JP5090783B2 - Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method - Google Patents

Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method Download PDF

Info

Publication number
JP5090783B2
JP5090783B2 JP2007121509A JP2007121509A JP5090783B2 JP 5090783 B2 JP5090783 B2 JP 5090783B2 JP 2007121509 A JP2007121509 A JP 2007121509A JP 2007121509 A JP2007121509 A JP 2007121509A JP 5090783 B2 JP5090783 B2 JP 5090783B2
Authority
JP
Japan
Prior art keywords
polarization
liquid crystal
optical
polarized light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007121509A
Other languages
Japanese (ja)
Other versions
JP2008276043A (en
Inventor
明 大木
誠治 福島
和利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007121509A priority Critical patent/JP5090783B2/en
Publication of JP2008276043A publication Critical patent/JP2008276043A/en
Application granted granted Critical
Publication of JP5090783B2 publication Critical patent/JP5090783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、光減衰方法、可変光減衰器および可変光減衰器内蔵受信器に関し、より詳細には、光通信網に適した光減衰方法、可変光減衰器および可変光減衰器内蔵受信器に関する。   The present invention relates to an optical attenuation method, a variable optical attenuator, and a receiver with a built-in variable optical attenuator, and more particularly, to an optical attenuation method suitable for an optical communication network, a variable optical attenuator, and a receiver with a built-in variable optical attenuator. .

光技術および情報処理技術が発展を遂げ、日常生活に不可欠な要素となりつつある。インターネットや企業内通信網に代表される通信網は、多くの部分が最先端の光技術を用いた光通信網により構築されている。   Optical technology and information processing technology have been developed and are becoming indispensable elements in daily life. Many parts of the communication network represented by the Internet and in-house communication networks are constructed by optical communication networks using the most advanced optical technology.

光技術は、波長の異なる光信号の多重と分離を容易にした。これにより、近年の光通信網では、波長の異なる光信号を多重分離するWDM(Wavelength Division Multiplexing)と呼ばれる波長多重伝送方式により、光ファイバ1本当たりの伝送容量を拡大し、経済的なネットワークを構成している。   Optical technology has facilitated multiplexing and demultiplexing optical signals of different wavelengths. As a result, in recent optical communication networks, the transmission capacity per optical fiber is expanded by a wavelength division multiplexing method called WDM (Wavelength Division Multiplexing) that multiplexes and separates optical signals having different wavelengths. It is composed.

このWDM方式では、波長の差を利用して回線の切り替えを行うが、これにより光信号の経路も変わるため、受信光強度の変動が伴う問題があった。この問題を解決するため、光信号受信器の直前に可変光減衰器を挿入し、受信器に入射する光信号強度が一定になるように制御する試みが為されている。   In this WDM system, the line is switched using the difference in wavelength. However, since the path of the optical signal is also changed, there is a problem that the received light intensity varies. In order to solve this problem, an attempt has been made to insert a variable optical attenuator immediately before the optical signal receiver to control the intensity of the optical signal incident on the receiver to be constant.

これまでに用いられてきた可変光減衰器は、その可変減衰機構により以下の2つに大別される。1つは、MEMS(Micro Electro Mechanical Systems)と呼ばれるマイクロマシンを応用した減衰器で、もう一つは誘電体光学素子を応用した減衰器である。前者の代表例としては、Siミラーの回転角を制御する減衰器が知られている(例えば、非特許文献1,2参照)。また、後者の代表例としては、光の偏波面を回転する磁気光学素子と偏光子を組み合わせた減衰器が知られている(例えば、非特許文献3参照)。   The variable optical attenuators that have been used so far are roughly classified into the following two by the variable attenuation mechanism. One is an attenuator using a micromachine called MEMS (Micro Electro Mechanical Systems), and the other is an attenuator using a dielectric optical element. A typical example of the former is an attenuator that controls the rotation angle of a Si mirror (see, for example, Non-Patent Documents 1 and 2). Also, as a representative example of the latter, an attenuator that combines a magneto-optical element that rotates a polarization plane of light and a polarizer is known (see, for example, Non-Patent Document 3).

古河電工時報第111号,pp 25-30,2003年Furukawa Electric 111th issue, pp 25-30, 2003 エレクトロニクス実装学会誌,vol.9,No. 4,2006年Journal of Japan Institute of Electronics Packaging, vol.9, No. 4, 2006 “Variable Optical Attenuator C-band : YS-5010-155”, http://www.fdk.co.jp/cyber-j/opt/YDE101.htm,2007年4月検索“Variable Optical Attenuator C-band: YS-5010-155”, http://www.fdk.co.jp/cyber-j/opt/YDE101.htm, April 2007 search

上記のMEMS型光減衰器は、全反射型の平面ミラーによる反射という単純な現象を用いているため、挿入損失も小さく、入射光の偏波が光減衰量に依存しないなど利点がある。反面、MEMS型光減衰器では振動により減衰量が揺らいだり、ミラーの駆動電圧と減衰量との関係が再現できなかったり、ミラーの角度を長期的に一定に保持するのが困難であるなどの問題があった。   Since the MEMS optical attenuator uses a simple phenomenon of reflection by a total reflection type flat mirror, there is an advantage that the insertion loss is small and the polarization of incident light does not depend on the optical attenuation. On the other hand, with MEMS type optical attenuators, the amount of attenuation fluctuates due to vibration, the relationship between the mirror drive voltage and the amount of attenuation cannot be reproduced, and it is difficult to maintain the mirror angle constant over the long term. There was a problem.

また、上記磁気光学素子と偏光子を組み合わせた可変光減衰器(VOA:Variable Optical Attenuator)は、可動部による動的な制御を用いていないため、耐振動性と減衰量の保持性に優れている。反面、偏光状態制御のために磁界を変調する必要があり、減衰器のサイズや消費電力が大きくなる問題があった。   In addition, a variable optical attenuator (VOA) that combines the magneto-optical element and the polarizer does not use dynamic control by a movable part, and thus has excellent vibration resistance and retention of attenuation. Yes. On the other hand, it is necessary to modulate the magnetic field in order to control the polarization state, and there is a problem that the size of the attenuator and the power consumption increase.

一方、磁気光学素子と同様に偏波面を回転する機能を持ち、かつ小型・低消費電力なデバイスとして液晶光学素子がある。ツイストネマティック液晶等に代表される液晶光学素子は、安価で低消費電力、かつ小型化容易なため、ディスプレー等の表示器に広く応用されている。この液晶光学素子を光減衰器の構成に適用する際の障害となるのが、光学特性の偏光依存性である。例えば、光ファイバ通信では、円形断面を持つ光ファイバを伝播する光信号を扱うため、信号光の偏光状態が経時変化しており、偏波依存性のある光学素子を用いると光減衰量の経時変化が誘発される。そのため、液晶光学素子の光通信用可変減衰器への応用では、液晶光学素子の偏光依存性を除去する工夫が必要である。   On the other hand, there is a liquid crystal optical element as a small-sized and low-power-consumption device having a function of rotating the plane of polarization like a magneto-optical element. Liquid crystal optical elements typified by twisted nematic liquid crystal are widely applied to displays such as displays because they are inexpensive, have low power consumption, and can be easily miniaturized. The obstacle in applying this liquid crystal optical element to the configuration of the optical attenuator is the polarization dependence of the optical characteristics. For example, in optical fiber communication, since the optical signal propagating through an optical fiber having a circular cross section is handled, the polarization state of the signal light changes with time, and if an optical element having polarization dependence is used, the optical attenuation amount changes with time. Change is triggered. For this reason, in applying the liquid crystal optical element to a variable attenuator for optical communication, a device for removing the polarization dependence of the liquid crystal optical element is required.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、偏波依存性のある液晶光学素子を用いた、小型で低消費電力、簡易かつ安価な可変光減衰器および該可変光減衰器を備えた受信器を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a small, low power consumption, simple and inexpensive variable optical attenuator using a polarization-dependent liquid crystal optical element. And providing a receiver including the variable optical attenuator.

また、本発明は、液晶光学素子の偏波依存性を抑制した可変光減衰器および該可変光減衰器を備えた受信器を提供することにある。   Another object of the present invention is to provide a variable optical attenuator in which the polarization dependence of a liquid crystal optical element is suppressed, and a receiver including the variable optical attenuator.

本発明は、このような目的を達成するために、本発明に係る可変光減衰器は、入射光の光路を当該入射光の偏波状態に応じた異なる光路を有する偏光に分離する偏光分離手段と、当該偏光分離手段により分離された偏光毎に配される、印加される電界に応じて入射される偏光の偏波状態を変化させ反射する偏波依存性のある少なくとも1つの液晶光学素子と、液晶光学素子により偏波状態が変化した各偏光を合波する偏光合波手段とを備える。 In order to achieve such an object, the variable optical attenuator according to the present invention includes a polarization separation unit that separates an optical path of incident light into polarized light having different optical paths according to the polarization state of the incident light. And at least one polarization-dependent liquid crystal optical element that is arranged for each polarized light separated by the polarized light separating means and that reflects and changes the polarization state of the polarized light incident according to the applied electric field; And polarization multiplexing means for multiplexing each polarized light whose polarization state has been changed by the liquid crystal optical element.

この構成により、液晶光学素子へ印加される電界を制御して偏光に対する変化量を制御することにより、減衰量を変化させることができる。   With this configuration, the amount of attenuation can be changed by controlling the electric field applied to the liquid crystal optical element to control the amount of change with respect to the polarization.

本発明では、可変光減衰器の偏光分離手段および偏光合波手段は1つの偏光ビームスプリッター素子(PBS素子)によって構成され、偏光ビームスプリッター素子により分離された各偏光が、少なくとも1つの液晶光学素子により反射され再び偏光ビームスプリッター素子へ入射され合波される。偏光ビームスプリッター素子は、入射光を互いに直交する光路を有する2つの直線偏光(本明細書において、S偏光およびP偏光とも称する。)に分離する。 In this onset bright, the polarization separating means and the polarization multiplexing unit of the variable optical attenuator is constituted by a single polarizing beam splitter element (PBS element), each polarized light separated by the polarization beam splitter element, at least one liquid crystal The light is reflected by the optical element, is incident on the polarization beam splitter element again, and is multiplexed. The polarization beam splitter element separates incident light into two linearly polarized lights (also referred to as S-polarized light and P-polarized light in this specification) having optical paths orthogonal to each other.

また、本発明では、可変光減衰器の液晶光学素子は、偏光ビームスプリッター素子により分離された各偏光が当該液晶光学素子の反射面に対して垂直に入射するように配される。 Further, in this onset bright, liquid crystal optical element of the variable optical attenuator, the polarized light separated by the polarization beam splitter element is distribution to be incident perpendicular to the reflective surface of the liquid crystal optical element.

また、本発明では、液晶光学素子により反射された偏光の入射光の光路への入射を阻止する光アイソレータを偏光ビームスプリッター素子の前段にさらに備える。 Further, in this onset bright, further comprising an optical isolator for preventing an incidence of the optical path of incident light polarized light reflected by the liquid crystal optical element in front of the polarization beam splitter element.

さらに、本発明では、偏光分離手段により分離された各偏光の少なくとも1つの偏光を複数に分岐して、分岐された偏光をそれぞれ1つの液晶光学素子へ入射させる分岐手段を有する。 Furthermore, in this onset bright, branches into a plurality of at least one polarization of each polarized light separated by the polarization separating means comprises a branching means for entering branched polarization to each one of the liquid crystal optical element.

さらにまた、本発明は、少なくとも1つの上記可変光減衰器を内蔵した可変光減衰器内蔵受信器として実施することができることは言うまでもない。   Furthermore, it goes without saying that the present invention can be implemented as a receiver with a built-in variable optical attenuator that incorporates at least one of the above variable optical attenuators.

また、本発明に係る可変光減衰方法は、上記可変光減衰器において、偏光合波手段からの出射光をモニタするステップと、モニタ値が所望の値になるように液晶光学素子へ印加される電界を制御するステップとを含む。   In the variable optical attenuating method according to the present invention, in the variable optical attenuator, the step of monitoring the emitted light from the polarization multiplexing means and the monitor value is applied to the liquid crystal optical element so as to become a desired value. Controlling the electric field.

以上説明したように、本発明によれば、偏波依存性のある液晶光学素子を用いた、小型で低消費電力、簡易かつ安価な可変光減衰器および該可変光減衰器を備えた受信器を提供することができる。また、本発明によれば、液晶光学素子の偏波依存性を抑制した可変光減衰器および該可変光減衰器を備えた受信器を提供することができる。   As described above, according to the present invention, a small, low power consumption, simple and inexpensive variable optical attenuator using a polarization-dependent liquid crystal optical element and a receiver including the variable optical attenuator Can be provided. Further, according to the present invention, it is possible to provide a variable optical attenuator that suppresses the polarization dependence of the liquid crystal optical element and a receiver including the variable optical attenuator.

以下、図面を参照して、本発明の実施形態を説明する。以下の詳細な説明は、本発明の具体的な実施例およびその効果を例示することを意図するものであり、本発明の主旨を逸脱しない範囲内で種々の変更を行い得ることは言うまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following detailed description is intended to illustrate specific embodiments of the present invention and effects thereof, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

図1および2は、本発明が提供する可変光減衰器(VOA)の構成例を示す図である。図1および2に示すVOAは、入射光の光路を当該入射光の偏波状態(偏波成分)に応じた異なる光路に分離する偏光分離素子3と、印加される電界(電圧)に応じて入射光の偏波状態を変化させ反射する偏波依存性のある2個の液晶光学素子4および5とを備え、偏波依存性を打ち消す。   1 and 2 are diagrams showing a configuration example of a variable optical attenuator (VOA) provided by the present invention. The VOA shown in FIGS. 1 and 2 has a polarization separating element 3 that separates an optical path of incident light into different optical paths according to a polarization state (polarization component) of the incident light, and an applied electric field (voltage). Two liquid crystal optical elements 4 and 5 having polarization dependency that change and reflect the polarization state of incident light are provided to cancel the polarization dependency.

なお、図1および2においては、偏光分離素子3は、本発明の偏光分離手段および偏光合波手段を兼ねている。また、図1および2においては、偏波依存性のある2個の反射型回転子を液晶光学素子4および5として、偏光ビームスプリッター素子(PBS素子)を偏光分離素子3として用いた例を示している。   1 and 2, the polarization separation element 3 also serves as the polarization separation means and the polarization multiplexing means of the present invention. 1 and 2 show examples in which two reflection-type rotators having polarization dependency are used as the liquid crystal optical elements 4 and 5 and a polarization beam splitter element (PBS element) is used as the polarization separation element 3. ing.

PBS素子3によって入射光から分離されたS偏光およびP偏光は、それぞれ異なる反射型回転子4および5へ入射する。   S-polarized light and P-polarized light separated from the incident light by the PBS element 3 are incident on different reflective rotators 4 and 5, respectively.

反射型回転子4および5は、閾値を越えた電界が印加されると入射光の偏波状態に何らの影響も及ぼさずに、そのまま反射する特性を有している。   The reflection type rotors 4 and 5 have a characteristic of reflecting as it is without affecting the polarization state of incident light when an electric field exceeding a threshold value is applied.

この時、PBS素子3で光路分離されたS偏光とP偏光が反射型回転子の反射面に対して垂直入射する場合と垂直から3〜8°程度の角度を持って入射する場合で可変光減衰器の構成は異なる。   At this time, the variable light depending on whether the S-polarized light and the P-polarized light separated by the PBS element 3 are perpendicularly incident on the reflecting surface of the reflective rotator or incident at an angle of about 3 to 8 degrees from the vertical. The configuration of the attenuator is different.

図1は、S偏光とP偏光が反射型回転子に垂直入射する場合の可変光減衰器の構成を示す。図1(a)に示すように、垂直入射の場合は、反射型回転子で反射された光は入射光路をそのまま遡るため、PBS素子3の前段、すなわちPBS素子3と光ファイバ間に光アイソレータ2を挿入し、反射光を消光する。この構成で反射型回転子への印加電界を無電界にすると、反射型回転子4はS偏光をP偏光に、反射型回転子5はP偏光をS偏光に変換した後に反射する。これらの反射光は図1(b)に示すようにPBS素子3で合波され、出力側光ファイバに結合する。   FIG. 1 shows the configuration of a variable optical attenuator when S-polarized light and P-polarized light are perpendicularly incident on a reflective rotator. As shown in FIG. 1 (a), in the case of normal incidence, the light reflected by the reflective rotator goes back as it is in the incident optical path, so that the optical isolator is located before the PBS element 3, that is, between the PBS element 3 and the optical fiber. Insert 2 to quench the reflected light. In this configuration, when the electric field applied to the reflective rotator is set to no electric field, the reflective rotator 4 reflects S-polarized light after converting it to P-polarized light, and the reflective rotator 5 reflects the light after converting P-polarized light to S-polarized light. These reflected lights are combined by the PBS element 3 as shown in FIG. 1B and coupled to the output side optical fiber.

図2は、反射型回転子の反射面に対して垂直から3〜8°程度の角度を持って入射する場合の可変光減衰器の構成を示す。この場合、図1に示した光アイソレータ2は不要となる。この場合、反射型回転子に閾値を越えた電界が印加されると入射光の偏波状態に何らの影響も及ぼさずに、図2(a)に示すように入射角度に応じた傾きを持って反射する。そのため、反射光は入射光と異なる経路を通り、入射側および出射側のどちらの光ファイバにも結像せず、消光状態となる。この構成で反射型回転子への印加電界を無電界にすると反射型回転子4はS偏光をP偏光に、反射型回転子5はP偏光をS偏光に変換した後に反射する。これらの反射光は図2(b)に示すようにPBS素子3で合波され、出力側光ファイバに結合し、無減衰状態(0.5〜1dBの挿入損失は残る)となる。   FIG. 2 shows the configuration of the variable optical attenuator when it is incident at an angle of about 3 to 8 degrees from the vertical to the reflection surface of the reflection type rotor. In this case, the optical isolator 2 shown in FIG. 1 is unnecessary. In this case, when an electric field exceeding the threshold value is applied to the reflective rotator, there is no influence on the polarization state of the incident light, and there is an inclination corresponding to the incident angle as shown in FIG. Reflect. Therefore, the reflected light passes through a different path from the incident light, does not form an image on both the incident side and the outgoing side optical fibers, and is in a quenched state. In this configuration, when the electric field applied to the reflective rotator is set to no electric field, the reflective rotator 4 reflects S-polarized light into P-polarized light, and the reflective rotator 5 reflects P-polarized light after being converted into S-polarized light. These reflected lights are combined by the PBS element 3 as shown in FIG. 2B, coupled to the output side optical fiber, and become non-attenuated (0.5 to 1 dB insertion loss remains).

上述した2つの構成では、PBS3によって入射光から分離されたS偏光およびP偏光はともに出力側ファイバに結合するため、入射光の偏光状態が変化しても減衰量に差がでない。また、液晶反射型回転子に閾値以下の電界を印加した場合には、無電界時と閾値以上の電界印加時のアナログ的な中間状態となり、電界強度により出力側光ファイバに結合する光量が制御できる。   In the two configurations described above, since both S-polarized light and P-polarized light separated from the incident light by the PBS 3 are coupled to the output side fiber, there is no difference in attenuation even if the polarization state of the incident light changes. In addition, when an electric field below the threshold is applied to the liquid crystal reflective rotor, an analog intermediate state occurs when there is no electric field and when an electric field above the threshold is applied, and the amount of light coupled to the output side optical fiber is controlled by the electric field strength. it can.

このように、本発明の可変光減衰器では、偏波依存性のある液晶光学素子(液晶反射型回転子)と偏光分離素子(PBS素子)を組み合わせることで、液晶光学素子の持つ偏波依存性を打ち消している。   As described above, the variable optical attenuator of the present invention combines the polarization-dependent liquid crystal optical element (liquid crystal reflection type rotator) and the polarization separation element (PBS element) to obtain the polarization dependence of the liquid crystal optical element. It cancels the sex.

図1および2では、偏光分離素子によって入射光を分離された光を各々1個の液晶光学素子でその偏波状態を変化させ反射させる例を示したが、図9を参照して以下に説明するように、分離された光の一部またはすべてをさらに合分波素子で分岐して複数の液晶光学素子で偏波状態を変化させ反射させるように構成することができる。   FIGS. 1 and 2 show an example in which the light separated from the incident light by the polarization separation element is reflected by changing the polarization state by one liquid crystal optical element, but will be described below with reference to FIG. As described above, a part or all of the separated light can be further branched by the multiplexing / demultiplexing element, and the polarization state can be changed and reflected by the plurality of liquid crystal optical elements.

あるいは、図10を参照して以下に説明するように、2個の液晶光学素子を用いた可変光減衰器を複数並列に配し、入射光を分波して各可変光減衰器へ供給し、各可変光減衰器からの出力光を合波する合分波素子を備えた可変光減衰器を提供することもできる。   Alternatively, as will be described below with reference to FIG. 10, a plurality of variable optical attenuators using two liquid crystal optical elements are arranged in parallel, and incident light is demultiplexed and supplied to each variable optical attenuator. A variable optical attenuator provided with a multiplexing / demultiplexing element that multiplexes output light from each variable optical attenuator can also be provided.

参考例1)
図3から6を参照して第1の参考例を説明する。本参考例では、2個の偏波依存性のある液晶反射型回転子と1個の偏光ビームスプリッターを組み合わせて偏波依存性を打ち消すタイプの可変光減衰器の構成について明らかにし、本発明の効果を具体的に説明する。
( Reference Example 1)
A first reference example will be described with reference to FIGS. In this reference example, the configuration of a variable optical attenuator of the type that cancels the polarization dependence by combining two polarization-dependent liquid crystal reflective rotators and one polarization beam splitter is clarified. The effect will be specifically described.

図3(a)から(d)に、本参考例で説明する可変光減衰器の組立工程の概要を示す。まず始めに、筐体1の入射ポート6から入射される入射光が偏波無依存光アイソレータ2を透過してPBS素子3へ入射するように、偏波無依存光アイソレータ2およびPBS素子3を筐体1へハンダにより固定する(図3(a))。 3A to 3D show an outline of the assembly process of the variable optical attenuator described in this reference example. First, the polarization-independent optical isolator 2 and the PBS element 3 are set so that incident light incident from the incident port 6 of the housing 1 passes through the polarization-independent optical isolator 2 and enters the PBS element 3. It fixes to the housing | casing 1 with solder (FIG. 3 (a)).

図4に示すように、本参考例で用いるPBS素子3は、入射面に垂直に入射した入射光をS偏光とP偏光に分離し、反射面でS偏光の光路を90°曲げ、P偏光の光路をそのまま透過させる光学特性を有している。 As shown in FIG. 4, the PBS element 3 used in this reference example separates incident light perpendicularly incident on the incident surface into S-polarized light and P-polarized light, and bends the optical path of S-polarized light by 90 ° on the reflective surface. It has an optical characteristic that transmits the light path as it is.

参考例では、PBS素子3は、偏波無依存光アイソレータ2側の入射面から入射するS偏光の光路を90°曲げS偏光を入射面に垂直な面(A面)へ出射する光学特性を有している。また、PBS素子3は、入射面から入射するP偏光の光路を曲げることなくそのままP偏光を入射面と平行に対向する面(B面)へ通過させる光学特性を有している。 In this reference example, the PBS element 3 bends the optical path of S-polarized light incident from the incident surface on the polarization-independent optical isolator 2 side by 90 °, and emits S-polarized light to a surface (A surface) perpendicular to the incident surface. have. The PBS element 3 has an optical characteristic that allows the P-polarized light to pass through the surface (B surface) facing the incident surface as it is without bending the optical path of the P-polarized light incident from the incident surface.

次に、液晶反射型回転子4および液晶反射型回転子5を、それぞれの反射面がPBS素子3のA面およびB面と対向し、偏光が垂直入射あるいは垂直から3〜8°程度の角度を持って入射するように、PBS素子3に固定する(図3(b))。例えば光学接着剤を用いて、液晶反射型回転子4および液晶反射型回転子5をそれぞれPBS素子3のA面およびB面に固定することができる。   Next, the liquid crystal reflective rotator 4 and the liquid crystal reflective rotator 5 have their respective reflecting surfaces facing the A and B surfaces of the PBS element 3, and the polarized light is vertically incident or an angle of about 3 to 8 degrees from the vertical. Is fixed to the PBS element 3 so as to be incident (FIG. 3B). For example, the liquid crystal reflective rotator 4 and the liquid crystal reflective rotator 5 can be fixed to the A and B surfaces of the PBS element 3 using an optical adhesive, for example.

参考例では、PBS素子上に液晶反射型回転子を固定する構成を採用したが、筐体1内の適切な位置、すなわちPBS素子3のA面およびB面からの光が各々、液晶反射型回転子4および液晶反射型回転子5の反射面へ垂直入射あるいは垂直から3〜8°程度の角度を持って入射され、反射されてPBS素子3へ再び入射される位置に、液晶反射型回転子を固定しても良い。 In this reference example, the configuration in which the liquid crystal reflective rotor is fixed on the PBS element is adopted. However, the light from the appropriate position in the housing 1, that is, the A surface and the B surface of the PBS element 3, is reflected by the liquid crystal. The liquid crystal reflective type is placed at a position where it is incident on the reflecting surfaces of the mold rotor 4 and the liquid crystal reflective rotor 5 at a normal incidence or an angle of about 3 to 8 ° from the vertical, and is reflected and incident again on the PBS element 3. The rotor may be fixed.

液晶反射型回転子4と液晶反射型回転子5を固定した後、液晶反射型回転子4と液晶反射型回転子5の電極と筐体1のピン18とをワイヤポンティングにより接続する。ピン18には液晶反射型回転子4と液晶反射型回転子5に印加する電界(電圧)を制御するための電界制御装置(図示しない)が接続される。   After the liquid crystal reflective rotator 4 and the liquid crystal reflective rotator 5 are fixed, the liquid crystal reflective rotator 4, the electrodes of the liquid crystal reflective rotator 5 and the pins 18 of the housing 1 are connected by wire pumping. An electric field control device (not shown) for controlling the electric field (voltage) applied to the liquid crystal reflective rotor 4 and the liquid crystal reflective rotor 5 is connected to the pin 18.

液晶反射型回転子4には、PBS素子3により光路を90°曲げられたS偏光の偏光面を図3(b)中の点線の方向(PBS素子3から液晶反射型回転子4の方向を軸として右回り)に回転した後に反射する機能があり、その回転角は液晶反射型回転子4に印加する電界によって制御することができる。   The liquid crystal reflective rotator 4 has a polarization plane of S-polarized light whose optical path is bent by 90 ° by the PBS element 3 in the direction of the dotted line in FIG. 3B (the direction from the PBS element 3 to the liquid crystal reflective rotator 4). It has a function of reflecting after rotating clockwise as an axis, and its rotation angle can be controlled by an electric field applied to the liquid crystal reflective rotor 4.

同様に液晶反射型回転子5はPBS素子3を通過したP偏光の偏光面を図3(b)中の点線の方向(PBS素子3から液晶反射型回転子Bの方向を軸として右回り)に回転した後に反射する機能がある。また、その回転角も液晶反射型回転子5に印加する電界によって制御することができる。   Similarly, the liquid crystal reflective rotator 5 has the polarization plane of P-polarized light that has passed through the PBS element 3 in the direction of the dotted line in FIG. 3B (clockwise around the direction from the PBS element 3 to the liquid crystal reflective rotator B). There is a function to reflect after rotating. The rotation angle can also be controlled by the electric field applied to the liquid crystal reflective rotor 5.

続いて、乾燥窒素雰囲気中で筐体1にフタ10をシーム溶接し、気密封止する。その後、筐体1光信号の入射ポート6側に入射側ファイバコリメータ7を調芯固定する。本参考例で用いた液晶反射型回転子4および5は、図1および2に関連して説明した特性を有するため、電界印加せずに出射ポート8に出力される入射光を観察して調芯できる。 Subsequently, the lid 10 is seam welded to the housing 1 in a dry nitrogen atmosphere and hermetically sealed. Thereafter, the incident side fiber collimator 7 is aligned and fixed to the incident port 6 side of the casing 1 optical signal. Since the liquid crystal reflective rotors 4 and 5 used in this reference example have the characteristics described with reference to FIGS. 1 and 2, the incident light output to the exit port 8 is observed and adjusted without applying an electric field. I can core.

具体的には、出射ポート8からIR(infrared camera)カメラで観察した液晶反射型回転子4からの反射光と液晶反射型回転子5からの反射光が重ね合わされる位置でファイバコリメータ7を筐体1にYAG(Yittrium Aluminium Garnet)レーザー溶接する(図3(c))。   Specifically, the fiber collimator 7 is mounted at a position where the reflected light from the liquid crystal reflective rotator 4 and the reflected light from the liquid crystal reflective rotator 5 observed from the exit port 8 with an IR (infrared camera) camera are superimposed. The body 1 is YAG (Yittrium Aluminum Garnet) laser welded (FIG. 3C).

最後に、出射ポート8に出射側ファイバコリメータ9を調芯固定する。調芯時には、入射側ファイバコリメータ7より、光信号を入射し、液晶反射型回転子4と液晶反射型回転子5に減衰量が最低になるよう電界印加する。この状態で、出射側ファイバコリメータ9に結合する光信号強度が最大になるよう調芯し、YAGレーザーにより出射側ファイバコリメータ9を筐体1に溶接する(図3(d))。   Finally, the output side fiber collimator 9 is aligned and fixed to the output port 8. At the time of alignment, an optical signal is incident from the incident-side fiber collimator 7 and an electric field is applied to the liquid crystal reflective rotor 4 and the liquid crystal reflective rotor 5 so that the attenuation is minimized. In this state, alignment is performed so that the intensity of the optical signal coupled to the output-side fiber collimator 9 is maximized, and the output-side fiber collimator 9 is welded to the housing 1 with a YAG laser (FIG. 3D).

図5は、以上の工程により完成した可変光減衰器の光減衰量と液晶反射型回転子への印加電圧との関係を示す図である。減衰量は、無電圧時の0.8dBから印加電圧とともに減少し、5V付近で36dBまで低下した後、飽和する。このように、0〜5V程度の扱い易い電圧値で30dBを越すダイナミックレンジが取れており、極めて良好な性能となっている。   FIG. 5 is a diagram showing the relationship between the light attenuation amount of the variable optical attenuator completed through the above steps and the voltage applied to the liquid crystal reflective rotor. The attenuation decreases from 0.8 dB at no voltage with the applied voltage, decreases to 36 dB near 5 V, and then saturates. Thus, a dynamic range exceeding 30 dB can be obtained with an easy-to-handle voltage value of about 0 to 5 V, and the performance is extremely good.

さらに、入射側ファイバコリメータ7を外し、空間光学系を用いてコリメート光を入射し、その偏波面を回転子により回転させて光減衰量の偏波依存性を測定した。   Furthermore, the incident-side fiber collimator 7 was removed, collimated light was incident using a spatial optical system, and the polarization plane was rotated by a rotator to measure the polarization dependence of light attenuation.

図6は、その結果を示す図である。入射光の偏光状態をS偏光からP偏光まで偏波面を変えても出射光における減衰量のバラツキは±0.1dB以内に収まっており、本発明の構成により個々の液晶回転子の偏波依存性がキャンセルできていることが確認できた。また、光減衰量は波長1500〜1600nmの広い範囲で入射光の波長に依存せず一定であった。   FIG. 6 is a diagram showing the results. Even if the polarization state of the incident light is changed from S-polarized light to P-polarized light, the variation in the amount of attenuation in the emitted light is within ± 0.1 dB, and according to the configuration of the present invention, the polarization dependence of each liquid crystal rotator It was confirmed that the sex was cancelled. Further, the amount of light attenuation was constant over a wide range of wavelengths from 1500 to 1600 nm without depending on the wavelength of incident light.

参考例では、反射型液晶回転素子として平行配向ネマチック液晶を用いたが、垂直配向ネマチック液晶を用いれば電界の大きさに対する光学特性の変化を逆にすることができ、ノーマリークローズタイプの可変光減衰器として機能する。 In this reference example, parallel-aligned nematic liquid crystal was used as the reflective liquid crystal rotating element, but if vertical-aligned nematic liquid crystal is used, the change in optical characteristics with respect to the magnitude of the electric field can be reversed, and a normally closed type variable. Functions as an optical attenuator.

参考例2)
図7を参照して第2の参考例を説明する。本参考例では、2個の液晶反射型回転子と1個の偏光ビームスプリッターを組み合わせて偏波依存性を打ち消すタイプの可変光減衰器の出力側ファイバコリメータに変わり光受信素子を固定して構成されるVOA付き光受信素子について説明する。
( Reference Example 2)
A second reference example will be described with reference to FIG. In this reference example, two liquid crystal reflective rotators and one polarization beam splitter are combined to change the output side fiber collimator of a variable optical attenuator that cancels the polarization dependence. An optical receiving element with a VOA will be described.

参考例で説明する光可変減衰器内蔵光受信素子の組立工程は、図3(a)から(c)で示した入射側ファイバコリメータのYAGレーザー溶接工程までは、参考例1と同様であるため、詳細な説明は省略する。参考例1と同様にして、筐体1内に偏波無依存性光アイソレータ2、PBS素子3、液晶反射型回転子4と液晶反射型回転子5を固定し、気密封止した後に入力側ファイバコリメータ7を参考例1と同様に調芯固定する。 The assembly process of the optical receiving element with a built-in optical variable attenuator described in this reference example is the same as that of Reference Example 1 up to the YAG laser welding process of the incident side fiber collimator shown in FIGS. Therefore, detailed description is omitted. As in Reference Example 1, the polarization-independent optical isolator 2, the PBS element 3, the liquid crystal reflective rotator 4 and the liquid crystal reflective rotator 5 are fixed in the housing 1 and hermetically sealed. The fiber collimator 7 is aligned and fixed in the same manner as in Reference Example 1.

その後、図7に示すように、筐体1の出射ポート8に円筒型の筐体に封止されたレンズ付きの光受信素子を調芯固定用のカラー11を介して挿入し、受光電流が最大となるよう調芯した後に光受信素子12をYAG溶接固定する。   After that, as shown in FIG. 7, a light receiving element with a lens sealed in a cylindrical housing is inserted into the emission port 8 of the housing 1 through a collar 11 for fixing the alignment, and the light receiving current is After aligning to the maximum, the light receiving element 12 is fixed by YAG welding.

以上の工程により完成したVOA付き受信器では、電源投入後に受信光電流値をモニタしながら徐々に光減衰量を低下させるよう制御することで、電源投入直後の不安定時における過大光入力から受信素子を保護できる。   In the receiver with VOA completed by the above steps, the receiving element is detected from the excessive light input at the time of instability immediately after the power is turned on by controlling the light attenuation amount gradually while monitoring the received photocurrent value after the power is turned on. Can be protected.

また、電界制御装置のメモリに、受信光電流値と液晶反射型回転子4および5の電界との対応関係を予め記憶させておき、受信光電流値のモニタ値をピン18に接続された電界制御装置(図示しない)に供給し、電界制御装置が、モニタ値に基づいて液晶反射型回転子4および5の電界を制御することで、受信光の電流値が所望の値になるように減衰量を調整することができる。   Also, the correspondence between the received photocurrent value and the electric field of the liquid crystal reflection type rotors 4 and 5 is stored in advance in the memory of the electric field control device, and the monitor value of the received photocurrent value is stored in the electric field connected to the pin 18. Supplied to a control device (not shown), and the electric field control device controls the electric field of the liquid crystal reflective rotors 4 and 5 based on the monitor value, so that the current value of the received light is attenuated to a desired value. The amount can be adjusted.

参考例3)
図8を参照して第3の参考例を説明する。本参考例では、同一筐体内になだれ増倍型光受信素子(以下、APD:Avalanche Photodiode)14、受信信号増幅回路(以下、TIA:transimpedance amplifier)15、2個の液晶反射型回転子4および5、1個の偏光ビームスプリッター3、1個の偏波無依存光アイソレータ2を搭載した可変光減衰器内蔵受信器の構成について説明する。また、本参考例では可変光減衰器がノーマリオープンとなる場合を例として説明する。
( Reference Example 3)
A third reference example will be described with reference to FIG. In this reference example, an avalanche multiplication optical receiver (hereinafter referred to as APD) 14, a received signal amplifier circuit (hereinafter referred to as TIA) 15, two liquid crystal reflective rotators 4 and 5, the configuration of a variable optical attenuator built-in receiver equipped with one polarization beam splitter 3 and one polarization independent optical isolator 2 will be described. Further, in this reference example, a case where the variable optical attenuator is normally open will be described as an example.

参考例で説明する可変光減衰器の組立工程の概要を図8(a)から(c)に示す。まず始めに、筐体1の所定の位置に、セラミックキャリア13を介してAPDチップ14をハンダ固定し、TIAチップ15を導電性接着剤で固定する(図8(a))。その後、APDチップ14、TIAチップ15、筐体端子1のピン18の必要な場所をワイヤボンディングで接続する。さらに、APDチップ14の受光面の垂直方向からコリメート光を照射し、受光電流が最大となる位置にボールレンズ16を調芯し、YAGレーザーにより溶接固定する(図8(b))。 The outline of the assembly process of the variable optical attenuator described in this reference example is shown in FIGS. First, the APD chip 14 is fixed by soldering to a predetermined position of the housing 1 via the ceramic carrier 13, and the TIA chip 15 is fixed with a conductive adhesive (FIG. 8A). Thereafter, necessary locations of the APD chip 14, the TIA chip 15, and the pins 18 of the housing terminal 1 are connected by wire bonding. Further, collimated light is irradiated from the direction perpendicular to the light receiving surface of the APD chip 14, the ball lens 16 is aligned at a position where the light receiving current is maximized, and is fixed by welding with a YAG laser (FIG. 8B).

続いて、偏波無依存光アイソレータ2を筐体1内の所定の位置にハンダにより固定する。本参考例ではVOAをノーマリオープンとするためPBS素子3には、P偏光の光路を直角に曲げ、S偏光が透過するタイプを用いる。このPBS素子3には、参考例1、2と同等な液晶反射型回転子4と5があらかじめ接着固定されている。この反射型液晶素子付きPBS素子17をボールレンズ16の筐体上に載せ、入射側ファイバコリメータ7と合わせてAPDの受光電流が最大となるよう調芯する。調芯後、反射型液晶素子付きPBS素子17はボールレンズ筐体16に接着剤で固定し、ファイバコリメータ7は筐体1にYAGレーザー溶接固定される。次いで、液晶反射型回転子4と5の電極と筐体1のピン18とをワイヤポンティングにより接続する。最後に、フタ10をシーム溶接して完成する(図8(c))。 Subsequently, the polarization-independent optical isolator 2 is fixed to a predetermined position in the housing 1 by soldering. In this reference example, since the VOA is normally open, the PBS element 3 is of a type that bends the optical path of P-polarized light at right angles and transmits S-polarized light. Liquid crystal reflection type rotors 4 and 5 equivalent to those of Reference Examples 1 and 2 are bonded and fixed to the PBS element 3 in advance. The PBS element 17 with the reflective liquid crystal element is placed on the housing of the ball lens 16 and aligned with the incident side fiber collimator 7 so as to maximize the light receiving current of the APD. After alignment, the PBS element 17 with a reflective liquid crystal element is fixed to the ball lens casing 16 with an adhesive, and the fiber collimator 7 is fixed to the casing 1 by YAG laser welding. Next, the electrodes of the liquid crystal reflective rotors 4 and 5 and the pin 18 of the housing 1 are connected by wire pumping. Finally, the lid 10 is completed by seam welding (FIG. 8C).

以上の工程により完成した可変光減衰器内蔵受信器では、受信光電流値をモニタしながら光減衰量とAPD14のM値の制御が可能となり、受信器の最も特性の良い受光レベルでの受信が可能となる。   The receiver with a built-in variable optical attenuator completed by the above process can control the optical attenuation and the M value of the APD 14 while monitoring the received photocurrent value, and can receive at the light receiving level with the best characteristic of the receiver. It becomes possible.

また、TIA15で増幅された受信光電流値のモニタ値をピン18に接続された電界制御装置(図示しない)に供給し、電界制御装置が、モニタ値に基づいて液晶反射型回転子4および5の電界を制御することで、受信光の電流値が所望の値になるように減衰量を調整することができる。   Further, the monitor value of the received photocurrent value amplified by the TIA 15 is supplied to an electric field control device (not shown) connected to the pin 18, and the electric field control device supplies the liquid crystal reflective rotors 4 and 5 based on the monitor value. By controlling the electric field, the amount of attenuation can be adjusted so that the current value of the received light becomes a desired value.

実施例
図9および10を参照して、本発明のVOAの実施構成例および参考構成例を説明する。
( Example )
With reference to FIGS. 9 and 10, illustrating the implementation and examples reference configuration of the VOA of the present invention.

図9は、VOA全体で液晶光学素子として3個の反射型液晶光学素子を用いる構成例、すなわち、PBS素子3によって分離されたS偏光については、反射型液晶光学素子4が偏波状態を変化して反射し、PBS素子3によって分離されたP偏光については、光カプラ19(合分波素子)が2分岐し反射型液晶光学素子5−1および5−2へ入射し、反射型液晶光学素子5−1および5−2がそれぞれの偏波状態を変化して反射する構成を示す。反射型液晶光学素子5−1および5−2で反射した各偏光は光カプラ19で合波され再びPBS素子3へ入射される。   FIG. 9 shows a configuration example in which three reflective liquid crystal optical elements are used as the liquid crystal optical elements in the entire VOA, that is, for the S-polarized light separated by the PBS element 3, the reflective liquid crystal optical element 4 changes the polarization state. The P-polarized light reflected and separated by the PBS element 3 is branched into two by the optical coupler 19 (multiplexing / demultiplexing element) and incident on the reflective liquid crystal optical elements 5-1 and 5-2. A configuration in which the elements 5-1 and 5-2 reflect the polarization state by changing the respective polarization states is shown. The polarized lights reflected by the reflective liquid crystal optical elements 5-1 and 5-2 are combined by the optical coupler 19 and incident on the PBS element 3 again.

同様に、S偏光についても複数の反射型液晶光学素子で偏波状態を変化させ反射させるように構成することもできる。   Similarly, S-polarized light can also be configured to be reflected by changing the polarization state with a plurality of reflective liquid crystal optical elements.

このように、偏光毎に配される反射型液晶光学素子を複数用いることで、きめ細かな減衰量の制御が可能で、応答速度が早く、低消費電力の光減衰器を提供することが可能となる。   In this way, by using a plurality of reflective liquid crystal optical elements arranged for each polarized light, it is possible to finely control the amount of attenuation, provide an optical attenuator with high response speed and low power consumption. Become.

図10は、図1に示す構成を並列に使用するVOAの構成の参考例を示す。図10に示すVOAは、入射光を分波してアイソレータ2−1および2−2へ供給する光カプラ(合分波素子)20−1と、PBS素子3−1および3−2からの出力光を合波する光カプラ(合分波素子)20−2を備える。 FIG. 10 shows a reference example of a VOA configuration that uses the configuration shown in FIG. 1 in parallel. The VOA shown in FIG. 10 demultiplexes incident light and supplies it to the isolators 2-1 and 2-2, and outputs from the PBS elements 3-1 and 3-2. An optical coupler (multiplexing / demultiplexing element) 20-2 for multiplexing light is provided.

この構成により、図9に示すVOAと同様に、きめ細かな減衰量の制御が可能で、応答速度が早く、低消費電力の光減衰器を提供することが可能となる。   With this configuration, it is possible to provide an optical attenuator capable of finely controlling the amount of attenuation, having a high response speed, and low power consumption, as in the VOA shown in FIG.

以上、詳細に説明したように、本発明の減衰器が小型・低消費電力である点を生かして、既存の光通信用の光受信器の筐体内への集積化が容易な光減衰器を提供することができる。さらに、MEMS(マクロマシン)タイプのような可動部分を持たないため、耐振動にすぐれ、ディスプレーデバイスの実績が示すように長期的に安定した光減衰器を提供することができる。   As described above in detail, taking advantage of the small size and low power consumption of the attenuator of the present invention, an optical attenuator that can be easily integrated into the casing of an existing optical receiver for optical communication is provided. Can be provided. Furthermore, since it does not have a movable part like the MEMS (macro machine) type, it is possible to provide an optical attenuator that is excellent in vibration resistance and stable for a long period of time as shown by the results of display devices.

本発明のVOAの参考構成例を示す図であり、(a)は電界印加時の状態を、(b)は無電界時の状態をそれぞれ示す図である。It is a figure which shows the reference structural example of VOA of this invention, (a) is a figure which shows the state at the time of an electric field application, (b) shows the state at the time of no electric field, respectively. 本発明のVOAの参考構成例を示す図であり、(a)は電界印加時の状態を、(b)は無電界時の状態をそれぞれ示す図である。It is a figure which shows the reference structural example of VOA of this invention, (a) is a figure which shows the state at the time of an electric field application, (b) shows the state at the time of no electric field, respectively. 本発明の参考例1のVOA素子の組立工程を説明するための図である。It is a figure for demonstrating the assembly process of the VOA element of the reference example 1 of this invention. 本発明の参考例1で用いるPBS素子の光学特性を示す図である。It is a figure which shows the optical characteristic of the PBS element used by the reference example 1 of this invention. 本発明の参考例1で作製したVOA素子の光減衰量と印加電圧の関係を示す図である。It is a figure which shows the relationship between the light attenuation amount of the VOA element produced in the reference example 1 of this invention, and the applied voltage. 本発明の参考例1で作製したVOA素子の光減衰量の偏波依存性を示す図である。It is a figure which shows the polarization dependence of the optical attenuation amount of the VOA element produced in the reference example 1 of this invention. 本発明の参考例2のVOA付き光受信器の構成を示す図である。It is a figure which shows the structure of the optical receiver with VOA of the reference example 2 of this invention. 本発明の参考例3で説明したVOA内蔵光受信器の構成を示す図である。It is a figure which shows the structure of the optical receiver with a built-in VOA demonstrated in the reference example 3 of this invention. 本発明のVOAの実施構成例を示す図である。It is a figure which shows the implementation structural example of VOA of this invention. 本発明のVOAの参考構成例を示す図である。It is a figure which shows the reference structural example of VOA of this invention.

1 筐体
2 偏波無依存光アイソレータ
3 PBS素子
4 反射型液晶光学素子
5 反射型液晶光学素子
6 入射ポート
7 入射側ファイバコリメータ
8 出射ポート
9 出射側ファイバコリメータ
10 フタ(リッド)
11 カラー
12 受信素子
13 セラミックキャリア
14 なだれ増倍型光受信素子APD
15 受信信号増幅回路TIA
16 ボールレンズ
17 反射型液晶光学素子付きPBS素子
18 ピン
19,20 光カプラ
DESCRIPTION OF SYMBOLS 1 Case 2 Polarization-independent optical isolator 3 PBS element 4 Reflective liquid crystal optical element 5 Reflective liquid crystal optical element 6 Incident port 7 Incident side fiber collimator 8 Ejection port 9 Ejection side fiber collimator 10 Lid (lid)
11 Color 12 Receiving Element 13 Ceramic Carrier 14 Avalanche Multiplier Type Optical Receiving Element APD
15 Received signal amplifier circuit TIA
16 ball lens 17 PBS element with reflective liquid crystal optical element 18 pin 19, 20 optical coupler

Claims (4)

入射光の光路を当該入射光の偏波状態に応じた異なる光路を有する偏光に分離する偏光分離手段と、
前記偏光分離手段により分離された偏光毎に配される、印加される電界に応じて入射される偏光の偏波状態を変化させ反射する偏波依存性のある少なくとも1つの液晶光学素子と、
前記液晶光学素子により偏波状態が変化した各偏光を合波する偏光合波手段と
を備えた可変光減衰器であって、
前記偏光分離手段および前記偏光合波手段は1つの偏光ビームスプリッター素子であって、前記入射光を直交する光路を有する2つの直線偏光に分離し、前記少なくとも1つの液晶光学素子により反射された各偏光を再び入射して合波し、
前記液晶光学素子は、前記偏光ビームスプリッター素子により分離された各偏光が当該液晶光学素子の反射面に対して垂直に入射するように配され、
前記液晶光学素子により反射された偏光が前記入射光の光路へ入射することを阻止する光アイソレータを前記偏光ビームスプリッター素子の前段に備え、
前記偏光分離手段により分離された偏光の少なくとも1つを複数に分岐し、分岐した偏光をそれぞれ1つの前記液晶光学素子へ入射させる分岐手段を有することを特徴とする可変光減衰器。
Polarization separation means for separating the optical path of the incident light into polarized light having different optical paths according to the polarization state of the incident light;
At least one liquid crystal optical element having a polarization dependency that is arranged for each polarized light separated by the polarization separating means and changes the polarization state of the incident polarized light according to the applied electric field and reflects the polarized light;
A variable optical attenuator and a polarization multiplexing unit for multiplexing the respective polarization the polarization state is changed by the liquid crystal optical element,
The polarization separation means and the polarization multiplexing means are one polarization beam splitter element, which separates the incident light into two linearly polarized lights having orthogonal optical paths and reflected by the at least one liquid crystal optical element. The polarized light is incident again and combined,
The liquid crystal optical element is arranged so that each polarized light separated by the polarization beam splitter element is incident perpendicularly to a reflection surface of the liquid crystal optical element,
An optical isolator that prevents the polarized light reflected by the liquid crystal optical element from entering the optical path of the incident light is provided in the front stage of the polarization beam splitter element,
A variable optical attenuator comprising branching means for branching at least one of the polarized lights separated by the polarized light separating means into a plurality of pieces and for allowing the branched polarized light to enter each of the liquid crystal optical elements .
請求項1に記載の可変光減衰器と、受信素子とを内蔵した可変光減衰器内蔵受信器。 A receiver with a built-in variable optical attenuator, comprising the variable optical attenuator according to claim 1 and a receiving element. 請求項1に記載の可変光減衰器と、なだれ増倍型光受信素子と、受信信号増幅回路を内蔵した可変光減衰器内蔵受信器。 A variable optical attenuator built-in receiver comprising the variable optical attenuator according to claim 1, an avalanche multiplication optical receiver, and a reception signal amplifier circuit. 入射光の光路を当該入射光の偏波状態に応じた異なる光路を有する偏光に分離する偏光分離手段と、前記偏光分離手段により分離された偏光毎に配される、印加される電界に応じて入射される偏光の偏波状態を変化させ反射する偏波依存性のある少なくとも1つの液晶光学素子と、前記液晶光学素子により偏波状態が変化した各偏光を合波する偏光合波手段とを備えたこと可変光減衰器における光減衰方法であって、
前記可変光減衰器は、
前記偏光分離手段および前記偏光合波手段が、1つの偏光ビームスプリッター素子であって、前記入射光を直交する光路を有する2つの直線偏光に分離し、前記少なくとも1つの液晶光学素子により反射された各偏光を再び入射して合波し、
前記液晶光学素子は、前記偏光ビームスプリッター素子により分離された各偏光が当該液晶光学素子の反射面に対して垂直に入射するように配され、
前記液晶光学素子により反射された偏光が前記入射光の光路へ入射することを阻止する光アイソレータを前記偏光ビームスプリッター素子の前段に備え、
前記偏光分離手段により分離された偏光の少なくとも1つを複数に分岐し、分岐した偏光をそれぞれ1つの前記液晶光学素子へ入射させる分岐手段を有し、
前記方法は、
前記偏光合波手段からの光をモニタするステップと、
モニタ値が所望の値になるように液晶光学素子へ印加される電界を制御するステップと
を含むことを特徴とする光減衰方法。
A polarization separating means for separating the polarized light having different optical paths according to the polarization state of the incident light the optical path of incident light, the disposed in the polarization separating means polarizing each separated by, in response to an applied electric field At least one liquid crystal optical element having polarization dependency that changes and reflects the polarization state of incident polarized light, and polarization multiplexing means for combining each polarized light whose polarization state has been changed by the liquid crystal optical element. An optical attenuation method in a variable optical attenuator provided,
The variable optical attenuator is
The polarization separation means and the polarization multiplexing means are one polarization beam splitter element that separates the incident light into two linearly polarized light having orthogonal optical paths and reflected by the at least one liquid crystal optical element Each polarized light is incident again and combined,
The liquid crystal optical element is arranged so that each polarized light separated by the polarization beam splitter element is incident perpendicularly to a reflection surface of the liquid crystal optical element,
An optical isolator that prevents the polarized light reflected by the liquid crystal optical element from entering the optical path of the incident light is provided in the front stage of the polarization beam splitter element,
Branching means for branching at least one of the polarized lights separated by the polarized light separating means into a plurality of pieces, and for allowing the branched polarized light to enter each of the liquid crystal optical elements,
The method
Monitoring light from the polarization multiplexing means;
And a step of controlling an electric field applied to the liquid crystal optical element so that the monitor value becomes a desired value.
JP2007121509A 2007-05-02 2007-05-02 Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method Expired - Fee Related JP5090783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007121509A JP5090783B2 (en) 2007-05-02 2007-05-02 Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121509A JP5090783B2 (en) 2007-05-02 2007-05-02 Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method

Publications (2)

Publication Number Publication Date
JP2008276043A JP2008276043A (en) 2008-11-13
JP5090783B2 true JP5090783B2 (en) 2012-12-05

Family

ID=40054056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121509A Expired - Fee Related JP5090783B2 (en) 2007-05-02 2007-05-02 Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method

Country Status (1)

Country Link
JP (1) JP5090783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122116A (en) * 2013-04-05 2015-12-02 浜松光子学株式会社 Optical module and observation device
US9686894B2 (en) * 2011-08-25 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Component mounting method using a tape feeder
US9784980B2 (en) 2013-04-05 2017-10-10 Hamamatsu Photonics K.K. Optical module and light exposure device
US10175552B2 (en) 2013-04-05 2019-01-08 Hamamatsu Photonics K.K. Optical module, optical observation device, and light exposure device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254732B2 (en) * 2009-03-11 2012-08-28 Citizen Holdings Co., Ltd. Phase modulator and optical modulation device
KR101557760B1 (en) * 2014-02-21 2015-10-06 선문대학교 산학협력단 Reflective variable optical attenuator using liquid crystals
DE102018110109A1 (en) * 2018-04-26 2019-10-31 Carl Zeiss Microscopy Gmbh Optical arrangement and method for light beam shaping for a light microscope

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659554B2 (en) * 1988-05-30 1997-09-30 浜松ホトニクス株式会社 Light intensity correlator
IL142773A (en) * 2001-03-08 2007-10-31 Xtellus Inc Fiber optical attenuator
JP3672093B2 (en) * 2002-03-05 2005-07-13 シチズン時計株式会社 Light switch
JP4367684B2 (en) * 2002-05-15 2009-11-18 シチズンホールディングス株式会社 Dynamic gain equalizer
JP3726133B2 (en) * 2002-09-06 2005-12-14 独立行政法人情報通信研究機構 Quantum channel encoder / decoder
WO2004054140A1 (en) * 2002-12-11 2004-06-24 Fujitsu Limited Method for optical communication, and optical receiver apparatus
JP2006166162A (en) * 2004-12-09 2006-06-22 Nec Corp Communication system provided with pulse waveform shaping function and communication method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9686894B2 (en) * 2011-08-25 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Component mounting method using a tape feeder
CN105122116A (en) * 2013-04-05 2015-12-02 浜松光子学株式会社 Optical module and observation device
US9784980B2 (en) 2013-04-05 2017-10-10 Hamamatsu Photonics K.K. Optical module and light exposure device
CN105122116B (en) * 2013-04-05 2017-10-13 浜松光子学株式会社 Optical module and observation device
US10175552B2 (en) 2013-04-05 2019-01-08 Hamamatsu Photonics K.K. Optical module, optical observation device, and light exposure device
US10495896B2 (en) 2013-04-05 2019-12-03 Hamamatsu Photonics K.K. Optical module and observation device

Also Published As

Publication number Publication date
JP2008276043A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5090783B2 (en) Variable optical attenuator, variable optical attenuator built-in receiver and optical attenuation method
US6081367A (en) Optical filter module and optical amplifier using the same
US6898348B2 (en) Spectral power equalizer for wavelength-multiplexed optical fiber communication links
JP2000356760A (en) Polarized wave mode dispersion compensating device
US8873898B2 (en) Polarization independent wavelength converter and polarization independent wavelength conversion method
US6975454B1 (en) Variable polarization-dependent-loss source
JP5927034B2 (en) Variable optical attenuator
US20020089745A1 (en) Method and apparatus for a polarization beam splitter/combiner with an integrated optical isolator
US20020031324A1 (en) Variable optical attenuator using microelectro mechanical mirror
US20080253731A1 (en) Variable optical attenuator
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
US6876475B1 (en) Dual modulator wavelength-selective switch and equalizer
US6628455B1 (en) Multi-functional optical processor useful for fiberoptic applications
US6198567B1 (en) Faraday rotation variable attenuator
Goosen et al. Micromechanical gain slope compensator for spectrally linear optical power equalization
JP2004145136A (en) Optical demultiplexer and otdr device
US20040037537A1 (en) Optoelectronic module with integrated variable optical attenuator
JP4908468B2 (en) Optical receiver with built-in variable optical attenuator
CN216526617U (en) Variable optical attenuator and communication equipment
US7050230B2 (en) Optical switch device
JPH05181035A (en) Optical demultiplexing and branching device
JP2953202B2 (en) Optical coupler
US6624938B1 (en) Optical circulator
JP5315500B2 (en) Polarization level difference adjustment device
US20220137300A1 (en) Power Equalizer And Adjustment Method Therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100518

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees