JP5092217B2 - Battery electrode manufacturing method and manufacturing apparatus - Google Patents

Battery electrode manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5092217B2
JP5092217B2 JP2005235455A JP2005235455A JP5092217B2 JP 5092217 B2 JP5092217 B2 JP 5092217B2 JP 2005235455 A JP2005235455 A JP 2005235455A JP 2005235455 A JP2005235455 A JP 2005235455A JP 5092217 B2 JP5092217 B2 JP 5092217B2
Authority
JP
Japan
Prior art keywords
active material
current collecting
laser
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005235455A
Other languages
Japanese (ja)
Other versions
JP2007052934A (en
Inventor
健二 香取
業 須藤
勇人 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005235455A priority Critical patent/JP5092217B2/en
Publication of JP2007052934A publication Critical patent/JP2007052934A/en
Application granted granted Critical
Publication of JP5092217B2 publication Critical patent/JP5092217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ノート型パーソナルコンピュータなどの電子機器類、精密機器類などに装着して用いるリチウムイオン2次電池の電池用電極の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for manufacturing a battery electrode of a lithium ion secondary battery used by being mounted on electronic devices such as notebook personal computers, precision devices, and the like.

ビデオ・カメラやノート型パーソナルコンピュータ、携帯電話などの高機能電子機器は、比較的消費電流が大きいため、採用される電池には重負荷に耐えられることと、近年では省資源の観点から繰返し充電することができることが求められるようになっている。このため、これら電子機器の主電源やバックアップ用電源としてリチウムイオン2次電池が使用されている。このリチウムイオン2次電池は、高エネルギー密度を有し、自己放電も少なく軽量であるという優れた特長をもっている。   High-performance electronic devices such as video cameras, laptop computers, and mobile phones consume relatively large currents, so the batteries used can withstand heavy loads and have been recharged in recent years in order to save resources. What can be done is being sought. For this reason, lithium ion secondary batteries are used as the main power source and backup power source for these electronic devices. This lithium ion secondary battery has excellent features such as high energy density, low self-discharge and light weight.

そして、従来このリチウムイオン2次電池では、充放電サイクルの進行に伴い、負極において充電時にリチウムがデンドライト状に結晶成長し、このデンドライト状の結晶が正極に到達して内部短絡に至る可能性が高いという問題点があったが、負極に負極活物質担持体としての炭素系材料を使用することにより大きく特性が改善され、実用化されるに至っている。   In the conventional lithium ion secondary battery, as the charge / discharge cycle progresses, lithium grows in a dendrite shape at the time of charging in the negative electrode, and this dendritic crystal may reach the positive electrode and lead to an internal short circuit. Although there was a problem that it was high, the use of a carbon-based material as a negative electrode active material carrier for the negative electrode has greatly improved the characteristics and has been put to practical use.

すなわち、負極に負極活物質担持体としての炭素系材料を使用したリチウムイオン2次電池では、化学的、物理的方法によって予め負極の炭素系材料に担持させたリチウム及び正極活物質の結晶構造中に含有させたリチウム(例えば、コバルト酸リチウムLiCoO)及び電解液中に溶解したリチウムのそれぞれが、充放電時に負極において炭素層間へ吸蔵(ドープ)されかつ炭素層間から放出(脱ドープ)される。このため、充放電サイクルが進行しても負極において充電時にデンドライト状の結晶の析出は見られずに内部短絡を起こしにくく、良好な充放電サイクル特性を示す。 That is, in a lithium ion secondary battery using a carbon-based material as a negative electrode active material carrier for the negative electrode, the crystal structure of lithium and the positive electrode active material previously supported on the negative electrode carbon-based material by a chemical or physical method is used. Each of lithium contained in lithium (for example, lithium cobaltate LiCoO 2 ) and lithium dissolved in the electrolyte is occluded (doped) between the carbon layers and released (dedoped) from the carbon layers in the negative electrode during charge / discharge. . For this reason, even when the charge / discharge cycle proceeds, no precipitation of dendrite-like crystals is observed at the time of charging in the negative electrode, and internal short circuit hardly occurs, and good charge / discharge cycle characteristics are exhibited.

このように従来、リチウムイオン2次電池用負極としては、集電体である銅箔に活物質である黒鉛などの炭素系材料を塗布した材料が主に使用されている。そして、リチウムイオン2次電池用負極には、単位重量当たり取出すことができるエネルギーが大きいこと(高エネルギー密度)と、充放電サイクル寿命が優れていることなどが必要とされるが、この点から黒鉛を見ると、理論エネルギー容量は低い(372mAh/g)ものの、優れた充放電サイクル寿命を有するものといえる。
しかし、近年さらなる小型・軽量化に対応するため、黒鉛などの炭素系材料の代わりに理論エネルギー容量が高い錫(993mAh/g)が注目され、錫や錫合金を負極材料に用いたリチウムイオン2次電池が実用化されつつある。
Thus, conventionally, as a negative electrode for a lithium ion secondary battery, a material obtained by applying a carbon-based material such as graphite as an active material to a copper foil as a current collector is mainly used. The negative electrode for a lithium ion secondary battery needs to have a large energy that can be taken out per unit weight (high energy density) and an excellent charge / discharge cycle life. From this point, From the viewpoint of graphite, it can be said that although the theoretical energy capacity is low (372 mAh / g), it has an excellent charge / discharge cycle life.
However, in order to cope with further reduction in size and weight in recent years, tin (993 mAh / g) having a high theoretical energy capacity has attracted attention in place of carbon-based materials such as graphite, and lithium ion 2 using tin or a tin alloy as a negative electrode material. Secondary batteries are being put into practical use.

一方、電池構造として、図8に示すように、帯状の正極2と帯状の負極1とを帯状のセパレータ3を介してその長さ方向に巻回することによって構成される渦巻式の巻回電極体構造が有効である。この巻回電極体構造では、電極面積が大きくとれるために比較的消費電流の大きい、重負荷による使用にも耐えることができる。
そして巻回電極体では、電極面積を大きくしかつ活物質又は活物質担持体を限られた空間内にできるだけ多く充填できるように電極を薄くすることが電池性能向上の点から望ましい。
なお、図8で符号5は電池缶、7は正極、11は負極リード、12は正極リードである。
On the other hand, as a battery structure, as shown in FIG. 8, a spiral wound electrode constituted by winding a strip-like positive electrode 2 and a strip-like negative electrode 1 in the length direction thereof via a strip-like separator 3. Body structure is effective. In this wound electrode body structure, since the electrode area can be made large, it can withstand use under heavy loads, which consumes a relatively large amount of current.
In the wound electrode body, it is desirable from the viewpoint of improving battery performance that the electrode area is increased and the electrode is thinned so that the active material or the active material carrier can be filled as much as possible in the limited space.
In FIG. 8, reference numeral 5 is a battery can, 7 is a positive electrode, 11 is a negative electrode lead, and 12 is a positive electrode lead.

このような、集電体とされる銅箔上に活物質が設けられた電極に必要とされる要件としては、a)充放電に伴うリチウムイオンが透過し易いように多孔質であること、b)電子の伝導経路が十分確保されるように電気抵抗が低いこと、c)活物質の充填度が大きいこと、などが挙げられる。
そして、従来、集電体とされる銅箔上に活物質が設けられる電極やその製造方法には、特許文献1〜5に開示されているものが知られている。
The requirements for an electrode provided with an active material on a copper foil to be a current collector are as follows: a) it is porous so that lithium ions associated with charge / discharge are easily transmitted; b) low electrical resistance so as to ensure a sufficient electron conduction path; c) high active material filling.
And the thing currently disclosed by patent documents 1-5 is conventionally known for the electrode by which an active material is provided on the copper foil used as an electrical power collector, and its manufacturing method.

特許文献1には、リチウムイオン2次電池に代表される非水電解液2次電池用電極板及び該電極板の製造方法に関するものが記載されている。
この非水電解液2次電池用電極板の製造方法は、少なくとも活物質と結着剤(バインダ)とを混錬して電極塗工液を調製する工程と、この電極用塗工液を集電体上に塗工する工程と、集電体上に塗工された塗工液を乾燥して活物質が含有された塗工膜を形成する工程を有する非水電解液2次電池用電極板を製造する非水電解液2次電池用電極板の製造方法であり、電極塗工液を2回以上の塗工工程及び乾燥工程に分けて塗工、乾燥して所定の膜厚の塗工膜を集電体上に形成し、且つ1回目の塗工工程及び乾燥工程によって形成される塗工膜の乾燥膜厚が、2回目の塗工工程及び乾燥工程によって形成される2回目のみの塗工膜の乾燥膜厚よりも厚く、且つ更に塗工回数が増加した場合には、塗工回数が増加するにつれてそれぞれの工程で形成される塗工膜の乾燥膜厚が順次減少する様に構成したものである。
Patent Document 1 describes an electrode plate for a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery and a method for producing the electrode plate.
The method for producing an electrode plate for a non-aqueous electrolyte secondary battery includes a step of kneading at least an active material and a binder (binder) to prepare an electrode coating solution, and collecting the electrode coating solution. A non-aqueous electrolyte secondary battery electrode comprising a step of coating on an electric body and a step of drying a coating liquid coated on the current collector to form a coating film containing an active material A method for producing an electrode plate for a non-aqueous electrolyte secondary battery for producing a plate, wherein the electrode coating solution is divided into two or more coating steps and a drying step, and is applied and dried to give a predetermined film thickness. The film thickness is formed on the current collector, and the dry film thickness of the coating film formed by the first coating process and the drying process is only the second time formed by the second coating process and the drying process. If the coating thickness is greater than the dry film thickness of the coating film and the number of coatings is further increased, it is formed in each step as the number of coatings increases. Dry thickness of the coating film is one that was constructed so as to decrease successively to.

この非水電解液2次電池用電極板の製造方法では、集電体上に電極塗工液を塗工処理、乾燥処理して塗工膜を形成する際に、集電体界面における結着剤の存在量を減少させることなく塗工膜を形成することによって、集電体と塗工膜との密着性を損なうことなく十分な厚みの塗膜を形成させることができ、また、従来よりも速い乾燥を可能とすることによって、電極板の製造における生産性を向上させることが可能となる。   In this method of manufacturing an electrode plate for a non-aqueous electrolyte secondary battery, when an electrode coating solution is applied and dried on a current collector to form a coating film, binding at the current collector interface is performed. By forming a coating film without reducing the amount of agent present, it is possible to form a sufficiently thick coating film without impairing the adhesion between the current collector and the coating film. In addition, by enabling fast drying, it is possible to improve productivity in manufacturing the electrode plate.

特許文献2には、集電体上に活物質層を形成するリチウムイオンニ次電池用電極の製造方法に関するものが記載されている。
このリチウムイオンニ次電池用電極の製造方法は、蒸着源に含まれる蒸着材料を加熱することにより蒸発させて堆積する蒸着法を用いて、リチウムと合金化する活物質を含む活物質層を、リチウムと合金化しない金属を含む集電体上に形成する工程と、蒸着源に含まれる蒸着材料を加熱することにより蒸発させて堆積する際に、集電体と蒸着源との間に少なくとも1回物理的に遮断する工程を備えるようにしたものである。
Patent Document 2 describes a method for manufacturing an electrode for a lithium ion secondary battery in which an active material layer is formed on a current collector.
The method for manufacturing an electrode for a lithium ion secondary battery includes an active material layer containing an active material that is alloyed with lithium by using a vapor deposition method in which a vapor deposition material included in a vapor deposition source is evaporated to be deposited by heating. At least once between the current collector and the vapor deposition source when the vapor deposition material contained in the vapor deposition source is evaporated and deposited by heating. A step of physically blocking is provided.

このリチウムイオンニ次電池用電極の製造方法では、堆積する際に、集電体と蒸着源との間を少なくとも1回物理的に遮断されるため、集電体の温度上昇に起因する劣化が抑制されると共に、集電体上の活物質層の加熱も抑制されるため活物質層中に導入される酸素の量を低減することができる。その結果、容量低下の抑制と共に、初期充放電特性や充放電サイクル特性の低下を抑制することができる。   In this method for manufacturing an electrode for a lithium ion secondary battery, the current collector and the vapor deposition source are physically interrupted at least once during deposition, so that deterioration due to temperature rise of the current collector is suppressed. In addition, since heating of the active material layer on the current collector is also suppressed, the amount of oxygen introduced into the active material layer can be reduced. As a result, it is possible to suppress a decrease in initial charge / discharge characteristics and charge / discharge cycle characteristics as well as a decrease in capacity.

特許文献3には、リチウムイオン2次電池に代表されるアルカリ金属イオンの可逆的な吸蔵・放出を利用した非水系2次電池用負極材料に関するものが記載されている。
この非水系2次電池用負極材料の製造方法は、原料を加熱して溶融して溶融物を得る工程と、溶融物を凝固させる工程とを含む非水系2次電池用負極材料の製造方法であって、原料を溶融する工程と溶融物を凝固させる工程において材料の温度が300℃以上の温度域にある過程を非酸化性雰囲気中で実施するようにしたものである。
Patent Document 3 describes a material for a negative electrode for a non-aqueous secondary battery using reversible occlusion / release of alkali metal ions typified by a lithium ion secondary battery.
The method for producing a negative electrode material for a non-aqueous secondary battery is a method for producing a negative electrode material for a non-aqueous secondary battery including a step of heating and melting a raw material to obtain a melt, and a step of solidifying the melt. In the process of melting the raw material and the process of solidifying the melt, the process in which the temperature of the material is in the temperature range of 300 ° C. or higher is performed in a non-oxidizing atmosphere.

この非水系2次電池用負極材料の製造方法では、合金粉体からなる非水系2次電池用負極材料の粉体の比電気抵抗を一定以下とすることにより、放電容量とサイクル寿命の何れも良好な負極材料を確実に得ることができる。   In this method for producing a negative electrode material for a non-aqueous secondary battery, both the discharge capacity and the cycle life can be achieved by setting the specific electrical resistance of the powder of the negative electrode material for the non-aqueous secondary battery made of an alloy powder to a certain value or less. A good negative electrode material can be obtained reliably.

特許文献4には、リチウムイオン2次電池を対象とするものではないが、電気自動車などに用いられるニッケル水素電池、ニッカド水素電池などの2次電池としての基本性能を高め得るようにした2次電池負極板の製造方法に関するものが記載されている。
この2次電池負極板の製造方法は、一対の圧延ロール間に、多数の貫通孔を有する薄板状の芯材を通しながら、水素吸蔵合金粉末を芯材の表面に供給して加熱圧延を行い、この芯材の両面に対し水素吸蔵合金粉末を焼結固着させるようにしたものである。
Patent Document 4 is not intended for a lithium ion secondary battery, but a secondary battery capable of improving basic performance as a secondary battery such as a nickel metal hydride battery or a nickel cadmium hydrogen battery used in an electric vehicle or the like. A method for manufacturing a battery negative electrode plate is described.
In this method of manufacturing a secondary battery negative electrode plate, a hydrogen storage alloy powder is supplied to the surface of the core material while being rolled while passing through a thin plate-shaped core material having a large number of through holes between a pair of rolling rolls. The hydrogen storage alloy powder is sintered and fixed to both surfaces of the core material.

この2次電池負極板の製造方法では、芯材に対して水素吸蔵合金粉末を有機バインダを使用することなく強固に且つ粒子同志を大きく結合させて固着し得、水素吸蔵合金粉末の粒子相互間を電気的に接続し且つ芯材と水素吸蔵合金粉末との接触面積を大きく確保して良好な導電性ネットワークを形成させることなどができる。
特開平09−134718号公報(第2頁左下,第3頁右上) 特開2005−158633号公報(第2頁左下,図2) 特開2002−246017号公報(第2頁左下から右上,第9頁右) 特開2001−68105号公報(第2頁,第6頁右下,図2)
In this method of manufacturing a secondary battery negative electrode plate, the hydrogen storage alloy powder can be firmly bonded to the core material without using an organic binder, and the particles can be firmly bonded to each other. Can be electrically connected and a large contact area between the core material and the hydrogen storage alloy powder can be secured to form a good conductive network.
JP 09-134718 (lower left of page 2, upper right of page 3) Japanese Patent Laying-Open No. 2005-158633 (2nd page, lower left, FIG. 2) JP-A-2002-246017 (from page 2, lower left to upper right, page 9, right) JP 2001-68105 A (2nd page, 6th page, lower right, FIG. 2)

しかしながら、従来知られている電極の製造方法は、特許文献1に記載されている、活物質と結着剤(バインダ)とを混錬して電極塗工液を集電体上に塗工、乾燥して電極を形成する方法では、結着剤が乾燥により除去されるため活物質が多孔質に形成されるが、この結着剤自体の存在により活物質の充填度の向上が妨げられると共に、電気抵抗が増大してしまう不都合がある。
また、特許文献2に記載されている、蒸着などにより集電体上に電池用の活物質を堆積させる方法では、活物質自体の充填率は向上するものの、膜としては多孔質とすることが難しく、リチウムイオンの透過性が不十分となるため電流容量を得ることができない不都合がある。
However, a conventionally known method for producing an electrode is described in Patent Document 1, wherein an active material and a binder (binder) are kneaded and an electrode coating solution is applied onto a current collector. In the method of forming the electrode by drying, the active material is formed porous because the binder is removed by drying, but the presence of the binder itself hinders improvement in the filling degree of the active material. There is a disadvantage that the electrical resistance increases.
Moreover, in the method of depositing an active material for a battery on a current collector by vapor deposition or the like described in Patent Document 2, the filling rate of the active material itself is improved, but the film may be made porous. It is difficult and there is a disadvantage that current capacity cannot be obtained because the permeability of lithium ions becomes insufficient.

また、特許文献3に記載されている、加熱により溶融させたのち凝固させる方法では、一般にバッチ処理により加熱、冷却することになるため、熱処理時間が長くなる不都合がある。
さらに、特許文献4に記載されている、合金粉末のみをバインダレスで芯材に圧延ロールを用いて焼結固着させる方法では、合金粉末同士は多孔質に結着され電気抵抗も小さく、また充填率も確保されるものの、芯材にある程度の厚さと強度を有するものを用いる必要があり負極板そのものの厚さが大きくなり電子機器類への用いるには不都合となる。
In addition, the method of melting and solidifying by heating described in Patent Document 3 generally involves heating and cooling by batch processing, which has the disadvantage that the heat treatment time becomes long.
Furthermore, in the method described in Patent Document 4 in which only the alloy powder is sintered and fixed to the core material using a rolling roll without a binder, the alloy powders are bonded to each other in a porous manner and have a low electrical resistance and are filled. Although the rate is secured, it is necessary to use a core material having a certain thickness and strength, and the thickness of the negative electrode plate itself becomes large, which is inconvenient for use in electronic devices.

本発明はかかる点に鑑み、生産性が良好で、リチウムイオン2次電池に使用して好適な電池用電極の製造方法及び製造装置を提案するものである。   In view of this point, the present invention proposes a manufacturing method and a manufacturing apparatus for a battery electrode that have good productivity and are suitable for use in a lithium ion secondary battery.

上記課題を解決するため、本発明は集電基材に活物質を固定する電池用電極の製造方法において、粉体状の活物質を集電基材に所定の薄さに設ける第1工程と、非酸化性の雰囲気中で、集電基材を動かしながら粉体状の活物質の側から、レーザ光のビーム径を絞って活物質にレーザ光を照射するレーザ集光系を用い、集電基材に対してレーザ集光系を水平に移動させてレーザスキャンし、このレーザ光の照射熱により粉体状の活物質同士の結着及び活物質の集電基材への固定を行なう第2工程と、を有し、第1及び第2工程を集電基材に活物質が所定の厚さになるまで繰返し行なうようにしたものである。 In order to solve the above-mentioned problems, the present invention provides a battery electrode manufacturing method in which an active material is fixed to a current collecting substrate, and a first step of providing a powdery active material on the current collecting substrate to a predetermined thickness; Using a laser condensing system that irradiates the active material with laser light by reducing the beam diameter of the laser light from the powdery active material side while moving the current collector substrate in a non-oxidizing atmosphere. laser scanning by moving horizontally the laser focusing system against the conductive substrate, the fixing of the irradiation heat of the laser beam to the powdery active material binder between and collector substrate of the active material performing a second step, has the active material of the first and second step to the current collector base material is obtained by the performed repeatedly until a predetermined thickness.

このように構成した電池用電極の製造方法によれば、集電基材上に薄く設けた粉体状の活物質に対しレーザ光を照射して粉体状の活物質を僅か溶解させ、粉体状の活物質と集電基材とを固定することができる。そして、この上に新たに粉体状の活物質の層を設けてからレーザ光を照射することにより先の活物質に対して新たな活物質の層を結着することができるので、複数回繰り返して所定の厚さまで結着剤(バインダ)を用いずに集電基材上に活物質を形成することができる。また、活物質の粉体粒径と加熱条件により結着後の多孔質の状態を変化させ充填率を調整することができる。   According to the battery electrode manufacturing method configured as described above, the powdered active material thinly provided on the current collecting base material is irradiated with laser light to slightly dissolve the powdered active material, and the powder The body-shaped active material and the current collecting base material can be fixed. A new active material layer can be bonded to the previous active material by irradiating a laser beam after a new powdery active material layer is provided thereon. The active material can be formed on the current collecting base material repeatedly without using a binder (binder) up to a predetermined thickness. Further, the filling rate can be adjusted by changing the porous state after the binding according to the powder particle size of the active material and the heating conditions.

このように構成した電池用電極の製造方法によれば、集電基材及び活物質の酸化による電気抵抗の増大を抑制することができる。According to the battery electrode manufacturing method configured as described above, an increase in electrical resistance due to oxidation of the current collecting base material and the active material can be suppressed.

また、本発明は上記記載の電池用電極の製造方法において、集電基材を銅箔とし、集電基材が銅箔ロールから繰り出されて連続的に供給されるようにしたものである。   Moreover, this invention makes the current collection base material copper foil in the manufacturing method of the battery electrode described above, and the current collection base material is drawn out from the copper foil roll and continuously supplied.

このように構成した電池用電極の製造方法によれば、銅箔の集電基材に対して活物質を固定すると共に活物質同士を結着する処理を連続的に行なうことができる。   According to the battery electrode manufacturing method configured as described above, it is possible to continuously perform the process of fixing the active material to the current collector base material of the copper foil and binding the active materials to each other.

上記課題を解決するため、本発明電池用電極の製造装置は、箔状の集電基材を供給する供給ロールと、処理後の集電基材を巻き取る巻取りロールと、加熱処理用のレーザ光の光源と、電池用電極の粉体状の活物質の供給機構と、粉体状の活物質を集電基材に設けるスキージと、粉体状の活物質を集電基材で所定の薄さに設けるスキージ高さ調整とスキージの移動とを行うスキージ駆動機構と、レーザ光のビーム径を絞って活物質にレーザ光を照射するレーザ集光系と、集電基材に対してレーザ集光系を水平に移動させてレーザスキャンを行うスキャン機構と、レーザ光が照射される箇所を非酸化性の雰囲気とする雰囲気形成機構と、を備え、供給ロールから繰り出された集電基材にスキージにより所定薄さに粉体状の活物質を設けると共に、集電基材を動かしながらレーザ光をスキャンして照射熱により粉体状の活物質同士の結着及び活物質の集電基材への固定を行なうようにしたものである。 In order to solve the above-described problems, the battery electrode manufacturing apparatus of the present invention includes a supply roll for supplying a foil-like current collecting base material, a winding roll for winding up the current collecting base material after the treatment, Laser light source, powder electrode active material supply mechanism for battery electrode, squeegee for providing powder active material on current collecting base material, powder active material predetermined on current collecting base material a squeegee driving mechanism for the squeegee height adjustment provided in thinness of and the movement of the squeegee, and a laser condensing system for irradiating a laser beam on the active material and squeeze the beam diameter of the laser beam, Shi pair collector substrate A current collecting mechanism fed out from a supply roll, and a scanning mechanism that performs laser scanning by moving the laser focusing system horizontally and an atmosphere forming mechanism that makes a portion irradiated with the laser light a non-oxidizing atmosphere. While providing a powdery active material to a predetermined thickness with a squeegee on the base material, It is obtained to perform the fixing to the powdery active material binder between and collector substrate of the active material by irradiation heat by scanning the laser beam while moving the conductive substrate.

このように構成した本発明電池用電極の製造装置によれば、酸化による電気抵抗の増大を回避しつつロール状の集電基材に対して活物質を連続的に固定すると共に活物質同士を結着し電池用電極を作製することができる。   According to the apparatus for manufacturing an electrode for a battery of the present invention configured as described above, the active material is continuously fixed to the roll-shaped current collecting base material while avoiding an increase in electrical resistance due to oxidation, and the active materials are bonded to each other. A battery electrode can be produced by binding.

本発明電池用電極の製造方法によれば、結着剤(バインダ)を用いずに集電基材への活物質の形成処理を連続的に行なうことができるので、生産上の効率を確保した上で活物質の充填性の向上と電気抵抗の改善を図ることができると共に、粉体の粒径や加熱条件により活物質の多孔質性を調整できリチウムイオンの透過性を改善することができる。   According to the method for manufacturing an electrode for a battery of the present invention, the formation of an active material on a current collecting base material can be continuously performed without using a binder (binder), so that production efficiency is ensured. It is possible to improve the filling property of the active material and the electrical resistance, and adjust the porosity of the active material according to the particle size of the powder and the heating conditions, thereby improving the lithium ion permeability. .

また、本発明電池用電極の製造装置によれば、酸化による電気抵抗の増大を回避しつつロール状の集電基材に対して活物質を連続的に固定した電池用電極を作製することができる。   In addition, according to the battery electrode manufacturing apparatus of the present invention, it is possible to produce a battery electrode in which an active material is continuously fixed to a roll-shaped current collecting base material while avoiding an increase in electrical resistance due to oxidation. it can.

本発明電池用電極の製造方法及び製造装置を実施するための最良の形態の例を図1〜図8を参照して説明する。   An example of the best mode for carrying out the method and apparatus for producing a battery electrode of the present invention will be described with reference to FIGS.

先ず、本例の電池用電極を説明する。
本例の電極が用いられる電池構造として、図8に示すように、帯状の負極1と帯状の正極2とを帯状のセパレータ3を介してその長さ方向に巻回されて構成される、渦巻式の巻回電極体構造で説明する。この巻回電極体構造では、電極面積を大きくとることができるため比較的消費電流が大きく重負荷となる電子機器での使用にも耐えることができる。
そして巻回電極体では、電池性能向上の点から電極面積を大きくしかつ活物質又は活物質担持体を限られた空間内にできるだけ多く充填できるように電極が薄く形成される。
以下では、負極1を例に説明する。
First, the battery electrode of this example will be described.
As a battery structure in which the electrode of this example is used, as shown in FIG. 8, a spiral formed by winding a strip-shaped negative electrode 1 and a strip-shaped positive electrode 2 through a strip-shaped separator 3 in the length direction thereof. The description will be made with reference to a wound electrode body structure. In this wound electrode structure, since the electrode area can be increased, it can withstand use in an electronic device that consumes a relatively large amount of current and has a heavy load.
In the wound electrode body, the electrode is thinly formed so that the electrode area is increased from the viewpoint of improving the battery performance and the active material or the active material carrier can be filled in the limited space as much as possible.
Below, the negative electrode 1 is demonstrated to an example.

図2は、上述図8に示すリチウムイオン2次電池の帯状の負極1を取り出し展開した負極材料41の斜視図である。図で41aは負極集電体である銅箔、41bは銅箔41aの面上に層状に形成されたCu(銅)粉とSn(錫)粉からなる負極活物質である。
このように、帯状に形成された負極材料41がセパレータ3を介して正極材料と共に巻回され、図8に示すように、負極1及び正極2として収納され電池が構成される。
FIG. 2 is a perspective view of the negative electrode material 41 in which the strip-shaped negative electrode 1 of the lithium ion secondary battery shown in FIG. 8 is taken out and developed. In the figure, 41a is a copper foil as a negative electrode current collector, and 41b is a negative electrode active material made of Cu (copper) powder and Sn (tin) powder formed in layers on the surface of the copper foil 41a.
Thus, the negative electrode material 41 formed in a strip shape is wound together with the positive electrode material through the separator 3, and is housed as the negative electrode 1 and the positive electrode 2 as shown in FIG.

図3は、負極材料41の断面を拡大して示した構造の模式図である。この負極材料41は、例えば粒径20μmのCu粉とSn粉とを重量比で1:1の割合で混合した粉体40を略20μm厚の銅箔41aの片面に、略50μmの厚みとなるようにバインダを用いずに固着させたものである。
このとき、銅箔41aの一面上で、負極活物質41bとなる混合粉体40が溶融により銅箔41aと固着され、さらに粉体40を構成するCu粉とSn粉とは完全に溶解することがない加熱条件によりその表面のみが溶融され互いに結着される。そして、混合粉体40の粒子間にリチウムイオンが透過できるような空間が残存するようにする。
FIG. 3 is a schematic diagram of a structure showing an enlarged cross section of the negative electrode material 41. The negative electrode material 41 has a thickness of about 50 μm on one surface of a copper foil 41 a having a thickness of about 20 μm, for example, a powder 40 in which Cu powder having a particle diameter of 20 μm and Sn powder are mixed at a weight ratio of 1: 1. Thus, it is fixed without using a binder.
At this time, the mixed powder 40 to be the negative electrode active material 41b is fixed to the copper foil 41a by melting on one surface of the copper foil 41a, and the Cu powder and the Sn powder constituting the powder 40 are completely dissolved. Only the surfaces are melted and bonded to each other under the heating conditions without any heat. Then, a space through which lithium ions can pass between the particles of the mixed powder 40 is left.

次に、この負極材料41の製造装置を、図1,図4,図5を参照して説明する。
図1は、本例における負極材料41の製造装置の構成の説明図である。負極材料41の製造装置は、ロール状に巻回された銅箔50を供給するための繰出しロール52と処理後の銅箔50を巻き取る巻取りロール53と図示しないロール駆動制御機構と、混合粉体40を供給するホッパ55と、銅箔50上に供給された混合粉体40を所定厚に均(なら)すスキージ56と、このスキージ56を駆動するスキージ駆動機構51及びレーザ光照射機構57などから構成される。
Next, the manufacturing apparatus of this negative electrode material 41 is demonstrated with reference to FIG.1, FIG.4, FIG.5.
FIG. 1 is an explanatory diagram of a configuration of a manufacturing apparatus for the negative electrode material 41 in this example. The negative electrode material 41 manufacturing apparatus includes a feeding roll 52 for supplying the copper foil 50 wound in a roll shape, a winding roll 53 for winding up the treated copper foil 50, a roll drive control mechanism (not shown), and mixing A hopper 55 for supplying the powder 40, a squeegee 56 for leveling the mixed powder 40 supplied on the copper foil 50 to a predetermined thickness, a squeegee driving mechanism 51 for driving the squeegee 56, and a laser beam irradiation mechanism 57 or the like.

銅箔50は、厚さが例えば略20μmで、幅が略300mmで長さが数mのもので、当初は繰出しロール52に巻回される。そして、巻回された銅箔50の一端が巻取りロール53に固定される。そして、図示しないロール駆動制御機構により、図1に示す両矢印の左右の向きに、所定量移動自在とされる。
ホッパ55は、底に設けられたスリット状の開口を開閉自在とする蓋が設けられた断面がラッパ状の容器である。そして、底の蓋を所定時間開くことでホッパ55内に供給された粉体40が、所定量だけ銅箔50上の幅方向に細長く供給されるようにしている。
スキージ56は、銅箔50上に供給された粉体40を、所定厚さとなるように均すもので、粉体40の厚さの精度を確保するため耐磨耗性を有する金属などで作製される。
The copper foil 50 has a thickness of, for example, about 20 μm, a width of about 300 mm, and a length of several meters, and is initially wound around the feeding roll 52. Then, one end of the wound copper foil 50 is fixed to the winding roll 53. Then, a predetermined amount of movement is possible in the left and right directions of the double arrow shown in FIG. 1 by a roll drive control mechanism (not shown).
The hopper 55 is a trumpet-shaped container provided with a lid that allows a slit-shaped opening provided at the bottom to be opened and closed. Then, the powder 40 supplied into the hopper 55 is elongated in the width direction on the copper foil 50 by opening the bottom lid for a predetermined time.
The squeegee 56 equalizes the powder 40 supplied onto the copper foil 50 so as to have a predetermined thickness, and is made of a metal having wear resistance to ensure the accuracy of the thickness of the powder 40. Is done.

スキージ駆動機構51は、図1に示す矢印のように、スキージ56を銅箔50上面との間で所定の間隙となるように昇降自在とすると共に、銅箔50上面に略平行に移動自在としてスキージ動作を行なわせることができるようにしている。
レーザ光照射機構57は、図4Aに示すように、例えばYAGレーザ、あるいはCO2(炭酸ガス)レーザなどを用いたレーザ発振器58と、このレーザ発振器58からのレーザ光を照射部付近まで導く光路59と、光路59により導かれたレーザ光を所定照射スポット径まで絞るレーザ集光系60及びこのレーザ集光系60を移動駆動する図示しないスキャン機構などから構成される。
なお、図4Aで符号54は、非酸化性ガスによるアシストガス54aが充填されたボンベである。アシストガス54aは、後述する切断ノズル60c(図4B)から照射されるレーザスポット周辺に吹き付けられ、溶融した領域を酸化させないように空気から遮断するようにしている。
The squeegee driving mechanism 51 can move up and down so that the squeegee 56 has a predetermined gap between the squeegee 56 and the upper surface of the copper foil 50 as shown by the arrows in FIG. A squeegee operation can be performed.
As shown in FIG. 4A, the laser light irradiation mechanism 57 includes a laser oscillator 58 using, for example, a YAG laser or a CO 2 (carbon dioxide gas) laser, and an optical path 59 for guiding the laser light from the laser oscillator 58 to the vicinity of the irradiation unit. And a laser condensing system 60 for narrowing the laser light guided by the optical path 59 to a predetermined irradiation spot diameter, and a scanning mechanism (not shown) for moving and driving the laser condensing system 60.
In FIG. 4A, reference numeral 54 denotes a cylinder filled with an assist gas 54a made of a non-oxidizing gas. The assist gas 54a is blown around a laser spot irradiated from a cutting nozzle 60c (FIG. 4B), which will be described later, and is shielded from air so as not to oxidize the melted region.

レーザ集光系60には、図4Bに示すように、例えば光路59からのレーザ光を略鉛直方向に反射する反射鏡60aと、ビーム径を小さく絞るための集光レンズ60bと、このレーザ集光系60の下端にレーザ光を出射すると共にアシストガス54aをレーザ光の照射部分に吹き付ける切断ノズル60cが設けられる。そして、レーザ集光系60は、図示しないスキャン機構により、図1に示す紙面の前後方向に移動自在とされる。
なお、図4Bで60aは反射ミラーで、Lはレーザ光を示している。
As shown in FIG. 4B, the laser condensing system 60 includes, for example, a reflecting mirror 60a that reflects laser light from the optical path 59 in a substantially vertical direction, a condensing lens 60b for narrowing the beam diameter, and the laser concentrating device. A cutting nozzle 60c that emits laser light to the lower end of the optical system 60 and blows the assist gas 54a onto the irradiated portion of the laser light is provided. The laser condensing system 60 is movable in the front-rear direction of the paper surface shown in FIG. 1 by a scanning mechanism (not shown).
In FIG. 4B, reference numeral 60a denotes a reflection mirror, and L denotes a laser beam.

このように構成された負極材料41の製造装置では、ホッパ55から銅箔50上に供給された粉体40が、ロール駆動機構により移動されたのちスキージ56で所定の厚さと幅に均される。そして、この状態でレーザ集光系60を、図1に示す前後方向にスキャンすると共に、銅箔50を僅かずつ右方向に移動させることで、均された粉体40の所望の範囲について、その上方からレーザ光を照射して加熱し銅箔50上に粉体40を固着させると共に、粉体40同士を結着させることができる。   In the manufacturing apparatus for the negative electrode material 41 configured as described above, the powder 40 supplied from the hopper 55 onto the copper foil 50 is moved by the roll drive mechanism and then leveled to a predetermined thickness and width by the squeegee 56. . In this state, the laser condensing system 60 is scanned in the front-rear direction shown in FIG. 1, and the copper foil 50 is moved rightward little by little, so that the desired range of the leveled powder 40 is Laser powder is irradiated from above and heated to fix the powder 40 on the copper foil 50 and to bind the powder 40 together.

以下、負極材料41の製造方法を、図5〜図8を参照して説明する。   Hereinafter, the manufacturing method of the negative electrode material 41 is demonstrated with reference to FIGS.

先ず、銅箔50上への混合粉体40の供給を側面図5A〜D,平面図6A〜Eを参照して説明する。
図5A及び図6Aに示すように、ホッパ55内の混合粉体40が所定量、銅箔50上に供給される。
そして、図5B及び図6Bに示すように、図示しないロール駆動制御機構により、銅箔50が所定距離だけ矢印の方向に駆動され、粉体40がスキージ56の図に示す右側に配するようにされる。つまり、銅箔50が所定量だけ繰出しロール52から繰り出されると共に巻取りロール53に巻き取られる。
First, the supply of the mixed powder 40 onto the copper foil 50 will be described with reference to side views 5A to 5D and plan views 6A to 6E.
As shown in FIGS. 5A and 6A, a predetermined amount of the mixed powder 40 in the hopper 55 is supplied onto the copper foil 50.
5B and 6B, the copper foil 50 is driven in the direction of the arrow by a predetermined distance by a roll drive control mechanism (not shown) so that the powder 40 is arranged on the right side of the squeegee 56 shown in the drawing. Is done. That is, the copper foil 50 is fed out from the feeding roll 52 by a predetermined amount and wound up on the winding roll 53.

その後、図5Cに示すように、スキージ56の下面が銅箔50の上面に対して所定の間隙、例えば50μmとなるように、スキージ駆動機構(図1)により下降駆動され、下降した状態でスキージ56が図5C及び図6Cに示す矢印の方向に駆動される。このときの、均されて薄い層とされた粉体を40aで示す。
そして、図5Dに示すように、スキージ56自体は元の図5Aに示す位置に戻される。
Thereafter, as shown in FIG. 5C, the squeegee 56 is lowered and driven by the squeegee driving mechanism (FIG. 1) so that the lower surface of the squeegee 56 has a predetermined gap, for example, 50 μm, with respect to the upper surface of the copper foil 50. 56 is driven in the direction of the arrow shown in FIGS. 5C and 6C. At this time, the powder which is made into a thin layer is shown by 40a.
Then, as shown in FIG. 5D, the squeegee 56 itself is returned to the original position shown in FIG. 5A.

次に、図6Dに示すように、レーザ集光系60を図に示す上下方向にスキャンすると共に、銅箔50を図に示す右方向に間欠移動させながら、レーザ光を粉体40aの上方から照射して加熱し、銅箔50と粉体40aとを固着させると共に、粉体40aのCu粉粒とSn粉粒同士を結着させる。固定された状態の粉体40aを40bで示す。この固定された粉体40bが負極活物質41bとなる。   Next, as shown in FIG. 6D, the laser condensing system 60 is scanned in the vertical direction shown in the figure, and the copper foil 50 is intermittently moved in the right direction shown in the figure, and laser light is emitted from above the powder 40a. Irradiation and heating are performed to fix the copper foil 50 and the powder 40a, and to bind the Cu powder particles and the Sn powder particles of the powder 40a. The fixed powder 40a is shown by 40b. The fixed powder 40b becomes the negative electrode active material 41b.

そして、粉体40aが固定された負極活物質41bをより厚く形成するときは、銅箔50を図6Dに示す左方向に、図5A及び図6Aの位置まで巻き戻してさらに粉体40を供給し、スキージ56を銅箔50上面から例えば100μmの高さまで下降させてから上述と同様の図5A〜D及び図6A〜Dの手順により負極活物質41bをさらに積層することができる。
そして、図6Eに示すように、粉体40の積層処理により所望の厚さの固定された負極活物質41bが形成されたとき、銅箔50を図の矢印に示す右方向に移動させると共に、負極活物質41bが形成された銅箔50を所定量巻取りロール53に巻き取る。
When the negative electrode active material 41b to which the powder 40a is fixed is formed thicker, the copper foil 50 is rewound in the left direction shown in FIG. 6D to the position shown in FIGS. 5A and 6A, and the powder 40 is further supplied. Then, after the squeegee 56 is lowered from the upper surface of the copper foil 50 to a height of, for example, 100 μm, the negative electrode active material 41b can be further laminated by the same procedures as in FIGS. 5A to 5D and FIGS.
As shown in FIG. 6E, when the negative electrode active material 41b having a desired thickness is formed by the lamination process of the powder 40, the copper foil 50 is moved in the right direction indicated by the arrow in the figure, A predetermined amount of the copper foil 50 on which the negative electrode active material 41 b is formed is wound on a winding roll 53.

上述図5A〜D及び図6A〜Eに示す処理を繰り返すことにより、ロール状とされた銅箔50上に複数の帯状とされた負極活物質41bが連続的に形成される。そして、巻取りロール53の帯状の負極活物質41bが複数形成された銅箔ロールは、別の整形処理装置により所定の寸法に切り出されて負極材料41とされる。
なお、銅箔50上でスキージ56により均される粉体40aの厚さは、当該レーザ光照射機構57によるレーザ光の照射したとき、銅箔50と粉体40aとが固着すると共に、粉体40同士が結着するのであれば、ここで示した略50μmの厚さに限らず、レーザ光照射機構57の性能により適宜変更することができるものである。
By repeating the processes shown in FIGS. 5A to 5D and FIGS. 6A to 6E, a plurality of strip-shaped negative electrode active materials 41b are continuously formed on the rolled copper foil 50. And the copper foil roll in which the strip | belt-shaped negative electrode active material 41b of the winding roll 53 was formed in plural is cut out to a predetermined dimension by another shaping processing apparatus, and it is set as the negative electrode material 41. FIG.
The thickness of the powder 40a that is leveled by the squeegee 56 on the copper foil 50 is such that when the laser light is irradiated by the laser light irradiation mechanism 57, the copper foil 50 and the powder 40a are fixed and the powder 40a is fixed. As long as 40 are bound together, the thickness is not limited to the thickness of about 50 μm shown here, but can be appropriately changed depending on the performance of the laser light irradiation mechanism 57.

以下、本発明による実施例について、図2,図7を参照して説明する。   Embodiments according to the present invention will be described below with reference to FIGS.

図7は本実施例のリチウムイオン2次電池の概略的な縦断図面であり、上述図2はこの電池に用いることのできる帯状の負極材料41の斜視図である。この電池を以下のように作製した。   FIG. 7 is a schematic longitudinal sectional view of the lithium ion secondary battery of this example, and FIG. 2 is a perspective view of a strip-like negative electrode material 41 that can be used in this battery. This battery was produced as follows.

まず、帯状の負極材料41は、粒径それぞれ20μmのCu粉体およびSn粉体(重量比1:1)の混合粉体40を用意し、これをスキージ56により50μmの厚みとなるように銅箔50上に均す。この銅箔50を巻き取りにより移動させつつレーザにより加熱焼結させ、電極を作製した。処理の雰囲気は、アシストガスを窒素ガスとして行った。
なお、成形後の負極活物質41bの層の膜厚は完全には溶解していないので略50μmであり、帯状の負極材料41の幅は41.5mm、長さは280mmとした。
First, as the strip-like negative electrode material 41, a mixed powder 40 of Cu powder and Sn powder (weight ratio 1: 1) each having a particle diameter of 20 μm is prepared, and this is squeegee 56 so that the thickness is 50 μm. Level on foil 50. The copper foil 50 was heated and sintered by a laser while being moved by winding to produce an electrode. The atmosphere of the treatment was performed using the assist gas as nitrogen gas.
The film thickness of the layer of the negative electrode active material 41b after molding was approximately 50 μm because it was not completely dissolved, and the width of the strip-shaped negative electrode material 41 was 41.5 mm and the length was 280 mm.

次に、正極材料42は次のようにして作製した。炭酸リチウム0.5モルと炭酸コバルト1モルとを混合して900℃の空気中で5時間焼成することによって、LiCoO2 を得た。
このLiCoO2 を正極活物質とし、このLiCoO2 91重量部に導電剤としてのグラファイト6重量部と結着剤としてのポリフッ化ビニリデン3重量部とを混合して、正極活物質を調製した。この正極活物質を溶剤N−メチル−2−ピロリドンに分散させてスラリー(ペースト状)にした。
Next, the positive electrode material 42 was produced as follows. LiCoO 2 was obtained by mixing 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate and firing in air at 900 ° C. for 5 hours.
Using this LiCoO 2 as a positive electrode active material, 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder were mixed with 91 parts by weight of LiCoO 2 to prepare a positive electrode active material. This positive electrode active material was dispersed in a solvent N-methyl-2-pyrrolidone to form a slurry (paste).

次に、この正極活物質スラリーを、厚さ20μmの帯状のアルミニウム箔である正極集電体10の両面に均一に塗布してから、自然対流式電機乾燥装置により120℃で正極活物質中の溶剤を乾燥し、この乾燥後にローラプレス機により圧縮成型して正極集電体10の両面に正極活物質42aの層を有する帯状の正極材料42を得た。   Next, this positive electrode active material slurry is uniformly applied to both surfaces of the positive electrode current collector 10 which is a strip-shaped aluminum foil having a thickness of 20 μm. The solvent was dried, and after this drying, compression molding was performed with a roller press to obtain a strip-like positive electrode material 42 having layers of the positive electrode active material 42a on both surfaces of the positive electrode current collector 10.

なお、成型後の正極活物質42aの膜厚は両面共に80μmで同一であり、帯状の正極材料42の幅は39.5mm、長さは230mmとした。   The film thickness of the positive electrode active material 42a after molding was the same at both sides of 80 μm, and the width of the strip-like positive electrode material 42 was 39.5 mm and the length was 230 mm.

以上のように作製した帯状の負極材料41と、帯状の正極材料42と、厚さが25μmで幅が44mmの微多孔性ポリプロピレンフィルムから成る一対の帯状のセパレータ3a、3bとを用いて、負極材料41、セパレータ3a、正極材料42、セパレータ3bの順に4層に積層させ、この4層構造の積層電極体をその長さ方向に沿って負極材料41を内側にして渦巻状に多数回巻回することによって巻回電極体15を作製した。この際、巻回電極体15の巻回最終端部を接着テープによって固定した。   Using the strip-shaped negative electrode material 41, the strip-shaped positive electrode material 42, and the pair of strip-shaped separators 3 a and 3 b made of a microporous polypropylene film having a thickness of 25 μm and a width of 44 mm, the negative electrode The material 41, the separator 3a, the positive electrode material 42, and the separator 3b are laminated in this order in four layers, and the laminated electrode body of this four-layer structure is wound many times in a spiral shape with the negative electrode material 41 inside along the length direction. Thus, a wound electrode body 15 was produced. At this time, the final winding end of the wound electrode body 15 was fixed with an adhesive tape.

この巻回電極体15の中心部の中空部分の内径は3.5mm、外径は13.9mmであった。なお、この中空部分に巻芯33が位置している。   The inner diameter of the hollow portion at the center of the wound electrode body 15 was 3.5 mm, and the outer diameter was 13.9 mm. Note that the core 33 is located in this hollow portion.

上述のように作製した渦巻式の巻回電極体15を図7に示すように、ニッケルめっきを施した鉄製の電池缶5に収容した。   The spiral wound electrode body 15 produced as described above was housed in an iron battery can 5 plated with nickel as shown in FIG.

また、負極材料41及び正極材料42の集電をそれぞれ行うために、ニッケル製の負極リード11を予め負極集電体41aに取付け、これを負極材料41から導出して電池缶5の底面に溶接し、またアルミニウム製の正極リード12を予め正極集電体42aに取付け、これを正極材料42から導出して金属製の安全弁34の突起部34aに溶接した。   Further, in order to collect the current of the negative electrode material 41 and the positive electrode material 42, the negative electrode lead 11 made of nickel is previously attached to the negative electrode current collector 41a, which is led out from the negative electrode material 41 and welded to the bottom surface of the battery can 5. In addition, the positive electrode lead 12 made of aluminum was previously attached to the positive electrode current collector 42 a, which was led out from the positive electrode material 42 and welded to the protruding portion 34 a of the metal safety valve 34.

その後、電池缶5の中にプロピレンカーボネートと1,2−ジメトキシエタンとの等容量混合溶媒にリチウム塩のLiPF6 を1モル/1モルの割合で溶解した非水電解液を注入して、巻回電極体15に含浸させた。   Thereafter, a non-aqueous electrolyte solution in which LiPF6 as a lithium salt is dissolved at a ratio of 1 mol / 1 mol in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane is injected into the battery can 5 and wound. The electrode body 15 was impregnated.

この前後に、巻回電極体15の上端面及び下端面に対向するように、電池缶5内に円板状の絶縁板4a及び4bをそれぞれ配設した。   Before and after this, disk-shaped insulating plates 4 a and 4 b were respectively disposed in the battery can 5 so as to face the upper end surface and the lower end surface of the wound electrode body 15.

この後、電池缶5、互いに外周が密着している安全弁34及び金属製の電池蓋7のそれぞれを、表面にアスファルトを塗布した絶縁封口ガスケット6を介してかしめることによって、電池缶5を封口した。これにより電池蓋7及び安全弁34を固定するとともに電池缶5内の気密性を保持させた。また、このとき、ガスケット6の図7における下端が絶縁板4aの外周面と当接することによって、絶縁板4aが巻回電極体15の上面側と密着する。   Thereafter, the battery can 5 is sealed by caulking the battery can 5, the safety valve 34 whose outer periphery is in close contact with each other, and the metal battery lid 7 through an insulating sealing gasket 6 having asphalt coated on the surface thereof. did. Thereby, the battery lid 7 and the safety valve 34 were fixed, and the airtightness in the battery can 5 was maintained. Further, at this time, the lower end of the gasket 6 in FIG. 7 is in contact with the outer peripheral surface of the insulating plate 4 a, so that the insulating plate 4 a is in close contact with the upper surface side of the wound electrode body 15.

以上のようにして、直径14mm、高さ50mmの円筒型リチウムイオン2次電池を作製した。この実施例1の電池を便宜上電池Aとする。   As described above, a cylindrical lithium ion secondary battery having a diameter of 14 mm and a height of 50 mm was produced. The battery of Example 1 is referred to as battery A for convenience.

なお、上記円筒型リチウムイオン2次電池は、二重の安全装置を構成するために、安全弁34、ストリッパ36、これらの安全弁34とストリッパ36とを一体にするための絶縁材料から成る中間嵌合体35を備えている。また、図示しないが安全弁34にはこの安全弁34が変形したときに開裂する開裂部が、電池蓋7には孔が設けられている。   The cylindrical lithium ion secondary battery includes a safety valve 34, a stripper 36, and an intermediate fitting made of an insulating material for integrating the safety valve 34 and the stripper 36 in order to form a double safety device. 35. Although not shown, the safety valve 34 is provided with a tearing portion that is torn when the safety valve 34 is deformed, and the battery lid 7 is provided with a hole.

比較例Comparative example

負極材料を従来から用いられている構成とし、他は上述電池Aと同じ手順により作製した。   The negative electrode material was used in the conventional structure, and the others were produced by the same procedure as the battery A described above.

負極材料の出発原料としての石油ピッチに酸素を含む官能基を10〜20重量%導入する酸素架橋をした後、この酸素架橋された前駆体を不活性ガスの気流中にて1000℃で焼成することによって、ガラス状炭素に近い性質を持った炭素質材料を得た。この炭素質材料を粉砕し、平均粒径10μmの炭素質材料粉末とした。   After oxygen crosslinking in which 10 to 20% by weight of a functional group containing oxygen is introduced into petroleum pitch as a starting material for the negative electrode material, the oxygen-crosslinked precursor is fired at 1000 ° C. in an inert gas stream. As a result, a carbonaceous material having properties similar to glassy carbon was obtained. This carbonaceous material was pulverized to obtain a carbonaceous material powder having an average particle size of 10 μm.

以上のようにして得た炭素質材料を負極活物質担持体とし、この炭素質材料の粉末90重量部と結着剤としてのポリフッ化ビニリデン(PVDF)10重量部とを混合し、負極活物質を調製した。この負極活物質を、溶剤であるN−メチル−2−ピロリドンに分散させてスラリー(ペースト状)した。   The carbonaceous material obtained as described above is used as a negative electrode active material carrier, 90 parts by weight of the powder of the carbonaceous material and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder are mixed, and the negative electrode active material Was prepared. This negative electrode active material was dispersed in N-methyl-2-pyrrolidone as a solvent and slurried (pasted).

次に、この負極活物質スラリーを厚さ10μmの帯状の銅箔である負極集電体41aの両面に均一に塗布してから、自然対流式電気乾燥機により90℃で負極活物質スラリー中の溶剤を乾燥し、この乾燥後にローラプレス機により圧縮成型して図3に示すように負極集電体41aの両面に負極活物質の層を有する帯状の負極材料41を得た。上記乾燥は、上述の自然対流式電気乾燥機中で、設定温度を90℃にして、この電気乾燥機内の雰囲気温度を90℃としながら空気を自然対流させながら行った。   Next, the negative electrode active material slurry was uniformly applied to both surfaces of the negative electrode current collector 41a, which is a strip-shaped copper foil having a thickness of 10 μm, and then the natural convection type electric dryer at 90 ° C. The solvent was dried, and after this drying, compression molding was performed with a roller press to obtain a strip-like negative electrode material 41 having negative electrode active material layers on both sides of the negative electrode current collector 41a as shown in FIG. The drying was performed in the above-described natural convection type electric dryer while the set temperature was 90 ° C. and the air was naturally convected while the atmospheric temperature in the electric dryer was 90 ° C.

なお、成形後の負極活物質の膜厚は両面共に80μmで同一であり、帯状の負極材料41の幅は41.5mm、長さは280mmとした。   The film thickness of the negative electrode active material after molding was 80 μm on both sides, and the width of the strip-shaped negative electrode material 41 was 41.5 mm and the length was 280 mm.

そして、実施例1において説明した正極材料42を、この負極材料41と組み合わせて、直径14mm、高さ50mmの円筒型リチウムイオン2次電池を作製した。この比較例の電池を便宜上電池Bとする。   The positive electrode material 42 described in Example 1 was combined with the negative electrode material 41 to produce a cylindrical lithium ion secondary battery having a diameter of 14 mm and a height of 50 mm. The battery of this comparative example is referred to as battery B for convenience.

このようにして作製した電池Aと電池Bの電池容量を測定した結果、電池Aの電池容量が電池Bよりも1.5倍の容量が得られることが分かった。
これは、負極材料41がCu粉とSn粉との混合粉体40を加熱処理して適正な多孔質性を有するようにしたため、電池Bによる炭素質材料よりも効率的にリチウムイオンを吸収・放出することができることによるものと考えられる。
As a result of measuring the battery capacities of the batteries A and B thus produced, it was found that the battery capacity of the battery A was 1.5 times that of the battery B.
This is because the negative electrode material 41 heat-treats the mixed powder 40 of Cu powder and Sn powder so as to have appropriate porosity, so that it absorbs lithium ions more efficiently than the carbonaceous material by the battery B. This is thought to be due to the ability to release.

本例の電池用電極の製造方法によれば、結着剤(バインダ)が不要で非酸化性ガス雰囲気中での処理であるため、電極活物質の充填性の向上と電気抵抗を低減することができると共に、電極活物質の多孔質性を制御性の良いレーザ光により適正化させることができるのでリチウムイオンの拡散性を確保しサイクル寿命の向上に寄与させることができる。   According to the battery electrode manufacturing method of this example, since the binder (binder) is not required and the treatment is performed in a non-oxidizing gas atmosphere, improvement of the filling property of the electrode active material and reduction of electric resistance can be achieved. In addition, since the porous property of the electrode active material can be optimized by a laser beam with good controllability, the diffusibility of lithium ions can be secured and the cycle life can be improved.

本例の電池用電極の製造装置によれば、酸化による電気抵抗の増大を回避しつつ銅箔の集電基材に対して混合粉体の電極活物質を連続的に固定すると共に粉体活物質同士を結着させることができ、電池用電極を効率的に作製することができる。   According to the battery electrode manufacturing apparatus of the present example, the electrode active material of the mixed powder is continuously fixed to the copper foil current collecting base while avoiding an increase in electrical resistance due to oxidation, and the powder active Substances can be bound to each other, and a battery electrode can be efficiently produced.

本発明の電池用電極の製造方法及び製造装置は、上述例に限ることなく本発明の要旨を逸脱することなく、その他種々の構成を採り得ることは勿論である。   Of course, the battery electrode manufacturing method and manufacturing apparatus of the present invention are not limited to the above-described examples, and various other configurations can be adopted without departing from the gist of the present invention.

本発明電池用電極の製造装置の実施の形態の一例の構成の説明に供する図である。It is a figure where it uses for description of a structure of an example of embodiment of the manufacturing apparatus of the electrode for this invention. 本発明電池用電極負極とされる負極材料の形態の一例を示し、展開し帯状とした外観斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external appearance perspective view which showed an example of the form of the negative electrode material used as the electrode negative electrode for this invention, and was expand | deployed and made into strip | belt shape. 図2例の電池の負極材料の断面構造を示す説明図である。It is explanatory drawing which shows the cross-section of the negative electrode material of the battery of the example of FIG. 図1例の製造装置のレーザ光照射機構の一例を示し、Aは加熱源となるレーザ光供給部、Bは集光系の構成の説明図である。An example of the laser beam irradiation mechanism of the manufacturing apparatus of FIG. 1 is shown, A is a laser beam supply part used as a heating source, and B is explanatory drawing of a structure of a condensing system. 本発明電池用電極の製造方法の実施の形態の処理手順の一例を示し、Aは負極の混合活物質粉体の銅箔上への供給、Bは混合活物質粉体の移動、Cはスキージによる均し処理、Dはレーザ光による加熱処理(途中)を示す説明図である。1 shows an example of a processing procedure according to an embodiment of a method for producing an electrode for a battery of the present invention, wherein A is supply of a mixed active material powder of a negative electrode onto a copper foil, B is movement of the mixed active material powder, and C is a squeegee D is an explanatory view showing a heating process (on the way) by laser light. 図5例の処理手順を銅箔の上方から見た説明図であり、Aは電極の混合活物質粉体の銅箔上への供給、Bは混合活物質粉体の移動、Cはスキージによる粉体の均し処理、Dはレーザ光による加熱処理、Dは加熱処理部の移動を示す説明図である。It is explanatory drawing which looked at the processing procedure of the example of FIG. 5 from the upper direction of copper foil, A is supply to the copper foil of the mixed active material powder of an electrode, B is a movement of mixed active material powder, C is by a squeegee. The powder leveling process, D is the heat treatment with laser light, and D is an explanatory view showing the movement of the heat treatment section. 本例の負極材料を用いたリチウムイオン2次電池の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of the lithium ion secondary battery using the negative electrode material of this example. リチウムイオン2次電池の構造の説明図である。It is explanatory drawing of the structure of a lithium ion secondary battery.

符号の説明Explanation of symbols

40…混合粉体、41b…負極活物質、50…銅箔、52…繰出しロール、53…巻取りロール、56…スキージ
40 ... Mixed powder, 41b ... Negative electrode active material, 50 ... Copper foil, 52 ... Feeding roll, 53 ... Winding roll, 56 ... Squeegee

Claims (3)

集電基材に活物質を固定する電池用電極の製造方法において、
粉体状の前記活物質を前記集電基材に所定の薄さに設ける第1工程と、
非酸化性の雰囲気中で、前記集電基材を動かしながら前記粉体状の活物質の側から、レーザ光のビーム径を絞って前記活物質にレーザ光を照射するレーザ集光系を用い、前記集電基材に対して前記レーザ集光系を水平に移動させてレーザスキャンし、該レーザ光の照射熱により前記粉体状の活物質同士の結着及び前記活物質の前記集電基材への固定を行なう第2工程と、
を有し、前記第1及び第2工程を前記集電基材に前記活物質が所定の厚さになるまで繰返し行なう
電池用電極の製造方法。
In the method for producing a battery electrode for fixing an active material to a current collecting substrate,
A first step of providing the powdery active material on the current collecting base material to a predetermined thickness;
Using a laser condensing system that irradiates the active material with laser light by reducing the beam diameter of the laser light from the powdery active material side while moving the current collecting base material in a non-oxidizing atmosphere , the current collector substrate in pairs and by laser scanning by moving horizontally the laser focusing system, the collection of binder and the active material of the active material between the powder form by irradiation heat of the laser beam a second step of performing fixed to conductive substrate,
A method of manufacturing a battery electrode, wherein the first and second steps are repeated on the current collecting base until the active material has a predetermined thickness.
請求項1記載の電池用電極の製造方法において、
前記集電基材を銅箔とし、前記集電基材が銅箔ロールから繰り出されて連続的に供給される
電池用電極の製造方法。
In the manufacturing method of the battery electrode of Claim 1,
The manufacturing method of the electrode for batteries by which the said current collection base material is made into copper foil, and the said current collection base material is drawn | fed out from a copper foil roll, and is supplied continuously.
箔状の集電基材を供給する供給ロールと、
処理後の前記集電基材を巻き取る巻取りロールと、
加熱処理用のレーザ光の光源と、
電池用電極の粉体状の活物質の供給機構と、
前記粉体状の活物質を前記集電基材に設けるスキージと、
前記粉体状の活物質を前記集電基材に所定の薄さに設けるスキージ高さ調整と前記スキージの移動とを行うスキージ駆動機構と、
前記レーザ光のビーム径を絞って前記活物質にレーザ光を照射するレーザ集光系と、
前記集電基材に対して前記レーザ集光系を水平に移動させてレーザスキャンを行うスキャン機構と、
前記レーザ光が照射される箇所を非酸化性の雰囲気とする雰囲気形成機構と、
を備え、
前記供給ロールから繰り出された前記集電基材に前記スキージにより所定薄さに前記粉体状の活物質を設けると共に、前記集電基材を動かしながら前記レーザ光をスキャンして照射熱により前記粉体状の活物質同士の結着及び前記活物質の前記集電基材への固定を行なう
電池用電極の製造装置。
A supply roll for supplying a foil-shaped current collecting substrate;
A winding roll for winding the current collecting base material after the treatment;
A laser light source for heat treatment;
A supply mechanism of a powdered active material of a battery electrode;
A squeegee for providing the powdery active material on the current collecting base;
A squeegee drive mechanism for adjusting the squeegee height and moving the squeegee, wherein the powdery active material is provided on the current collecting base material at a predetermined thickness;
A laser condensing system for irradiating the active material with laser light by reducing a beam diameter of the laser light;
A scanning mechanism for performing laser scanning by moving horizontally the laser focusing system against the current collector substrate,
An atmosphere forming mechanism in which the portion irradiated with the laser light is a non-oxidizing atmosphere;
With
The powdery active material is provided in a predetermined thickness by the squeegee on the current collecting base fed from the supply roll, and the laser light is scanned while moving the current collecting base and the heat is applied to the current collecting base. An apparatus for manufacturing a battery electrode, which binds powdery active materials and fixes the active material to the current collecting base material.
JP2005235455A 2005-08-15 2005-08-15 Battery electrode manufacturing method and manufacturing apparatus Expired - Fee Related JP5092217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235455A JP5092217B2 (en) 2005-08-15 2005-08-15 Battery electrode manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235455A JP5092217B2 (en) 2005-08-15 2005-08-15 Battery electrode manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007052934A JP2007052934A (en) 2007-03-01
JP5092217B2 true JP5092217B2 (en) 2012-12-05

Family

ID=37917243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235455A Expired - Fee Related JP5092217B2 (en) 2005-08-15 2005-08-15 Battery electrode manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5092217B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220605B1 (en) 2009-04-22 2013-01-21 도요타지도샤가부시키가이샤 Method for producing electrode for battery and coating die used in the method
JP4695718B2 (en) * 2009-09-11 2011-06-08 大日本印刷株式会社 Non-aqueous electrolyte secondary battery
KR101210370B1 (en) 2011-06-16 2012-12-10 지에스나노텍 주식회사 Method of forming cathode for thin film battery using mica substrate and thin film battery manufactured by the method
CN103094521A (en) * 2013-01-22 2013-05-08 宁德时代新能源科技有限公司 Positive plate of lithium ion power battery as well as manufacturing method and laser etching device of positive plate
JP6154369B2 (en) * 2014-12-19 2017-06-28 トヨタ自動車株式会社 Lithium ion secondary battery electrode manufacturing equipment
JP7345748B2 (en) * 2019-02-25 2023-09-19 国立大学法人長岡技術科学大学 Manufacturing method for secondary batteries
CN114709362A (en) * 2021-12-17 2022-07-05 浙江工业大学 Laser preparation method and manufacturing equipment for lithium ion battery cathode material sandwich structure
CN114284474B (en) * 2021-12-17 2023-12-05 浙江工业大学 Laser adding method and equipment for high-capacity element material of lithium ion battery cathode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2867607B2 (en) * 1990-05-15 1999-03-08 株式会社ユアサコーポレーション Battery manufacturing method
JPH09306482A (en) * 1996-05-10 1997-11-28 Toyota Autom Loom Works Ltd Manufacture of hydrogen absorbing alloy electrode
JP4701463B2 (en) * 1998-11-05 2011-06-15 パナソニック株式会社 Method for removing active material from battery electrode plate

Also Published As

Publication number Publication date
JP2007052934A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP5092217B2 (en) Battery electrode manufacturing method and manufacturing apparatus
JP2007095363A (en) Electrode material for battery and manufacturing method of electrode material for battery
KR102268175B1 (en) Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
US20120263993A1 (en) Electrochemical device
JP2019537231A (en) Negative electrode having carbon-based thin film formed thereon, method for producing the same, and lithium secondary battery including the same
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
JP2008305572A (en) Anode and battery
JPH10270013A (en) Electrode for nonaqueous electrolyte secondary battery and its manufacture
JP4988169B2 (en) Lithium secondary battery
JP2008123814A (en) Lithium secondary battery and its manufacturing method
JP7242120B2 (en) Lithium secondary battery and manufacturing method thereof
WO2018016166A1 (en) Battery
KR20180003577A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2010160985A (en) Lithium ion secondary cell negative electrode and lithium ion secondary cell using the same
JP4867232B2 (en) Battery electrode manufacturing method and manufacturing apparatus
JP2000268813A (en) Battery, electrode structure of capacitor, and manufacture of electrode
JP4149349B2 (en) Secondary battery and manufacturing method thereof
CN113056834A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, battery, and laminate
JP2009117290A (en) Sealed battery
KR20170032905A (en) Carbon nanotube-based lithium ion battery
JP2022538822A (en) Patterned positive electrode for lithium-sulfur secondary battery, manufacturing method thereof, and lithium-sulfur secondary battery including the same
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP3511489B2 (en) Method for producing wound electrode body for lithium secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
WO2020004453A1 (en) Negative electrode for lithium ion battery, lithium ion battery using said negative electrode, and method for producing lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees