JP5090559B2 - Mass flow controller - Google Patents

Mass flow controller Download PDF

Info

Publication number
JP5090559B2
JP5090559B2 JP2011128689A JP2011128689A JP5090559B2 JP 5090559 B2 JP5090559 B2 JP 5090559B2 JP 2011128689 A JP2011128689 A JP 2011128689A JP 2011128689 A JP2011128689 A JP 2011128689A JP 5090559 B2 JP5090559 B2 JP 5090559B2
Authority
JP
Japan
Prior art keywords
coefficient
flow rate
value
pressure
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011128689A
Other languages
Japanese (ja)
Other versions
JP2011204265A (en
Inventor
明人 高橋
幸正 古川
祐紀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Stec Co Ltd
Original Assignee
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec Co Ltd filed Critical Horiba Stec Co Ltd
Priority to JP2011128689A priority Critical patent/JP5090559B2/en
Publication of JP2011204265A publication Critical patent/JP2011204265A/en
Application granted granted Critical
Publication of JP5090559B2 publication Critical patent/JP5090559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Description

本発明は、ガスや液体などの流体の流量を制御するマスフローコントローラに関するものである。   The present invention relates to a mass flow controller that controls the flow rate of a fluid such as gas or liquid.

例えば、半導体の製造に用いられる各種ガス等を半導体製造装置に供給する場合、それらの供給流路にマスフローコントローラをそれぞれ設け、これによってガス流量をそれぞれ調節するようにしている。そして従前は、各マスフローコントローラにそれぞれ圧力レギュレータを直列付帯させ、各マスフローコントローラの流路内圧力に極端な変動が生じないようにして、流量制御を容易化している。   For example, when various gases used for semiconductor manufacturing are supplied to a semiconductor manufacturing apparatus, mass flow controllers are provided in the supply flow paths, thereby adjusting the gas flow rates. In the past, each mass flow controller was accompanied by a pressure regulator in series, and flow control was facilitated by preventing extreme fluctuations in the flow passage pressure of each mass flow controller.

前記マスフローコントローラにおける流量制御方式としては、PID制御が基本であるが、例えば、特許文献1に示すように、過渡的な応答状態と安定状態とでPID係数を切り替えてフィードバック制御を行うようにしたものが知られている。   As a flow rate control method in the mass flow controller, PID control is fundamental, but for example, as shown in Patent Document 1, feedback control is performed by switching the PID coefficient between a transient response state and a stable state. Things are known.

具体的に特許文献1に示すものは、比例演算における偏差に乗算するゲイン値として、流量設定値を所定の関数に代入して得られる値を用いており、例えば安定状態において用いられる前記所定の関数は、代入される流量設定値が小さくなれば小さな値が算出されるものである。つまり、特許文献1に示す従来のマスフローコントローラは、安定状態での比例係数、積分係数及び微分係数(以下、PID係数ともいう。)を流量設定値のみに比例させて変更するだけである。   Specifically, Patent Document 1 uses a value obtained by substituting a flow rate setting value into a predetermined function as a gain value to be multiplied by a deviation in proportional calculation. For example, the predetermined value used in a stable state is used. The function is such that a smaller value is calculated if the assigned flow rate setting value becomes smaller. That is, the conventional mass flow controller shown in Patent Document 1 only changes the proportional coefficient, integral coefficient and differential coefficient (hereinafter also referred to as PID coefficient) in a stable state in proportion to only the flow rate setting value.

しかしながら、本願発明者は、安定状態において一次側圧力の上昇時と下降時とでPID係数の最適値が異なること、また、一次側圧力の時間変化量が同じであっても、変化前の一次側圧力が異なればPID係数が異なること、さらに、流量設定値とPID係数最適値とが直線関係にならないという実験結果を得た。そうすると、安定状態においてPID係数を流量設定値に比例させるだけではPI(Pressure Insensitive)性能の向上には限界があることが判明した。   However, the inventor of the present application shows that the optimum value of the PID coefficient is different between when the primary side pressure rises and when the primary side pressure rises in a stable state, and even if the amount of time change of the primary side pressure is the same, An experimental result was obtained that the PID coefficient was different if the side pressure was different, and that the flow rate set value and the PID coefficient optimum value were not in a linear relationship. Then, it has been found that there is a limit to improving the PI (Pressure Insensitive) performance only by making the PID coefficient proportional to the flow rate set value in a stable state.

特開2007−34550号公報JP 2007-34550 A

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、マスフローコントローラにおけるPI性能をさらに向上させることをその主たる所期課題とするものである。   Accordingly, the present invention has been made to solve the above-mentioned problems all at once, and its main intended task is to further improve the PI performance in the mass flow controller.

すなわち本発明に係るマスフローコントローラは、流路内を流れる流体の流量を測定し、その測定値を示す流量測定信号を出力する流量センサ部と、当該流量センサ部の上流側又は下流側に設けた流量制御バルブと、前記流量測定信号の示す流量測定値と目標値である流量設定値との偏差にPID演算を施して流量制御バルブへのフィードバック制御値を算出する算出部と、前記フィードバック制御値に基づいて開度制御信号を生成し、流量制御バルブに出力する開度制御信号出力部と、を備え、前記算出部が、安定状態におけるPID演算に用いる比例係数、積分係数及び微分係数を、一次側圧力又は流量設定値の少なくとも1つと、前記一次側圧力の時間変化量と、に基づいて変更することを特徴とする。   That is, the mass flow controller according to the present invention is provided on the upstream side or the downstream side of the flow rate sensor unit that measures the flow rate of the fluid flowing in the flow path and outputs a flow rate measurement signal indicating the measured value. A flow rate control valve, a calculation unit for calculating a feedback control value to the flow rate control valve by performing a PID operation on a deviation between a flow rate measurement value indicated by the flow rate measurement signal and a flow rate set value that is a target value, and the feedback control value And an opening degree control signal output unit that generates an opening degree control signal and outputs the opening degree control signal to the flow rate control valve, and the calculation unit calculates a proportional coefficient, an integral coefficient, and a differential coefficient used for PID calculation in a stable state, It is changed based on at least one of the primary side pressure or the flow rate set value and the time change amount of the primary side pressure.

このようなものであれば、安定状態におけるPID演算に用いる比例係数、積分係数及び微分係数を、一次側圧力、当該一次側圧力の時間変化量、及び前記流量設定値の少なくとも2つに基づいて変更させているので、従来の流量設定値により比例係数、積分係数及び微分係数を比例させて変更させる方法に比べて、より最適な比例係数、積分係数及び微分係数を得ることができ、その結果、一次側圧力の圧力変動の影響を受けにくく、安定した流量制御を行うことができる。   If it is such, the proportionality coefficient, integral coefficient, and differential coefficient used for the PID calculation in the stable state are based on at least two of the primary side pressure, the temporal change amount of the primary side pressure, and the flow rate setting value. Compared to the conventional method of changing the proportionality coefficient, integral coefficient, and derivative coefficient in proportion to the flow rate setting value, more optimal proportionality coefficient, integral coefficient, and derivative coefficient can be obtained. Therefore, it is difficult to be affected by the pressure fluctuation of the primary side pressure, and stable flow rate control can be performed.

特に、安定状態において一次側圧力の上昇時と下降時とで比例係数、積分係数及び微分係数の最適値が異なることから、前記算出部が、一次側圧力の時間変化量の正負によって、比例係数、積分係数及び微分係数を変更するものであることが望ましい。   In particular, since the optimum values of the proportional coefficient, integral coefficient, and differential coefficient differ between when the primary side pressure rises and when the primary side pressure rises in a stable state, the calculation unit determines the proportionality coefficient depending on whether the time change amount of the primary side pressure is positive or negative. It is desirable to change the integral coefficient and the differential coefficient.

比例係数、積分係数及び微分係数を最も最適な値にして、一次側圧力の圧力変動の影響を受けにくく、安定した流量制御を行うためには、前記算出部が、一次側圧力の時間変化量の正負によって、比例係数、積分係数及び微分係数を変更し、それによって変更された比例係数、積分係数及び微分係数に流量設定値を所定の関数に代入して得られる値を用いて所定演算することにより変更し、それによって変更された比例係数、積分係数及び微分係数に一次側圧力を所定の関数に代入して得られる値を用いて所定演算することにより変更するものであることが望ましい。   In order to set the proportionality coefficient, integral coefficient, and derivative coefficient to the most optimal values and are not easily affected by pressure fluctuations of the primary side pressure, and to perform stable flow rate control, the calculation unit changes the amount of time variation of the primary side pressure. The proportional coefficient, integral coefficient, and differential coefficient are changed according to the positive / negative of the value, and a predetermined calculation is performed using the value obtained by substituting the flow rate setting value into the predetermined function for the changed proportional coefficient, integral coefficient, and differential coefficient. It is desirable that the change is made by performing a predetermined calculation using a value obtained by substituting the primary side pressure into a predetermined function for the proportional coefficient, the integral coefficient, and the differential coefficient that are changed accordingly.

このように構成した本発明によれば、マスフローコントローラにおけるPI性能を向上させることができる。   According to the present invention configured as described above, the PI performance in the mass flow controller can be improved.

本発明の一実施形態に係るマスフローコントローラの全体模式図。1 is an overall schematic diagram of a mass flow controller according to an embodiment of the present invention. 同実施形態に係るマスフローコントローラを用いた流量制御システムの構成例。The structural example of the flow control system using the mass flow controller which concerns on the same embodiment. 同実施形態における制御部の機能ブロック図。The functional block diagram of the control part in the embodiment. 同実施形態におけるPID係数変更手順を示すフローチャート。The flowchart which shows the PID coefficient change procedure in the embodiment. PID係数変更に用いる関数を示す模式図。The schematic diagram which shows the function used for a PID coefficient change.

以下に本発明に係る質量流量計100の一実施形態について図面を参照して説明する。なお、図1は本実施形態に係るマスフローコントローラの全体模式図であり、図2はマスフローコントローラを用いた流量制御システムの構成例であり、図3は制御部の機能ブロック図であり、図4はPID係数変更手順を示すフローチャートであり、図5はPID係数変更に用いる関数を示す模式図である。   Hereinafter, an embodiment of a mass flow meter 100 according to the present invention will be described with reference to the drawings. 1 is an overall schematic diagram of a mass flow controller according to the present embodiment, FIG. 2 is a configuration example of a flow rate control system using the mass flow controller, FIG. 3 is a functional block diagram of a control unit, and FIG. FIG. 5 is a flowchart showing a procedure for changing the PID coefficient, and FIG. 5 is a schematic diagram showing a function used for changing the PID coefficient.

<装置構成>
本実施形態のマスフローコントローラ100は、図1に模式図を示すように、内部流路1と、その内部流路1内を流れる流体Fの流量を測定する流量センサ部2と、その流量センサ部2の例えば下流側に設けた流量制御バルブ3と、前記流量センサ部2及び流量制御バルブ3の上流側に設けた圧力センサ部4と、制御部5とを備えているもので、例えば図2に示すように、半導体プロセスにおけるチャンバへのガス供給システムに用いられる。
<Device configuration>
As shown in a schematic diagram in FIG. 1, the mass flow controller 100 according to the present embodiment includes an internal flow channel 1, a flow rate sensor unit 2 that measures the flow rate of the fluid F that flows in the internal flow channel 1, and the flow rate sensor unit. 2, for example, a flow rate control valve 3 provided on the downstream side, a pressure sensor unit 4 provided on the upstream side of the flow rate sensor unit 2 and the flow rate control valve 3, and a control unit 5. As shown in FIG. 2, the gas supply system is used for a gas supply system to a chamber in a semiconductor process.

各部を説明すると、内部流路1は、上流端を導入ポートP1、下流端を導出ポートP2としてそれぞれ開口するもので、例えば、導入ポートP1には、外部配管を介してボンベ等の流体供給源Bが接続され、導出ポートP2には、外部配管を介して、半導体製造のためのチャンバ(図示しない)が接続されている。なお、この実施形態では、同図に示すように、1つの流体供給源Bから配管を複数分岐させ、各配管にそれぞれマスフローコントローラ100を設けるようにしている。また、圧力レギュレータPRは、流体供給源Bの出口にのみ設けてあり、各配管それぞれには、マスフローコントローラ100用の圧力レギュレータは設けられていない。なお符号FVは空圧弁である   Explaining each part, the internal flow path 1 is opened with an upstream end as an introduction port P1 and a downstream end as a lead-out port P2. For example, the introduction port P1 has a fluid supply source such as a cylinder via an external pipe. B is connected, and a chamber (not shown) for semiconductor manufacturing is connected to the lead-out port P2 via an external pipe. In this embodiment, as shown in the figure, a plurality of pipes are branched from one fluid supply source B, and a mass flow controller 100 is provided for each pipe. Further, the pressure regulator PR is provided only at the outlet of the fluid supply source B, and the pressure regulator for the mass flow controller 100 is not provided for each pipe. Reference sign FV is a pneumatic valve.

流量センサ部2は、詳細は図示しないが、例えば、流路1に設けられた一対の感熱センサ(サーマルセンサ)を備えたものであって、流体Fの瞬時流量がこの感熱センサによって電気信号として検出され、内部電気回路によってその電気信号が増幅等されて、検出流量に応じた値を有する流量測定信号として出力されるようにしたものである。   Although the flow rate sensor unit 2 is not shown in detail, for example, the flow rate sensor unit 2 includes a pair of thermal sensors (thermal sensors) provided in the flow path 1, and the instantaneous flow rate of the fluid F is converted into an electrical signal by the thermal sensor. The electric signal is detected and amplified by an internal electric circuit, and output as a flow rate measurement signal having a value corresponding to the detected flow rate.

流量制御バルブ3は、やはり詳細は図示しないが、例えば、その弁開度をピエゾ素子よりなるアクチュエータによって変化させ得るように構成したものであって、外部からの電気信号である開度制御信号を与えられることによって前記アクチュエータを駆動し、その開度制御信号の値に応じた弁開度に調整して流体Fの流量を制御するものである。   Although the flow control valve 3 is not shown in detail in detail, for example, the valve opening degree is configured to be changed by an actuator made of a piezo element, and an opening degree control signal that is an electric signal from the outside is provided. When given, the actuator is driven, and the flow rate of the fluid F is controlled by adjusting the valve opening according to the value of the opening control signal.

圧力センサ部4は、詳細は図示しないが、例えば、ダイヤフラム(ステンレスダイヤフラム又はシリコンダイヤフラム等)及び当該ダイヤフラムの変位を計測する感圧素子を備えたものであって、ダイヤフラムの変位がこの感圧素子によって電気信号として検出され、内部電気回路によってその電気信号が増幅等されて、検出流量に応じた値を有する圧力測定信号として出力されるようにしたものである。   Although not shown in detail, the pressure sensor unit 4 includes, for example, a diaphragm (such as a stainless steel diaphragm or a silicon diaphragm) and a pressure sensitive element that measures the displacement of the diaphragm, and the displacement of the diaphragm is the pressure sensitive element. Is detected as an electric signal, and the electric signal is amplified by an internal electric circuit and output as a pressure measurement signal having a value corresponding to the detected flow rate.

制御部5は、CPUやメモリ、A/D変換器、D/A変換器等を有したデジタル乃至アナログ電気回路で構成されたもので、専用のものであってもよいし、一部又は全部にパソコン等の汎用コンピュータを利用するようにしたものであってもよい。また、CPUを用いず、アナログ回路のみで前記各部としての機能を果たすように構成してもよいし、物理的に一体である必要はなく、有線乃至無線によって互いに接続された複数の機器からなるものであってもよい。   The control unit 5 is composed of a digital or analog electric circuit having a CPU, a memory, an A / D converter, a D / A converter, and the like, and may be dedicated or partly or wholly. Alternatively, a general-purpose computer such as a personal computer may be used. Further, it may be configured such that the functions of the respective units are achieved by using only an analog circuit without using a CPU, and need not be physically integrated, but includes a plurality of devices connected to each other by wire or wirelessly. It may be a thing.

そして前記メモリに所定のプログラムを格納し、そのプログラムにしたがってCPUやその周辺機器を協働動作させることによって、この制御部5が、図3に示すように、信号受信部6、算出部7、開度制御信号出力部8及び流量出力部9としての機能を少なくとも発揮するように構成している。   Then, by storing a predetermined program in the memory and operating the CPU and peripheral devices in cooperation with each other according to the program, the control unit 5 has a signal receiving unit 6, a calculating unit 7, The opening control signal output unit 8 and the flow rate output unit 9 are configured to exhibit at least the functions.

信号受信部6は、流量センサ部2から送信されてくる流量測定信号、別コンピュータ等から入力される流量設定信号等、及び圧力センサ部4から送信されてくる圧力測定信号を受信し、それらの値を例えばメモリ内の所定領域に格納するものである。   The signal receiving unit 6 receives the flow rate measurement signal transmitted from the flow rate sensor unit 2, the flow rate setting signal input from another computer or the like, and the pressure measurement signal transmitted from the pressure sensor unit 4, For example, the value is stored in a predetermined area in the memory.

算出部7は、前記流量測定信号の示す流量測定値を取得するとともに、その流量測定値と目標値、すなわち前記流量設定信号が示す流量設定値との偏差を算出する偏差算出部71と、その偏差にPID演算を施して流量制御バルブ3へのフィードバック制御値を算出する制御値算出部72と、を備えたものである。   The calculation unit 7 acquires a flow rate measurement value indicated by the flow rate measurement signal, and calculates a deviation between the flow rate measurement value and a target value, that is, a flow rate setting value indicated by the flow rate setting signal, And a control value calculation unit 72 that calculates a feedback control value to the flow control valve 3 by performing PID calculation on the deviation.

開度制御信号出力部8は、前記フィードバック制御値に基づく値を有する開度制御信号を生成し、その開度制御信号を流量制御バルブ3に出力するものである。   The opening control signal output unit 8 generates an opening control signal having a value based on the feedback control value and outputs the opening control signal to the flow control valve 3.

流量出力部9は、前記流量測定値に所定の演算を施して流量表示値を算出し、その流量表示値を値として有する流量表示信号(アナログ又はデジタル信号)を、外部での利用が可能なように出力するものである。   The flow rate output unit 9 performs a predetermined calculation on the flow rate measurement value to calculate a flow rate display value, and a flow rate display signal (analog or digital signal) having the flow rate display value as a value can be used externally. Is output as follows.

しかして、この実施形態では、制御値算出部72が、流量が安定して流れている状態(安定状態)におけるPID演算に用いる比例係数(P)、積分係数(I)及び微分係数(D)(つまり、安定状態のPID制御に用いるPID係数)を、一次側圧力(供給圧)、当該一次側圧力の時間変化量及び前記流量設定値に基づいて変更させるものである。ここで、安定状態とは、流量設定値を単位時間で所定量以上変化させた時点からの所定期間である変化期間(例えば2秒程度)以外の期間における状態であり、流量設定値はほとんど変化しない。また、所定量とは、フルスケールに対する%値で0〜10%程度をいい、好ましくは0.3〜5%である。さらに、所定期間とは、数秒程度を意味し、具体的には0〜10秒程度をいい、好ましくは0.3〜5秒である。   Therefore, in this embodiment, the control value calculation unit 72 uses the proportional coefficient (P), integral coefficient (I), and differential coefficient (D) used for PID calculation in a state where the flow rate is stable (stable state). In other words, the PID coefficient used for PID control in a stable state is changed based on the primary side pressure (supply pressure), the temporal change amount of the primary side pressure, and the flow rate setting value. Here, the stable state is a state in a period other than a change period (for example, about 2 seconds), which is a predetermined period from the time when the flow rate set value is changed by a predetermined amount or more per unit time, and the flow rate set value changes almost. do not do. The predetermined amount is a percentage value with respect to full scale of about 0 to 10%, preferably 0.3 to 5%. Further, the predetermined period means about several seconds, specifically about 0 to 10 seconds, preferably 0.3 to 5 seconds.

より詳細に制御値算出部72は、一次側圧力(マスフローコントローラの上流側の圧力)の時間変化量の正負によって、比例係数、積分係数及び微分係数(以下、PID係数ともいう。)を変更し、それによって、変更されたPID係数を、流量設定値を所定の関数に代入して得られる値を用いて演算することにより変更し、それによって変更されたPID係数を、一次側圧力を所定の関数に代入して得られる値を用いて演算することにより変更する。また、制御値算出部72は、一次側圧力の時間変化量の正負により、つまり、dp/dt>0の場合とdp/dt≦0の場合によって、流量設定値に固有の関数及び一次側圧力に固有の関数を異ならせている。   More specifically, the control value calculation unit 72 changes a proportional coefficient, an integral coefficient, and a differential coefficient (hereinafter also referred to as a PID coefficient) depending on whether the primary pressure (the pressure on the upstream side of the mass flow controller) changes with time. Thus, the changed PID coefficient is changed by calculating using a value obtained by substituting the flow rate setting value into a predetermined function, and the changed PID coefficient is changed to a predetermined primary pressure. Change by calculating using the value obtained by assigning to the function. In addition, the control value calculation unit 72 determines the function and the primary side pressure that are specific to the flow rate setting value depending on whether the primary side pressure changes with time, that is, when dp / dt> 0 and dp / dt ≦ 0. The functions specific to are different.

以下、制御値算出部72における具体的な変更方法について、図4を参照して説明する。   Hereinafter, a specific change method in the control value calculation unit 72 will be described with reference to FIG.

まず、制御値算出部72は、圧力センサ部4により得られた一次側圧力の圧力測定信号を取得して、一次側圧力及び当該一次側圧力の時間変化量を算出する。   First, the control value calculation unit 72 acquires the pressure measurement signal of the primary pressure obtained by the pressure sensor unit 4 and calculates the primary pressure and the temporal change amount of the primary pressure.

そして、制御値算出部72は、一次側圧力の時間変化量の正負を判断する(ステップS1)。一次側圧力の時間変化量が正の場合(dp/dt>0)と判断した場合、つまり一次側圧力上昇時には、制御値算出部72は、以下の式により、流量設定値に基づいてPID係数を変更する(ステップS2)。   And the control value calculation part 72 judges the positive / negative of the time variation | change_quantity of a primary side pressure (step S1). When it is determined that the time variation of the primary pressure is positive (dp / dt> 0), that is, when the primary pressure rises, the control value calculation unit 72 uses the following formula to calculate the PID coefficient based on the flow rate setting value. Is changed (step S2).

P’=P×Fu(set) ・・・(1)
I’=I×Fu(set) ・・・(2)
D’=D×Fu(set) ・・・(3)
P ′ = P × Fu (set) (1)
I ′ = I × Fu (set) (2)
D ′ = D × Fu (set) (3)

ここで、Fu()は、流量設定値に固有の関数である設定係数関数であり、setは流量設定値を示す。本実施形態の設定係数関数Fuは、図5(a)に示すように、0−50%の比例定数、50−100%の比例定数が異なる折れ線関数である。折れ線形状は、これに限られず適宜設定可能である。なお、この設定係数関数Fuは、曲線関数とすることができるが、演算処理量が増大し、またPID係数の調整が困難になるという問題がある。   Here, Fu () is a setting coefficient function that is a function specific to the flow rate setting value, and set indicates the flow rate setting value. As shown in FIG. 5A, the setting coefficient function Fu of the present embodiment is a polygonal line function with different proportional constants of 0-50% and proportional constants of 50-100%. The polygonal line shape is not limited to this and can be set as appropriate. The setting coefficient function Fu can be a curve function, but there are problems that the amount of calculation processing increases and the adjustment of the PID coefficient becomes difficult.

次に、制御値算出部72は、以下の式により、上記(1)〜(3)により得られたP’I’D’係数を一次側圧力に基づいて変更する(ステップS3)。   Next, the control value calculation unit 72 changes the P′I′D ′ coefficient obtained by the above (1) to (3) based on the primary pressure by the following formula (step S3).

P”=P’×Gu(p) ・・・(4)
I”=I’×Gu(p) ・・・(5)
D”=D’×Gu(p) ・・・(6)
P ″ = P ′ × Gu (p) (4)
I ″ = I ′ × Gu (p) (5)
D ″ = D ′ × Gu (p) (6)

ここで、Gu()は、一次側圧力に固有の関数である圧力係数関数であり、pは一次側圧力値を示す。本実施形態の圧力係数関数は、図5(a)に示すように、入力される一次側圧力に比例した値が算出される比例関数である。なお、この圧力係数関数Guは折れ線関数又は曲線関数とすることもできる。曲線関数とした場合、演算処理量が増大し、またPID係数の調整が困難になるという問題がある。   Here, Gu () is a pressure coefficient function that is a function inherent to the primary pressure, and p indicates the primary pressure value. As shown in FIG. 5A, the pressure coefficient function of the present embodiment is a proportional function for calculating a value proportional to the input primary pressure. The pressure coefficient function Gu can be a line function or a curve function. When the curve function is used, there is a problem that the amount of calculation processing increases and adjustment of the PID coefficient becomes difficult.

以上により、制御値算出部72は、一次側圧力の時間変化量が正の場合に、流量設定値及び一次側圧力に基づいてP、I、DをP”、I”、D”に変更し、当該PID係数(比例係数P”、積分係数I”及び微分係数D”)を用いて偏差にPID演算を施してフィードバック制御値を算出する(ステップS4)。   As described above, the control value calculation unit 72 changes P, I, and D to P ″, I ″, and D ″ based on the flow rate setting value and the primary side pressure when the temporal change amount of the primary pressure is positive. Then, using the PID coefficient (proportional coefficient P ″, integral coefficient I ″, and differential coefficient D ″), a PID calculation is performed on the deviation to calculate a feedback control value (step S4).

一方、制御値算出部72は、一次側圧力の変化量が負であると判断した場合、つまり一次側圧力下降時には、以下の式により、流量設定値に基づいてPID係数を変更する(ステップS5)。   On the other hand, when the control value calculation unit 72 determines that the change amount of the primary pressure is negative, that is, when the primary pressure is decreasing, the control value calculation unit 72 changes the PID coefficient based on the flow rate setting value by the following equation (step S5). ).

P’=P×Fd(set) ・・・(7)
I’=I×Fd(set) ・・・(8)
D’=D×Fd(set) ・・・(9)
P ′ = P × Fd (set) (7)
I ′ = I × Fd (set) (8)
D ′ = D × Fd (set) (9)

ここで、Fd()は、流量設定値に固有の関数である設定係数関数であり、setは流量設定値を示す。この設定係数関数Fdは、図5(b)に示すように、前記設定係数関数Fuと同様折れ線関数であるが、屈曲点及び比例定数が異なる。なお、この設定係数関数Fdは、曲線関数とすることができるが、演算処理量が増大し、またPID係数の調整が困難になるという問題がある。   Here, Fd () is a setting coefficient function that is a function specific to the flow rate setting value, and set indicates the flow rate setting value. As shown in FIG. 5B, the setting coefficient function Fd is a line function similar to the setting coefficient function Fu, but the bending point and the proportionality constant are different. The set coefficient function Fd can be a curve function, but there are problems that the amount of calculation processing increases and the adjustment of the PID coefficient becomes difficult.

次に、制御値算出部72は、以下の式により、上記(7)〜(9)により得られたP’I’D’係数を一次側圧力に基づいて変更する(ステップS6)。   Next, the control value calculation unit 72 changes the P′I′D ′ coefficient obtained by the above (7) to (9) based on the primary pressure by the following equation (step S6).

P”=P’×Gd(p) ・・・(10)
I”=I’×Gd(p) ・・・(11)
D”=D’×Gd(p) ・・・(12)
P ″ = P ′ × Gd (p) (10)
I ″ = I ′ × Gd (p) (11)
D ″ = D ′ × Gd (p) (12)

ここで、Gd()は、一次側圧力に固有の関数である圧力係数関数であり、pは一次側圧力値を示す。この圧力係数関数Gdは、図5(b)に示すように、前記圧力係数関数Fdと同様比例関数であるが、前記圧力係数Fdの比例定数とは異なる比例定数である。なお、この圧力係数関数Gdは折れ線関数又は曲線関数とすることもできる。曲線関数とした場合、演算処理量が増大し、またPID係数の調整が困難になるという問題がある。   Here, Gd () is a pressure coefficient function that is a function inherent to the primary pressure, and p indicates the primary pressure value. As shown in FIG. 5B, the pressure coefficient function Gd is a proportional function similar to the pressure coefficient function Fd, but is a proportional constant different from the proportional constant of the pressure coefficient Fd. The pressure coefficient function Gd can be a line function or a curve function. When the curve function is used, there is a problem that the amount of calculation processing increases and adjustment of the PID coefficient becomes difficult.

以上により、制御値算出部72は、一次側圧力の時間変化量が負の場合に、流量設定値及び一次側圧力に基づいてP、I、DをP”、I”、D”に変更し、当該PID係数(比例係数P”、積分係数I”及び微分係数D”)を用いて偏差にPID演算を施してフィードバック制御値を算出する(ステップS4)。   As described above, the control value calculation unit 72 changes P, I, and D to P ″, I ″, and D ″ based on the flow rate setting value and the primary side pressure when the temporal change amount of the primary pressure is negative. Then, using the PID coefficient (proportional coefficient P ″, integral coefficient I ″, and differential coefficient D ″), a PID calculation is performed on the deviation to calculate a feedback control value (step S4).

<本実施形態の効果>
このように構成した本実施形態に係るマスフローコントローラ100によれば、安定状態におけるPID演算に用いる比例係数、積分係数及び微分係数を、一次側圧力、当該一次側圧力の時間変化量、及び前記流量設定値に基づいて変更させているので、従来の流量設定値により比例係数、積分係数及び微分係数を比例させて変更させる方法に比べて、より最適な比例係数、積分係数及び微分係数を得ることができ、その結果、一次側圧力の圧力変動の影響を受けにくく、安定した流量制御を行うことができる。
<Effect of this embodiment>
According to the mass flow controller 100 according to the present embodiment configured as described above, the proportional coefficient, the integral coefficient, and the differential coefficient used for the PID calculation in the stable state are set to the primary pressure, the temporal change amount of the primary pressure, and the flow rate. Since it is changed based on the set value, the optimal proportional coefficient, integral coefficient, and differential coefficient can be obtained compared to the conventional method in which the proportional coefficient, integral coefficient, and derivative coefficient are changed in proportion to the flow rate set value. As a result, it is difficult to be affected by the pressure fluctuation of the primary side pressure, and stable flow rate control can be performed.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。以下の説明において前記実施形態に対応する部材には同一の符号を付すこととする。
<Other modified embodiments>
The present invention is not limited to the above embodiment. In the following description, the same reference numerals are given to members corresponding to the above-described embodiment.

例えば、前記実施形態では、PID係数を一次側圧力、当該一次側圧力の時間変化量、及び前記流量設定値の全てに基づいて変更するようにしているが、それらの2つ、例えば一次側圧力と当該一次側圧力の時間変化量、一次側圧力と流量設定値等の組み合わせを用いて変更するようにしても良い。   For example, in the above-described embodiment, the PID coefficient is changed based on all of the primary pressure, the temporal change amount of the primary pressure, and the flow rate setting value. Further, the primary side pressure may be changed using a combination of a temporal change amount of the primary side pressure, a primary side pressure and a flow rate set value, and the like.

また、前記実施形態において、PID係数の変更手順としては、「一次側圧力の時間変化量による変更」→「流量設定値による変更」→「一次側圧力による変更」の順であったが、これに限られず、その他の組み合わせであってもよい。   Further, in the above embodiment, the PID coefficient changing procedure was in the order of “change by the amount of change in the primary pressure with time” → “change by the flow rate set value” → “change by the primary pressure”. However, other combinations may be used.

さらに、制御バルブを流量センサ部の上流側に設けてもよいし、流量センサ部は、前記サーマルセンサに限られるものではなく、差圧式センサなど他の流量測定方式のものであってもよい。   Furthermore, the control valve may be provided on the upstream side of the flow rate sensor unit, and the flow rate sensor unit is not limited to the thermal sensor, and may be of another flow rate measurement method such as a differential pressure type sensor.

その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, some or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. .

100・・・マスフローコントローラ
1 ・・・流路
2 ・・・流量センサ部
3 ・・・流量制御バルブ
7 ・・・算出部
8 ・・・開度制御信号出力部
DESCRIPTION OF SYMBOLS 100 ... Mass flow controller 1 ... Flow path 2 ... Flow rate sensor part 3 ... Flow rate control valve 7 ... Calculation part 8 ... Opening degree control signal output part

Claims (4)

流路内を流れる流体の流量を測定し、その測定値を示す流量測定信号を出力する流量センサ部と、
当該流量センサ部の上流側又は下流側に設けた流量制御バルブと、
前記流量測定信号の示す流量測定値と目標値である流量設定値との偏差にPID演算を施して流量制御バルブへのフィードバック制御値を算出する算出部と、
前記フィードバック制御値に基づいて開度制御信号を生成し、流量制御バルブに出力する開度制御信号出力部と、を備え、
前記算出部が、安定状態におけるPID演算に用いる比例係数、積分係数及び微分係数を、一次側圧力又は流量設定値の少なくとも1つと、前記一次側圧力の時間変化量と、に基づいて変更することを特徴とするマスフローコントローラ。
A flow rate sensor unit for measuring a flow rate of the fluid flowing in the flow path and outputting a flow rate measurement signal indicating the measured value;
A flow control valve provided on the upstream side or downstream side of the flow rate sensor unit;
A calculation unit that calculates a feedback control value to the flow control valve by performing a PID calculation on a deviation between the flow rate measurement value indicated by the flow rate measurement signal and a flow rate setting value that is a target value;
An opening degree control signal output unit that generates an opening degree control signal based on the feedback control value and outputs the opening degree control signal to the flow rate control valve;
The calculation unit changes a proportional coefficient, an integral coefficient, and a differential coefficient used for PID calculation in a stable state based on at least one of a primary side pressure or a flow rate set value and a temporal change amount of the primary side pressure. A mass flow controller characterized by
前記算出部が、所定の一次側圧力が与えられた場合に、一次側圧力の時間変化量の正負によって、比例係数、積分係数及び微分係数を異ならせるものである請求項1記載のマスフローコントローラ。   2. The mass flow controller according to claim 1, wherein, when a predetermined primary pressure is given, the calculation unit varies a proportional coefficient, an integral coefficient, and a differential coefficient depending on whether the primary pressure changes with time. 前記算出部が、所定の流量設定値が与えられた場合に、一次側圧力の時間変更量の正負によって、比例係数、積分係数及び微分係数を異ならせるものである請求項1又は2記載のマスフローコントローラ。   3. The mass flow according to claim 1, wherein, when a predetermined flow rate setting value is given, the calculation unit varies the proportional coefficient, the integral coefficient, and the differential coefficient depending on whether the time change amount of the primary pressure is changed over time. controller. 前記算出部が、一次側圧力の時間変化量の正負によって、比例係数、積分係数及び微分係数の値そのものを変更し、それによって変更された比例係数、積分係数及び微分係数に流量設定値を前記流量設定値に固有の関数に代入して得られる値を用いて所定演算することにより変更し、それによって変更された比例係数、積分係数及び微分係数に一次側圧力を前記一次側圧力に固有の関数に代入して得られる値を用いて所定演算することにより変更するものである請求項1、2又は3記載のマスフローコントローラ。   The calculation unit changes the values of the proportional coefficient, the integral coefficient, and the derivative coefficient itself according to the positive / negative of the temporal change amount of the primary pressure, and sets the flow rate setting value to the changed proportional coefficient, the integral coefficient, and the derivative coefficient. The value obtained by substituting the value obtained by substituting into the function specific to the flow rate setting value is changed, and the primary pressure is changed to the proportional coefficient, the integral coefficient and the differential coefficient, which are changed by the predetermined calculation. 4. The mass flow controller according to claim 1, wherein the mass flow controller is changed by performing a predetermined calculation using a value obtained by substituting it into a function.
JP2011128689A 2011-06-08 2011-06-08 Mass flow controller Active JP5090559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128689A JP5090559B2 (en) 2011-06-08 2011-06-08 Mass flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128689A JP5090559B2 (en) 2011-06-08 2011-06-08 Mass flow controller

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008258727A Division JP4763031B2 (en) 2008-10-03 2008-10-03 Mass flow controller

Publications (2)

Publication Number Publication Date
JP2011204265A JP2011204265A (en) 2011-10-13
JP5090559B2 true JP5090559B2 (en) 2012-12-05

Family

ID=44880771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128689A Active JP5090559B2 (en) 2011-06-08 2011-06-08 Mass flow controller

Country Status (1)

Country Link
JP (1) JP5090559B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11003198B2 (en) 2011-08-20 2021-05-11 Ichor Systems, Inc. Controlled delivery of process gas using a remote pressure measurement device
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US11899477B2 (en) 2021-03-03 2024-02-13 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868796B2 (en) * 2012-07-03 2016-02-24 株式会社堀場エステック PRESSURE CONTROL DEVICE, FLOW CONTROL DEVICE, PRESSURE CONTROL DEVICE PROGRAM, FLOW CONTROL DEVICE PROGRAM
JP6423792B2 (en) 2013-08-28 2018-11-14 株式会社堀場エステック Flow control device and flow control program
JP6415889B2 (en) 2014-08-01 2018-10-31 株式会社堀場エステック Flow control device, program for flow control device, and flow control method
CN113721672A (en) * 2020-05-26 2021-11-30 阿自倍尔株式会社 Mass flow controller and fluctuation suppression method
WO2023046558A1 (en) * 2021-09-22 2023-03-30 Tetra Laval Holdings & Finance S.A. System and method for controlling a flow regulating valve in a filling machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202024A (en) * 1982-05-19 1983-11-25 Hitachi Ltd Adaptation control apparatus
JPH07104681B2 (en) * 1988-03-18 1995-11-13 株式会社東芝 Process control equipment
JPH02297613A (en) * 1989-05-11 1990-12-10 Kubota Konpusu Kk Water distribution controller
JP3404847B2 (en) * 1993-12-06 2003-05-12 日立金属株式会社 Flow control method
JP3424141B2 (en) * 1994-08-02 2003-07-07 日本ペイント株式会社 Cationic electrodeposition coating composition containing reactive surface smoothing agent
JPH09204226A (en) * 1996-01-25 1997-08-05 Mitsubishi Electric Corp Pressure controller
JP3666107B2 (en) * 1996-02-08 2005-06-29 日立金属株式会社 Flow control method
JP3417391B2 (en) * 2000-09-07 2003-06-16 日立金属株式会社 Flow control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US10782165B2 (en) 2011-08-20 2020-09-22 Ichor Systems, Inc. Flow control system, method, and apparatus
US11003198B2 (en) 2011-08-20 2021-05-11 Ichor Systems, Inc. Controlled delivery of process gas using a remote pressure measurement device
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10782710B2 (en) 2016-06-30 2020-09-22 Ichor Systems, Inc. Flow control system, method, and apparatus
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US11815920B2 (en) 2016-06-30 2023-11-14 Ichor Systems, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US11424148B2 (en) 2016-09-27 2022-08-23 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US11899477B2 (en) 2021-03-03 2024-02-13 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly

Also Published As

Publication number Publication date
JP2011204265A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5090559B2 (en) Mass flow controller
US8265795B2 (en) Mass flow controller
JP5091821B2 (en) Mass flow controller
US20120116596A1 (en) Mass flow controller
JP4658200B2 (en) Mass flow controller
US9417108B2 (en) Mass flow meter with self-diagnostic function and mass flow controller using the same
JP4763031B2 (en) Mass flow controller
CN102096420B (en) Mass flow controller
JP2010216807A (en) Mass flow meter, mass flow controller, mass flow meter system including these, and mass flow controller system
JP2009087126A (en) Mass flow control device and real gas mass flow control method
TW201743155A (en) Flow rate control device and storage medium on which is stored a program for a flow rate control device
JP4451358B2 (en) Mass flow controller
JP2008286812A (en) Differential flow meter
US8056579B2 (en) Mass flow controller
JP2010146416A (en) Mass flow controller
TWI470388B (en) Mass flow controller
JP3893115B2 (en) Mass flow controller
KR101668483B1 (en) Mass flow controller
JPWO2020026784A1 (en) Flow control system and flow measurement method
KR101842160B1 (en) Flow rate control apparatus and method
JP4852654B2 (en) Pressure flow control device
JP6600854B2 (en) Pressure-type flow rate control device, flow rate calculation method thereof, and flow rate control method
JP4852619B2 (en) Pressure flow control device
JP7474541B1 (en) Flow Control Device
JP2019105338A (en) Fluid control device and program for fluid control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250