面はフェースプレート等のガラス材である。   The two surfaces closest to the image side are glass materials such as face plates.

非球面形状は光軸からの高さhの位置での光軸方向の変位
を面頂点を基準にしてxとするとき、
x=(h/R)/[1+{1−(1+k)(h/R)1/2
+Ah+Bh+Ch+Dh+Eh10
で表わされる。但し、kは円錐定数、A,B,C,D,Eは非球面係数、Rは近軸曲率半径である。
When the aspherical shape is x with the displacement in the optical axis direction at the position of the height h from the optical axis as the reference to the surface vertex,
x = (h 2 / R) / [1+ {1− (1 + k) (h / R) 2 } 1/2 ]
+ Ah 2 + Bh 4 + Ch 6 + Dh 8 + Eh 10
It is represented by However, k is a conic constant, A, B, C, D, and E are aspherical coefficients, and R is a paraxial curvature radius.

又「e−0x」は「×10−x」を意味している。fは焦点距離、FnoはFナンバー
、ωは半画角を示す。
“E-0x” means “× 10 −x ”. f indicates a focal length, Fno indicates an F number, and ω indicates a half angle of view.

Figure 2006023679
Figure 2006023679

Figure 2006023679
Figure 2006023679

Figure 2006023679
Figure 2006023679

Figure 2006023679
Figure 2006023679

Figure 2006023679
Figure 2006023679

Figure 2006023679
Figure 2006023679

実施例1のズームレンズのレンズ断面図Lens cross-sectional view of the zoom lens of Example 1 実施例1のズームレンズの広角端のズーム位置における収差図Aberration diagrams at the zoom position at the wide-angle end of the zoom lens of Example 1. FIG. 実施例1のズームレンズの中間の焦点位置における収差図Aberration diagram at the intermediate focal position of the zoom lens of Example 1 実施例1のズームレンズの望遠端のズーム位置における収差図Aberration diagram at the zoom position at the telephoto end of the zoom lens of Example 1 実施例2のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 2 実施例2のズームレンズの広角端のズーム位置における収差図Aberration diagrams at the zoom position at the wide-angle end of the zoom lens of Example 2. 実施例2のズームレンズの中間の焦点位置における収差図Aberration diagram at the intermediate focal position of the zoom lens of Example 2 実施例2のズームレンズの望遠端のズーム位置における収差図Aberration diagram at the zoom position at the telephoto end of the zoom lens of Example 2 実施例3のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 3 実施例3のズームレンズの広角端のズーム位置における収差図Aberration diagrams at the zoom position at the wide-angle end of the zoom lens according to Embodiment 3 実施例3のズームレンズの中間の焦点位置における収差図Aberration diagrams at the intermediate focal position of the zoom lens of Example 3 実施例3のズームレンズの望遠端のズーム位置における収差図Aberration diagram at the zoom position at the telephoto end of the zoom lens of Example 3 実施例4のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 4 実施例4のズームレンズの広角端のズーム位置における収差図Aberration diagrams at the zoom position at the wide-angle end of the zoom lens according to Example 4 実施例4のズームレンズの中間の焦点位置における収差図Aberration diagrams at the intermediate focal position of the zoom lens of Example 4 実施例4のズームレンズの望遠端のズーム位置における収差図Aberration diagram at the zoom position at the telephoto end of the zoom lens of Example 4 実施例5のズームレンズのレンズ断面図Lens sectional view of the zoom lens of Example 5 実施例5のズームレンズの広角端のズーム位置における収差図Aberration diagrams at the zoom position at the wide-angle end of the zoom lens according to Example 5 実施例5のズームレンズの中間の焦点位置における収差図Aberration diagrams at the intermediate focal position of the zoom lens of Example 5 実施例5のズームレンズの望遠端のズーム位置における収差図Aberration diagrams at the zoom position at the telephoto end of the zoom lens of Example 5 デジタルスチルカメラの要部概略図Schematic diagram of the main part of a digital still camera

符号の説明Explanation of symbols

L1:第1レンズ群
L2:第2レンズ群
L3:第3レンズ群
SP:絞り
IP:像面
G:ガラスブロック
d:d線
g:g線
ΔS:サジタル像面
ΔM:メリディオナル像面
L1: First lens group L2: Second lens group L3: Third lens group SP: Aperture IP: Image plane G: Glass block d: d line g: g line ΔS: Sagittal image plane ΔM: Meridional image plane

Claims (7)

物体側より像側へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群を有し、ズーミングに際し、双方のレンズ群の間隔が変わるズームレンズにおいて、該第1レンズ群は、負の屈折力の第11レンズと、正の屈折力の第12レンズより成り、第2レンズ群は、正の屈折力の第21レンズと負の屈折力の第22レンズより成り、該第21レンズと第22レンズの材料のアッベ数を各々ν21、ν22とするとき、
45<ν21−ν22<50
なる条件を満足することを特徴とするズームレンズ。
In the zoom lens having a first lens unit having a negative refractive power and a second lens unit having a positive refractive power in order from the object side to the image side, the distance between the two lens units changes during zooming. The lens group includes an eleventh lens having a negative refractive power and a twelfth lens having a positive refractive power, and the second lens group includes a twenty-first lens having a positive refractive power and a twenty-second lens having a negative refractive power. When the Abbe numbers of the materials of the 21st lens and the 22nd lens are ν21 and ν22, respectively,
45 <ν21−ν22 <50
A zoom lens characterized by satisfying the following conditions:
前記第22レンズの物体側と像側の面の曲率半径を各々R22a、R22bとするとき、
Figure 2006023679
なる条件を満足することを特徴とする請求項1のズームレンズ。
When the curvature radii of the object side surface and the image side surface of the 22nd lens are R22a and R22b, respectively.
Figure 2006023679
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第11レンズは、物体側の面の屈折力の絶対値に比べ像側の面の屈折力の絶対値が大きく、少なくとも一方の面が非球面形状より成り、前記第12レンズは、物体側が凸面のメニスカス形状より成ることを特徴とする請求項1又は2のズームレンズ。   The eleventh lens has a larger absolute value of the refractive power of the image side surface than the absolute value of the refractive power of the object side surface, and at least one surface has an aspherical shape. 3. The zoom lens according to claim 1, wherein the zoom lens has a convex meniscus shape. 前記第2レンズ群の物体側又は像側に開口絞りを有し、前記第21レンズと第22レンズは、独立したレンズより成ることを特徴とする請求項1、2又は3のズームレンズ。   4. The zoom lens according to claim 1, wherein an aperture stop is provided on the object side or the image side of the second lens group, and the twenty-first lens and the twenty-second lens are independent lenses. 前記第21レンズの物体側と像側の面の曲率半径を各々R21a、R21bとするとき、
Figure 2006023679
なる条件を満足することを特徴とする請求項1から4のいずれか1項のズームレンズ。
When the curvature radii of the object side surface and the image side surface of the 21st lens are R21a and R21b, respectively.
Figure 2006023679
The zoom lens according to claim 1, wherein the following condition is satisfied.
固体撮像素子に像を形成する為の光学系であることを特徴とする請求項1から5のいずれか1項のズームレンズ。   6. The zoom lens according to claim 1, wherein the zoom lens is an optical system for forming an image on a solid-state image sensor. 請求項1〜6のいずれか1項のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子を有していることを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image pickup device that receives an image formed by the zoom lens.
JP2004203858A 2004-07-09 2004-07-09 Zoom lens and imaging apparatus having the same Expired - Fee Related JP4617108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203858A JP4617108B2 (en) 2004-07-09 2004-07-09 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203858A JP4617108B2 (en) 2004-07-09 2004-07-09 Zoom lens and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2006023679A true JP2006023679A (en) 2006-01-26
JP2006023679A5 JP2006023679A5 (en) 2007-08-02
JP4617108B2 JP4617108B2 (en) 2011-01-19

Family

ID=35796961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203858A Expired - Fee Related JP4617108B2 (en) 2004-07-09 2004-07-09 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4617108B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310191B2 (en) 2006-03-09 2007-12-18 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device and camera
JP2008216667A (en) * 2007-03-05 2008-09-18 Nikon Corp Zoom lens, optical apparatus, and imaging method
US7542215B2 (en) 2006-11-08 2009-06-02 Nikon Corporation Zoom lens system and optical apparatus using the same
US7593166B2 (en) 2007-05-29 2009-09-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7599126B2 (en) 2006-03-09 2009-10-06 Panasonic Corporation Zoom lens system, imaging device and camera
US7742235B2 (en) 2007-05-29 2010-06-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7755847B2 (en) 2007-05-29 2010-07-13 Panasonic Corporation Zoom lens system, imaging device and camera
US7817350B2 (en) 2007-01-30 2010-10-19 Panasonic Corporation Zoom lens system, imaging device and camera
CN114488491A (en) * 2022-03-07 2022-05-13 浙江大学 Large-aperture laser direct writing objective lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446309A (en) * 1990-06-13 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH10282415A (en) * 1997-04-09 1998-10-23 Minolta Co Ltd Zoom lens
JP2002014284A (en) * 2000-06-28 2002-01-18 Canon Inc Zoom lens and optical equipment using the same
JP2003228002A (en) * 2002-02-04 2003-08-15 Fuji Photo Optical Co Ltd Three-group zoom lens
JP2003329929A (en) * 2002-05-13 2003-11-19 Mark:Kk Zoom lens for photography using replica layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446309A (en) * 1990-06-13 1992-02-17 Minolta Camera Co Ltd Compact zoom lens
JPH10282415A (en) * 1997-04-09 1998-10-23 Minolta Co Ltd Zoom lens
JP2002014284A (en) * 2000-06-28 2002-01-18 Canon Inc Zoom lens and optical equipment using the same
JP2003228002A (en) * 2002-02-04 2003-08-15 Fuji Photo Optical Co Ltd Three-group zoom lens
JP2003329929A (en) * 2002-05-13 2003-11-19 Mark:Kk Zoom lens for photography using replica layer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532409B2 (en) 2006-03-09 2009-05-12 Panasonic Corporation Zoom lens system, imaging device and camera
US7310191B2 (en) 2006-03-09 2007-12-18 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device and camera
US7599126B2 (en) 2006-03-09 2009-10-06 Panasonic Corporation Zoom lens system, imaging device and camera
US7542215B2 (en) 2006-11-08 2009-06-02 Nikon Corporation Zoom lens system and optical apparatus using the same
US7817350B2 (en) 2007-01-30 2010-10-19 Panasonic Corporation Zoom lens system, imaging device and camera
US8179611B2 (en) 2007-01-30 2012-05-15 Panasonic Corporation Zoom lens system, imaging device and camera
US8098442B2 (en) 2007-01-30 2012-01-17 Panasonic Corporation Zoom lens system, imaging device and camera
JP2008216667A (en) * 2007-03-05 2008-09-18 Nikon Corp Zoom lens, optical apparatus, and imaging method
US7593166B2 (en) 2007-05-29 2009-09-22 Panasonic Corporation Zoom lens system, imaging device and camera
US7800831B2 (en) 2007-05-29 2010-09-21 Panasonic Corporation Zoom lens system, imaging device and camera
US7948684B2 (en) 2007-05-29 2011-05-24 Panasonic Corporation Zoom lens system, imaging device and camera
US7948685B2 (en) 2007-05-29 2011-05-24 Panasonic Corporation Zoom lens system, imaging device and camera
US7755847B2 (en) 2007-05-29 2010-07-13 Panasonic Corporation Zoom lens system, imaging device and camera
US7742235B2 (en) 2007-05-29 2010-06-22 Panasonic Corporation Zoom lens system, imaging device and camera
CN114488491A (en) * 2022-03-07 2022-05-13 浙江大学 Large-aperture laser direct writing objective lens
CN114488491B (en) * 2022-03-07 2022-10-28 浙江大学 Large-aperture laser direct writing objective lens

Also Published As

Publication number Publication date
JP4617108B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5675680B2 (en) Zoom lens and imaging apparatus having the same
JP5871630B2 (en) Zoom lens and imaging apparatus having the same
JP4902191B2 (en) Zoom lens and imaging apparatus having the same
JP5465000B2 (en) Zoom lens and imaging apparatus having the same
JP5528211B2 (en) Zoom lens and imaging apparatus having the same
WO2012101959A1 (en) Zoom-lens system, imaging device, and camera
JP2014202841A (en) Zoom lens and image capturing device having the same
JP2007140359A (en) Zoom lens and imaging apparatus equipped with the same
JP5939788B2 (en) Zoom lens and imaging apparatus having the same
JP2011033770A (en) Zoom lens and optical apparatus including the same
JP2010237454A (en) Zoom lens and image capturing apparatus with the same
JP5038028B2 (en) Zoom lens and imaging apparatus having the same
JP2015232664A (en) Zoom lens and imaging apparatus including the same
JP2011145566A (en) Zoom lens and optical apparatus having the same
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP4617108B2 (en) Zoom lens and imaging apparatus having the same
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP3428800B2 (en) Zoom lens and video camera using the same
JP4617107B2 (en) Zoom lens and imaging apparatus having the same
JP5828942B2 (en) Zoom lens and imaging apparatus having the same
JP2014202806A5 (en)
JP2011170371A (en) Zoom lens and imaging apparatus with the same
JP5197262B2 (en) Zoom lens and imaging apparatus having the same
JP4717429B2 (en) Zoom lens and imaging apparatus having the same
JP5546332B2 (en) Zoom lens and optical apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Ref document number: 4617108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees