JP5087751B2 - Ice storage type cold / hot supply method and apparatus - Google Patents

Ice storage type cold / hot supply method and apparatus Download PDF

Info

Publication number
JP5087751B2
JP5087751B2 JP2008093874A JP2008093874A JP5087751B2 JP 5087751 B2 JP5087751 B2 JP 5087751B2 JP 2008093874 A JP2008093874 A JP 2008093874A JP 2008093874 A JP2008093874 A JP 2008093874A JP 5087751 B2 JP5087751 B2 JP 5087751B2
Authority
JP
Japan
Prior art keywords
ice
heat
hot water
storage tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008093874A
Other languages
Japanese (ja)
Other versions
JP2009243857A (en
Inventor
義史 川畠
芳春 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2008093874A priority Critical patent/JP5087751B2/en
Publication of JP2009243857A publication Critical patent/JP2009243857A/en
Application granted granted Critical
Publication of JP5087751B2 publication Critical patent/JP5087751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

本発明は、既設の氷蓄熱式冷凍装置等に適用可能であり、氷蓄熱式冷凍装置の凝縮熱を熱源としてCOを熱媒とした給湯用ヒートポンプを稼動させ、氷蓄熱式冷凍装置と給湯用ヒートポンプの稼働時間を合わせるようにして、給湯用ヒートポンプの貯湯量を確保するようにした氷蓄熱式冷温熱供給方法及び装置に関する。 INDUSTRIAL APPLICABILITY The present invention can be applied to an existing ice heat storage type refrigeration apparatus, etc., and operates a hot water supply heat pump using CO 2 as a heat medium with the heat of condensation of the ice heat storage type refrigeration apparatus as a heat source. TECHNICAL FIELD The present invention relates to an ice storage type cold / hot heat supply method and apparatus for ensuring the amount of hot water stored in a hot water supply heat pump by matching the operation time of the heat pump for use.

最近、地球温暖化防止の観点や、原油価格の急騰のため、重油を主としたエネルギ使用量の削減が課題になっている。一方、家畜類の食肉処理場等食品加工を行う事業所では、衛生(菌繁殖防止)上の理由から、加工食品を冷却するために冷却水を用いたり、加工処理室内を18℃に以下に冷却するため、冷房設備を設けている。また、殺菌洗浄や製品加工等に温水を必要としている。半導体製造工場や、精密機器を製造する工程のように厳密な気温、湿度、空気清浄度管理が要求される事業所においては、冷熱、温熱の需要が季節に関係なく必要になっており、その需要は年々増加している。   Recently, reduction of energy consumption, mainly heavy oil, has become a challenge due to the prevention of global warming and the sharp rise in crude oil prices. On the other hand, in establishments that process food such as slaughterhouses for livestock, for reasons of hygiene (preventing bacterial growth), cooling water is used to cool the processed food, or the processing chamber is kept below 18 ° C. A cooling facility is provided for cooling. Moreover, warm water is required for sterilization washing and product processing. In semiconductor manufacturing factories and business establishments that require strict temperature, humidity, and air cleanliness management, such as in the process of manufacturing precision equipment, demand for cooling and heating is required regardless of the season. Demand is increasing year by year.

従来、これらの用途に使用する冷熱及び温熱を確保するため、図4に示すような氷蓄熱式冷凍装置と温水製造機を備えているのが一般的であった。
図4において、氷蓄熱式冷凍装置01は、冷凍機02と、氷蓄熱槽03と、冷却塔04とを備え、氷蓄熱槽03で製造した冷水をポンプ05で食肉処理室等に送り、加工用冷水や、処理室の冷房用等の冷熱源として使用している。
Conventionally, it has been common to have an ice heat storage type refrigeration apparatus and a hot water producing machine as shown in FIG.
In FIG. 4, an ice heat storage type refrigeration apparatus 01 includes a refrigerator 02, an ice heat storage tank 03, and a cooling tower 04. The cold water produced in the ice heat storage tank 03 is sent to a meat processing chamber or the like by a pump 05 and processed. It is used as a cooling heat source for chilled water and for cooling the processing chamber.

冷凍機02の冷媒の凝縮熱を吸収した冷却水は、冷却塔04に送られる。冷却塔04で、冷却水がファン06で供給される外気と熱交換し、冷却されて、ポンプ07により冷凍機02に戻される。冷却塔04では、冷却水の一部が蒸発し、他の冷却水から蒸発熱を奪うことにより、冷却水を冷却する。   The cooling water that has absorbed the heat of condensation of the refrigerant in the refrigerator 02 is sent to the cooling tower 04. In the cooling tower 04, the cooling water exchanges heat with the outside air supplied by the fan 06, is cooled, and is returned to the refrigerator 02 by the pump 07. In the cooling tower 04, a part of the cooling water evaporates, and the cooling water is cooled by taking heat of evaporation from the other cooling water.

温水製造機010は、蒸気ボイラ又は給湯ボイラ011で蒸気をつくり、該蒸気を温水製造タンク012に供給する。該温水製造タンク012で該蒸気を熱源として温水を製造し、この温水を食肉処理場等の各種給湯箇所に供給している。   The hot water production machine 010 creates steam with a steam boiler or a hot water supply boiler 011 and supplies the steam to the hot water production tank 012. Hot water is produced in the hot water production tank 012 using the steam as a heat source, and this hot water is supplied to various hot water supply locations such as a slaughterhouse.

このように、氷蓄熱式冷凍装置01と温水製造機010とは別々に稼動し、冷凍機02の凝縮熱が外部に廃棄されていた。この凝縮熱を有効利用すると共に、重油使用を削減するために、冷凍機02の凝縮熱(冷却水30〜35℃の保有熱)を温水製造機010の熱源として利用することが考えられる。   As described above, the ice heat storage type refrigeration apparatus 01 and the hot water manufacturing machine 010 are operated separately, and the condensation heat of the refrigerator 02 is discarded to the outside. In order to effectively use this heat of condensation and reduce the use of heavy oil, it is conceivable to use the heat of condensation of the refrigerator 02 (heat retained at 30 to 35 ° C. of the cooling water) as a heat source of the hot water producing machine 010.

特許文献1(特開2000−179985号公報)には、氷蓄熱槽を備えた氷蓄熱式冷凍装置の凝縮排熱を利用し、かつ夜間電力を有効利用して、給湯の加熱を可能にしたヒートポンプシステムが開示されている。
また、特許文献2(特開2003−139434号公報)にも、氷蓄熱槽を備えた冷凍機の凝縮排熱を利用して温水を製造するシステムが開示されている。
Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-179985) makes it possible to heat hot water supply by using the condensed exhaust heat of an ice heat storage type refrigeration apparatus equipped with an ice heat storage tank and effectively using nighttime power. A heat pump system is disclosed.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-139434) also discloses a system for producing hot water using the condensed exhaust heat of a refrigerator equipped with an ice heat storage tank.

このように、氷蓄熱式冷凍装置の凝縮排熱を熱源として給湯システムを稼動させることで、システム全体の熱効率を向上できると共に、そのままでは利用が難しい該冷凍機の凝縮熱を有効活用でき、さらには、該冷凍機の冷却水温度を低減できるので、該冷凍機のCOPを改善できるという利点がある。   Thus, by operating the hot water supply system using the condensed heat of the ice storage refrigeration system as the heat source, the thermal efficiency of the entire system can be improved, and the condensation heat of the refrigerator that is difficult to use as it is can be effectively utilized. Since the cooling water temperature of the refrigerator can be reduced, there is an advantage that the COP of the refrigerator can be improved.

特開2000−179985号公報JP 2000-179985 A 特開2003−139434号公報JP 2003-139434 A

特許文献1及び2に開示されているように、氷蓄熱槽を備えた氷蓄熱式冷凍装置の凝縮排熱を利用して、温水を製造するシステムは既に知られている。また、一般に、電力が余剰する夜間に氷蓄熱式冷凍装置を稼動させて冷熱を貯蔵することも行なわれている。   As disclosed in Patent Documents 1 and 2, a system for producing hot water using the condensed exhaust heat of an ice heat storage refrigeration apparatus including an ice heat storage tank is already known. In general, ice storage type refrigeration equipment is operated at night when electric power is surplus to store cold energy.

氷蓄熱式冷凍装置は、夜間蓄熱割引時間帯に稼動させることが多い。また、給湯用ヒートポンプも通常該時間帯に稼動されている。しかし、氷蓄熱式冷凍装置の稼動時間と温水製造機の稼動時間は、必ずしも一致するものではない。そのため、氷蓄熱式冷凍装置の凝縮熱を利用して、温水を製造するシステムの場合、氷蓄熱式冷凍装置が稼動しない時は、温水製造機を稼動できず、温水を製造できないという問題がある。   Ice heat storage refrigeration systems are often operated during nighttime heat storage discount hours. Also, a heat pump for hot water supply is normally operated during the time period. However, the operation time of the ice heat storage type refrigeration apparatus and the operation time of the hot water production machine do not necessarily coincide. Therefore, in the case of a system that produces hot water using the heat of condensation of an ice storage refrigeration system, there is a problem that when the ice storage refrigeration system is not operating, the hot water manufacturing machine cannot be operated and hot water cannot be manufactured. .

また、氷蓄熱式冷凍装置は、蓄熱運転時においては一般的に0−100%のオンオフ運転を行っているため、季節によって、稼動時間が異なる。例えば、夏場は蓄熱に10時間かかっても、氷蓄熱に必要な熱量が減少する冬季では、稼動時間を3時間程度しか必要としない。   In addition, since the ice heat storage type refrigeration apparatus generally performs an on / off operation of 0 to 100% during the heat storage operation, the operation time varies depending on the season. For example, even if it takes 10 hours to store heat in summer, only about 3 hours of operation time is required in winter when the amount of heat required for storing ice is reduced.

本発明は、かかる従来技術の課題に鑑み、氷蓄熱式冷凍装置の凝縮熱を給湯用ヒートポンプの熱源として利用する場合に、90℃前後の温水を製造可能とし、かつ氷蓄熱式冷凍装置の稼動時間を調整することにより、季節、寒冷地等に関係なく、年間を通して安定した給湯を可能とすることを目的とする。   In view of the problems of the prior art, the present invention makes it possible to produce hot water at around 90 ° C. and to operate an ice storage refrigerating apparatus when the heat of condensation of the ice storage refrigerating apparatus is used as a heat source for a hot water supply heat pump. The purpose is to enable stable hot water supply throughout the year by adjusting the time regardless of the season, cold districts, etc.

かかる目的を達成するため、本発明の氷蓄熱式冷温熱供給方法は、
氷蓄熱式冷凍装置の凝縮排熱を給湯用ヒートポンプの熱源として利用するようにした氷蓄熱式冷温熱供給方法において、
氷蓄熱式冷凍装置の凝縮部で氷蓄熱式冷凍装置の冷媒と給湯用ヒートポンプのCO熱媒とを直接的又は間接的に熱交換させて該冷媒の凝縮熱をCO熱媒に吸収させ、
該氷蓄熱式冷凍装置の氷蓄熱槽内の氷厚を検出し、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように、氷蓄熱槽内の冷水(又はブライン)の氷結速度を制御するようにしたものである。
In order to achieve such an object, the ice storage type cold / hot heat supply method of the present invention comprises:
In the ice storage type cold / hot heat supply method in which the condensed waste heat of the ice storage type refrigeration system is used as a heat source of a heat pump for hot water supply,
In the condensing part of the ice storage type refrigerating apparatus, the refrigerant of the ice storage type refrigerating apparatus and the CO 2 heat medium of the heat pump for hot water supply are directly or indirectly heat-exchanged so that the condensation heat of the refrigerant is absorbed by the CO 2 heat medium. ,
The ice heat storage tank of the ice heat storage refrigeration apparatus detects the ice thickness, and the ice heat storage tank does not become full until the temperature of the hot water manufactured by the hot water supply heat pump and stored in the hot water storage tank reaches a set range. Thus, the freezing speed of the cold water (or brine) in the ice heat storage tank is controlled.

氷蓄熱式冷凍装置の冷却水は、一般に40℃以下であることが多いので、この温度帯のままでは、最も給湯の用が多い加熱殺菌(70〜90℃程度)には使用できない。本発明方法では、氷蓄熱式冷凍装置の凝縮熱を利用してCO熱媒を用いた給湯用ヒートポンプを稼動させるようにしているので、90℃前後の高温水を製造できる。かかる高温水は、各種用途に広く利用できる。 Since the cooling water of the ice heat storage type refrigerating apparatus is generally often 40 ° C. or less, it cannot be used for heat sterilization (about 70 to 90 ° C.), which is the most used for hot water supply, in this temperature range. In the method of the present invention, since the heat pump for hot water supply using the CO 2 heat medium is operated using the condensation heat of the ice heat storage type refrigeration apparatus, high-temperature water around 90 ° C. can be produced. Such high-temperature water can be widely used for various applications.

COは、低い温度で臨界点に達するので、冷凍サイクルは、臨界点を超えた超臨界域を含むサイクルを構成する。従って、熱を奪われて温度低下しても凝縮することなく、顕熱熱交換を行なうと共に、低流速で乱流に遷移しやすく、良好な伝熱性能が得られる。従って、高温度まで水を加熱できる。 Since CO 2 reaches a critical point at a low temperature, the refrigeration cycle constitutes a cycle including a supercritical region exceeding the critical point. Accordingly, sensible heat exchange is performed without condensing even if the temperature is lowered due to heat deprivation, and it is easy to transition to turbulent flow at a low flow rate, and good heat transfer performance can be obtained. Therefore, water can be heated to a high temperature.

氷蓄熱式冷凍装置は、通常、蓄熱運転時間がタイマーでセットされており、タイマー設定時刻になると、蓄熱運転を始め、氷蓄熱槽が満氷になると、氷厚センサがそれを検出し、運転を停止するオンオフ運転を行なっている。ところが、寒冷期になると、氷蓄熱槽の氷の成形が早くなるために、氷蓄熱稼動時間が短くなり、その結果、十分な給湯稼動時間を確保できなくなり、給湯が不足するおそれがある。   The ice storage refrigeration system normally has a heat storage operation time set by a timer. When the timer setting time is reached, the heat storage operation starts, and when the ice storage tank is full of ice, the ice thickness sensor detects it and operates. The on / off operation is stopped. However, during the cold season, ice formation in the ice heat storage tank is accelerated, and the ice heat storage operation time is shortened. As a result, sufficient hot water supply operation time cannot be secured, and hot water supply may be insufficient.

そのため、本発明方法では、氷蓄熱槽内の氷厚を検出し、給湯用ヒートポンプで生産される温水の貯湯量又は温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように、氷蓄熱槽内の冷水(又はブライン)の氷結速度を制御するようにしている。これによって、給湯用ヒートポンプの稼動時間を確保し、湯量を確保することができる。   Therefore, in the method of the present invention, the ice thickness in the ice heat storage tank is detected, and the ice heat storage tank is not in a full ice state until the amount of hot water stored in the hot water supply heat pump or the temperature reaches the set range. The freezing speed of cold water (or brine) in the ice heat storage tank is controlled. Thereby, the operation time of the heat pump for hot water supply can be secured, and the amount of hot water can be secured.

本発明方法において、貯湯槽内の温水の温度が設定範囲になる前に氷蓄熱槽が満氷状態となった場合は、氷蓄熱式冷凍装置の稼動を停止させ、外気熱をCO熱媒に吸収させて給湯用ヒートポンプを稼動させるようにするとよい。具体的な手段としては、給湯用ヒートポンプのCO熱媒又はCO熱媒と熱交換した熱源媒体(水またはブライン)を冷却塔と兼用するヒーティングタワーに導き、そこで、ファンにより外気を送り込み、CO熱媒又はブラインに外気の熱を吸収させるようにする。これによって、氷蓄熱式冷凍装置の稼動を停止した後でも、給湯用ヒートポンプの稼動を続行することができる。 In the method of the present invention, if the ice heat storage tank becomes full before the temperature of the hot water in the hot water tank reaches the set range, the operation of the ice heat storage refrigeration system is stopped and the outside heat is transferred to the CO 2 heat medium. It is better to operate the heat pump for hot water supply by absorbing it. As a specific means, the CO 2 heat medium of the heat pump for hot water supply or the heat source medium (water or brine) exchanged with the CO 2 heat medium is led to a heating tower that also serves as a cooling tower, and the outside air is fed by a fan there. The heat of the outside air is absorbed in the CO 2 heating medium or brine. Thereby, even after the operation of the ice heat storage type refrigeration apparatus is stopped, the operation of the hot water supply heat pump can be continued.

また、前記本発明方法を実施するための本発明の氷蓄熱式冷温熱供給装置は、
氷蓄熱式冷凍装置の凝縮排熱を給湯用ヒートポンプの熱源として利用するようにした氷蓄熱式冷温熱供給装置において、
氷蓄熱式冷凍装置の冷媒と給湯用ヒートポンプのCO熱媒とを直接的又は間接的に熱交換させて、該冷媒の凝縮熱をCO熱媒に吸収させる熱交換器と、
該氷蓄熱式冷凍装置の氷蓄熱槽内の氷厚を検出するセンサと、
該氷厚センサの検出値を入力して氷結速度を演算し、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように氷蓄熱槽内の冷水の氷結速度を制御する制御装置と、を備えたものである。
Moreover, the ice storage type cold / hot supply apparatus of the present invention for carrying out the method of the present invention comprises:
In the ice storage type cold / hot heat supply device that uses the condensed exhaust heat of the ice storage type refrigeration device as a heat source of the heat pump for hot water supply,
A heat exchanger that directly or indirectly heat-exchanges the refrigerant of the ice heat storage refrigeration system and the CO 2 heat medium of the hot water supply heat pump, and absorbs the condensation heat of the refrigerant in the CO 2 heat medium;
A sensor for detecting the ice thickness in the ice heat storage tank of the ice heat storage type refrigeration apparatus;
The detection value of the ice thickness sensor is input to calculate the icing speed, so that the temperature of the hot water produced in the hot water supply heat pump and stored in the hot water storage tank does not become full until the temperature of the hot water reaches the set range. And a control device for controlling the freezing speed of the cold water in the ice heat storage tank.

本発明装置では、氷蓄熱槽内の氷厚を検出するセンサを設け、制御装置で、該氷厚センサの検出値から氷結速度を演算する。そして、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度を監視し、該貯留温水の温度が設定範囲になるまで氷蓄熱槽が満氷状態とならないように、氷蓄熱式冷凍装置の氷結速度を制御するようにする。
これによって、温水の貯湯量又は温度が設定範囲となるまで、給湯用ヒートポンプの稼動を続行することができる。
In the device of the present invention, a sensor for detecting the ice thickness in the ice heat storage tank is provided, and the control device calculates the icing speed from the detection value of the ice thickness sensor. And the temperature of the hot water manufactured by the heat pump for hot water supply and stored in the hot water storage tank is monitored, and the ice heat storage refrigeration apparatus is used so that the ice heat storage tank does not become full until the temperature of the stored hot water reaches the set range. Try to control the speed of freezing.
Thus, the operation of the hot water supply heat pump can be continued until the hot water storage amount or temperature falls within the set range.

本発明装置において、氷厚センサを、氷蓄熱槽内の設定された位置に設けられ、該位置で氷結の有無を検出するセンサとし、前記制御装置に氷厚検出センサの検出結果を入力し、該制御装置で該検出結果と氷蓄熱式冷凍装置の稼動時間とから氷蓄熱槽内の冷水(又はブライン)の氷結速度を演算するように構成するとよい。これによって、簡素かつ低コストな構成で、氷蓄熱槽内の冷水の氷結速度を求めることができる。   In the device of the present invention, the ice thickness sensor is provided at a set position in the ice heat storage tank, and is used as a sensor for detecting the presence or absence of icing at the position, and the detection result of the ice thickness detection sensor is input to the control device, The control device may be configured to calculate the icing speed of cold water (or brine) in the ice heat storage tank from the detection result and the operation time of the ice heat storage type refrigeration apparatus. Thereby, the freezing speed of the cold water in the ice heat storage tank can be obtained with a simple and low-cost configuration.

また、本発明装置において、氷蓄熱槽内の冷水の水温を検出するセンサを設け、該水温センサの検出値を前記制御装置に入力し、該制御装置で氷蓄熱槽内の水温下降勾配を演算すると共に、該水温下降勾配から氷蓄熱槽内の冷水の氷結速度を演算するように構成するとよい。これによって、氷蓄熱槽内の冷水等が氷結する前でも氷結速度を求めることができる。   In the apparatus of the present invention, a sensor for detecting the temperature of the cold water in the ice storage tank is provided, and the detection value of the water temperature sensor is input to the control device, and the control device calculates the water temperature falling gradient in the ice storage tank. In addition, the icing speed of the cold water in the ice heat storage tank may be calculated from the water temperature descending gradient. As a result, the icing speed can be obtained even before the cold water in the ice heat storage tank freezes.

さらには、この構成と、氷厚センサに係る前記構成とを組み合わせるようにするとよい。これによって、氷蓄熱槽内の冷水等が氷結する前又は氷結する後であっても、簡単かつ低コストで氷結速度を求めることができる。   Furthermore, it is preferable to combine this configuration with the configuration related to the ice thickness sensor. Thereby, even before the cold water or the like in the ice heat storage tank freezes or after freezing, the freezing speed can be obtained easily and at low cost.

本発明方法によれば、氷蓄熱式冷凍装置の凝縮排熱を給湯用ヒートポンプの熱源として利用するようにした氷蓄熱式冷温熱供給方法において、氷蓄熱式冷凍装置の凝縮部で氷蓄熱式冷凍機の冷媒と給湯用ヒートポンプのCO熱媒とを直接的又は間接的に熱交換させて該冷媒の凝縮熱をCO熱媒に吸収させ、該氷蓄熱式冷凍装置の氷蓄熱槽内の氷厚を検出し、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように、氷蓄熱槽内の冷水等の氷結速度を制御するようにしたことにより、重油等のエネルギ使用量を削減でき、システム全体として、熱効率を向上できると共に、用途範囲の広い90℃前後の高温の温水を供給可能となる。 According to the method of the present invention, in the ice storage type cold / high temperature supply method in which the condensed waste heat of the ice storage type refrigeration apparatus is used as a heat source of the hot water supply heat pump, the ice storage type refrigeration is performed in the condensing part of the ice storage type refrigeration apparatus. The refrigerant of the machine and the CO 2 heat medium of the heat pump for hot water supply are directly or indirectly heat-exchanged so that the heat of condensation of the refrigerant is absorbed by the CO 2 heat medium, and the ice heat storage refrigeration unit in the ice heat storage tank Ice temperature is detected, and ice water such as cold water in the ice storage tank is frozen until the temperature of the hot water manufactured by the heat pump for hot water supply and stored in the hot water tank reaches the set range. By controlling the speed, the amount of energy used such as heavy oil can be reduced, the thermal efficiency of the entire system can be improved, and high-temperature hot water of about 90 ° C. having a wide application range can be supplied.

また、氷蓄熱槽内の冷水等の氷結速度を制御することで、給湯用ヒートポンプの稼動を安定させ、季節、寒冷地等を問わず、常に安定して温水を供給可能となる。   In addition, by controlling the icing speed of cold water or the like in the ice heat storage tank, the operation of the heat pump for hot water supply can be stabilized, and hot water can be supplied constantly and stably regardless of the season or cold district.

また、本発明装置によれば、氷蓄熱式冷凍装置の凝縮排熱を給湯用ヒートポンプの熱源として利用するようにした氷蓄熱式冷温熱供給装置において、氷蓄熱式冷凍装置の冷媒と給湯用ヒートポンプのCO熱媒とを直接的又は間接的に熱交換させて、該冷媒の凝縮熱をCO熱媒に吸収させる熱交換器と、該氷蓄熱式冷凍装置の氷蓄熱槽内の氷厚を検出するセンサと、該氷厚センサの検出値を入力して氷結速度を演算し、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように氷蓄熱槽内の冷水等の氷結速度を制御する制御装置と、を備えたことにより、前記本発明方法と同様の作用効果を得ることができる。 Further, according to the present invention device, in the ice storage type cold / hot heat supply device that uses the condensed exhaust heat of the ice storage type refrigeration device as a heat source of the hot water supply heat pump, the refrigerant of the ice storage type refrigeration device and the heat pump for hot water supply a CO 2 heat medium directly or indirectly by heat exchange with a heat exchanger to absorb heat of condensation of the refrigerant in the CO 2 heat medium, an ice thickness of the ice thermal storage tank in ice thermal storage type cooling unit The ice storage tank calculates the icing speed by inputting the detection value of the ice thickness sensor and the temperature of the hot water manufactured by the hot water supply heat pump and stored in the hot water storage tank is within a set range. By providing a control device that controls the icing speed of cold water or the like in the ice heat storage tank so as not to be in a full ice state, it is possible to obtain the same effect as the method of the present invention.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明の一実施形態を図1〜図3に基づいて説明する。図1は食品加工場に設置された、本実施形態に係る氷蓄熱式冷温熱供給装置1の全体構成図である。
図1において、氷蓄熱式冷温熱供給装置1は、氷蓄熱式冷凍装置10と、温水製造機20とが組み合わされたものである。氷蓄熱式冷凍装置10は、冷凍機11と、氷蓄熱槽12と、冷却塔13とから構成されている。氷蓄熱槽12の冷却水面下には、氷蓄熱式冷凍機11の冷媒(例えばNH),又は該冷媒と熱交換して冷却されたブラインが循環する循環管路14が配設されている。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of an ice regenerative cold / hot supply device 1 according to the present embodiment installed in a food processing plant.
In FIG. 1, an ice storage type cold / hot supply apparatus 1 is a combination of an ice storage type refrigeration apparatus 10 and a hot water producing machine 20. The ice heat storage type refrigeration apparatus 10 includes a refrigerator 11, an ice heat storage tank 12, and a cooling tower 13. Below the cooling water surface of the ice heat storage tank 12, a circulation line 14 through which the refrigerant (for example, NH 3 ) of the ice heat storage type refrigerator 11 or the brine cooled by exchanging heat with the refrigerant is disposed. .

冷凍機11の冷媒又は該冷媒と熱交換して冷却されたブラインが循環管路14を循環することによって、氷蓄熱槽12内に貯留された冷水c1が冷却され、氷結していく。冷水c1は、管路16を介してポンプ15により、加工用冷水又は処理室の冷房用冷熱源等として供給される。   As the refrigerant in the refrigerator 11 or the brine cooled by exchanging heat with the refrigerant circulates in the circulation line 14, the cold water c1 stored in the ice heat storage tank 12 is cooled and freezes. The cold water c1 is supplied by the pump 15 through the pipe line 16 as processing cold water or a cooling heat source for cooling the processing chamber.

冷凍機11の冷媒と熱交換して該冷媒の凝縮熱を吸収した冷却水c2は、ポンプ18が介設された循環管路17を通って冷却塔13に供給される。冷却塔13で、冷却水c2は、後述する給湯用ヒートポンプ21から供給される熱源媒体bと熱交換し、熱源媒体bに保有熱を吸収されて冷却される。冷却塔13では、外気を直接又は間接的に冷却水c2に接触させている。冷却塔13には、冷却水c2と熱源媒体bの熱交換部に外気を供給するファン19が設けられていると共に、薬注・洗浄設備28が設けられ、該薬注・洗浄設備29から、有害菌の発生防止並びに冷却水中成分が析出して付着することを防止するために、薬品が注入されたり、あるいは洗浄工程時に洗浄液が注入される。   The cooling water c2 that exchanges heat with the refrigerant of the refrigerator 11 and absorbs the heat of condensation of the refrigerant is supplied to the cooling tower 13 through a circulation line 17 in which a pump 18 is interposed. In the cooling tower 13, the cooling water c <b> 2 exchanges heat with a heat source medium b supplied from a hot water supply heat pump 21, which will be described later, and the retained heat is absorbed by the heat source medium b and cooled. In the cooling tower 13, the outside air is brought into contact with the cooling water c2 directly or indirectly. The cooling tower 13 is provided with a fan 19 for supplying outside air to the heat exchange section between the cooling water c2 and the heat source medium b, and a chemical injection / cleaning equipment 28. From the chemical injection / cleaning equipment 29, In order to prevent the generation of harmful bacteria and prevent the components in the cooling water from depositing and adhering, chemicals are injected or a cleaning liquid is injected during the cleaning process.

給湯用ヒートポンプ21は、CO熱媒を使用するもので、ガスクーラ21aと熱交換器21bとを備えている。冷却塔13で、冷却水c2から冷凍装置10の凝縮排熱を吸収した熱源媒体bは、熱交換器21bでCO熱媒と熱交換し、CO熱媒を加熱する。
CO熱媒は、給湯を製造するガスクーラ21aで高圧となり、32℃以上の超臨界状態となっている。熱交換器21bでCO熱媒は31℃以下で蒸発し、過熱ガスとなって、CO圧縮機に吸入される。
The hot water supply heat pump 21 uses a CO 2 heat medium, and includes a gas cooler 21a and a heat exchanger 21b. The heat source medium b that has absorbed the condensed exhaust heat of the refrigeration apparatus 10 from the cooling water c2 in the cooling tower 13 exchanges heat with the CO 2 heat medium in the heat exchanger 21b, and heats the CO 2 heat medium.
The CO 2 heat medium becomes a high pressure in the gas cooler 21a for producing hot water and is in a supercritical state of 32 ° C. or higher. In the heat exchanger 21b, the CO 2 heat medium evaporates at 31 ° C. or less, becomes superheated gas, and is sucked into the CO 2 compressor.

従って、熱源媒体bを冷却塔13で冷却水c2により冷却して30〜32℃とし、CO熱媒の蒸発部(低圧部)となる熱交換器21bで該熱源媒体bをCO熱媒と熱交換させて、CO熱媒を31℃以下にするとよい。これによって、高圧部となるガスクーラ21aでCO熱媒の圧力変動を抑え、高温水を安定して得ることができる。 Accordingly, the heat medium b is cooled by cooling water c2 in the cooling tower 13 and 30 to 32 ° C., the heat source medium b the CO 2 heat medium in the evaporating section of the CO 2 heat medium becomes (low pressure section) heat exchanger 21b Heat exchange with the CO 2 heating medium at 31 ° C. or lower. As a result, it is possible to stably obtain high-temperature water by suppressing the pressure fluctuation of the CO 2 heat medium with the gas cooler 21a serving as the high-pressure portion.

給湯用ヒートポンプ21のガスクーラ21aと貯湯槽22間は、温水循環管路23で接続されている。温水循環管路23には給水h0が補給される。給水h0は、ガスクーラ21aで加熱されて高温水h1となる。高温水h1は、貯湯槽22に貯留されるが、ポンプ24を介してガスクーラ21aに循環されて再加熱され、設定温度、例えば65〜90℃の範囲内に保持される。そして、管路25に介設されたポンプ26により、管路25から食肉処理場等の各種給湯箇所に供給される。   The gas cooler 21 a of the hot water supply heat pump 21 and the hot water storage tank 22 are connected by a hot water circulation line 23. The hot water circulation line 23 is supplied with water supply h0. The water supply h0 is heated by the gas cooler 21a to become high-temperature water h1. Although the hot water h1 is stored in the hot water storage tank 22, it is circulated to the gas cooler 21a via the pump 24 and reheated, and is kept within a set temperature, for example, in the range of 65 to 90 ° C. And it supplies to various hot-water supply places, such as a slaughterhouse, from the pipe line 25 with the pump 26 interposed in the pipe line 25. FIG.

氷蓄熱槽12内には、冷水c1の水面下で設定された位置に氷厚センサ31が設置されている。冷水c1は循環管路14の外側表面から氷結し始め、氷結は徐々に循環管路14の外側表面に円筒状に厚みを増して成長してゆく。従って、冷凍装置10の稼動開始時間と、循環管路14の表面と氷厚センサ31の設置位置との距離と、氷厚センサ31の氷結検出時間とから、冷水c1の氷結速度を演算することができる。   In the ice heat storage tank 12, an ice thickness sensor 31 is installed at a position set below the surface of the cold water c1. The cold water c1 begins to freeze from the outer surface of the circulation pipeline 14, and the icing gradually grows on the outer surface of the circulation pipeline 14 with increasing thickness in a cylindrical shape. Therefore, the icing speed of the cold water c1 is calculated from the operation start time of the refrigeration apparatus 10, the distance between the surface of the circulation pipe 14 and the installation position of the ice thickness sensor 31, and the icing detection time of the ice thickness sensor 31. Can do.

氷厚センサ31は、1個でもよいが、理想的には、異なる位置に2個以上設置するとよい。また、氷蓄熱槽12内には、別途冷水c1の水温を検出する水温センサ32が設けられている。氷厚センサ31及び水温センサ32の検出値は、制御装置33の入力部34に入力される。制御装置33は、給湯用ヒートポンプ21側に設けられている。
このようにして、本実施形態では、既設の氷蓄熱式冷凍装置10に温水製造機20を組み込むようにして改造することが可能である。
One ice thickness sensor 31 may be used, but ideally, two or more ice thickness sensors may be installed at different positions. Further, in the ice heat storage tank 12, a water temperature sensor 32 for separately detecting the water temperature of the cold water c1 is provided. Detection values of the ice thickness sensor 31 and the water temperature sensor 32 are input to the input unit 34 of the control device 33. The controller 33 is provided on the hot water supply heat pump 21 side.
Thus, in this embodiment, it is possible to modify the existing ice heat storage refrigeration apparatus 10 by incorporating the hot water producing machine 20.

制御装置33は、氷厚センサ31及び水温センサ32の検出値を入力する入力部34と、これらセンサの検出値から氷結速度を演算する演算部35と、貯湯槽22の高温水h1の貯湯量及び温度が設定範囲になるまで氷蓄熱槽12が満氷状態とならないように、冷凍装置10の冷凍負荷容量を制御する制御信号を冷凍機11に発する出力部36と、からなる。   The control device 33 includes an input unit 34 that inputs detection values of the ice thickness sensor 31 and the water temperature sensor 32, a calculation unit 35 that calculates an icing speed from the detection values of these sensors, and a hot water storage amount of the high-temperature water h1 in the hot water tank 22. And an output unit 36 that issues a control signal for controlling the refrigeration load capacity of the refrigeration apparatus 10 to the refrigerator 11 so that the ice heat storage tank 12 does not become full until the temperature reaches the set range.

かかる構成の本実施形態において、氷蓄熱槽12では、冷凍機11の冷媒又は該冷媒によって冷却されたブラインが循環管路14内を循環することによって、徐々に冷却される。そして、循環管路14の外側表面から氷結され始め、氷結は徐々に循環管路14の周囲に広がっていく。冷水c1の水温は水温センサ32で検出され、その検出値は制御装置33に入力される。氷蓄熱槽12の冷水c1の水温は、最終的には、例えば−5〜−10℃となる。   In this embodiment having such a configuration, the ice heat storage tank 12 is gradually cooled by circulating the refrigerant of the refrigerator 11 or the brine cooled by the refrigerant through the circulation line 14. Then, icing starts from the outer surface of the circulation line 14, and the icing gradually spreads around the circulation line 14. The water temperature of the cold water c <b> 1 is detected by the water temperature sensor 32, and the detected value is input to the control device 33. The water temperature of the cold water c1 in the ice heat storage tank 12 is finally −5 to −10 ° C., for example.

管路17では、冷凍機11の冷媒と熱交換して該冷媒の凝縮熱を吸収した冷却水c2が冷却塔13に循環されている。冷却水c2の水温は、例えば30〜35℃となる。一方、給湯用ヒートポンプ21のガスクーラ21aでCO熱媒から蒸発熱を奪われた熱源媒体bが、循環管路27を介してポンプ28により、冷却塔13に供給されている。そして、冷却塔13で、冷却水c2と熱源媒体bとが熱交換して、冷却水c2の保有熱を熱源媒体bが吸収する。 In the pipe line 17, the cooling water c <b> 2 that exchanges heat with the refrigerant of the refrigerator 11 and absorbs the heat of condensation of the refrigerant is circulated to the cooling tower 13. The water temperature of the cooling water c2 is, for example, 30 to 35 ° C. On the other hand, the heat source medium b from which the evaporation heat has been removed from the CO 2 heat medium by the gas cooler 21 a of the hot water supply heat pump 21 is supplied to the cooling tower 13 by the pump 28 via the circulation line 27. Then, in the cooling tower 13, the cooling water c2 and the heat source medium b exchange heat, and the heat source medium b absorbs the retained heat of the cooling water c2.

給湯用ヒートポンプ21に戻った熱源媒体bは、給湯用ヒートポンプ21でCO熱媒と熱交換して、CO熱媒に蒸発熱を奪われる。貯湯槽22に貯留された温水h1は、循環管路23を介してポンプ24により、給湯用ヒートポンプ21に供給され、そこでCO熱媒の凝縮熱を吸収して加熱される。貯湯槽22内の温水h1の温度は、例えば65〜90℃の範囲内となるように設定される。 The heat source medium b returned to the hot water supply heat pump 21 exchanges heat with the CO 2 heat medium by the hot water supply heat pump 21, and the CO 2 heat medium removes the heat of evaporation. The hot water h1 stored in the hot water storage tank 22 is supplied to the hot water supply heat pump 21 by the pump 24 through the circulation pipe 23, where the heat of condensation of the CO 2 heat medium is absorbed and heated. The temperature of the hot water h1 in the hot water tank 22 is set to be in the range of 65 to 90 ° C., for example.

氷蓄熱槽12では、水温センサ32の検出値が制御装置33の入力部34に入力される。冷却水c1の氷結が徐々に下方に進行していき、氷厚センサ31に達すると、氷厚センサ31が氷結状態を検出し、その検出情報を入力部34に入力する。制御装置33の演算部35では、水温センサ32から入力された検出値及び氷厚センサ31から入力された検出情報から氷結速度を演算する。   In the ice heat storage tank 12, the detected value of the water temperature sensor 32 is input to the input unit 34 of the control device 33. When the cooling water c1 freezes gradually and reaches the ice thickness sensor 31, the ice thickness sensor 31 detects the icing state and inputs the detection information to the input unit. The calculation unit 35 of the control device 33 calculates the icing speed from the detection value input from the water temperature sensor 32 and the detection information input from the ice thickness sensor 31.

まず、氷蓄熱槽12内の水温下降勾配を演算する。図3は、縦軸に冷水c1の水温をとり、横軸に氷蓄熱式冷凍装置10の稼働時間をとった水温−時間線図である。図3において、制御装置33で、水温センサ32から入力された検出値から水温下降勾配a1を算出する。なお、図3中、ラインiは、氷蓄熱槽12内の冷却水c1が満氷状態となるラインを示す。   First, the water temperature descending gradient in the ice heat storage tank 12 is calculated. FIG. 3 is a water temperature-time diagram in which the vertical axis represents the water temperature of the cold water c1 and the horizontal axis represents the operating time of the ice heat storage type refrigeration apparatus 10. In FIG. 3, the controller 33 calculates the water temperature descending gradient a <b> 1 from the detection value input from the water temperature sensor 32. In FIG. 3, a line i indicates a line where the cooling water c <b> 1 in the ice heat storage tank 12 is in a full ice state.

冬季では、氷蓄熱式冷凍装置10に必要な熱量が減少する。そのため、水温下降勾配が急になりがちになる。制御装置33で演算した水温下降勾配a1から推定して、貯湯槽22内の高温水h1の貯湯量及び温度が設定された範囲内に達するまでに、氷蓄熱槽12が満氷状態になるおそれがある場合には、氷蓄熱式冷凍機11の運転を容量制御又は回転数制御して、部分負荷運転とする。こうして、水温下降勾配を緩勾配のa2に変更する。   In the winter, the amount of heat required for the ice storage type refrigeration apparatus 10 decreases. Therefore, the water temperature falling gradient tends to be steep. Estimating from the water temperature descending gradient a1 calculated by the control device 33, the ice heat storage tank 12 may become full before the amount and temperature of the hot water h1 in the hot water tank 22 reach the set range. If there is, the operation of the ice heat storage type refrigerator 11 is subjected to capacity control or rotation speed control to be a partial load operation. Thus, the water temperature descending gradient is changed to a gentle gradient a2.

また、氷蓄熱槽12内の氷結が進行してきた場合には、氷厚センサ31により氷結有無を検出し、その検出値を入力部34に入力する。制御装置33では、演算部35で、氷蓄熱式冷凍装置10の稼動開始から氷厚センサ31による氷結検出までの時間から氷結速度を演算する。図2は、縦軸に氷蓄熱槽12内の氷厚をとり、横軸に氷蓄熱式冷凍装置10の稼働時間をとった氷厚−時間線図である。なお、図2中、ラインiは、氷蓄熱槽12内の冷却水c1が満氷状態となるラインを示す。   When icing in the ice storage tank 12 has progressed, the ice thickness sensor 31 detects the presence or absence of icing, and the detected value is input to the input unit 34. In the control device 33, the calculation unit 35 calculates the icing speed from the time from the start of the operation of the ice regenerative refrigeration apparatus 10 to the detection of icing by the ice thickness sensor 31. FIG. 2 is an ice thickness-time diagram in which the vertical axis represents the ice thickness in the ice heat storage tank 12 and the horizontal axis represents the operation time of the ice heat storage refrigeration apparatus 10. In addition, in FIG. 2, the line i shows the line from which the cooling water c1 in the ice thermal storage tank 12 will be in a full ice state.

図2において、こうして演算した氷結速度d1から推定して、貯湯槽22内の高温水h1が設定量及び設定温度になる前に、氷蓄熱槽12内が満氷状態になることが予想される場合には、氷蓄熱式冷凍装置10の運転を容量制御又は回転数制御して、部分負荷運転とする。こうして、氷結速度の勾配を緩勾配のd2に変更する。   In FIG. 2, it is estimated that the inside of the ice heat storage tank 12 becomes full before the hot water h1 in the hot water tank 22 reaches the set amount and the set temperature, estimated from the ice speed d1 thus calculated. In this case, the operation of the ice heat storage type refrigeration apparatus 10 is subjected to capacity control or rotation speed control to be a partial load operation. In this way, the icing speed gradient is changed to a gentle gradient d2.

このような操作により、氷蓄熱槽12内の氷結が始まる頃までは、水温センサ32の検出値から氷結速度を演算して求め、その後は、氷厚センサ31の検出情報から氷結速度を演算して求めるようにし、氷蓄熱式冷凍装置10を部分負荷運転して氷結速度を制御するようにしたので、貯湯槽22内の高温水h1の貯湯量及び温度が設定範囲になるまで、給湯用ヒートポンプ21の稼動を継続できるようになる。このように、氷蓄熱式冷温熱供給装置1の稼動時間を調整することにより、季節、寒冷地等に関係なく、年間を通して安定した高温水h1を供給可能とする。   By such an operation, until the freezing in the ice heat storage tank 12 starts, the freezing speed is calculated from the detection value of the water temperature sensor 32, and thereafter, the freezing speed is calculated from the detection information of the ice thickness sensor 31. Since the ice heat storage type refrigeration apparatus 10 is partially loaded to control the icing speed, the hot water supply heat pump is used until the hot water storage amount and temperature of the hot water h1 in the hot water tank 22 fall within the set range. 21 can continue to operate. In this way, by adjusting the operating time of the ice storage type cold / hot heat supply device 1, it is possible to supply stable high-temperature water h1 throughout the year regardless of the season, cold district, and the like.

なお、本実施形態では、氷厚センサ31及び水温センサ32の両方を設置したが、最低限氷厚センサ31のみを設置しても、本発明の実施が可能になる。   In this embodiment, both the ice thickness sensor 31 and the water temperature sensor 32 are installed, but the present invention can be implemented even if only the ice thickness sensor 31 is installed.

また、貯湯槽22内の高温水h1の貯湯量及びその温度が設定範囲内になる前に、氷蓄熱槽12内が満氷状態となってしまった場合は、冷却水c2を循環管路17に循環させるのを停止させる。そして、ファン19を稼動させ、熱源媒体bと外気とを熱交換させ、熱源媒体bに外気熱を吸収させるようにする。即ち、冷却塔13をヒーティングタワーとして機能させる。このように、熱源媒体bに外気熱を吸収させるようにして、高温水h1の製造に必要な熱量を確保させるようにする。   If the amount of hot water stored in the hot water tank 22 and the temperature of the hot water h1 are within the set range and the ice heat storage tank 12 becomes full of ice, the cooling water c2 is circulated through the circulation line 17. Stop circulating. Then, the fan 19 is operated to exchange heat between the heat source medium b and the outside air so that the heat source medium b absorbs the outside air heat. That is, the cooling tower 13 is caused to function as a heating tower. In this way, the heat source medium b absorbs outside air heat so as to ensure the amount of heat necessary for manufacturing the high-temperature water h1.

また、氷蓄熱槽12内を満氷状態とする前に、貯湯槽22内の高温水h1の貯湯量及び温度が設定範囲内となった場合には、熱源媒体bを循環管路27に循環させるのを停止させる。そして、冷却塔13では、図4に基づいて説明したように、ファン19を稼動させて、外気により冷却水c2を冷却させるようにする。   In addition, when the amount and temperature of the hot water h1 in the hot water storage tank 22 are within the set range before the ice heat storage tank 12 is filled with ice, the heat source medium b is circulated through the circulation pipe 27. Stop making it happen. And in the cooling tower 13, as demonstrated based on FIG. 4, the fan 19 is operated and the cooling water c2 is cooled with external air.

本実施形態によれば、氷蓄熱式冷凍装置10の凝縮熱を給湯用ヒートポンプ21の熱源として利用するようにしたので、蒸気用又は給湯用ボイラを不要し、かつ該ボイラの燃料となる重油の消費を削減することができる。
また、給湯用ヒートポンプ21にCO熱媒を使用することにより、90℃前後の高温水の供給が可能となり、例えば食肉処理場では、該高温水を屠体の洗浄用温水や、屠体の毛抜き処理用温水、その他の用途に広く利用可能である。
According to the present embodiment, the condensation heat of the ice heat storage refrigeration apparatus 10 is used as a heat source for the hot water supply heat pump 21, so that no steam or hot water boiler is required, and the heavy oil serving as the fuel for the boiler is used. Consumption can be reduced.
Further, by using a CO 2 heating medium for the hot water supply heat pump 21, it becomes possible to supply high-temperature water at around 90 ° C. For example, in a slaughterhouse, the high-temperature water is used as hot water for washing carcass, It can be widely used for hot water for tweezers and other applications.

また、前述のように、氷蓄熱槽12内の水温下降勾配及び氷結速度を調整することにより、季節、寒冷地等に関係なく、年間を通して、給湯用ヒートポンプ21で設定された範囲の貯湯量及び温度の高温水h1を安定して供給することができる。
さらには、万一、設定された貯湯量及び温度の高温水を得る前に、氷蓄熱槽12内が満氷状態になった場合でも、給湯用ヒートポンプ21の熱源として、冷却塔13で外気の熱を利用できるので、温水の確保に支障をきたさない。
Further, as described above, the amount of hot water stored in the range set by the hot water supply heat pump 21 can be adjusted throughout the year regardless of the season, cold district, etc. by adjusting the water temperature descending gradient and the freezing speed in the ice heat storage tank 12. The high-temperature water h1 having a high temperature can be stably supplied.
Furthermore, even if the inside of the ice heat storage tank 12 becomes full before the hot water having the set amount of hot water and the temperature is obtained, the cooling tower 13 serves as a heat source for the hot water supply heat pump 21. Since heat can be used, it does not interfere with securing hot water.

また、既設の氷蓄熱式冷凍装置10の改造を不要とし、給湯用ヒートポンプ21を組み込むだけで済むので、改造工事が容易になる。   Further, since the existing ice heat storage type refrigeration apparatus 10 is not required to be remodeled and only the hot water supply heat pump 21 is incorporated, the remodeling work is facilitated.

本発明によれば、冷熱と温熱を同時供給可能とする多機能システムとして、食肉処理場だけでなく、冷熱と温熱とを必要とする施設に広く適用可能であり、システム全体の熱効率を高め、高温水を供給可能であり、季節、寒冷地等に関係なく、年間を通して安定した給湯を可能とする。   According to the present invention, as a multifunctional system that can supply cold and hot heat simultaneously, it can be widely applied not only to slaughterhouses but also to facilities that require cold and hot heat, increasing the thermal efficiency of the entire system, High-temperature water can be supplied, and stable hot water can be supplied throughout the year regardless of the season or cold climate.

本発明の一実施形態に係る氷蓄熱式冷温熱供給装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the ice thermal storage type cold / hot supply apparatus which concerns on one Embodiment of this invention. 前記実施形態に係る氷厚−時間線図である。It is an ice thickness-time diagram which concerns on the said embodiment. 前記実施形態に係る水温−時間線図である。It is a water temperature-time diagram which concerns on the said embodiment. (a)従来の氷蓄熱式冷凍システムの全体構成図であり、(b)は従来の温水製造機の系統図である。(A) It is a whole block diagram of the conventional ice thermal storage refrigerating system, (b) is a systematic diagram of the conventional warm water manufacturing machine.

符号の説明Explanation of symbols

1 氷蓄熱式冷温熱供給装置
10 氷蓄熱式冷凍装置
11 冷凍機
12 氷蓄熱槽
13 冷却塔(熱交換器)
20 温水製造機
21 給湯用ヒートポンプ
22 貯湯槽
31 氷厚センサ
32 水温センサ
33 制御装置
a1,a2 水温下降勾配
b 熱源媒体
c1 冷水
c2 冷却水
d1,d2 氷結速度
i 満氷ライン
DESCRIPTION OF SYMBOLS 1 Ice storage type cold / hot supply apparatus 10 Ice storage type freezing apparatus 11 Refrigerator 12 Ice thermal storage tank 13 Cooling tower (heat exchanger)
20 Hot water production machine 21 Heat pump for hot water supply 22 Hot water storage tank 31 Ice thickness sensor 32 Water temperature sensor 33 Controller a1, a2 Water temperature descending gradient b Heat source medium c1 Cold water c2 Cooling water d1, d2 Freezing speed i Full ice line

Claims (5)

氷蓄熱式冷凍装置の凝縮排熱を給湯用ヒートポンプの熱源として利用するようにした氷蓄熱式冷温熱供給方法において、
氷蓄熱式冷凍装置の凝縮部で氷蓄熱式冷凍装置の冷媒と給湯用ヒートポンプのCO熱媒とを直接的又は間接的に熱交換させて該冷媒の凝縮熱をCO熱媒に吸収させ、
該氷蓄熱式冷凍装置の氷蓄熱槽内の氷厚を検出し、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように、氷蓄熱槽内の冷水の氷結速度を制御するようにしたことを特徴とする氷蓄熱式冷温熱供給方法。
In the ice storage type cold / hot heat supply method in which the condensed waste heat of the ice storage type refrigeration system is used as a heat source of a heat pump for hot water supply,
In the condensing part of the ice storage type refrigerating apparatus, the refrigerant of the ice storage type refrigerating apparatus and the CO 2 heat medium of the heat pump for hot water supply are directly or indirectly heat-exchanged so that the condensation heat of the refrigerant is absorbed by the CO 2 heat medium. ,
The ice heat storage tank of the ice heat storage refrigeration apparatus detects the ice thickness, and the ice heat storage tank does not become full until the temperature of the hot water manufactured by the hot water supply heat pump and stored in the hot water storage tank reaches a set range. Thus, the ice storage-type cold / hot supply method characterized by controlling the freezing speed of the cold water in an ice thermal storage tank.
貯湯槽内の温水の温度が設定範囲になる前に氷蓄熱槽が満氷状態となった場合は、氷蓄熱式冷凍装置の稼動を停止させ、外気熱をCO熱媒に吸収させて給湯用ヒートポンプを稼動させるようにしたことを特徴とする請求項1に記載の氷蓄熱式冷温熱供給方法。 If the ice heat storage tank becomes full before the temperature of the hot water in the hot water tank reaches the set range, stop the operation of the ice heat storage refrigeration system and absorb the outside air heat into the CO 2 heat medium to supply hot water The ice heat storage type cold / hot supply method according to claim 1, wherein the heat pump is operated. 氷蓄熱式冷凍装置の凝縮排熱を給湯用ヒートポンプの熱源として利用するようにした氷蓄熱式冷温熱供給装置において、
氷蓄熱式冷凍装置の冷媒と給湯用ヒートポンプのCO熱媒とを直接的又は間接的に熱交換させて、該冷媒の凝縮熱をCO熱媒に吸収させる熱交換器と、
該氷蓄熱式冷凍装置の氷蓄熱槽内の氷厚を検出するセンサと、
該氷厚センサの検出値を入力して氷結速度を演算し、給湯用ヒートポンプで製造され貯湯槽内に貯留される温水の温度が設定範囲になるまで該氷蓄熱槽が満氷状態とならないように氷蓄熱槽内の冷水の氷結速度を制御する制御装置と、を備えたことを特徴とする氷蓄熱式冷温熱供給装置。
In the ice storage type cold / hot heat supply device that uses the condensed exhaust heat of the ice storage type refrigeration device as a heat source of the heat pump for hot water supply,
A heat exchanger that directly or indirectly heat-exchanges the refrigerant of the ice heat storage refrigeration system and the CO 2 heat medium of the hot water supply heat pump, and absorbs the condensation heat of the refrigerant in the CO 2 heat medium;
A sensor for detecting the ice thickness in the ice heat storage tank of the ice heat storage type refrigeration apparatus;
The detection value of the ice thickness sensor is input to calculate the icing speed, so that the temperature of the hot water produced in the hot water supply heat pump and stored in the hot water storage tank does not become full until the temperature of the hot water reaches the set range. And a controller for controlling the freezing speed of the cold water in the ice heat storage tank.
前記氷厚センサが、氷蓄熱槽内の設定された位置に設けられ、該位置で氷結の有無を検出するセンサであり、前記制御装置に氷厚センサの検出結果を入力し、該制御装置で該検出結果と氷蓄熱式冷凍装置の稼動時間とから氷蓄熱槽内の冷水の氷結速度を演算するように構成したことを特徴とする請求項3に記載の氷蓄熱式冷温熱供給装置。   The ice thickness sensor is provided at a set position in the ice heat storage tank and detects the presence or absence of icing at the position. The detection result of the ice thickness sensor is input to the control device, and the control device 4. The ice storage type cold / hot supply apparatus according to claim 3, wherein the ice storage speed of the cold water in the ice storage tank is calculated from the detection result and the operation time of the ice storage type freezer. 氷蓄熱槽内の冷水の水温を検出するセンサを設け、該水温センサの検出値を前記制御装置に入力し、該制御装置で氷蓄熱槽内の水温下降勾配を演算すると共に、該水温下降勾配から氷蓄熱槽内の冷水の氷結速度を演算するように構成したことを特徴とする請求項3又は4に記載の氷蓄熱式冷温熱供給装置。   A sensor for detecting the water temperature of the cold water in the ice heat storage tank is provided, and the detected value of the water temperature sensor is input to the control device, and the water temperature decrease gradient in the ice heat storage tank is calculated by the control device, and the water temperature decrease gradient 5. The ice storage type cold / hot supply apparatus according to claim 3, wherein the ice storage speed of the cold water in the ice storage tank is calculated.
JP2008093874A 2008-03-31 2008-03-31 Ice storage type cold / hot supply method and apparatus Expired - Fee Related JP5087751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093874A JP5087751B2 (en) 2008-03-31 2008-03-31 Ice storage type cold / hot supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093874A JP5087751B2 (en) 2008-03-31 2008-03-31 Ice storage type cold / hot supply method and apparatus

Publications (2)

Publication Number Publication Date
JP2009243857A JP2009243857A (en) 2009-10-22
JP5087751B2 true JP5087751B2 (en) 2012-12-05

Family

ID=41305958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093874A Expired - Fee Related JP5087751B2 (en) 2008-03-31 2008-03-31 Ice storage type cold / hot supply method and apparatus

Country Status (1)

Country Link
JP (1) JP5087751B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162364A (en) * 2013-03-29 2013-06-19 深圳市中鼎空调净化有限公司 Water storage and ice storage tandem type central air conditioning system and operating method thereof
CN107062482A (en) * 2017-04-18 2017-08-18 深圳佩尔优科技有限公司 A kind of air-conditioning system and its control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578511B2 (en) * 2010-02-04 2014-08-27 食肉生産技術研究組合 Cold / Heat Supply Device for Meat Processing Facility and Cold / Heat Supply Method
CN111928389B (en) * 2020-09-04 2021-10-01 南京工程学院 Efficient cold and heat supply system based on combined operation of heat source tower and ice cold accumulation
KR102581418B1 (en) * 2021-08-27 2023-09-22 세연기업 주식회사 ice thermal storage tank for cooling and heating system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530411B2 (en) * 1992-07-03 1996-09-04 川崎重工業株式会社 Ice thickness measuring device for ice heat storage device
JP3928251B2 (en) * 1997-11-21 2007-06-13 三菱電機株式会社 Waste heat recovery system
JP2000161811A (en) * 1998-11-27 2000-06-16 Kyushu Electric Power Co Inc Air conditioner and its control method
JP2003336884A (en) * 2002-05-16 2003-11-28 Sanyo Electric Co Ltd Air conditioner with heat storage unit and its heat storage operation method
JP3925383B2 (en) * 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2007303711A (en) * 2006-05-10 2007-11-22 Taisei Corp Air conditioning system
JP2008122016A (en) * 2006-11-14 2008-05-29 Mitsubishi Heavy Ind Ltd Ice heat storage tank and ice heat storage type air conditioner using the same
JP5150300B2 (en) * 2008-02-19 2013-02-20 三洋電機株式会社 Heat pump type water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162364A (en) * 2013-03-29 2013-06-19 深圳市中鼎空调净化有限公司 Water storage and ice storage tandem type central air conditioning system and operating method thereof
CN103162364B (en) * 2013-03-29 2015-09-16 深圳市中鼎空调净化有限公司 Water cold storage and ice conserve cold tandem center air-conditioning system and operation method thereof
CN107062482A (en) * 2017-04-18 2017-08-18 深圳佩尔优科技有限公司 A kind of air-conditioning system and its control method
CN107062482B (en) * 2017-04-18 2019-08-09 深圳佩尔优科技有限公司 A kind of air-conditioning system and its control method

Also Published As

Publication number Publication date
JP2009243857A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
CN102348938B (en) Heat pump water heater
JP5495526B2 (en) Heat source system and control method thereof
BR112012030204B1 (en) cooling system and method for operating the cooling system
JP5087751B2 (en) Ice storage type cold / hot supply method and apparatus
JP6568938B2 (en) Heat pump air conditioning system using composite heat source and control method thereof
CN102483277A (en) Method and device for heat recovery on a vapour refrigeration system
EP3926257A1 (en) Transducing method and system
CN105857155A (en) Multi-partition logistics apparatus
CN105358927A (en) Freeze-drying system and freeze-drying method
JP2010175136A (en) Geothermal heat pump device
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
CN107076472B (en) Refrigeration device comprising means for simultaneous condensation with air and water and method for such a device
CN104633988A (en) Air-cooling cold and hot water air conditioning system and control method thereof
CN203826758U (en) A large power laser double-temperature double-control cooling-water machine
JP2012007751A (en) Heat pump cycle device
CN108800632A (en) A kind of ice water station for producing 2 DEG C of ice water
CN204478579U (en) Wind cooling cold and hot water air-conditioning system
JP5023365B2 (en) CO2 hot water supply heat pump device
JP2016023921A (en) Heat pump hot water supply system
JP5490841B2 (en) Water refrigerant heater and water refrigerant water heater using the same
JP6455752B2 (en) Refrigeration system
JP2009115387A (en) Water refrigerant heater and water refrigerant water heater using the same
RU2358209C1 (en) Geothermal heat utilisation method
JP3919610B2 (en) Freezing prevention device in heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees