JP5093771B2 - Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds - Google Patents

Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds Download PDF

Info

Publication number
JP5093771B2
JP5093771B2 JP2006276641A JP2006276641A JP5093771B2 JP 5093771 B2 JP5093771 B2 JP 5093771B2 JP 2006276641 A JP2006276641 A JP 2006276641A JP 2006276641 A JP2006276641 A JP 2006276641A JP 5093771 B2 JP5093771 B2 JP 5093771B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
compound
alkyl group
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006276641A
Other languages
Japanese (ja)
Other versions
JP2008094741A (en
Inventor
一彦 大賀
有二 小林
博 内田
一彦 佐藤
雅典 大越
政男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Showa Denko KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical Showa Denko KK
Priority to JP2006276641A priority Critical patent/JP5093771B2/en
Publication of JP2008094741A publication Critical patent/JP2008094741A/en
Application granted granted Critical
Publication of JP5093771B2 publication Critical patent/JP5093771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel process for safely and easily producing a polyfunctional epoxy compound by reaction of triolefins and a hydrogen peroxide aqueous solution under a mild condition without use of an organic solvent, and a method for controlling the stereoselectivity of the polyfunctional epoxy compound to be produced. <P>SOLUTION: According to the process, by reaction of triolefins and a hydrogen peroxide aqueous solution using a quaternary ammonium hydrogensulfate and a group VI metal compound as a phase transfer catalyst, a polyfunctional epoxy compound having an epoxy group and a double bond in a molecule is produced selectively with high yield, and the stereoselectivity of the polyfunctional epoxy compound to be produced can highly be controlled. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、エポキシ基および2重結合を分子内に含む多官能性エポキシ化合物が得られるようにトリオレフィン類をエポキシ化する方法に関する。特に、本発明はトリオレフィン類と過酸化水素水溶液を触媒であるモリブデンまたはタングステンの酸化物存在下にて反応させ、1つの2重結合を選択的にエポキシ化させる多官能性エポキシ化合物の新規な製造法に関する。本発明により提供される多官能性エポキシ化合物は、レジスト材料(特にソルダ−レジスト材料)の原料として、また農薬・医薬の中間体や可塑剤、接着剤、塗料樹脂といった各種ポリマーの原料として化学工業をはじめ、各種の産業分野で幅広く用いられる有用な物質である。   The present invention relates to a method for epoxidizing triolefins so as to obtain a multifunctional epoxy compound containing an epoxy group and a double bond in the molecule. In particular, the present invention provides a novel polyfunctional epoxy compound that reacts triolefins with aqueous hydrogen peroxide in the presence of catalytic molybdenum or tungsten oxide to selectively epoxidize one double bond. It relates to the manufacturing method. The polyfunctional epoxy compound provided by the present invention is used as a raw material for resist materials (especially solder-resist materials) and as a raw material for various polymers such as intermediates of agricultural chemicals / pharmaceuticals, plasticizers, adhesives and paint resins. It is a useful substance that is widely used in various industrial fields.

分子内に2個以上の2重結合を有する化合物(ジオレフィン、トリオレフィン等)の1つの2重結合を選択的にエポキシ化させる技術は、低生産性(低反応性、低選択性)であったり、適用性がある種の構造体に制限されたりする場合が多い。
従来、ジオレフィン類やトリオレフィン類の選択的エポキシ化剤として過ギ酸や過酢酸等の有機過酸を使用する方法が知られているが (例えばChem.Ber.,1985,118,1267−1270、欧州特許公開0033763等)、酸化剤由来の酸が当量生成するため装置の腐食などの問題があるほか、酸に反応しやすい基質ではジオールが副成しやすい。
The technology to selectively epoxidize one double bond of a compound (diolefin, triolefin, etc.) having two or more double bonds in the molecule is low productivity (low reactivity, low selectivity). Often limited to certain types of structures that are applicable.
Conventionally, a method using an organic peracid such as performic acid or peracetic acid as a selective epoxidizing agent for diolefins or triolefins is known (for example, Chem. Ber., 1985, 118, 1267-1270). , European Patent Publication No. 0033763, etc.), and there is a problem of corrosion of the apparatus because an equivalent amount of acid derived from an oxidizing agent is generated, and a diol is easily formed as a by-product in a substrate that is sensitive to acid.

ケトン触媒下におけるオキソンを酸化剤としたジオレフィン類の選択的エポキシ化方法 (J.Org.Chem.,1998,63,2948−2953)も知られているが、トリオレフィン類に関する選択的エポキシ化についての指示がないほか、触媒のケトンが非常に多く必要(ジオレフィン類に対し20−30モル%)、かつ反応中のオキソンの分解を抑制する為に溶液中のpHや反応温度等の反応条件を厳密にコントロールする必要があるといった問題点がある。   A selective epoxidation method of diolefins using oxone as an oxidant under a ketone catalyst (J. Org. Chem., 1998, 63, 2948-2953) is also known. In addition to the above, there is a need for a very large amount of catalyst ketone (20-30 mol% with respect to diolefins), and reaction such as pH in the solution and reaction temperature in order to suppress the decomposition of oxone during the reaction. There is a problem that it is necessary to strictly control the conditions.

一方、過酸化水素水は、安価で腐食性がなく、反応後の副生物は皆無又は水であるために環境負荷が小さく、工業的に利用するには優れた酸化剤である。   On the other hand, hydrogen peroxide solution is inexpensive and non-corrosive, has no by-product after the reaction or is water, and therefore has a low environmental load and is an excellent oxidizing agent for industrial use.

過酸化水素水をエポキシ化剤としてオレフィン類からエポキシ化合物を製造する方法として従来 (1)塩化第4級アンモニウム、リン酸類、タングステン金属塩の存在下、過酸化水素によりエポキシ化する方法 (特開2003−192679)、(2)有機レニウムオキシドを触媒として過酸化水素によりエポキシ化する方法 (特開2001−25665)、(3)チタノシリケートおよび過酸化水素によりエポキシ化する方法(J. Cat.,1993,140,71−83)、(4)フルオロアルキルケトン触媒下、過酸化水素によりエポキシ化する方法(Chem.Commun., 1999,263−264)など多数知られているが、これらの方法は基本的に2重結合を1つしかもたないモノオレフィンのエポキシ化に関するものである。   As a method for producing an epoxy compound from an olefin using an aqueous hydrogen peroxide solution as an epoxidizing agent, (1) a method for epoxidation with hydrogen peroxide in the presence of quaternary ammonium chloride, phosphoric acids and tungsten metal salt 2003-192679), (2) a method of epoxidation with hydrogen peroxide using an organic rhenium oxide as a catalyst (JP 2001-25665), (3) a method of epoxidation with titanosilicate and hydrogen peroxide (J. Cat. 1993, 140, 71-83), and (4) a method of epoxidation with hydrogen peroxide in the presence of a fluoroalkyl ketone catalyst (Chem. Commun., 1999, 263-264). Basically relates to the epoxidation of monoolefins with only one double bond A.

過酸化水素水をエポキシ化剤とするジオレフィン類の選択的エポキシ化に関しては、(5) 式QXW24(式中、Qは70個までの炭素原子を含む第4級アンモニウムカチオンを表し、XはPまたはAsを表す)で示される触媒の存在下、過酸化水素によりジオレフィンをエポキシ化する方法 (特開平4−275281)、(6)塩化第4級アンモニウム、リン酸、タングステン化合物の存在下、過酸化水素によりメタクリル酸ユニット有するジオレフィンをエポキシ化する方法 (Tetrahedron,1992,48(24),5099−5110)、があげられるが、(5)では過酸化水素の量がジオレフィン1当量に対して1当量未満であるために反応収率が非常に悪く (使用したジオレフィンに対して32〜48%)、分離・精製過程に時間、コストがかかり生産性に乏しい。また触媒が界面活性を有するため、反応終了後の相分離に塩化メチレン等のハロゲン系炭化水素溶媒を必要とするため環境負荷が大きい。(6)の方法はメタクリル酸ユニット有するジオレフィンに限定される。さらに(5)、(6)ともにトリオレフィン類に関する選択的エポキシ化についての教示はない。 For selective epoxidation of diolefins using hydrogen peroxide as an epoxidizing agent, (5) Formula Q 3 XW 4 O 24 (wherein Q is a quaternary ammonium cation containing up to 70 carbon atoms) Wherein X represents P or As) in the presence of a catalyst represented by the formula (JP-A-4-275281), (6) quaternary ammonium chloride, phosphoric acid, There is a method of epoxidizing a diolefin having a methacrylic acid unit with hydrogen peroxide in the presence of a tungsten compound (Tetrahedron, 1992, 48 (24), 5099-5110). In (5), the amount of hydrogen peroxide Is less than 1 equivalent to 1 equivalent of diolefin, so the reaction yield is very poor (32 to 48% with respect to the diolefin used). Time to the manufacturing process, poor productivity costly. In addition, since the catalyst has surface activity, it requires a halogen-based hydrocarbon solvent such as methylene chloride for phase separation after completion of the reaction, so that the environmental load is large. The method (6) is limited to diolefins having methacrylic acid units. Furthermore, neither (5) nor (6) teaches selective epoxidation for triolefins.

他方、過酸化水素水をエポキシ化剤とするトリオレフィン類の選択的エポキシ化に関しての報告例はごくわずかで、またそのほとんどが炭素数8〜20程度の大員環脂肪族化合物のモノエポキシ化反応に関するものである。例えば、(7)タングステン化合物および第4級ピリジニウム塩存在下、1, 5, 9-シクロドデカトリエン(CDT)をモノエポキシ化する方法(特開2000−26441)、(8)タングステンおよびモリブデンのポリオキソメタラート錯体の存在下、過酸化水素により大員環脂肪族化合物を選択的モノエポキシ化する方法 (特開2002−155066)があげられる。しかしながら(7)の方法はトリオレフィン1当量に対して1当量未満であるために原料の転化率が非常に悪いほか、(8)の方法では、時間経過とともにモノエポキシ化選択率が大幅に低下するといった問題がある。   On the other hand, there are very few reports on selective epoxidation of triolefins using hydrogen peroxide as an epoxidizing agent, and most of them are monoepoxidation of macrocyclic aliphatic compounds having about 8 to 20 carbon atoms. It relates to the reaction. For example, (7) a method of monoepoxidizing 1,5,9-cyclododecatriene (CDT) in the presence of a tungsten compound and a quaternary pyridinium salt (Japanese Patent Laid-Open No. 2000-26441), (8) a polyhydride of tungsten and molybdenum A method of selectively monoepoxidizing a macrocyclic aliphatic compound with hydrogen peroxide in the presence of an oxometalate complex (Japanese Patent Laid-Open No. 2002-1555066). However, since the method (7) is less than 1 equivalent per 1 equivalent of triolefin, the conversion rate of the raw material is very bad. In the method (8), the monoepoxidation selectivity greatly decreases with time. There is a problem such as.

そのほかのトリオレフィン類の選択的エポキシ化例としては(9)アルカリ金属、アルカリ土類金属或いはアンモニウムの水に可溶な塩、リン酸、硫酸、p−トルエンスルホン酸等の酸性触媒及びギ酸の存在下、過酸化水素によりテトラヒドロフタル酸ジアリルを選択的にエポキシ化し、4,5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルを得る方法(特公昭50−39659)が挙げられる。しかし、(9)の方法では、収率は65%程度しか得られず、満足できるものではなかった。さらに、(9)の方法で得られる4,5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルの立体異性体の収率については開示されていない。   Other examples of selective epoxidation of triolefins include (9) alkali metal, alkaline earth metal or ammonium water-soluble salts, phosphoric acid, sulfuric acid, p-toluenesulfonic acid and other acidic catalysts, and formic acid Examples thereof include a method of selectively epoxidizing diallyl tetrahydrophthalate with hydrogen peroxide to obtain diallyl 4,5-epoxycyclohexane-1,2-dicarboxylate (Japanese Patent Publication No. 50-39659). However, with the method (9), the yield was only about 65%, which was not satisfactory. Furthermore, the yield of stereoisomers of diallyl 4,5-epoxycyclohexane-1,2-dicarboxylate obtained by the method (9) is not disclosed.

したがって、温和な条件下、有機溶媒を使用せずに簡便な操作で安全にトリオレフィン類から選択的に多官能性エポキシ化合物を収率良く、かつ低コストで製造する方法の開発が強く要望されている。加えて、生成するエポキシ化合物の立体選択性を制御できるエポキシ化合物の製造方法が強く望まれている。
Chem.Ber.,118,1267−1270(1985) J.Org.Chem.,63,2948−2953(1998) J.Cat.,140,71−83(1993) Chem.Commun.,263−264(1999) Tetrahedron,48,5099−5110(1992) 欧州特許公開0033763号 特開2003−192679号公報 特開2001−25665号公報 特開平4−275281号公報 特開2000−26441号公報 特開2002−155066号公報 特公昭50−39659号公報
Therefore, there is a strong demand for the development of a method for producing a polyfunctional epoxy compound selectively from triolefins safely in a simple operation without using an organic solvent under mild conditions in a high yield and at a low cost. ing. In addition, a method for producing an epoxy compound that can control the stereoselectivity of the resulting epoxy compound is strongly desired.
Chem. Ber. , 118, 1267-1270 (1985). J. et al. Org. Chem. 63, 2948-2953 (1998). J. et al. Cat. 140, 71-83 (1993) Chem. Commun. , 263-264 (1999) Tetrahedron, 48, 5099-5110 (1992) European Patent Publication No. 0033763 JP 2003-192679 A Japanese Patent Laid-Open No. 2001-25665 JP-A-4-275281 JP 2000-26441 A JP 2002-155066 A Japanese Patent Publication No.50-39659

本発明は、温和な条件下、有機溶媒を使用せず、トリオレフィン類と過酸化水素水溶液の反応による安全で容易な多官能性エポキシ化合物の新規製造法を提供すること及び生成する多官能エポキシ化合物の立体選択性の制御をその課題とするものである。   The present invention provides a novel process for producing a safe and easy polyfunctional epoxy compound by the reaction of triolefins and aqueous hydrogen peroxide without using an organic solvent under mild conditions, and the resulting polyfunctional epoxy The object is to control the stereoselectivity of the compound.

本発明者らは、上記課題を解決するために鋭意検討した結果、有機溶媒を使用せず、相間移動触媒として例えば硫酸水素第4級アンモニウム、および6族金属化合物を触媒に用いてトリオレフィン類と過酸化水素水溶液の反応を行うと、エポキシ基および2重結合を分子内に含む多官能性エポキシ化合物が高収率で選択的に生成し、さらに、生成する多官能性エポキシ化合物の立体選択性が高度に制御されていることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have used triolefins by using, for example, quaternary ammonium hydrogen sulfate and a Group 6 metal compound as a phase transfer catalyst as a phase transfer catalyst without using an organic solvent. Reacts with an aqueous hydrogen peroxide solution to selectively produce a multifunctional epoxy compound containing an epoxy group and a double bond in the molecule in a high yield, and then stereoselection of the resulting multifunctional epoxy compound The present inventors have found that the sex is highly controlled and completed the present invention.

すなわち、本発明は、硫酸水素第4級アンモニウムおよび触媒量の6族金属化合物存在下、有機溶媒を使用せずにトリオレフィン類と過酸化水素水溶液を反応させることを特徴とする、多官能性エポキシ化合物の製造法に関する。   That is, the present invention is characterized by reacting a triolefin with an aqueous hydrogen peroxide solution without using an organic solvent in the presence of quaternary ammonium hydrogen sulfate and a catalytic amount of a Group 6 metal compound. The present invention relates to a method for producing an epoxy compound.

さらに詳しくは、本発明は以下の[1]〜[4]に示されるエポキシ化合物の製造方法に関する。
[1] 相間移動触媒、及び6族金属化合物の存在下、酸化剤を用いて下記一般式(1):

Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。)
で表される化合物を酸化して、下記一般式(2):
Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。)
で表されるエポキシ化合物を製造することを特徴とする当該エポキシ化合物の製造方法。 In more detail, this invention relates to the manufacturing method of the epoxy compound shown by the following [1]-[4].
[1] The following general formula (1) using an oxidizing agent in the presence of a phase transfer catalyst and a Group 6 metal compound:
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)
The compound represented by the following formula (2) is oxidized:
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)
The manufacturing method of the said epoxy compound characterized by manufacturing the epoxy compound represented by these.

[2] 前記相間移動触媒が硫酸水素4級アンモニウム化合物である、前記[1]に記載の方法。 [2] The method according to [1], wherein the phase transfer catalyst is a quaternary ammonium hydrogen sulfate compound.

[3] 前記6族金属化合物がタングステンである、前記[1]又は[2]に記載の方法。 [3] The method according to [1] or [2], wherein the group 6 metal compound is tungsten.

[4] 前記酸化剤が過酸化水素水溶液である、前記[1]〜[3]のいずれかに記載の方法。 [4] The method according to any one of [1] to [3], wherein the oxidizing agent is an aqueous hydrogen peroxide solution.

なお、本明細書に記載の6族金属化合物とは、長周期型周期表の新しい国際純正・応用化学連合(IUPAC)の表記法に基づいて6族に帰属されている金属を含有する化合物を意味する。   In addition, the group 6 metal compound described in this specification refers to a compound containing a metal belonging to group 6 based on the new International Pure and Applied Chemical Association (IUPAC) notation of the long-period periodic table. means.

本発明の方法によれば、レジスト材料(特にソルダ−レジスト材料)の原料として、また農薬・医薬の中間体や可塑剤、接着剤、塗料樹脂といった各種ポリマーの原料として化学工業をはじめ、各種の産業分野で幅広く用いられる有用な物質である多官能性エポキシ化合物を、対応するトリオレフィン類と過酸化水素水の反応から簡便な操作で安全に、収率良く、低コストで、しかも立体選択性を制御して製造できる。従って、本発明は工業的に多大な効果をもたらす。また、本製造方法は有機溶媒ならびに酸、塩基を使用しないため、環境に対する負荷を軽減する効果も有している。   According to the method of the present invention, as a raw material for resist materials (particularly solder-resist materials) and as a raw material for various polymers such as intermediates of agricultural chemicals / pharmaceuticals, plasticizers, adhesives, and coating resins, A multifunctional epoxy compound, a useful substance widely used in the industrial field, can be produced safely from a reaction with the corresponding triolefins and hydrogen peroxide solution, safely in a good yield, at low cost, and with stereoselectivity. Can be controlled. Therefore, the present invention has a great industrial effect. Moreover, since this manufacturing method does not use an organic solvent, an acid, or a base, it also has an effect of reducing the burden on the environment.

以下、本発明を具体的に説明する。
本発明は、相間移動触媒及び6族金属化合物の存在下、酸化剤を用いて下記一般式(1)で表される化合物を酸化して下記一般式(2)で表される化合物を製造することを特徴とするエポキシ化合物の製造方法である。
一般式(1)

Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。)
一般式(2)
Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。) Hereinafter, the present invention will be specifically described.
In the present invention, a compound represented by the following general formula (2) is produced by oxidizing a compound represented by the following general formula (1) using an oxidizing agent in the presence of a phase transfer catalyst and a group 6 metal compound. It is a manufacturing method of the epoxy compound characterized by the above-mentioned.
General formula (1)
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)
General formula (2)
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)

まず、本発明の製造方法の原料成分である、一般式(1)で表される化合物について説明する。
本発明の製造方法の原料成分であるトリオレフィン化合物は、下記一般式(1)で表される化合物である。
一般式(1)

Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。) First, the compound represented by general formula (1), which is a raw material component of the production method of the present invention, will be described.
The triolefin compound which is a raw material component of the production method of the present invention is a compound represented by the following general formula (1).
General formula (1)
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)

一般式(1)中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。 In general formula (1), R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or 3 to 7 carbon atoms. Cycloalkyl group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 carbon atoms. May be substituted with a cycloalkyl group of ˜7, an aryl group, an aralkyl group, a carboxyl group, or a halogen atom. In the formula, R 7 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 9 to R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. An alkyl group or an alkoxy group having 1 to 4 carbon atoms is represented.

一般式(1)で示される具体的な化合物としては、例えば、以下の構造を有する化合物を挙げることができる。   Specific examples of the compound represented by the general formula (1) include compounds having the following structures.

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

これらの中で、好ましいものとしては、以下の化合物である。

Figure 0005093771
Among these, the following compounds are preferable.
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

本発明の製造法において用いられる過酸化水素水の濃度に制限はなく、濃度に応じてトリオレフィン化合物への反応は生起するが、一般的には1〜80%、好ましくは20〜80%の範囲から選ばれる。   There is no restriction | limiting in the density | concentration of the hydrogen-peroxide solution used in the manufacturing method of this invention, Although reaction to a triolefin compound occurs according to a density | concentration, Generally 1-80%, Preferably it is 20-80% Selected from a range.

過酸化水素水溶液の使用量に制限はなく使用量に応じてトリオレフィン化合物への反応は生起するが、一般的にはトリオレフィン類に対して0.8〜10.0当量、好ましくは1.0〜3.0当量の範囲から選ばれる。   The amount of the hydrogen peroxide aqueous solution used is not limited, and the reaction to the triolefin compound occurs depending on the amount used, but is generally 0.8 to 10.0 equivalents, preferably 1. It is selected from the range of 0 to 3.0 equivalents.

相間移動触媒としては、例えば硫酸水素第4級アンモニウムを好適に用いることができる。
硫酸水素第4級アンモニウムとしては、例えば、硫酸水素テトラへキシルアンモニウム、硫酸水素テトラオクチルアンモニウム、硫酸水素メチルトリオクチルアンモニウム、硫酸水素テトラブチルアンモニウム、硫酸水素エチルトリオクチルアンモニウム、硫酸水素セチルピリジニウム等が挙げられるが、硫酸水素テトラへキシルアンモニウム、硫酸水素テトラオクチルアンモニウム、硫酸水素メチルトリオクチルアンモニウム等が好ましい。これら硫酸水素第4級アンモニウムは単独で使用しても、二種以上を混合使用してもよい。その使用量は基質のトリオレフィン類に対して0.0001〜10モル%、好ましくは0.01〜5モル%の範囲から選ばれる。
As the phase transfer catalyst, for example, quaternary ammonium hydrogen sulfate can be suitably used.
Examples of the quaternary ammonium hydrogen sulfate include tetrahexylammonium hydrogen sulfate, tetraoctylammonium hydrogensulfate, methyltrioctylammonium hydrogensulfate, tetrabutylammonium hydrogensulfate, ethyltrioctylammonium hydrogensulfate, cetylpyridinium hydrogensulfate and the like. Examples thereof include tetrahexylammonium hydrogensulfate, tetraoctylammonium hydrogensulfate, and methyltrioctylammonium hydrogensulfate. These quaternary ammonium hydrogen sulfates may be used alone or in combination of two or more. The amount used is selected from the range of 0.0001 to 10 mol%, preferably 0.01 to 5 mol%, based on the triolefin as a substrate.

6族金属化合物としては、モリブデンの場合、水中でモリブデン酸アニオンを生成する化合物であり、例えばモリブデン酸、三酸化モリブデン、三硫化モリブデン、六塩化モリブデン、リンモリブデン酸、モリブデン酸アンモニウム、モリブデン酸カリウム二水和物、モリブデン酸ナトリウム二水和物等が挙げられるが、モリブデン酸、三酸化モリブデン、リンモリブデン酸が好ましい。   In the case of molybdenum, the Group 6 metal compound is a compound that generates a molybdate anion in water. For example, molybdic acid, molybdenum trioxide, molybdenum trisulfide, molybdenum hexachloride, phosphomolybdic acid, ammonium molybdate, potassium molybdate Examples thereof include dihydrate and sodium molybdate dihydrate, but molybdic acid, molybdenum trioxide, and phosphomolybdic acid are preferable.

タングステンの場合、水中でタングステン酸アニオンを生成する化合物であり、例えばタングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、タングステン酸アンモニウム、タングステン酸カリウム二水和物、タングステン酸ナトリウム二水和物等が挙げられるが、タングステン酸、三酸化タングステン、リンタングステン酸、タングステン酸ナトリウム二水和物等が好ましい。これら6族金属化合物類は単独で使用しても、2種以上を混合使用してもよい。その使用量は基質のトリオレフィン類に対して0.0001〜20モル%、好ましくは0.01〜20モル%の範囲から選ばれる。   In the case of tungsten, it is a compound that produces tungstate anions in water, such as tungstic acid, tungsten trioxide, tungsten trisulfide, tungsten hexachloride, phosphotungstic acid, ammonium tungstate, potassium tungstate dihydrate, tungstic acid Examples thereof include sodium dihydrate, and tungstic acid, tungsten trioxide, phosphotungstic acid, sodium tungstate dihydrate and the like are preferable. These Group 6 metal compounds may be used alone or in combination of two or more. The amount used is selected from the range of 0.0001 to 20 mol%, preferably 0.01 to 20 mol%, based on the triolefin as a substrate.

なお、リン酸、ポリリン酸、アミノメチルホスホン酸、リン酸ナトリウムのごとき添加剤を使用することによってこの種の触媒を改質してもよく、また、添加することが好ましい。   It should be noted that this type of catalyst may be modified by using additives such as phosphoric acid, polyphosphoric acid, aminomethylphosphonic acid, and sodium phosphate, and is preferably added.

本発明の製造法において、反応は通常、30〜100℃の範囲で、好ましくは40〜80℃の範囲で行われる。
かくして得られる多官能性エポキシ化合物としては、一般式(2)で表される化合物である。
In the production method of the present invention, the reaction is usually performed in the range of 30 to 100 ° C, preferably in the range of 40 to 80 ° C.
The polyfunctional epoxy compound thus obtained is a compound represented by the general formula (2).

一般式(2)

Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。) General formula (2)
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)

一般式(2)で示される具体的な化合物としては、例えば、以下の構造を有する化合物を挙げることができる。   Specific examples of the compound represented by the general formula (2) include compounds having the following structures.

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

Figure 0005093771
Figure 0005093771

かくして生成した目的の多官能性エポキシ化合物は、反応終了後の混合液を濃縮後、再結晶や蒸留、昇華等の通常の方法によって取り出すことができる。   The target polyfunctional epoxy compound thus produced can be taken out by a usual method such as recrystallization, distillation or sublimation after concentrating the mixed solution after completion of the reaction.

以下実施例により本発明を更に具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.

なお、本明細書に記載の収率は以下のように定義される:
一般式(1)で表される化合物の転化率(%)=〔(反応した一般式(1)で表される化合物のモル数)/(反応に供給した一般式(1)で表される化合物のmol数)〕×100
一般式(2)で表される化合物の収率(%)=〔(一般式(1)で表される化合物の転化率(%))×((生成した多官能性エポキシ化合物のモル数)/(反応した一般式(1)で表される化合物のモル数))×100(%))〕/100
The yields described herein are defined as follows:
Conversion rate (%) of the compound represented by the general formula (1) = [(mol number of the compound represented by the reacted general formula (1)) / (represented by the general formula (1) supplied to the reaction) Compound mol number)] × 100
Yield of compound represented by general formula (2) (%) = [(conversion rate of compound represented by general formula (1) (%)) × ((number of moles of polyfunctional epoxy compound produced)) / (Number of moles of the compound represented by the general formula (1) reacted)) × 100 (%))] / 100

実施例1
Na2WO4・2H2O(790.6mg,2.40mmol)、30質量%過酸化水素水溶液(14.96g,0.132mol)、硫酸水素メチルトリオクチルアンモニウム(559.2mg,1.20mmol)、アミノメチルホスホン酸(0.133g,1.20mmol)及び下記化合物(1)(30.0g, 0.120mol)を混合し25℃にて3分反応させた後、60℃まで昇温し6時間撹拌した。反応終了後、室温まで冷却させた。チオ硫酸ナトリウム飽和水溶液にて後処理を行った後、有機層を取り出した。得られた溶液をガスクロマトグラフィーにて測定したところ、原料である化合物(1)の転化率 は96%であり、多官能性エポキシ化合物である4, 5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルの収率が93%であることを確認した。ジエポキシドやトリエポキシドは全く生成していないという結果が得られた。
Example 1
Na 2 WO 4 .2H 2 O (790.6 mg, 2.40 mmol), 30% by mass aqueous hydrogen peroxide solution (14.96 g, 0.132 mol), methyl trioctylammonium hydrogen sulfate (559.2 mg, 1.20 mmol) , Aminomethylphosphonic acid (0.133 g, 1.20 mmol) and the following compound (1) (30.0 g, 0.120 mol) were mixed and reacted at 25 ° C. for 3 minutes, and then heated to 60 ° C. for 6 hours. Stir. After completion of the reaction, it was cooled to room temperature. After post-treatment with a saturated aqueous solution of sodium thiosulfate, the organic layer was taken out. When the obtained solution was measured by gas chromatography, the conversion rate of the raw material compound (1) was 96%, and the polyfunctional epoxy compound 4,5-epoxycyclohexane-1,2-dicarboxylic acid. It was confirmed that the yield of diallyl was 93%. As a result, no diepoxide or triepoxide was produced.

化合物(1)

Figure 0005093771
また、4, 5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルには、下記化合物(2)及び下記化合物(3)に2種の異性体が存在するが、上記反応では、4, 5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルのうち96%が化合物(2)であり、4%が化合物(3)であることが、ガスクロマトグラフ(以下、GCと記す。) 法により確認された。 Compound (1)
Figure 0005093771
Further, diallyl 4,5-epoxycyclohexane-1,2-dicarboxylate has two isomers in the following compound (2) and the following compound (3), but in the above reaction, 4,5-epoxy It was confirmed by a gas chromatograph (hereinafter referred to as GC) method that 96% of cycloallyl-1,2-dicarboxylic acid diallyl was compound (2) and 4% was compound (3).

化合物(2)

Figure 0005093771
Compound (2)
Figure 0005093771

化合物(3)

Figure 0005093771
なお、そのときのGC法の分析条件は以下の通りである。
使用カラム:J&W サイエンティフィック社製 HP−1
(長さ30m、内径0.32mm、膜厚0.25μm)
インジェクション温度:300℃
検出器温度:300℃
カラムの温度条件:スタート温度130℃で2分間ホールドし、その後20℃/分の昇温速度で280℃まで昇温し、その後、6.5分間280℃でホールド Compound (3)
Figure 0005093771
The analytical conditions of the GC method at that time are as follows.
Column used: HP-1 manufactured by J & W Scientific
(Length 30m, inner diameter 0.32mm, film thickness 0.25μm)
Injection temperature: 300 ° C
Detector temperature: 300 ° C
Column temperature condition: Hold at a start temperature of 130 ° C. for 2 minutes, then increase the temperature to 280 ° C. at a temperature increase rate of 20 ° C./min, and then hold at 280 ° C. for 6.5 minutes

実施例2
Na2WO4・2H2O(790.6mg,2.40mmol)、30質量%過酸化水素水溶液 (14.96g,0.132mmol) 、硫酸水素メチルトリオクチルアンモニウム(559.2mg,1.20mmol)、アミノメチルホスホン酸(0.133g,1.20mmol)及び下記化合物(4)(31.7g,0.120mol)を混合し25℃にて3分反応させた後、60℃まで昇温し6時間撹拌した。実施例1と同様の操作を行ったところ、原料である化合物(4)の転化率は94%であり、多官能性エポキシ化合物である4−メチル−4,5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルの収率が90%であることを確認した。ジエポキシドやトリエポキシドは全く生成していないという結果が得られた。
Example 2
Na 2 WO 4 .2H 2 O (790.6 mg, 2.40 mmol), 30% by mass aqueous hydrogen peroxide solution (14.96 g, 0.132 mmol), methyl trioctylammonium hydrogen sulfate (559.2 mg, 1.20 mmol) , Aminomethylphosphonic acid (0.133 g, 1.20 mmol) and the following compound (4) (31.7 g, 0.120 mol) were mixed and reacted at 25 ° C. for 3 minutes, and then heated to 60 ° C. for 6 hours. Stir. When the same operation as in Example 1 was performed, the conversion of the compound (4) as a raw material was 94%, and the polyfunctional epoxy compound 4-methyl-4,5-epoxycyclohexane-1,2- It was confirmed that the yield of diallyl dicarboxylate was 90%. As a result, no diepoxide or triepoxide was produced.

化合物(4)

Figure 0005093771
また、4−メチル−4, 5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルには、下記化合物(5)及び下記化合物(6)に2種の異性体が存在するが、上記反応では、4−メチル−4, 5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルのうち96%が化合物(5)であり、4%が化合物(6)であることが、GC法により確認された。 Compound (4)
Figure 0005093771
Further, 4-methyl-4,5-epoxycyclohexane-1,2-dicarboxylate diallyl has two isomers in the following compound (5) and the following compound (6). It was confirmed by the GC method that 96% of the diallyl-methyl-4,5-epoxycyclohexane-1,2-dicarboxylate was compound (5) and 4% was compound (6).

化合物(5)

Figure 0005093771
Compound (5)
Figure 0005093771

化合物(6)

Figure 0005093771
なお、そのときのGC法の分析条件は、実施例1で記載したのと同様の条件である。 Compound (6)
Figure 0005093771
Note that the analysis conditions of the GC method at that time are the same as those described in Example 1.

比較例1
攪拌機、還流冷却器、温度計、滴下ロートを取り付けた内容量2lの四ッ口フラスコに化合物(1)400g、ベンゼン600g、90%ギ酸41g、40%リン酸2g及び塩化カルシウム2gを仕込み、内容物をかきまぜつつ温度を50〜60℃に調節しながら、滴下ロートより50質量%過酸化水素水溶液132gを30分間で滴下し、60℃で5時間反応させた。その後、GC法により分析した結果、4, 5−エポキシシクロヘキサン−1,2−ジカルボン酸ジアリルの収率は65%であった。
なお、そのときのGC法の分析条件は、実施例1で記載したのと同様の条件である。
Comparative Example 1
A 2-liter four-necked flask equipped with a stirrer, reflux condenser, thermometer, and dropping funnel is charged with 400 g of compound (1), 600 g of benzene, 41 g of 90% formic acid, 2 g of 40% phosphoric acid and 2 g of calcium chloride. While stirring the product, adjusting the temperature to 50 to 60 ° C., 132 g of a 50 mass% hydrogen peroxide aqueous solution was dropped from the dropping funnel over 30 minutes and reacted at 60 ° C. for 5 hours. Then, as a result of analyzing by GC method, the yield of diallyl 4,5-epoxycyclohexane-1,2-dicarboxylate was 65%.
Note that the analysis conditions of the GC method at that time are the same as those described in Example 1.

Claims (3)

有機溶媒を用いず、相間移動触媒、及び6族金属化合物の存在下、酸化剤として過酸化水素水溶液を用いて下記一般式(1):
Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。)
で表される化合物を酸化して、下記一般式(2):
Figure 0005093771
(式中、R1〜R6は、それぞれ独立に、水素原子、ヒドロキシ基、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、アシル基、アシロキシ基、あるいは、R1とR2、R1とR3、R1とR4、R1とR5、R1とR6、R2とR3、R2とR4、R2とR5、R2とR6、R3とR4、R3とR5、R3とR6、R4とR5、R4とR6又はR5とR6が炭素数1〜3の炭素鎖で架橋されたものを示し、これらは独立に炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数3〜7のシクロアルキル基、アリール基、アラルキル基、カルボキシル基、ハロゲン原子で置換されていてもよい。また、式中、R7〜R8は、それぞれ独立に、水素原子又は炭素数1〜4のアルキル基を表し、R9〜R12は、それぞれ独立に、水素原子、炭素数1〜4のアルキル基又は炭素数1〜4のアルコキシ基を表す。)
で表されるエポキシ化合物を製造することを特徴とする当該エポキシ化合物の製造方法。
The following general formula (1) using an aqueous hydrogen peroxide solution as an oxidizing agent in the presence of a phase transfer catalyst and a Group 6 metal compound without using an organic solvent :
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)
The compound represented by the following formula (2) is oxidized:
Figure 0005093771
Wherein R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a cycloalkyl having 3 to 7 carbon atoms. Group, aryl group, aralkyl group, acyl group, acyloxy group, or R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R 5 , R 1 and R 6 , R 2 and R 3 , R 2 and R 4 , R 2 and R 5 , R 2 and R 6 , R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 5 , R 4 and R 6 or R 5 and R 6 are cross-linked by a carbon chain having 1 to 3 carbon atoms, and these are independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 3 to 7 carbon atoms. cycloalkyl group, an aryl group, an aralkyl group, a carboxyl group, may be substituted with a halogen atom. in the above formula, R 7 to R 8 each independently represent a hydrogen atom or Represents an alkyl group of prime 1-4, R 9 to R 12 each independently represent a hydrogen atom, an alkyl group or an alkoxy group having 1 to 4 carbon atoms having 1 to 4 carbon atoms.)
The manufacturing method of the said epoxy compound characterized by manufacturing the epoxy compound represented by these.
前記相間移動触媒が硫酸水素4級アンモニウム化合物である、請求項1に記載の方法。   The method of claim 1, wherein the phase transfer catalyst is a quaternary ammonium hydrogen sulfate compound. 前記6族金属化合物がタングステンである、請求項1又は2に記載の方法。   The method according to claim 1, wherein the group 6 metal compound is tungsten.
JP2006276641A 2006-10-10 2006-10-10 Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds Expired - Fee Related JP5093771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276641A JP5093771B2 (en) 2006-10-10 2006-10-10 Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276641A JP5093771B2 (en) 2006-10-10 2006-10-10 Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds

Publications (2)

Publication Number Publication Date
JP2008094741A JP2008094741A (en) 2008-04-24
JP5093771B2 true JP5093771B2 (en) 2012-12-12

Family

ID=39377965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276641A Expired - Fee Related JP5093771B2 (en) 2006-10-10 2006-10-10 Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds

Country Status (1)

Country Link
JP (1) JP5093771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073960A1 (en) * 2008-12-26 2010-07-01 昭和電工株式会社 Epoxy compound production method
WO2018097150A1 (en) * 2016-11-24 2018-05-31 帝人ファーマ株式会社 Epoxy compound production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794030A (en) * 1955-10-18 1957-05-28 Union Carbide & Carbon Corp Aliphatic esters of 4, 5-epoxycyclohexane-1, 2-dicarboxylic acids
JP2004059575A (en) * 2002-06-03 2004-02-26 Sumitomo Chem Co Ltd Method for producing epoxides
JP4618412B2 (en) * 2004-07-26 2011-01-26 日産化学工業株式会社 Alicyclic tetracarboxylic acid compound and process for producing the same
JP4911919B2 (en) * 2005-05-16 2012-04-04 昭和電工株式会社 Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound
JP4998977B2 (en) * 2006-05-18 2012-08-15 独立行政法人産業技術総合研究所 Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound

Also Published As

Publication number Publication date
JP2008094741A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4911919B2 (en) Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound
Sudalai et al. Sodium periodate mediated oxidative transformations in organic synthesis
JP5550051B2 (en) Method for producing epoxy compound
JP4603787B2 (en) Use of cyclic alkanes as precipitation accelerators in the epoxidation of cyclic alkenes.
CN1219740C (en) Epoxidation method of cis double bond
EP2351728B1 (en) Process for producing an aromatic aldehyde compound
JP2001072673A (en) Production of epoxide
JP5093771B2 (en) Process for producing multifunctional epoxy compounds by selective oxidation of triolefin compounds
JP2022087349A (en) Method for producing polyvalent glycidyl compound
JP3662038B2 (en) Method for producing epoxy compound
JP2013542170A (en) Production process of divinylarene dioxide
JP4998977B2 (en) Method for producing bifunctional epoxy monomer by selective oxidation of diolefin compound
JP2010163412A (en) Method for producing carbonyl compound
JP2001097965A (en) Method for producing olefin oxide
JP5103661B2 (en) Method for producing diepoxy compound
JP2005255560A (en) Method for producing pyridine n-oxide
JP4386675B2 (en) Liquid phase oxidation reaction using tungsten species
JP2008106016A (en) Multifunctional epoxy compound by selective oxidation of polyolefin compound
JP2003096079A (en) Method for producing alicyclic epoxy compound with oxetane ring
JP2010155805A (en) Method for producing epoxy compound
JP2005306803A (en) Oxidation method for unsaturated compound
JP2017052729A (en) Method for manufacturing oxaziridine compound
JP2003238544A (en) Method for producing epoxides
JP2011136920A (en) Method for producing alicyclic epoxy compound
JP2015189695A (en) Mono-epoxidation method of cyclic olefin compound having vinyl group or allyl group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees