JP5086852B2 - Diffractive optical element and method - Google Patents

Diffractive optical element and method Download PDF

Info

Publication number
JP5086852B2
JP5086852B2 JP2008068911A JP2008068911A JP5086852B2 JP 5086852 B2 JP5086852 B2 JP 5086852B2 JP 2008068911 A JP2008068911 A JP 2008068911A JP 2008068911 A JP2008068911 A JP 2008068911A JP 5086852 B2 JP5086852 B2 JP 5086852B2
Authority
JP
Japan
Prior art keywords
diffractive
optical element
molding
lens
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008068911A
Other languages
Japanese (ja)
Other versions
JP2009223093A (en
Inventor
英利 寒河江
聡 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008068911A priority Critical patent/JP5086852B2/en
Publication of JP2009223093A publication Critical patent/JP2009223093A/en
Application granted granted Critical
Publication of JP5086852B2 publication Critical patent/JP5086852B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、表面に微細な階段状のパターンを有する回折光学素子、その回折光学素子の加工精度評価方法、および回折光学素子成形用の金型の加工方法などに関するものである。   The present invention relates to a diffractive optical element having a fine step-like pattern on the surface, a processing accuracy evaluation method for the diffractive optical element, a processing method for a mold for forming a diffractive optical element, and the like.

光走査装置に用いられる各種のレンズを樹脂材料で形成すると、樹脂製レンズは、軽量で低コストに形成でき、また、非球面に代表される特殊な面形状の形成が容易であるため、樹脂製レンズに特殊面を採用することにより、光学的な特性を向上させるとともに、光学系を構成するレンズ枚数を低減させることができる。   When the various lenses used in the optical scanning device are made of resin material, the resin lens is lightweight and can be formed at low cost, and it is easy to form special surface shapes typified by aspherical surfaces. By adopting a special surface for the manufactured lens, the optical characteristics can be improved and the number of lenses constituting the optical system can be reduced.

しかし、その反面、周知のように、樹脂製レンズは、環境変化、特に温度変化に伴って、形状が変化したり屈折率が変化したりするので、光学特性とくにパワー(集光力)が設計値から変化し、被走査面上の光スポットの径である「ビームスポット径」が環境変動により変動する問題がある。   On the other hand, as is well known, the resin lens changes its shape and refractive index with changes in the environment, especially temperature, so its optical characteristics, especially its power (condensing power), are designed. There is a problem that the “beam spot diameter”, which is the diameter of the light spot on the surface to be scanned, varies due to environmental fluctuations.

温度変化に伴う光学特性の変化と、光源における波長変化とを考慮し、パワーを有する回折面を採用して光学特性を安定させた光走査装置(レーザ走査装置)として、特許文献1のものが知られている。この特許文献1においては、光プリンタやデジタル複写機用の光走査装置のポリゴンミラー前光学素子で実施されており、光源波長が基準波長を保っている間はパワーをもたず、温度外乱によって波長がずれたときのみパワーをもつ、階段状の同心円回折面をもつカップリングレンズ、およびシリンダレンズが適用されている。   Patent Document 1 discloses an optical scanning device (laser scanning device) that employs a diffractive surface having power and stabilizes optical properties in consideration of changes in optical properties associated with temperature changes and wavelength changes in a light source. Are known. In this patent document 1, it is implemented by an optical element in front of a polygon mirror of an optical scanning device for an optical printer or a digital copying machine, and has no power while the light source wavelength is maintained at the reference wavelength, and is caused by temperature disturbance. A coupling lens having a step-like concentric diffractive surface, which has power only when the wavelength is shifted, and a cylinder lens are applied.

樹脂製の回折レンズを製作する場合、金型に回折面の形状を形成し、その回折面の形状を射出成形法によってレンズ面に転写成形するのが一般的である。従来では、金型に回折面の形状を形成するには、切削加工やドライエッチングが施されてきた。例えば、特許文献2には、プリズム群素子の金型を切削工法で製作する一例が開示されている。   When manufacturing a resin-made diffractive lens, it is common to form a diffractive surface shape on a mold and transfer-mold the diffractive surface shape onto the lens surface by an injection molding method. Conventionally, cutting and dry etching have been performed to form a diffractive surface shape on a mold. For example, Patent Document 2 discloses an example in which a prism group element mold is manufactured by a cutting method.

特許文献2においては、図13に示すように、光軸L方向から見ると直線状に見えるパターンPが形成され、光軸Lを含みパターンPに直角な平面で切った断面形状が両側部で高く中央部で低い階段状を成した回折光学素子1を対象としており、この回折光学素子1は上面が回折面1Aに、回折面1Aの両端部が切り立った立ち壁1Bとなっている。このような回折光学素子1を転写するための金型を製作するには、図14に示すように、底面の大きさa,bが回折光学素子1の素子面の大きさa’,b’と同寸法の型部材2を用意する。そして、型部材2から離れた位置にダイヤモンドバイト3をセットして、このダイヤモンドバイト3を矢印Aで示すツールパスに沿って走査することにより、型部材2に階段状のパターンP’が加工される。
特開2006−135069号公報 特開2005−037623号公報
In Patent Document 2, as shown in FIG. 13, a pattern P that looks linear when viewed from the direction of the optical axis L is formed, and the cross-sectional shape that includes the optical axis L and is cut by a plane perpendicular to the pattern P is formed on both sides. The diffractive optical element 1 having a high and low step shape at the center is targeted. The diffractive optical element 1 has a diffractive surface 1A on the top surface and a standing wall 1B on which both end portions of the diffractive surface 1A stand. In order to manufacture such a mold for transferring the diffractive optical element 1, as shown in FIG. 14, the sizes a and b of the bottom surface are the sizes a ′ and b ′ of the element surface of the diffractive optical element 1, respectively. A mold member 2 having the same dimensions as the above is prepared. Then, by setting the diamond cutting tool 3 at a position away from the mold member 2 and scanning the diamond cutting tool 3 along the tool path indicated by the arrow A, a stepped pattern P ′ is processed on the mold member 2. The
JP 2006-135069 A JP 2005-037623 A

しかしながら、光走査装置に用いるシリンダレンズはその光学面が数mm程度であり、特許文献2のように、回折光学素子1の素子面の大きさ(特にa’)が型部材2の底面の大きさaと同寸法であると、回折光学素子1が小さくなりすぎて、組立性が非常に悪くなるとともに、回折面1Aと立ち壁1Bとの直角度の確保が困難となっていた。   However, the cylinder lens used in the optical scanning device has an optical surface of about several millimeters, and the size of the element surface (particularly a ′) of the diffractive optical element 1 is the size of the bottom surface of the mold member 2 as in Patent Document 2. If the size is the same as that a, the diffractive optical element 1 becomes too small, the assemblability becomes very poor, and it is difficult to ensure the perpendicularity between the diffractive surface 1A and the standing wall 1B.

また、上記回折光学素子1を成形加工する金型(つまり、加工後の型部材2)においては、一度成形に用いた金型の回折面成形部(回折光学素子1の回折面1Aを成形するための部位)を修正するために再加工する時など、そのセッティングに多くの手間を生じ、多くのロスが発生していた。   Further, in the mold for molding the diffractive optical element 1 (that is, the processed mold member 2), the diffractive surface molding portion of the mold once used for molding (the diffractive surface 1A of the diffractive optical element 1 is molded). For example, when reworking to correct the part), the setting takes a lot of time and a lot of loss has occurred.

本発明の課題は、高精度でかつ組立性に優れた回折光学素子を提供するとともに、その回折光学素子の加工精度評価方法、および手間が掛からずに回折光学素子成形用の金型を加工することのできる加工方法を提供することにある。   An object of the present invention is to provide a diffractive optical element that is highly accurate and excellent in assemblability, as well as a method for evaluating the processing accuracy of the diffractive optical element, and to process a mold for forming a diffractive optical element without taking time It is in providing the processing method which can be performed.

上記課題を解決するために、本発明では、回折光学素子成形用金型において、回折光学素子の回折面を成形する回折面成形部の加工の際に、回折面成形部の両端部に深さが徐々に深くなるアプローチ部(傾斜面成形部)を設ける。これによって、回折光学素子の光学面(回折面)を形成する型部材(金型)の寸法を、光学面寸法とは独立に自由に設定することが可能となる。例えば、型部材を大きくすることで、金型組み付け時の平行調整が容易となる一方、光学面再加工時の加工機取り付けが簡易にかつ高精度にでき、また回折面の外周高さが容易に計測できるため、レンズ厚管理にも活用できる。結果として、高精度の回折光学素子を高能率に製造することが可能となる。また、回折光学素子においては、単にアプローチ用の斜面面とするだけではなく、3つの平面(回折面、傾斜面、および回折面や傾斜面の立ち壁である段差面)が交わる角部を観察することで、転写性評価の簡易チェッカとして用いることができ、量産時の品質管理に活用可能な素子形状を実現するものである。   In order to solve the above-described problems, in the present invention, in the diffractive optical element molding die, the depth of both ends of the diffractive surface molded part is determined when the diffractive surface molded part for molding the diffractive surface of the diffractive optical element is processed. Provide an approach part (inclined surface molding part) that gradually becomes deeper. Accordingly, the dimension of the mold member (mold) that forms the optical surface (diffractive surface) of the diffractive optical element can be freely set independently of the optical surface dimension. For example, by enlarging the mold member, parallel adjustment when assembling the mold becomes easy, but the processing machine can be easily and accurately attached when reworking the optical surface, and the outer peripheral height of the diffraction surface is easy. Can be used for lens thickness management. As a result, a highly accurate diffractive optical element can be manufactured with high efficiency. In addition, in a diffractive optical element, not only a sloped surface for approach, but also observation of a corner where three planes (a diffractive surface, an inclined surface, and a step surface that is a standing surface of the diffractive surface or the inclined surface) intersect. Thus, an element shape that can be used as a simple checker for transferability evaluation and can be used for quality control during mass production is realized.

すなわち、請求項1に記載の発明は、光軸方向から見ると直線状に見えるパターンが形成され、光軸を含み前記パターンに直角な平面で切った断面形状が、両側部で高く中央部で低いまたは両側部で低く中央部で高い階段状を成した回折光学素子であって、前記パターンで挟まれた各領域を直線輪帯部としたとき、当該各直線輪帯部は山形を成し、その上面に帯状の回折面が、前記回折面の両端に帯状の傾斜面がそれぞれ形成されていることを特徴としている。   That is, according to the first aspect of the present invention, a pattern that looks linear when viewed from the optical axis direction is formed, and the cross-sectional shape that is cut by a plane that includes the optical axis and is perpendicular to the pattern is high at both sides and at the center. A diffractive optical element that is low or has a step shape that is low on both sides and high in the center, and when each region sandwiched between the patterns is a linear ring zone, each linear ring zone has a chevron shape. A band-like diffractive surface is formed on the upper surface, and band-shaped inclined surfaces are formed on both ends of the diffractive surface.

請求項2に記載の発明は、請求項1において、前記回折面と前記傾斜面との成す角度は、前記直線輪帯部の各々について一定であることを特徴としている。   According to a second aspect of the present invention, in the first aspect, an angle formed by the diffractive surface and the inclined surface is constant for each of the linear ring zones.

請求項3に記載の発明は、請求項1又は2において、前記パターンが形成されたレンズ面と反対側のレンズ面には、前記パターンに平行にシリンダ中心軸を有するシリンダ面が設けられ、かつ、前記シリンダ面の両端部は曲面状に形成されていることを特徴としている。   According to a third aspect of the present invention, in the first or second aspect, the lens surface opposite to the lens surface on which the pattern is formed is provided with a cylinder surface having a cylinder central axis parallel to the pattern, and The both end portions of the cylinder surface are formed in a curved shape.

請求項4に記載の発明は、光源と、該光源からの光束をカップリングするカップリングレンズと、該カップリングレンズからの光束を主走査方向に平行光とするシリンダレンズと、該シリンダレンズからの光束を主走査方向に偏向させる光偏向器と、該光偏向器により偏向された光束を集光する走査レンズとを備えた光走査装置であって、前記シリンダレンズとして、請求項1,2又は3に記載の回折光学素子が搭載されていることを特徴としている。   According to a fourth aspect of the present invention, there is provided a light source, a coupling lens for coupling a light beam from the light source, a cylinder lens for making the light beam from the coupling lens parallel to the main scanning direction, and the cylinder lens. An optical deflector that deflects the light beam in the main scanning direction and a scanning lens that condenses the light beam deflected by the optical deflector. Alternatively, the diffractive optical element described in 3 is mounted.

請求項5に記載の発明は、電子写真プロセスを行って画像を形成する画像形成装置であって、電子写真プロセスの露光プロセスを行う手段として、請求項4に記載の光走査装置が搭載されていることを特徴としている。   According to a fifth aspect of the present invention, there is provided an image forming apparatus for forming an image by performing an electrophotographic process, wherein the optical scanning device according to the fourth aspect is mounted as means for performing an exposure process of the electrophotographic process. It is characterized by being.

請求項6に記載の発明は、請求項1,2又は3に記載の回折光学素子の加工精度を評価する際に、前記回折面と前記傾斜面とで形成される稜線、前記回折面とその立ち壁である段差面とで形成される稜線、前記傾斜面とその立ち壁である段差面とで形成される稜線、及び前記3つの稜線の交点を観察し、前記各稜線の太さ及び前記交点の大きさから前記パ
ターンの転写レベルを判定することを特徴としている。
In the invention of claim 6, when evaluating the processing accuracy of the diffractive optical element of claim 1, 2, or 3, a ridge formed by the diffractive surface and the inclined surface, the diffractive surface and the diffractive surface Observe the ridge line formed by the step surface that is a standing wall, the ridge line formed by the inclined surface and the step surface that is the standing wall, and the intersection of the three ridge lines, and the thickness of each ridge line and the The transfer level of the pattern is determined from the size of the intersection.

請求項7に記載の発明は、請求項1に記載の回折光学素子を射出成形で製作する場合で、その射出成形用の金型を加工する際に、非回転の直線稜線を持つ単結晶ダイヤモンドバイトを用い、かつ、前記回折面を成形するための回折面成形部と、前記傾斜面を成形するための傾斜面成形部との成す角度をθとしたとき、θ≦45度に設定して加工を行うことを特徴としている。   The invention according to claim 7 is the case where the diffractive optical element according to claim 1 is manufactured by injection molding, and a single crystal diamond having a non-rotating linear ridge line when the injection molding die is processed. When the angle formed between the diffractive surface forming part for forming the diffractive surface and the inclined surface forming part for forming the inclined surface is set to θ using a cutting tool, θ ≦ 45 degrees is set. It is characterized by processing.

請求項8に記載の発明は、請求項1に記載の回折光学素子を射出成形で製作する場合で、その射出成形用の金型を加工する際に、直線稜線を持つ単結晶ダイヤモンドバイトを回転させたフライカット形態の工具を用い、かつ、前記回折面を成形するための回折面成形部と、前記傾斜面を成形するための傾斜面成形部に対して、当該各成形部の面上で切り込み動作を行うことを特徴としている。   The invention according to claim 8 is the case where the diffractive optical element according to claim 1 is manufactured by injection molding, and a single crystal diamond tool having a straight ridge line is rotated when the injection molding die is processed. On the surface of each molding part, using a fly-cut-shaped tool, and a diffractive surface molding part for molding the diffractive surface and an inclined surface molding part for molding the inclined surface. It is characterized by performing a cutting operation.

請求項1の発明によれば、光学面(回折面)を形成する型部材の寸法を光学面寸法とは独立に自由に設定することが可能となる。例えば、型部材を大きくすることで、金型組付時の平行調整が容易となる。また、光学面再加工時の加工機取付けが簡易にかつ高精度にでき、加えて、回折面の外周高さが容易に計測できるため、レンズ厚管理にも活用できる。結果として、高精度でかつ組立性に優れた回折光学素子の製造が可能となる。さらに、回折面の両端部を傾斜面とすることで、回折光学素子を樹脂で成形した場合に、樹脂流動がスムーズになる。   According to the first aspect of the present invention, the dimension of the mold member forming the optical surface (diffraction surface) can be freely set independently of the optical surface dimension. For example, by enlarging the mold member, parallel adjustment at the time of mold assembly is facilitated. In addition, the processing machine can be easily and accurately attached when re-machining the optical surface, and in addition, the outer peripheral height of the diffractive surface can be easily measured, which can be utilized for lens thickness management. As a result, it is possible to manufacture a diffractive optical element with high accuracy and excellent assemblability. Furthermore, by making both end portions of the diffractive surface into inclined surfaces, the resin flow becomes smooth when the diffractive optical element is molded with resin.

請求項2の発明によれば、回折面と傾斜面との成す角度を一定とすることで、クセのない樹脂流動、転写、収縮が実現され、高精度で高安定な回折光学素子の成形プロセスを獲得することができる。   According to the second aspect of the present invention, by making the angle formed by the diffractive surface and the inclined surface constant, resin flow, transfer, and shrinkage without habit can be realized, and a highly accurate and highly stable diffractive optical element molding process Can be earned.

請求項3の発明によれば、シリンダ面の両端部を曲面状にすることで、回折光学素子を樹脂で成形した場合に、樹脂流動がスムーズになる。   According to the invention of claim 3, by making both ends of the cylinder surface into a curved surface shape, the resin flow becomes smooth when the diffractive optical element is molded with resin.

請求項4の発明によれば、光源における波長変化と考慮し、パワーを有する回折面を採用して樹脂製走査レンズを用いた場合でも、温度外乱に強く、かつ光学特性の安定した光走査装置を得ることができる。   According to the fourth aspect of the present invention, an optical scanning device that is resistant to temperature disturbance and has stable optical characteristics even when a resin-made scanning lens is used by adopting a diffractive surface having power in consideration of wavelength change in the light source. Can be obtained.

請求項5の発明によれば、温度外乱に強く、かつ光学特性の安定した画像形成装置を実現することができる。   According to the invention of claim 5, it is possible to realize an image forming apparatus that is resistant to temperature disturbance and has stable optical characteristics.

請求項6の発明によれば、単にアプローチ用傾斜面とするだけではなく、3つの平面が交わる角部を観察することで、転写性評価の簡易チェッカとして用いることができ、AFM(Atomic force Microscope)などによる長時間検査をすることなく、量産時の品質管理を高効率かつ低コストで実施可能となる。   According to the sixth aspect of the present invention, it can be used as a simple checker for transferability evaluation by observing a corner portion where three planes intersect, instead of simply using an inclined surface for approach, and can be used as an AFM (Atomic force Microscope). ) And so on, quality control during mass production can be carried out with high efficiency and at low cost.

請求項7の発明によれば、ダイヤモンド工具の製作限界からくる値を設定することで、確実な工具干渉の回避が可能となる。   According to the seventh aspect of the present invention, it is possible to surely avoid tool interference by setting a value from the production limit of the diamond tool.

請求項8の発明によれば、フライカット工具を用いることで工具干渉を気にせず自由なツールパスとしてのθ(回折面成形部と傾斜面成形部との成す角度)を設定することができる。また、切削抵抗が非回転工具に比べ格段に小さくできるため、切削抵抗が問題となる加工物、型加工では無く、素子加工として樹脂等の低剛性部材への適用が可能である。   According to the invention of claim 8, by using the fly cut tool, θ (angle formed by the diffractive surface forming portion and the inclined surface forming portion) can be set as a free tool path without worrying about tool interference. . In addition, since the cutting resistance can be remarkably reduced as compared with a non-rotating tool, it can be applied to a low-rigidity member such as a resin as an element processing rather than a workpiece or mold processing in which the cutting resistance is a problem.

以下、本発明の実施例を図面に従って説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2は本発明に係る回折光学素子を示しており、図1はその外観斜視図、図2(a)は上面図である。図2(b)および(c)は(a)のB部の拡大図である。   1 and 2 show a diffractive optical element according to the present invention. FIG. 1 is an external perspective view, and FIG. 2 (a) is a top view. FIGS. 2B and 2C are enlarged views of a portion B in FIG.

図1および図2(a)に示すように、本発明に係る回折光学素子10は光軸L方向から見ると直線状に見えるパターンPが形成され、光軸Lを含みパターンPに直角な平面Sで切った断面形状が両側部で高く中央部で低い階段状を成している。   As shown in FIG. 1 and FIG. 2A, the diffractive optical element 10 according to the present invention has a pattern P that looks linear when viewed from the direction of the optical axis L, and is a plane that includes the optical axis L and is perpendicular to the pattern P. The cross-sectional shape cut by S forms a staircase shape that is high at both sides and low at the center.

そして、パターンPで挟まれた各領域を直線輪帯部11〜19としたとき、各直線輪帯部11〜19は山形を成し、ベース板20の上に形成されている。直線輪帯部11と直線輪帯部19は幅(平面Sに沿った長さ:以下同じ)が同じであり、また、直線輪帯部12と直線輪帯部18、直線輪帯部13と直線輪帯部17、直線輪帯部14と直線輪帯部16も幅がそれぞれ同じである。幅は直線輪帯部15が最も広く、以下、直線輪帯部14と直線輪帯部16、直線輪帯部13と直線輪帯部17、直線輪帯部12と直線輪帯部18の順に狭くなり、直線輪帯部11と直線輪帯部19が最も狭い。   And when each area | region pinched | interposed by the pattern P is made into the linear ring zone parts 11-19, each linear ring zone parts 11-19 comprise the mountain shape, and are formed on the base board 20. As shown in FIG. The straight ring zone part 11 and the straight ring zone part 19 have the same width (length along the plane S: the same applies hereinafter), and the straight ring zone part 12, the straight ring zone part 18, the straight ring zone part 13 and the like. The straight ring zone part 17, the straight ring zone part 14 and the straight ring zone part 16 have the same width. The width of the straight ring zone 15 is the widest, and the straight ring zone 14 and the straight ring zone 16, the straight ring zone 13 and the straight ring zone 17, the straight ring zone 12 and the straight ring zone 18 in the following order. It becomes narrow, and the linear ring zone part 11 and the linear ring zone part 19 are the narrowest.

一方、高さは直線輪帯部11と直線輪帯部19が最も高く、以下、直線輪帯部12と直線輪帯部18、直線輪帯部13と直線輪帯部17、直線輪帯部14と直線輪帯部16の順に低くなり、直線輪帯部15が最も低い。なお、直線輪帯部11〜19は一体的に形成されている。   On the other hand, the height of the linear zone part 11 and the linear zone part 19 is highest, and hereinafter, the linear zone part 12 and the linear zone part 18, the linear zone part 13 and the linear zone part 17, and the linear zone part. 14 and the linear zone part 16 become lower in order, and the linear zone part 15 is the lowest. The linear ring zones 11 to 19 are integrally formed.

直線輪帯部11には、その上面に帯状の回折面11Aが、回折面11Aの両端に帯状の傾斜面11B,11Cがそれぞれ形成され、直線輪帯部12には、その上面に帯状の回折面12Aが、回折面12Aの両端に帯状の傾斜面12B,12Cがそれぞれ形成されている。また、直線輪帯部13には、その上面に帯状の回折面13Aが、回折面13Aの両端に帯状の傾斜面13B,13Cがそれぞれ形成され、直線輪帯部14には、その上面に帯状の回折面14Aが、回折面14Aの両端に帯状の傾斜面14B,14Cがそれぞれ形成されている。さらに、直線輪帯部15には、その上面に帯状の回折面15Aが、回折面15Aの両端に帯状の傾斜面15B,15Cがそれぞれ形成されている。   The straight annular zone 11 is formed with a belt-like diffractive surface 11A on its upper surface, and strip-like inclined surfaces 11B and 11C are formed at both ends of the diffractive surface 11A. The straight annular zone 12 has a belt-like diffraction surface on its upper surface. The surface 12A is formed with band-shaped inclined surfaces 12B and 12C at both ends of the diffractive surface 12A. Further, the linear ring zone portion 13 is formed with a band-like diffractive surface 13A on the upper surface thereof, and band-like inclined surfaces 13B and 13C are formed at both ends of the diffraction surface 13A, respectively. The diffraction surface 14A is formed with band-shaped inclined surfaces 14B and 14C at both ends of the diffraction surface 14A. Further, the linear ring zone portion 15 is formed with a band-like diffractive surface 15A on its upper surface and band-like inclined surfaces 15B and 15C on both ends of the diffractive surface 15A.

また、直線輪帯部16には、その上面に帯状の回折面16Aが、回折面16Aの両端に帯状の傾斜面16B,16Cがそれぞれ形成され、直線輪帯部17には、その上面に帯状の回折面17Aが、回折面17Aの両端に帯状の傾斜面17B,17Cがそれぞれ形成されている。また、直線輪帯部18には、その上面に帯状の回折面18Aが、回折面18Aの両端に帯状の傾斜面18B,18Cがそれぞれ形成され、直線輪帯部19には、その上面に帯状の回折面19Aが、回折面19Aの両端に帯状の傾斜面19B,19Cがそれぞれ形成されている。   Further, the linear ring zone part 16 is formed with a band-like diffractive surface 16A on the upper surface thereof, and band-like inclined surfaces 16B and 16C are formed at both ends of the diffraction surface 16A, respectively. The diffraction surface 17A is formed with band-shaped inclined surfaces 17B and 17C at both ends of the diffraction surface 17A. Further, the linear ring zone portion 18 is formed with a band-like diffractive surface 18A on the upper surface thereof, and band-like inclined surfaces 18B and 18C are formed at both ends of the diffraction surface 18A, respectively. The diffraction surface 19A is formed with band-shaped inclined surfaces 19B and 19C at both ends of the diffraction surface 19A.

各直線輪帯部11〜19について、回折面と傾斜面の成す角度は一定である。すなわち、直線輪帯部11についての回折面11Aと傾斜面11Bとの成す角度および回折面11Aと傾斜面11Cとの成す角度、直線輪帯部12についての回折面12Aと傾斜面12Bとの成す角度および回折面12Aと傾斜面12Cとの成す角度、直線輪帯部13についての回折面13Aと傾斜面13Bとの成す角度および回折面13Aと傾斜面13Cとの成す角度、直線輪帯部14についての回折面14Aと傾斜面14Bとの成す角度および回折面14Aと傾斜面14Cとの成す角度が各々一定である。また、直線輪帯部15についての回折面15Aと傾斜面15Bとの成す角度および回折面15Aと傾斜面15Cとの成す角度が前記一定の角度とそれぞれ同じである。   About each linear ring zone part 11-19, the angle which a diffraction surface and an inclined surface comprise is constant. That is, the angle formed between the diffractive surface 11A and the inclined surface 11B and the angle formed between the diffractive surface 11A and the inclined surface 11C with respect to the straight annular zone 11, and the angle between the diffractive surface 12A and the inclined surface 12B with respect to the linear annular zone 12 are formed. The angle formed between the diffractive surface 12A and the inclined surface 12C, the angle formed between the diffractive surface 13A and the inclined surface 13B and the angle formed between the diffractive surface 13A and the inclined surface 13C with respect to the linear annular zone 13, and the linear annular zone 14 The angle formed by the diffraction surface 14A and the inclined surface 14B and the angle formed by the diffraction surface 14A and the inclined surface 14C are constant. In addition, the angle formed by the diffractive surface 15A and the inclined surface 15B and the angle formed by the diffractive surface 15A and the inclined surface 15C with respect to the straight annular zone 15 are the same as the predetermined angle.

さらに、直線輪帯部16についての回折面16Aと傾斜面16Bとの成す角度および回折面16Aと傾斜面16Cとの成す角度、直線輪帯部17についての回折面17Aと傾斜面17Bとの成す角度および回折面17Aと傾斜面17Cとの成す角度、直線輪帯部18についての回折面18Aと傾斜面18Bとの成す角度および回折面18Aと傾斜面18Cとの成す角度、直線輪帯部19についての回折面19Aと傾斜面19Bとの成す角度および回折面19Aと傾斜面19Cとの成す角度が前記一定の角度と各々同じである。   Furthermore, the angle formed by the diffractive surface 16A and the inclined surface 16B with respect to the linear ring zone portion 16 and the angle formed between the diffractive surface 16A and the inclined surface 16C, and the angle formed between the diffractive surface 17A and the inclined surface 17B with respect to the linear ring zone portion 17 are formed. The angle formed by the diffraction surface 17A and the inclined surface 17C, the angle formed by the diffraction surface 18A and the inclined surface 18B, and the angle formed by the diffraction surface 18A and the inclined surface 18C, and the linear ring portion 19 The angle formed by the diffractive surface 19A and the inclined surface 19B and the angle formed by the diffractive surface 19A and the inclined surface 19C are the same as the predetermined angle.

また、直線輪帯部11〜19について、回折面の長手方向の長さは同一である。すなわち、回折面11A、回折面12A、回折面13A、回折面14A、回折面15A、回折面16A、回折面17A、回折面18Aおよび回折面19Aの長手方向の長さは同一である。   Moreover, about the linear ring zone parts 11-19, the length of the longitudinal direction of a diffraction surface is the same. That is, the lengths of the diffractive surfaces 11A, 12A, 13A, 14A, 15A, 16A, 17A, 18A and 19A in the longitudinal direction are the same.

そして、直線輪帯部11,19の高さが最も高く、直線輪帯部12,18、直線輪帯部13,17、直線輪帯部14,16、直線輪帯部15の順に低くなっているので、傾斜面11B,19Bはベース20上を最も外側(図2の左側)に突出して配置され、以下、傾斜面12B,18B、傾斜面13B,17B、傾斜面14B,16Bの順に突出量が小さくなり、傾斜面15Bの突出量が最も小さい。同様に、傾斜面11C,19Cはベース20上を最も外側(図2の右側)に突出して配置され、以下、傾斜面12C,18C、傾斜面13C,17C、傾斜面14C,16Cの順に突出量が小さくなり、傾斜面15Cの突出量が最も小さい。   And the height of the linear ring zones 11 and 19 is the highest, and the linear ring zones 12 and 18, the linear ring zones 13 and 17, the linear ring zones 14 and 16, and the linear ring zone 15 become lower in this order. Therefore, the inclined surfaces 11B and 19B are arranged so as to protrude on the outermost side (left side in FIG. 2) on the base 20, and hereinafter, the protruding amounts of the inclined surfaces 12B and 18B, the inclined surfaces 13B and 17B, and the inclined surfaces 14B and 16B in this order. And the protruding amount of the inclined surface 15B is the smallest. Similarly, the inclined surfaces 11C and 19C are arranged so as to protrude on the outermost side (right side in FIG. 2) on the base 20, and hereinafter, the protruding amounts of the inclined surfaces 12C and 18C, the inclined surfaces 13C and 17C, and the inclined surfaces 14C and 16C in this order. And the protruding amount of the inclined surface 15C is the smallest.

上記構成の回折光学素子10において、光学的機能は回折面11A〜19Aが有しており、入射光束はこれら回折面11A〜19Aの領域を通過する。転写性を重視する場合は、樹脂の流動方向を回折パターンと平行にとることが多いが、このような場合、上述したように、回折面11A〜19Aと傾斜面11B〜19Bとの成す角度、および回折面11A〜19Aと傾斜面11C〜19Cとの成す角度を一定とした方が、転写性、均等な収縮の確保に有利な傾向がある。   In the diffractive optical element 10 having the above configuration, the optical functions are provided by the diffractive surfaces 11A to 19A, and the incident light beam passes through the regions of the diffractive surfaces 11A to 19A. When emphasizing transferability, the flow direction of the resin is often parallel to the diffraction pattern. In such a case, as described above, the angle formed by the diffraction surfaces 11A to 19A and the inclined surfaces 11B to 19B, In addition, it is more advantageous to ensure transferability and uniform shrinkage when the angle formed by the diffraction surfaces 11A to 19A and the inclined surfaces 11C to 19C is constant.

図2(b)および(c)は、回折面13Aと傾斜面13Cとで形成される稜線21、回折面13Aとその立ち壁である段差面(図示せず)とで形成される稜線22、傾斜面13Cとその立ち壁である段差面(図示せず)とで形成される稜線23、及び前記3つの稜線21,22,23の交点24を拡大して示したものである。このように3つの面が交わる角部は、樹脂が完全には充填されにくい箇所であり、充填不良に敏感な部位となっている。この角部を光学顕微鏡で観察してみると、充填が完全である場合は、図2(b)に示すようにきれいな十字線が確認され、転写は良好であるが、充填が不十分である場合は、図2(c)に示すように、交点24部に未充填領域が確認され、良好な転写は得られない。   2 (b) and 2 (c) show a ridge line 21 formed by the diffractive surface 13A and the inclined surface 13C, a ridge line 22 formed by the diffractive surface 13A and a stepped surface (not shown) which is a standing wall thereof, This is an enlarged view of a ridge line 23 formed by an inclined surface 13C and a step surface (not shown) which is a standing wall, and an intersection 24 of the three ridge lines 21, 22, and 23. Thus, the corner portion where the three surfaces intersect is a portion that is difficult to be completely filled with the resin, and is a portion that is sensitive to poor filling. When this corner is observed with an optical microscope, when the filling is complete, a clean cross line is confirmed as shown in FIG. 2 (b), the transfer is good, but the filling is insufficient. In this case, as shown in FIG. 2C, an unfilled area is confirmed at the intersection 24, and good transfer cannot be obtained.

したがって、稜線21,22,23の太さ、および交点24の大きさの閾値を設定することで、簡易に量産時の成形状況をモニタリングすることが可能となる。従来は、角ダレ等の転写不良は、AFM(Atomic force Microscope)などで検査し、非常に多くの長時間を要しており実用的では無かった。   Therefore, by setting the threshold values of the thickness of the ridge lines 21, 22, 23 and the size of the intersection 24, it is possible to easily monitor the molding state during mass production. Conventionally, transfer defects such as corner sagging have been inspected with an AFM (Atomic Force Microscope) or the like and required a very long time, which is not practical.

図3は、直線輪帯部11〜19(つまり、回折面11A〜19Aや傾斜面11B〜19B,11C〜19C)を成形するための金型25の外観斜視図である。金型25には、回折面11A〜19Aや傾斜面11B〜19B,11C〜19Cを反転させた形状の凹部26が形成されている。金型25の母材はマルテンサイト系ステンレスで、成形面には150μm厚の無電解Niメッキが施されている。   FIG. 3 is an external perspective view of a mold 25 for forming the linear ring zones 11 to 19 (that is, the diffraction surfaces 11A to 19A and the inclined surfaces 11B to 19B and 11C to 19C). The mold 25 is formed with a concave portion 26 having a shape obtained by inverting the diffractive surfaces 11A to 19A and the inclined surfaces 11B to 19B and 11C to 19C. The base material of the mold 25 is martensitic stainless steel, and the molding surface is subjected to 150 μm-thick electroless Ni plating.

直線輪帯部15を成形するための部位において、回折面15A’の彫り込み深さはトータルで70μmである。回折面15A’の大きさは 短手方向で3mm、長手方向で6mmであり、その両端に傾斜面15B’,15C’の端部が形成されている。ここでは、回折面15A’と傾斜面15B’,15C’の成す角度θ=20度としているため、前記彫り込み深さは70μm×tan20°=26μmであり、傾斜面15B’,15C’の端部は最も長いものでもこの長さであり、不必要に成形品を大きくするものではない。   In the portion for forming the linear annular zone portion 15, the depth of engraving of the diffractive surface 15A 'is 70 μm in total. The size of the diffractive surface 15A 'is 3 mm in the short side direction and 6 mm in the long side direction, and ends of inclined surfaces 15B' and 15C 'are formed at both ends thereof. Here, since the angle θ between the diffractive surface 15A ′ and the inclined surfaces 15B ′ and 15C ′ is set to 20 °, the engraving depth is 70 μm × tan 20 ° = 26 μm, and the end portions of the inclined surfaces 15B ′ and 15C ′. Is the length of the longest one, and does not unnecessarily increase the size of the molded product.

図4は、非回転工具を用いた場合の、前記金型の加工法を説明するものである。図5は、図4を側面から見た模式図である。   FIG. 4 illustrates a method of processing the mold when a non-rotating tool is used. FIG. 5 is a schematic view of FIG. 4 viewed from the side.

単結晶ダイヤモンドバイト27を型部材25’の上空に位置させ、所定の角度で斜めに型部材25’を切り込んでゆく。矢印CおよびDに示すように、斜めのツールパスが傾斜面の端部加工のツールパスであり、工具のアプローチとリトラクト行っている。矢印Eは回折面加工のツールパスである。   The single crystal diamond cutting tool 27 is positioned above the mold member 25 ′, and the mold member 25 ′ is cut obliquely at a predetermined angle. As shown by arrows C and D, the oblique tool path is a tool path for processing the end portion of the inclined surface, and the approach and retract of the tool are performed. An arrow E is a tool path for diffractive surface machining.

ここで、重要な点は、回折面と傾斜面とが成す角度θに注意することである。ダイヤモンドバイト27の前ニゲ面27aが回折面となす角をφとするとき、
θ<φ
の関係に設定しないと、工具アプローチ時に前ニゲ面27aと傾斜面の端部とが干渉し、切削面がむしれ面になるだけでなく、工具損傷の原因ともなりうる。現在、単結晶バイトの製作限界は前逃げ角が30°、加工時の姿勢としては負のスクイ角状態として−15°あたりが使用限界であり、これらをあわせると45°であり、θは45°以下とすることが望ましい。
Here, the important point is to pay attention to the angle θ formed by the diffractive surface and the inclined surface. When the angle formed by the front relief surface 27a of the diamond tool 27 and the diffraction surface is φ,
θ <φ
If the relationship is not set, the front dented surface 27a and the end of the inclined surface interfere with each other at the time of the tool approach, and the cutting surface may become a peeling surface as well as cause damage to the tool. At present, the manufacturing limit of the single crystal bit is 30 ° in the front clearance angle, and the working posture is around −15 ° as the negative squeeze angle state. When these are combined, the combined limit is 45 °, and θ is 45 It is desirable to make it below °.

本実施例によれば、回折面を形成する型部材の寸法を光学面寸法とは独立に自由に設定することができ、例えば、型部材を大きくすることで、金型組付時の平行調整が容易となる。また、光学面再加工時の加工機取付けが簡易にかつ高精度にでき、加えて、回折面の外周高さが容易に計測できるため、レンズ厚管理にも活用できる。結果として、高精度でかつ組立性に優れた回折光学素子の製造が可能となる。さらに、回折面の両端部を傾斜面とすることで、回折光学素子を樹脂で成形した場合に、樹脂流動がスムーズになる。   According to this embodiment, the dimension of the mold member that forms the diffractive surface can be freely set independently of the optical surface dimension. For example, by making the mold member larger, parallel adjustment at the time of assembling the mold is possible. Becomes easy. In addition, the processing machine can be easily and accurately attached when re-machining the optical surface, and in addition, the outer peripheral height of the diffractive surface can be easily measured, which can be utilized for lens thickness management. As a result, it is possible to manufacture a diffractive optical element with high accuracy and excellent assemblability. Furthermore, by making both end portions of the diffractive surface into inclined surfaces, the resin flow becomes smooth when the diffractive optical element is molded with resin.

図6および図7は回折光学素子を裏返した状態を示しており、図6はその外観斜視図、図7は図6の側面図である。   6 and 7 show a state in which the diffractive optical element is turned over, FIG. 6 is a perspective view of the appearance thereof, and FIG. 7 is a side view of FIG.

図6および図7は、回転工具によって端部斜面を形成した例を示している。パターンP(図1参照)が形成されたレンズ面と反対側のレンズ面には、パターンPに平行にシリンダ中心軸を有するシリンダ面28が設けられ、かつ、シリンダ面28の両端部には曲面状部分28A,28Bが形成されている。シリンダ面28はRバイトのフライカットで加工を行っているため、曲面状部分28A,28Bはトーリック面のような曲面となっている。   6 and 7 show an example in which the end slope is formed by a rotating tool. The lens surface opposite to the lens surface on which the pattern P (see FIG. 1) is formed is provided with a cylinder surface 28 having a cylinder central axis parallel to the pattern P, and curved surfaces at both ends of the cylinder surface 28. 28A and 28B are formed. Since the cylinder surface 28 is processed by R-cut fly cutting, the curved portions 28A and 28B are curved like a toric surface.

なお、この例では、直線輪帯部29の両端(回折面の両端)は傾斜面ではなく、円弧面(シリンダ面)29A,29Bとなっている。   In this example, both ends (both ends of the diffraction surface) of the linear annular zone 29 are not inclined surfaces but arcuate surfaces (cylinder surfaces) 29A and 29B.

以上の実施例においては、回折光学素子10は、平面S(図1参照)での断面形状が両側部で高く中央部で低い階段状を成したものであったが、これに限らず、前記平面Sでの断面形状が両側部で低く中央部で高い階段状を成したものでもよい。   In the above embodiment, the diffractive optical element 10 has a stepped shape in which the cross-sectional shape on the plane S (see FIG. 1) is high at both sides and low at the center, but is not limited thereto. The cross-sectional shape on the plane S may be a stepped shape that is low on both sides and high on the center.

図8は、回転工具による型部材の加工法を説明するものである。ツールパスは、図4および図5の場合と同様に、傾斜面を形成するための矢印C,D方向のものと、回折面を形成するための矢印E方向のものとで構成される。非回転工具との違いは、前逃げ面の干渉が回転工具30の回転半径で決定され、ツールパスに依存しない点である。そのため、ツールパスとしてのθは90°にとることも可能である。しかし、回転工具30先端の回転半径は最小でも3mm程度となるため、傾斜面端部は非回転工具よりも長くなってしまう。回転工具の場合、ツールパスとしてのθと、加工面としてのθが一致しない点を考慮して実施する必要がある。   FIG. 8 illustrates a method of processing a mold member with a rotary tool. As in the case of FIG. 4 and FIG. 5, the tool path is composed of those in the directions of arrows C and D for forming the inclined surface and those in the direction of arrow E for forming the diffractive surface. The difference from the non-rotating tool is that the interference of the front flank is determined by the turning radius of the rotating tool 30 and does not depend on the tool path. Therefore, θ as a tool path can be 90 °. However, since the rotation radius at the tip of the rotary tool 30 is at least about 3 mm, the end of the inclined surface becomes longer than the non-rotary tool. In the case of a rotating tool, it is necessary to take into consideration that θ as a tool path and θ as a machining surface do not match.

図9は、回折光学素子の他の実施例を示したものである。図9においては、回折面11a〜19aと傾斜面11b〜19b,11c〜19cとの成す角度を一定とせずに、傾斜面11b〜19b,11c〜19cの端部を一定に揃えた点に特徴がある。他の構成は、図1および図2の場合と同様である。   FIG. 9 shows another embodiment of the diffractive optical element. In FIG. 9, the angle between the diffractive surfaces 11a to 19a and the inclined surfaces 11b to 19b and 11c to 19c is not constant, and the end portions of the inclined surfaces 11b to 19b and 11c to 19c are made uniform. There is. Other configurations are the same as those in FIGS. 1 and 2.

このように構成すれば、素子の長手寸法に厳しい制約がある場合などに活用することができる。   If comprised in this way, it can utilize when the longitudinal dimension of an element has severe restrictions.

なお、図9の場合も、回折光学素子10は、平面S(図1参照)での断面形状が両側部で高く中央部で低い階段状を成したものであるが、これに限らず、前記平面Sでの断面形状が両側部で低く中央部で高い階段状を成したものでもよい。   In the case of FIG. 9 as well, the diffractive optical element 10 has a stepped shape in which the cross-sectional shape on the plane S (see FIG. 1) is high on both sides and low on the center, but is not limited thereto. The cross-sectional shape on the plane S may be a stepped shape that is low on both sides and high on the center.

図10は、射出成形により回折光学素子を成形する金型31を模式的に表した断面図である。この金型31は、固定側金型32と、可動側金型33とからなり、これら両金型32,33を結合することによって、所定の形状の回折光学素子を成形するための空間(キャビティ)34が形成される。また、可動側金型33には樹脂材料を空間34内に注入するための樹脂注入口35が設けられている。この金型31を用いた回折光学素子の成形過程は以下の通りである。
(1)金型32,33を成形温度130〜140度程度に加熱する。
(2)樹脂注入口35から溶融した樹脂材料を30〜100Mpa高圧で空間34内に注入する。
(3)全体を冷却する。
(4)適当な温度に下がったところで、固定側金型32と可動側金型33とを分離する。
(5)型開きの状態では、回折光学素子は可動側金型33に張り付いた状態である。
(6)樹脂による成形品である回折光学素子を光軸方向(図の左側方向)に引き出し、図示なきイジェクタピンで押し出し取り出す。
FIG. 10 is a cross-sectional view schematically showing a mold 31 for molding a diffractive optical element by injection molding. The mold 31 includes a fixed mold 32 and a movable mold 33, and a space (cavity) for molding a diffractive optical element having a predetermined shape by coupling both the molds 32 and 33 together. ) 34 is formed. The movable mold 33 is provided with a resin injection port 35 for injecting a resin material into the space 34. The molding process of the diffractive optical element using this mold 31 is as follows.
(1) The molds 32 and 33 are heated to a molding temperature of about 130 to 140 degrees.
(2) The molten resin material is injected into the space 34 from the resin injection port 35 at a high pressure of 30 to 100 MPa.
(3) Cool the whole.
(4) When the temperature is lowered to an appropriate temperature, the fixed mold 32 and the movable mold 33 are separated.
(5) In the mold open state, the diffractive optical element is stuck to the movable mold 33.
(6) The diffractive optical element, which is a molded product made of resin, is pulled out in the direction of the optical axis (left side in the figure), and is pushed out by an ejector pin not shown.

図11(a)は図12に示した光走査装置40に搭載され、光路上のポリゴンミラー41前方に位置する第1光学系の構成図である。なお、図12において、ポリゴンミラー41後方の走査レンズ42による構成を第2光学系としている。   FIG. 11A is a configuration diagram of the first optical system mounted on the optical scanning device 40 shown in FIG. 12 and positioned in front of the polygon mirror 41 on the optical path. In FIG. 12, the configuration of the scanning lens 42 behind the polygon mirror 41 is the second optical system.

図11(a)に示すように、第1光学系は、光源である半導体レーザ(LD)43からの発散光を緩やかな収束光としてポリゴンミラー41に投射させる機能をもつ。LD43からの発散光であるレーザ光44がカップリングレンズ45の回折面45Aに入射する。カップリングレンズ45は、図11(b)に示すように、同心円パターンの回折面45Aを有する。   As shown in FIG. 11A, the first optical system has a function of projecting divergent light from a semiconductor laser (LD) 43, which is a light source, onto the polygon mirror 41 as gentle convergent light. Laser light 44, which is diverging light from the LD 43, enters the diffraction surface 45 </ b> A of the coupling lens 45. As shown in FIG. 11B, the coupling lens 45 has a diffractive surface 45A having a concentric pattern.

カップリングレンズ45の出射面45Bは共軸非球面であり、レーザ光44はアパーチャ46を通過して、所望のビーム形状に成形された後に、シリンダレンズ47のシリンダ面47Aに入射する。その後、レーザ光44は、シリンダレンズ47の出射面47Bから緩やかな収束光となって出射される。シリンダレンズ47は、図11(c)に示すように、直線状パターンの回折面47Bを有する。なお、ここで示したシリンダレンズ47は、図1等に示した回折光学素子1と同等のものである。   The exit surface 45B of the coupling lens 45 is a coaxial aspheric surface, and the laser light 44 passes through the aperture 46 and is formed into a desired beam shape, and then enters the cylinder surface 47A of the cylinder lens 47. Thereafter, the laser beam 44 is emitted from the emission surface 47B of the cylinder lens 47 as a gentle convergent light. As shown in FIG. 11C, the cylinder lens 47 has a diffractive surface 47B having a linear pattern. The cylinder lens 47 shown here is equivalent to the diffractive optical element 1 shown in FIG.

上記光走査装置40は、プリンタ等の画像形成装置に適用可能である。   The optical scanning device 40 can be applied to an image forming apparatus such as a printer.

本発明に係る回折光学素子の外観斜視図である。1 is an external perspective view of a diffractive optical element according to the present invention. (a)は本発明に係る回折光学素子の上面図、(b)および(c)は(a)のB部の拡大図である。(A) is a top view of the diffractive optical element according to the present invention, and (b) and (c) are enlarged views of part B of (a). 回折光学素子の直線輪帯部を成形するための金型の外観斜視図である。It is an external appearance perspective view of the metal mold | die for shape | molding the linear ring zone part of a diffractive optical element. 非回転工具を用いて、図3に示した金型を加工する方法を説明する図である。It is a figure explaining the method of processing the metal mold | die shown in FIG. 3 using a non-rotating tool. 非回転工具を用いて金型を加工する方法を示しており、図4を側方より見た図である。FIG. 5 shows a method of machining a mold using a non-rotating tool, and is a view of FIG. 4 viewed from the side. 裏返したときの回折光学素子の外観斜視図である。It is an external appearance perspective view of a diffractive optical element when turned over. 図6の側面図である。FIG. 7 is a side view of FIG. 6. 回転工具によって型部材を加工する方法を説明する図である。It is a figure explaining the method of processing a mold member with a rotary tool. 他の実施例による回折光学素子の上面図である。It is a top view of the diffractive optical element by another Example. シリンダレンズを成形するための金型構造の模式図である。It is a schematic diagram of the metal mold | die structure for shape | molding a cylinder lens. (a)は光走査装置のポリゴンミラー前方に位置する第1光学系の構成図、(b)は第1光学系に配置されたカップリングレンズの回折面を示す図、(c)は第1光学系に配置されたシリンダレンズの回折面を示す図である。(A) is a block diagram of the 1st optical system located in front of the polygon mirror of an optical scanning device, (b) is a figure which shows the diffraction surface of the coupling lens arrange | positioned in a 1st optical system, (c) is 1st. It is a figure which shows the diffraction surface of the cylinder lens arrange | positioned at an optical system. 光走査装置の構成を示す図である。It is a figure which shows the structure of an optical scanning device. 従来技術によるシリンダレンズの外観斜視図である。It is an external appearance perspective view of the cylinder lens by a prior art. 図13のシリンダレンズを成形するための金型を、加工する方法を説明する図である。It is a figure explaining the method to process the metal mold | die for shape | molding the cylinder lens of FIG.

符号の説明Explanation of symbols

10 回折光学素子
11〜19 直線輪帯部
11A〜19A 回折面
11B〜19B,11C〜19C 傾斜面
21,22,23 稜線
24 交点
25 金型
25’ 型部材
27 単結晶ダイヤモンドバイト
28 シリンダ面
28A,28B 曲面状部分
30 回転工具
40 光走査装置
P 直線状のパターン
DESCRIPTION OF SYMBOLS 10 Diffractive optical element 11-19 Linear ring part 11A-19A Diffraction surface 11B-19B, 11C-19C Inclined surface 21,22,23 Ridge line 24 Intersection 25 Mold 25 'type | mold member 27 Single crystal diamond bit 28 Cylinder surface 28A, 28B Curved portion 30 Rotating tool 40 Optical scanning device P Linear pattern

Claims (8)

光軸方向から見ると直線状に見えるパターンが形成され、光軸を含み前記パターンに直角な平面で切った断面形状が、両側部で高く中央部で低いまたは両側部で低く中央部で高い階段状を成した回折光学素子であって、
前記パターンで挟まれた各領域を直線輪帯部としたとき、当該各直線輪帯部は山形を成し、その上面に帯状の回折面が、前記回折面の両端に帯状の傾斜面がそれぞれ形成されていることを特徴とする回折光学素子。
A staircase pattern is formed that looks straight when viewed from the optical axis direction, and the cross-sectional shape cut by a plane that includes the optical axis and is perpendicular to the pattern is high at both sides and low at the center or low at both sides and high at the center A diffractive optical element having a shape,
When each region sandwiched between the patterns is a linear ring zone, each linear ring zone has a mountain shape, a band-like diffractive surface on the upper surface, and band-shaped inclined surfaces on both ends of the diffractive surface, respectively. A diffractive optical element formed.
前記回折面と前記傾斜面との成す角度は、前記直線輪帯部の各々について一定であることを特徴とする請求項1に記載の回折光学素子。   2. The diffractive optical element according to claim 1, wherein an angle formed by the diffractive surface and the inclined surface is constant for each of the linear ring zones. 前記パターンが形成されたレンズ面と反対側のレンズ面には、前記パターンに平行にシリンダ中心軸を有するシリンダ面が設けられ、かつ、前記シリンダ面の両端部は曲面状に形成されていることを特徴とする請求項1又は2に記載の回折光学素子。   The lens surface opposite to the lens surface on which the pattern is formed is provided with a cylinder surface having a cylinder central axis parallel to the pattern, and both end portions of the cylinder surface are formed in a curved shape. The diffractive optical element according to claim 1 or 2. 光源と、該光源からの光束をカップリングするカップリングレンズと、該カップリングレンズからの光束を主走査方向に平行光とするシリンダレンズと、該シリンダレンズからの光束を主走査方向に偏向させる光偏向器と、該光偏向器により偏向された光束を集光する走査レンズとを備えた光走査装置であって、
前記シリンダレンズとして、請求項1,2又は3に記載の回折光学素子が搭載されていることを特徴とする光走査装置。
A light source, a coupling lens for coupling a light beam from the light source, a cylinder lens for making the light beam from the coupling lens parallel to the main scanning direction, and deflecting the light beam from the cylinder lens in the main scanning direction An optical scanning device comprising an optical deflector and a scanning lens for condensing a light beam deflected by the optical deflector,
An optical scanning device, wherein the diffractive optical element according to claim 1, 2 or 3 is mounted as the cylinder lens.
電子写真プロセスを行って画像を形成する画像形成装置であって、
電子写真プロセスの露光プロセスを行う手段として、請求項4に記載の光走査装置が搭載されていることを特徴とする画像形成装置。
An image forming apparatus that forms an image by performing an electrophotographic process,
An image forming apparatus comprising the optical scanning device according to claim 4 as means for performing an exposure process of an electrophotographic process.
請求項1,2又は3に記載の回折光学素子の加工精度を評価する際に、
前記回折面と前記傾斜面とで形成される稜線、前記回折面とその立ち壁である段差面とで形成される稜線、前記傾斜面とその立ち壁である段差面とで形成される稜線、及び前記3つの稜線の交点を観察し、前記各稜線の太さ及び前記交点の大きさから前記パターンの転写レベルを判定することを特徴とする回折光学素子の加工精度評価方法。
In evaluating the processing accuracy of the diffractive optical element according to claim 1, 2, or 3,
A ridge line formed by the diffractive surface and the inclined surface, a ridge line formed by the diffractive surface and a step surface that is a standing wall thereof, a ridge line formed by the inclined surface and a step surface that is a standing wall thereof, And a method for evaluating the processing accuracy of the diffractive optical element, wherein the intersection of the three ridge lines is observed, and the transfer level of the pattern is determined from the thickness of each ridge line and the size of the intersection.
請求項1に記載の回折光学素子を射出成形で製作する場合で、その射出成形用の金型を加工する際に、非回転の直線稜線を持つ単結晶ダイヤモンドバイトを用い、かつ、前記回折面を成形するための回折面成形部と、前記傾斜面を成形するための傾斜面成形部との成す角度をθとしたとき、θ≦45度に設定して加工を行うことを特徴とする成形用金型の加工方法。   When the diffractive optical element according to claim 1 is manufactured by injection molding, a single crystal diamond tool having a non-rotating linear ridge line is used when processing a mold for injection molding, and the diffraction surface Forming is performed by setting θ ≦ 45 degrees, where θ is an angle formed by a diffractive surface molding portion for forming the inclined surface and an inclined surface molding portion for forming the inclined surface. Mold processing method. 請求項1に記載の回折光学素子を射出成形で製作する場合で、その射出成形用の金型を加工する際に、直線稜線を持つ単結晶ダイヤモンドバイトを回転させたフライカット形態の工具を用い、かつ、前記回折面を成形するための回折面成形部と、前記傾斜面を成形するための傾斜面成形部に対して、当該各成形部の面上で切り込み動作を行うことを特徴とする成形用金型の加工方法。   When the diffractive optical element according to claim 1 is manufactured by injection molding, when processing a mold for injection molding, a fly-cut tool in which a single crystal diamond tool having a straight ridge line is rotated is used. In addition, a cutting operation is performed on the surface of each molding part with respect to the diffraction surface molding part for molding the diffraction surface and the inclined surface molding part for molding the inclined surface. Processing method of mold for molding.
JP2008068911A 2008-03-18 2008-03-18 Diffractive optical element and method Expired - Fee Related JP5086852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008068911A JP5086852B2 (en) 2008-03-18 2008-03-18 Diffractive optical element and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068911A JP5086852B2 (en) 2008-03-18 2008-03-18 Diffractive optical element and method

Publications (2)

Publication Number Publication Date
JP2009223093A JP2009223093A (en) 2009-10-01
JP5086852B2 true JP5086852B2 (en) 2012-11-28

Family

ID=41239919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068911A Expired - Fee Related JP5086852B2 (en) 2008-03-18 2008-03-18 Diffractive optical element and method

Country Status (1)

Country Link
JP (1) JP5086852B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333986B2 (en) * 2008-09-18 2013-11-06 株式会社リコー Plastic optical element having fine pattern on optical surface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878905B2 (en) * 2006-04-27 2012-02-15 株式会社リコー Optical scanning device, optical writing device, and image forming apparatus
JP2008070792A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Phase type optical element, light source unit, optical scanner and image forming apparatus
JP2009053238A (en) * 2007-08-23 2009-03-12 Ricoh Co Ltd Diffraction optical element, optical scanner, and image forming apparatus

Also Published As

Publication number Publication date
JP2009223093A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
US7561333B2 (en) Method for manufacturing mold
JP2009151924A (en) Method of manufacturing tool and metal mold
JP3963750B2 (en) Curved cutting method
JP5086852B2 (en) Diffractive optical element and method
JP5555817B2 (en) OPTICAL ELEMENT, IMAGING DEVICE EQUIPPED WITH THE SAME, AND OPTICAL ELEMENT MANUFACTURING METHOD
JP2007163798A (en) Lens and imaging apparatus using the same
JP5555816B2 (en) OPTICAL ELEMENT, IMAGING DEVICE EQUIPPED WITH THE SAME, AND OPTICAL ELEMENT MANUFACTURING METHOD
JP5333986B2 (en) Plastic optical element having fine pattern on optical surface
JP5315484B1 (en) OPTICAL ELEMENT, IMAGING DEVICE EQUIPPED WITH THE SAME, AND OPTICAL ELEMENT MANUFACTURING METHOD
US7499220B2 (en) Optical lens and method of manufacturing the same
JP5189420B2 (en) Resin lens and resin lens molding method
JP3547343B2 (en) Design method of lens integrated with diffraction means
JP2008241817A (en) Optical lens and method of manufacturing lens
JP5820957B2 (en) OPTICAL LENS, LENS UNIT, IMAGING MODULE, ELECTRONIC DEVICE, OPTICAL LENS MANUFACTURING METHOD, LENS MOLD, AND LENS MOLD SHAPE CORRECTION METHOD
JPH10274705A (en) Diffractive optical element
US6552863B1 (en) Optical element, its manufacturing method and optical element manufacture metal die
JPH0811223A (en) Optical element and its molding method
US20060018028A1 (en) Optical lens and method of manufacturing the same
JP2016004096A (en) Optical element and imaging apparatus including the same
JP2007163799A (en) Lens and imaging apparatus using the same
JP7418100B2 (en) Optical element and method for manufacturing optical element
JP2006091328A (en) Aspheric plastic lens and molding die
Yamamoto et al. Application of anti-reflection structures on curved surfaces
JP2007163800A (en) Lens, lens unit and imaging apparatus using the same
JP2019104140A (en) Plastic optical element, mold for manufacturing plastic optical element, and method for manufacturing the mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Ref document number: 5086852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees