JP5086656B2 - White glass particles and method for producing the same - Google Patents

White glass particles and method for producing the same Download PDF

Info

Publication number
JP5086656B2
JP5086656B2 JP2007028515A JP2007028515A JP5086656B2 JP 5086656 B2 JP5086656 B2 JP 5086656B2 JP 2007028515 A JP2007028515 A JP 2007028515A JP 2007028515 A JP2007028515 A JP 2007028515A JP 5086656 B2 JP5086656 B2 JP 5086656B2
Authority
JP
Japan
Prior art keywords
glass
particles
particle
aggregate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007028515A
Other languages
Japanese (ja)
Other versions
JP2008189536A (en
Inventor
悠 近本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2007028515A priority Critical patent/JP5086656B2/en
Publication of JP2008189536A publication Critical patent/JP2008189536A/en
Application granted granted Critical
Publication of JP5086656B2 publication Critical patent/JP5086656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は、白色ガラス粒子およびその製造方法に関するものである。   The present invention relates to white glass particles and a method for producing the same.

従来、白色ガラスとしては、透明ガラス中に、屈折率の異なる粒子等を介在させ、光散乱を生じさせることにより、あるいは初めから不透明な微細粒子を一定量均一分散させることにより、光透過率を低減させたガラスが多くある。これらは、一般に乳白色ガラスと呼ばれ、美観や保存安定性が良好である点から、建築材料等広汎に使用されている。また、この乳白色ガラスを破砕または製造時に成形加工し、粒子化した白色骨材は、建築材料、土木材料、プラスチック材料、設備機器等の分野で、美観性を付与する目的で用いられている。   Conventionally, as white glass, light transmittance is increased by interposing particles with different refractive indexes in transparent glass and causing light scattering or by uniformly dispersing a certain amount of opaque fine particles from the beginning. There are many reduced glasses. These are generally called milky white glass and are widely used for building materials and the like because of their good aesthetics and storage stability. Further, the white aggregate obtained by crushing or molding the milky white glass and making it into particles is used for the purpose of imparting aesthetics in the fields of building materials, civil engineering materials, plastic materials, equipment and the like.

このような乳白色ガラス粒子を、骨材として使用する場合、粒子の大きさや形状が均一であること、また比重が軽いことが望まれる。
前記のような乳白色ガラスは、一般に、弗化物系、硼酸系、リン酸系のものが知られている(例えば、特許文献1等)。しかしながら、これらを工業的に製造する場合、弗化物系はガラス溶融時に発生する、フッ素ガスが人体や環境へ有害であり、硼酸系、リン酸系では白色度のムラが大きいという問題があった。一方、アルカリ金属やアルカリ土類金属酸化物を混合し白色化させたガラスを作製した場合であっても、これらを破砕により作製した粒子は、粒子の大きさや形状を制御することが難しく、粒子を研磨する必要があった。また、溶融時に粒子状に成形する場合、特殊な設備が必要であった。
When such milky white glass particles are used as an aggregate, it is desired that the size and shape of the particles are uniform and the specific gravity is light.
As the milky white glass as described above, those of fluoride type, boric acid type and phosphoric acid type are generally known (for example, Patent Document 1). However, when these are produced industrially, fluoride systems are generated when glass is melted, fluorine gas is harmful to the human body and the environment, and boric acid and phosphoric acid systems have a problem of large unevenness in whiteness. . On the other hand, even when producing a white glass by mixing alkali metal or alkaline earth metal oxide, it is difficult to control the size and shape of the particles produced by crushing them. It was necessary to polish. In addition, special equipment is required when forming into particles during melting.

特開平8−277142JP-A-8-277142

本発明は、上述のような問題を解決するために、鋭意研究を重ねた結果、特定の構成からなる白色ガラス粒子の製造方法を見出し、本発明を完成するに至った。
すなわち、本発明は、下記の白色ガラス粒子の製造方法に係る。
1.直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%である白色ガラス粒子の製造方法であり、
平均粒子径200μm以下のガラス微粒子(A)を、固着材、溶剤に分散させた分散液を凝集させて、粒子径0.1mm〜50mmで成形し凝集体を得る工程、該凝集体を200℃〜1500℃で熱処理する工程を含む、白色ガラス粒子の製造方法。
2.直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%である白色ガラス粒子の製造方法であり、
平均粒子径200μm以下のガラス微粒子(A)と平均粒子径が該ガラス微粒子(A)の5〜100倍であるガラス粒子(B)を、固着材、溶剤に分散させた分散液を凝集させて、粒子径0.1mm〜50mmで成形し凝集体を得る工程、該凝集体を200℃〜1500℃で熱処理する工程を含む、白色ガラス粒子の製造方法。
3.直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%である白色ガラス粒子の製造方法であり、
平均粒子径200μm以下のガラス微粒子(A)及び平均粒子径が該ガラス微粒子(A)の5〜100倍であるガラス粒子(B)と平均粒子径200μm以下の中空ガラス粒子(C)を、固着材、溶剤に分散させた分散液を凝集させて、粒子径0.1mm〜50mmで成形し凝集体を得る工程、該凝集体を200℃〜1500℃で熱処理する工程を含む、白色ガラス粒子の製造方法。
In order to solve the above-mentioned problems, the present invention has been intensively studied. As a result, a method for producing white glass particles having a specific configuration has been found, and the present invention has been completed.
That is, this invention concerns on the manufacturing method of the following white glass particle.
1. A method for producing white glass particles containing a plurality of closed cells having a diameter of 100 μm or less and having a porosity of 1% to 50%;
A step of agglomerating a dispersion in which glass fine particles (A) having an average particle diameter of 200 μm or less are dispersed in a fixing material and a solvent, and forming the aggregate with a particle diameter of 0.1 mm to 50 mm to obtain an aggregate; The manufacturing method of white glass particle | grains including the process heat-processed at -1500 degreeC.
2. A method for producing white glass particles containing a plurality of closed cells having a diameter of 100 μm or less and having a porosity of 1% to 50%;
A dispersion liquid in which glass fine particles (A) having an average particle diameter of 200 μm or less and glass particles (B) having an average particle diameter of 5 to 100 times that of the glass fine particles (A) are dispersed in a fixing material and a solvent are aggregated. A method for producing white glass particles, comprising a step of obtaining an aggregate by molding with a particle size of 0.1 mm to 50 mm, and a step of heat-treating the aggregate at 200 ° C to 1500 ° C.
3. A method for producing white glass particles containing a plurality of closed cells having a diameter of 100 μm or less and having a porosity of 1% to 50%;
The average particle diameter 200μm or less of glass particles (A) and the average glass particle (B) particle size of 5 to 100 times of the glass particles (A) and the average particle diameter 200μm or less of the hollow glass particles (C), fixed A white glass particle comprising a step of agglomerating a dispersion liquid dispersed in a material and a solvent , forming a particle having a particle size of 0.1 mm to 50 mm to obtain an aggregate, and a step of heat-treating the aggregate at 200 ° C. to 1500 ° C. Production method.

本発明の白色ガラス粒子は、直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%であることにより白色を有するものである。本発明の白色粒子は、粒子径200μm以下のガラス微粒子の凝集体に由来するものであるため、独立気泡および空隙率の設定が容易であり、白色度のムラを防ぎ、さらに、白色度を調節したガラス粒子を得ることができる。また、本発明の製造方法では、製造時の有害ガスの発生が少ないため環境負荷は小さく、ガラス微粒子凝集体を作製する工程において、粒子を予め成形するため、成形時に特別な装置等の必要はなく、目的とする形状の粒子を容易に製造することができる。   The white glass particles of the present invention contain a plurality of closed cells having a diameter of 100 μm or less and have a white color when the porosity is 1% to 50%. Since the white particles of the present invention are derived from an aggregate of glass fine particles having a particle diameter of 200 μm or less, it is easy to set closed cells and porosity, prevent unevenness in whiteness, and adjust whiteness Glass particles can be obtained. Further, in the production method of the present invention, the generation of harmful gases during production is small, so the environmental load is small, and in the process of producing the glass fine particle aggregate, the particles are preliminarily molded, so there is no need for a special device or the like at the time of molding. Therefore, particles having a desired shape can be easily produced.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明の白色ガラス粒子は、粒子径200μm以下のガラス微粒子凝集体に由来し、直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%であることにより白色を有することを特徴とする。   The white glass particles of the present invention are derived from a glass fine particle aggregate having a particle diameter of 200 μm or less, include a plurality of closed cells having a diameter of 100 μm or less, and have a white color by having a porosity of 1% to 50%. And

本発明では、粒子が複数の独立気泡を内包することにより、光の反射(乱反射)・屈折効果によって、粒子を白色化することができる。
本発明における独立気泡の必要個数は、白色粒子の粒子径や、独立気泡自体の大きさ等により異なるため、最低必要な個数を明確にすることは困難であるが、少なくとも、目視によりガラス粒子が白色と認識されるために必要な個数であり、本発明では、この個数を「複数」と表現している。このような粒子の独立気泡の割合は、空隙率が体積比率で1%〜50%(好ましくは2%〜40%、さらには3%〜30%)である。このような範囲であることによって、白色度にムラのない粒子を作製することができる。空隙率が1%より小さい場合、また、粒子内層部の独立気泡の数が不十分な場合粒子内層部の透明性が高くなり、光の反射・屈折効果が得られにくい。空隙率が50%より大きい場合、粒子の強度が低下する。
In the present invention, when the particles enclose a plurality of closed cells, the particles can be whitened by light reflection (irregular reflection) and refraction effects.
Since the required number of closed cells in the present invention varies depending on the particle size of the white particles, the size of the closed cells themselves, etc., it is difficult to clarify the minimum required number, but at least the glass particles are visually observed. This is the number necessary to be recognized as white. In the present invention, this number is expressed as “plurality”. The ratio of the closed cells of such particles is that the porosity is 1% to 50% (preferably 2% to 40%, more preferably 3% to 30%) by volume. By being in such a range, particles having no unevenness in whiteness can be produced. When the porosity is less than 1%, or when the number of closed cells in the inner layer portion of the particle is insufficient, the transparency of the inner layer portion of the particle becomes high, and it is difficult to obtain a light reflection / refractive effect. When the porosity is larger than 50%, the strength of the particles decreases.

このような独立気泡の直径としては、特に限定されないが、100μm以下、さらには0.1μm以上80μm以下、さらには0.2μm以上50μm以下であることが好ましい。このような直径100μm以下の独立気泡が空隙率1%〜50%にて存在していれば、本発明の効果を損なわない程度に直径100μm超の独立気泡が存在していてもよい。   The diameter of such closed cells is not particularly limited, but is preferably 100 μm or less, more preferably 0.1 μm or more and 80 μm or less, and further preferably 0.2 μm or more and 50 μm or less. If such closed cells having a diameter of 100 μm or less are present at a porosity of 1% to 50%, closed cells having a diameter of more than 100 μm may be present to such an extent that the effects of the present invention are not impaired.

このような粒子の独立気泡は、ガラス微粒子の凝集体に由来するものであり、微粒子凝集体の粒子間に存在する空孔等により独立気泡が生成される。   Such closed bubbles of particles are derived from aggregates of glass fine particles, and closed cells are generated by holes or the like existing between particles of the fine particle aggregates.

このような凝集体のガラス微粒子成分は、平均粒子径の上限が200μm以下で、好ましくは150μm以下、より好ましくは100μm以下、さらに好ましくは80μm以下のガラス微粒子(A)である。このようなガラス微粒子(A)の平均粒子径の下限は、通常0.1μm以上で、好ましくは0.5μm以上、さらに好ましくは1μm以上である。このような場合、粒子間の間隙等により独立気泡が生成しやすい。また、空隙率が高く、大きさ100μm以下の独立気泡が生成されやすい。また、本発明において、該微粒子(A)は、融点が650〜850℃、比重が2〜4の扁平状であることが好ましい。なお、本発明の粒子径とは、粒子の長径である。 The glass fine particle component of such an aggregate is a glass fine particle (A) having an upper limit of an average particle diameter of 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less, and further preferably 80 μm or less. The lower limit of the average particle diameter of such glass fine particles (A) is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more. In such a case, closed cells are likely to be generated due to gaps between particles or the like. Also, closed cells with a high porosity and a size of 100 μm or less are likely to be generated. In the present invention, the fine particles (A) preferably have a flat shape with a melting point of 650 to 850 ° C. and a specific gravity of 2 to 4. In addition, the particle diameter of this invention is a long diameter of particle | grains.

さらに、作製した白色ガラス粒子の、形状安定性や強度の向上、独立気泡の調整による白色度の制御の為に、ガラス微粒子(A)と、粒子径、融点、形状等の異なるガラス粒子を適宜混合することができる。   Furthermore, in order to improve the shape stability and strength of the produced white glass particles and to control the whiteness by adjusting the closed cells, glass particles (A) and glass particles having different particle diameters, melting points, shapes, etc. are appropriately used. Can be mixed.

例えば、該ガラス微粒子(A)に対して、粒子径が5〜100倍のガラス粒子(B)を混合することにより、成形時における粒子形状の安定性効果がある。特に、扁平状粒子の成形時における形状安定性に有効である。このときのガラス微粒子(A)とガラス粒子(B)の混合比は、重量比率で100:1〜100:200、好ましくは100:2〜100:150、さらに好ましくは100:5〜100:100である。100:200以上、(B)を過剰に混合した場合、白色度が低下する恐れがある。また、ガラス粒子(B)は、平均粒子径が100〜1500μm、融点が650〜850℃、比重が2〜4の扁平状であることが好ましい。   For example, by mixing glass particles (B) having a particle size of 5 to 100 times with the glass fine particles (A), there is a particle shape stability effect during molding. In particular, it is effective for shape stability at the time of forming flat particles. The mixing ratio of the glass fine particles (A) and the glass particles (B) at this time is 100: 1 to 100: 200, preferably 100: 2 to 100: 150, more preferably 100: 5 to 100: 100 by weight. It is. When 100: 200 or more and (B) are mixed excessively, the whiteness may be lowered. Moreover, it is preferable that a glass particle (B) is a flat shape whose average particle diameter is 100-1500 micrometers, melting | fusing point is 650-850 degreeC, and specific gravity is 2-4.

また、作製した白色ガラス粒子において、白色度を調整したい場合、ガラス微粒子(A)の一部を融点が約450〜650℃、比重が2〜4のガラス微粒子(A−2)で置換する。この場合のガラス微粒子(A)と(A−2)の混合比は重量比率で、100:1〜100:200、好ましくは100:5〜100:100である。(A−2)を過剰に混合した場合、白色度が低下する恐れがある。   Further, in the produced white glass particles, when it is desired to adjust the whiteness, a part of the glass fine particles (A) is replaced with glass fine particles (A-2) having a melting point of about 450 to 650 ° C. and a specific gravity of 2 to 4. In this case, the mixing ratio of the glass fine particles (A) and (A-2) is a weight ratio of 100: 1 to 100: 200, preferably 100: 5 to 100: 100. When (A-2) is mixed excessively, the whiteness may be reduced.

さらに、該ガラス微粒子(A)、(A−2)、(B)のうち任意に混合した混合物に対して、平均粒子径の上限が200μm以下、さらには150μm以下、さらには100μm以下の中空ガラス微粒子(C)を混合することにより、意図的に空隙を調整し白色度を制御することができる。このような中空ガラス微粒子(C)の平均粒子径の下限は、通常0.5μm以上、さらには1μm以上である。例えば、上記のような、該微粒子(A)、(A)+(A−2)の混合物、(A)+(B)の混合物に、該微粒子(C)を混合することで白色度を向上することができる。また、該微粒子(A−2)、(B)、(A−2)+(B)の混合物、(A)+(A−2)+(B)の混合物において、白色度を向上させることができる。このときの混合比は、(A)、(A−2)、(B)のうち任意に混合した混合物100重量部に対して、中空ガラス微粒子(C)を1〜100重量部、好ましくは2〜50重量部、さらに好ましくは3〜30重量部である。このようなガラス微粒子(C)は、融点が650〜850℃、かさ比重が0.05〜1.5であることが好ましい。   Further, the hollow glass having an upper limit of the average particle diameter of 200 μm or less, further 150 μm or less, and further 100 μm or less with respect to the mixture arbitrarily mixed among the glass fine particles (A), (A-2), and (B). By mixing the fine particles (C), the voids can be intentionally adjusted to control the whiteness. The lower limit of the average particle diameter of such hollow glass fine particles (C) is usually 0.5 μm or more, further 1 μm or more. For example, the whiteness is improved by mixing the fine particles (C) into the mixture of the fine particles (A), (A) + (A-2), and the mixture of (A) + (B) as described above. can do. Moreover, whiteness can be improved in the mixture of the fine particles (A-2), (B), (A-2) + (B), and the mixture of (A) + (A-2) + (B). it can. The mixing ratio at this time is 1 to 100 parts by weight of hollow glass fine particles (C), preferably 2 with respect to 100 parts by weight of the mixture arbitrarily mixed among (A), (A-2) and (B). -50 parts by weight, more preferably 3-30 parts by weight. Such glass fine particles (C) preferably have a melting point of 650 to 850 ° C. and a bulk specific gravity of 0.05 to 1.5.

また、作製した白色ガラス粒子の形状は、例えば、球状や楕円状、りん片状、板状、円盤状、半球状、星型状、花弁状、リボン状、ヒトデ状、不定形状、多角板状、楕円板状等の扁平状、その他に、棒状、針状、紡錘状等があげられる。   Also, the shape of the produced white glass particles is, for example, spherical or elliptical, flake shaped, plate shaped, disc shaped, hemispherical, star shaped, petal shaped, ribbon shaped, starfish shaped, indeterminate shaped, polygonal plate shaped In addition, a flat shape such as an elliptical plate shape, a rod shape, a needle shape, a spindle shape, and the like can be given.

本発明の白色ガラス粒子の比重は、使用する成分にもよるが、0.5以上2.7以下であることが好ましい。通常の独立気泡を有さないガラス粒子の比重は、2.0以上4.5以下程度であるが、本発明の白色ガラス粒子は、独立気泡を有しているため、通常の独立気泡を有さないガラス粒子に比べて、軽量となっている。
よって、軽量であるが故、建築材料、土木材料、プラスチック材料、設備機器等として用いた場合、基材へかかる重量負荷を低減することができ、脱落やずれ落ち等を抑制することができる。また、輸送費用等のコストも低減することができる。
The specific gravity of the white glass particles of the present invention is preferably from 0.5 to 2.7, although it depends on the components used. The specific gravity of glass particles that do not have normal closed cells is about 2.0 to 4.5, but the white glass particles of the present invention have closed cells and therefore have normal closed cells. It is lighter than the glass particles that do not.
Therefore, since it is lightweight, when it is used as a building material, civil engineering material, plastic material, equipment, etc., it is possible to reduce the weight load applied to the base material, and it is possible to suppress falling off or slipping off. In addition, costs such as transportation costs can be reduced.

なお、比重は、JIS Z 8807−1976 固体比重測定方法 「6.体積からの測定方法」に準じて測定した値である。   The specific gravity is a value measured according to JIS Z 8807-1976 Solid Specific Gravity Measurement Method “6. Measurement Method from Volume”.

また、必要に応じ、白色粒子表面に、着色層や、保護層が積層されていてもよい。保護層としては、例えば、耐水性、耐酸性、耐塩基性、耐光性、耐候性、耐摩耗性、抗菌性等の性能を付与することができ、保護層で用いる結合材としては、ガラス、水ガラス、低融点ガラス、シリコン樹脂、アルコキシシラン、シランカップリング材等の無機結合剤や、アクリル樹脂、アクリルシリコン樹脂、フッ素樹脂等の有機結合剤等が挙げられ、必要に応じ、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、防藻剤、抗菌剤、難燃剤、防虫剤、化学物質吸着剤、吸放湿性物質、香料、触媒、光触媒、蓄光剤、蛍光剤、光輝性顔料等の添加剤を混合することもできる。   Moreover, the colored layer and the protective layer may be laminated | stacked on the white particle surface as needed. As the protective layer, for example, performance such as water resistance, acid resistance, base resistance, light resistance, weather resistance, wear resistance, antibacterial property, etc. can be imparted. Examples include inorganic binders such as water glass, low-melting glass, silicon resin, alkoxysilane, and silane coupling materials, and organic binders such as acrylic resin, acrylic silicon resin, and fluororesin. , Antioxidants, antiseptics, antifungal agents, algae inhibitors, antibacterial agents, flame retardants, insecticides, chemical adsorbents, hygroscopic substances, fragrances, catalysts, photocatalysts, phosphorescent agents, fluorescent agents, glitter pigments Etc. can also be mixed.

なお、粒子径、空隙率、独立気泡の直径は、走査型電子顕微鏡(日本電子製:JSM5301LV)で観察し、算出した値である。
具体的に、独立気泡の直径は、粒子の断面を、走査型電子顕微鏡(日本電子製:JSM5301LV)で観察した値であり、空隙率は、観察した顕微鏡写真における独立気泡の面積から算出した値である。但し、空隙率は、独立気泡の直径が0.1μm以上のものについて測定し、算出した値である。
In addition, the particle diameter, the porosity, and the diameter of the closed cell are values calculated by observing with a scanning electron microscope (manufactured by JEOL: JSM5301LV).
Specifically, the diameter of the closed cell is a value obtained by observing the cross section of the particle with a scanning electron microscope (JEOL: JSM5301LV), and the porosity is a value calculated from the area of the closed cell in the observed micrograph. It is. However, the porosity is a value obtained by measuring and calculating a closed cell having a diameter of 0.1 μm or more.

本発明では、上記のガラス微粒子を分散させた分散液を凝集し成形後、該凝集体を熱処理することにより、白色ガラス粒子を得ることができる。このときの焼成温度は、使用するガラス微粒子の融点に応じ適宜設定すればよいが、通常200℃以上1500℃以下、好ましくは300℃以上1200℃未満である。   In the present invention, white glass particles can be obtained by aggregating and shaping the dispersion in which the glass fine particles are dispersed and then heat-treating the aggregate. The firing temperature at this time may be appropriately set according to the melting point of the glass fine particles to be used, but is usually 200 ° C. or higher and 1500 ° C. or lower, preferably 300 ° C. or higher and lower than 1200 ° C.

該ガラス微粒子凝集体の、成形方法としては、ガラス微粒子を、固着材、溶剤と混合した溶液を凝集させ成形する。その方法としては、造粒法、滴下法、型枠成形法等があげられる。特に、滴下法及び型枠成形法が好ましい。さらに、必要に応じて形成した凝集体を破砕、切断することもできる。このように作製した粒子の形状は、球状や楕円状、りん片状、板状、円盤状、半球状、星型状、花弁状、リボン状、ヒトデ状、不定形状、多角板状、楕円板状等の扁平状、その他に、棒状、針状、紡錘状等があげられ、所望の形状に調整することができる。   As a method for forming the glass fine particle aggregate, a solution in which glass fine particles are mixed with a fixing material and a solvent is aggregated and formed. Examples of the method include a granulation method, a dropping method, and a mold forming method. In particular, a dropping method and a mold forming method are preferable. Furthermore, the aggregate formed as needed can be crushed and cut. The shape of the particles thus produced is spherical, elliptical, flake-shaped, plate-shaped, disc-shaped, hemispherical, star-shaped, petal-shaped, ribbon-shaped, starfish-shaped, irregular-shaped, polygonal-plate-shaped, elliptical-plate In addition to a flat shape such as a shape, a rod shape, a needle shape, a spindle shape and the like can be mentioned, and can be adjusted to a desired shape.

このようなガラス微粒子凝集体を、乾燥後、熱処理すると、粒子間隙に入り込んだ、固着材、溶剤等により独立気泡を生成する場合と、粒子凝集体の粒子間に存在する空孔、中空粒子等により独立気泡が生成される場合がある。ガラス微粒子の大きさや、固着材、溶剤等の添加剤を適宜選定することにより、所望の白色ガラス粒子を製造することができる。   When such glass fine particle aggregates are dried and heat-treated, they enter into the interstices, and when closed cells are generated by the fixing material, solvent, etc., and pores, hollow particles, etc. existing between the particles of the particle aggregates May generate closed cells. Desired white glass particles can be produced by appropriately selecting the size of the glass fine particles and the additives such as the fixing material and the solvent.

固着材としては、例えば、澱粉、変性澱粉、カゼイン、大豆蛋白、セルロース誘導体、グァーガム、ガティガム、トラガントガム、キサンタンガム、プルラン、カシアガム、アラビノガラクタン、スクレロガム、カラギーナン、寒天、ローカストビーンガム、タラガム、アラビアガム、タマリンドガム、ジェランガム、寒天、ゼラチン、ペクチン、ローカストビーンガム、キサンタンガム、アルギン酸、アルギン酸ソーダ、ポリアクリルアミド樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、アクリル樹脂、ビニル樹脂、酢酸ビニル樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。
溶剤としては、例えば、水、アルコール類、ポリオール類、ケトン類、ポリエーテル類、エステル類、カルボン酸類、ポリカルボン酸類、セルロース類、糖類、スルホン酸類、アミノ酸類、アミン類等が挙げられ、本発明では特に、水、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール等の脂肪族アルコール、エチレングリコール、プロパンジオール、ブタンジオール、グルセリン、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール等を用いることが好ましい。
Examples of the fixing material include starch, modified starch, casein, soy protein, cellulose derivative, guar gum, gati gum, tragacanth gum, xanthan gum, pullulan, cassia gum, arabinogalactan, sclerogum, carrageenan, agar, locust bean gum, tara gum, gum arabic , Tamarind gum, gellan gum, agar, gelatin, pectin, locust bean gum, xanthan gum, alginic acid, sodium alginate, polyacrylamide resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, acrylic resin, vinyl resin, vinyl acetate resin, urethane resin, epoxy resin Etc.
Examples of the solvent include water, alcohols, polyols, ketones, polyethers, esters, carboxylic acids, polycarboxylic acids, celluloses, saccharides, sulfonic acids, amino acids, amines, etc. In the invention, in particular, aliphatic alcohols such as water, methanol, ethanol, propanol, butanol, pentanol and hexanol, and aliphatic polyhydric alcohols such as ethylene glycol, propanediol, butanediol, glycerin, polyethylene glycol and polypropylene glycol are used. It is preferable.

上記のような固着材及び溶剤に、ガラス微粒子を分散させ、成形、乾燥することで、所望の形状を有したガラス凝集体を得ることができる。さらに、ガラス微粒子、固着材、溶剤に加え、必要に応じ、融剤、硬化剤、凝集剤、酸化剤、還元剤、分散剤、錯化剤、着色成分等の添加剤を混合してもよい。また、この場合のガラス微粒子の濃度、分散液の粘度等は、上記の溶剤により適宜調整することができる。 A glass aggregate having a desired shape can be obtained by dispersing the glass fine particles in the fixing material and the solvent as described above, molding and drying. Furthermore, in addition to the glass fine particles, the fixing material, and the solvent, additives such as a fluxing agent, a curing agent, a flocculant, an oxidizing agent, a reducing agent, a dispersing agent, a complexing agent, and a coloring component may be mixed as necessary. . In this case, the concentration of the glass fine particles, the viscosity of the dispersion, and the like can be appropriately adjusted with the above solvent.

具体的に、以下に例示する方法で凝集体を成形することができる。
(1)ガラス微粒子(A)を、固着材、溶剤に分散した分散液を凝集させ、ガラス微粒子(A)由来の凝集体を成形する。
Specifically, the aggregate can be formed by the method exemplified below.
(1) Aggregates a dispersion of glass fine particles (A) dispersed in a fixing material and a solvent to form aggregates derived from glass fine particles (A).

(2)ガラス微粒子(A)と、粒子径が5〜100倍のガラス粒子(B)を固着材、溶剤に分散した分散液を凝集させ、ガラス微粒子(A)およびガラス(B)由来の凝集体を成形する。(A)と(B)の混合比率は、重量比率で100:1〜100:200、好ましくは100:2〜100:150、さらに好ましくは100:5〜100:100である。 (2) Aggregating a dispersion of glass fine particles (A) and glass particles (B) having a particle diameter of 5 to 100 times in a fixing material and a solvent to agglomerate the glass fine particles (A) and glass (B). Form the assembly. The mixing ratio of (A) and (B) is 100: 1 to 100: 200, preferably 100: 2 to 100: 150, more preferably 100: 5 to 100: 100 by weight.

(3)該ガラス微粒子(A)と、融点が450〜650℃の粒状ガラス微粒子(A−2)を固着材、溶剤に分散した分散液を凝集させ、ガラス微粒子(A)およびガラス微粒子(A−2)由来の凝集体を成形する。(A)と(A−2)の混合比率は、重量比率で100:1〜100:200、好ましくは100:5〜100:100である。 (3) The glass fine particles (A) and the granular glass fine particles (A-2) having a melting point of 450 to 650 ° C. are agglomerated with a dispersion obtained by dispersing the glass fine particles (A) and the glass fine particles (A) and glass fine particles (A -2) The aggregate derived from is shape | molded. The mixing ratio of (A) and (A-2) is 100: 1 to 100: 200, preferably 100: 5 to 100: 100, by weight.

(4)該ガラス微粒子(A)、(A−2)、(B)から選ばれる1種以上と、粒子径200μm以下、さらには150μm以下、さらには100μm以下の中空ガラス微粒子(C)を固着剤、溶剤を分散した分散液を凝集させ、凝集体を成形する。このとき、該ガラス微粒子(A)、(A−2)、(B)を任意に混合した混合物100重量部に対して、中空ガラス微粒子(C)は1〜100重量部、好ましくは2〜50重量部、さらに好ましくは3〜30重量部混合することが好ましい。 (4) One or more kinds selected from the glass fine particles (A), (A-2), and (B), and hollow glass fine particles (C) having a particle diameter of 200 μm or less, further 150 μm or less, and further 100 μm or less are fixed. The dispersion in which the agent and the solvent are dispersed is aggregated to form an aggregate. At this time, the hollow glass fine particles (C) are 1 to 100 parts by weight, preferably 2 to 50 parts by weight with respect to 100 parts by weight of the mixture in which the glass fine particles (A), (A-2) and (B) are arbitrarily mixed. It is preferable to mix 3 parts by weight, more preferably 3 to 30 parts by weight.

上記のガラス微粒子凝集体を熱処理温度、通常200℃〜1500℃、さらには400℃〜1300℃で処理することが好ましく、処理時間は、通常1〜120分程度で処理することによって白色ガラス粒子を得ることができる。 The glass fine particle aggregate is preferably treated at a heat treatment temperature, usually 200 ° C. to 1500 ° C., more preferably 400 ° C. to 1300 ° C., and the treatment time is usually about 1 to 120 minutes. Can be obtained.

このように製造された白色ガラス粒子は、白色度のムラが少なく、さらに、白色度を調節したガラス粒子を得ることができる。また、ガラス微粒子凝集体を作製する工程において、粒子を予め成形するため、成形時に特別な装置等の必要はなく、目的とする形状の粒子を容易に製造することができるため好ましい。   The white glass particles produced in this way have little unevenness in whiteness, and furthermore, glass particles with adjusted whiteness can be obtained. In addition, since the particles are preliminarily formed in the step of producing the glass fine particle aggregate, there is no need for a special apparatus or the like at the time of molding, and it is preferable because the particles having a target shape can be easily produced.

本発明の白色ガラス粒子は、建築材料、土木材料、プラスチック材料、設備機器等の分野で使用することが可能であり、例えば塗料、舗装材、シート建材、プラスチック成形物等を構成する成分として用いることができる。また、本発明の白色ガラス粒子は、強度に加えて、耐火性、防火性等にも優れており、このような性能が要求される材料にも使用することができる。   The white glass particles of the present invention can be used in the fields of building materials, civil engineering materials, plastic materials, equipment and the like, and are used, for example, as components constituting paints, paving materials, sheet building materials, plastic moldings, and the like. be able to. In addition to strength, the white glass particles of the present invention are excellent in fire resistance, fire resistance, and the like, and can be used for materials that require such performance.

以下に実施例を示し、本発明の特徴をより明確にする。   Examples are given below to clarify the features of the present invention.

(試験例1)粒子径15μmのりん片状ガラス微粒子(比重:2.6、融点750℃)50重量%とアルギン酸ナトリウム1重量%を含む水溶液を長径7mm、短径4mm、厚さ1mmの型枠に流し込み板状に成型後、5重量%の塩化カルシウムを含む溶液を噴霧し、50℃で3時間乾燥させ、りん片状ガラス微粒子の凝集成形物を得た。このガラス微粒子凝集物を800℃で15分間焼成し、ガラス粒子1を得た。得られたガラス粒子1は、粒子端にややソリのある板状の形状を有し、粒子全体が均一な白色を示していた。なお、空隙率が13%(平均サイズ2μmの複数の独立気泡)、比重が2.3、平均粒子径が長径5mm、短径3mm、厚さ0.7mmであった。
また、得られたガラス粒子1の強度を評価するため、得られたガラス粒子1を100個用意し、プレス機にて0.2kN/cmの加重を加え、10秒間加圧した。圧を取り除いた後、割れた粒子の数を求めることによって、その強度を評価した。その結果、ガラス粒子1では、割れた粒子は無く、初期の形状が保たれており、優れた強度を有していた。
Test Example 1 An aqueous solution containing 50% by weight of flaky glass fine particles (specific gravity: 2.6, melting point 750 ° C.) having a particle size of 15 μm and 1% by weight of sodium alginate is a mold having a major axis of 7 mm, a minor axis of 4 mm and a thickness of 1 mm. After casting into a frame and forming into a plate shape, a solution containing 5% by weight of calcium chloride was sprayed and dried at 50 ° C. for 3 hours to obtain an aggregated product of flake shaped glass particles. The glass fine particle aggregate was fired at 800 ° C. for 15 minutes to obtain glass particles 1. The obtained glass particle 1 had a plate shape with a slight warp at the end of the particle, and the entire particle showed a uniform white color. The porosity was 13% (a plurality of closed cells having an average size of 2 μm), the specific gravity was 2.3, the average particle size was 5 mm in major axis, 3 mm in minor axis, and 0.7 mm in thickness.
Moreover, in order to evaluate the intensity | strength of the obtained glass particle 1, 100 obtained glass particles 1 were prepared, the load of 0.2 kN / cm < 2 > was applied with the press, and it pressurized for 10 second. After removing the pressure, the strength was evaluated by determining the number of cracked particles. As a result, the glass particles 1 had no broken particles, the initial shape was maintained, and the glass particles 1 had excellent strength.

(試験例2)粒子径15μmのりん片状ガラス微粒子(比重:2.6、融点750℃)40重量%、粒子径160μmのりん片状ガラス微粒子(比重:2.6、融点750℃)10重量%、及びアルギン酸ナトリウム1重量%を含む水溶液を長径7mm、短径4mm、厚さ1mmの型枠に流し込み板状に成型後、5重量%の塩化カルシウムを含む溶液を噴霧し、50℃で3時間乾燥させ、りん片状ガラス微粒子の凝集成形物を得た。このガラス微粒子凝集物を800℃で15分間焼成し、ガラス粒子2を得た。
得られたガラス粒子2は、板状の形状を有し、粒子全体が均一な白色を示していた。なお、空隙率が12%(平均サイズ2μmの複数の独立気泡)、比重が2.3、平均粒子径が長径5.2mm、短径3.2mm、厚さ0.7mmであった。
また、ガラス粒子2について、実施例1と同様の強度試験を行った結果、ガラス粒子2は、割れた粒子は無く、全ての粒子で初期の形状が保たれており、優れた強度を有していた。
(Test Example 2) Flaky glass fine particles having a particle diameter of 15 μm (specific gravity: 2.6, melting point 750 ° C.) 40 wt%, flake glass fine particles having a particle diameter of 160 μm (specific gravity: 2.6, melting point 750 ° C.) 10 An aqueous solution containing 1% by weight of sodium alginate and 1% by weight of sodium alginate is poured into a mold having a major axis of 7 mm, a minor axis of 4 mm, and a thickness of 1 mm, molded into a plate shape, and sprayed with a solution containing 5% by weight of calcium chloride. After drying for 3 hours, a flocculent molded product of glass flakes was obtained. This glass fine particle aggregate was baked at 800 ° C. for 15 minutes to obtain glass particles 2.
The obtained glass particles 2 had a plate-like shape, and the entire particles showed a uniform white color. The porosity was 12% (a plurality of closed cells having an average size of 2 μm), the specific gravity was 2.3, the average particle size was 5.2 mm, the minor axis was 3.2 mm, and the thickness was 0.7 mm.
Moreover, as a result of conducting the same strength test as in Example 1 for the glass particles 2, the glass particles 2 had no cracked particles, and the initial shape was maintained for all the particles, and the glass particles 2 had excellent strength. It was.

(試験例3)粒子径15μmのりん片状ガラス微粒子(比重:2.6、融点:750℃)35重量%、粒子径80μmのガラス微粒子(比重:2.6、融点:600℃)15重量%、及びアルギン酸ナトリウム1重量%を含む水溶液を長径7mm、短径4mm、厚さ1mmの型枠に流し込み板状に成型後、5重量%の塩化カルシウムを含む溶液を噴霧し、50℃で3時間乾燥させ、りん片状ガラス微粒子の凝集成形物を得た。このガラス微粒子凝集物を800℃で15分間焼成し、ガラス粒子3を得た。
得られたガラス粒子3は、板状の形状を有し、やや透明な白色を示していた。なお、空隙率が10%(平均サイズ12μmの複数の独立気泡)、比重が2.4、平均粒子径が長径4.6mm、短径3.2mm、厚さ0.8mmであった。
また、ガラス粒子3について、実施例1と同様の強度試験を行った結果、ガラス粒子3は、割れた粒子は無く、全ての粒子で初期の形状が保たれており、優れた強度を有していた。
(Test Example 3) Flaky glass fine particles having a particle diameter of 15 μm (specific gravity: 2.6, melting point: 750 ° C.) 35% by weight, glass fine particles having a particle diameter of 80 μm (specific gravity: 2.6, melting point: 600 ° C.) 15 weights And an aqueous solution containing 1% by weight of sodium alginate is poured into a mold having a major axis of 7 mm, a minor axis of 4 mm, and a thickness of 1 mm, molded into a plate shape, sprayed with a solution containing 5% by weight of calcium chloride, and 3% at 50 ° C. After drying for a while, an agglomerated molded product of flaky glass fine particles was obtained. This glass fine particle aggregate was baked at 800 ° C. for 15 minutes to obtain glass particles 3.
The obtained glass particles 3 had a plate-like shape and showed a slightly transparent white color. The porosity was 10% (a plurality of closed cells having an average size of 12 μm), the specific gravity was 2.4, the average particle diameter was 4.6 mm, the minor axis was 3.2 mm, and the thickness was 0.8 mm.
Moreover, as a result of conducting the strength test similar to Example 1 about the glass particle 3, the glass particle 3 does not have a cracked particle, the initial shape is maintained by all the particles, and has excellent strength. It was.

(試験例4)粒子径15μmのりん片状ガラス微粒子(比重:2.6、融点:750℃)25重量%、粒子径160μmのりん片状ガラス微粒子(比重:2.6、融点:750℃)10重量%、粒子径80μmのガラス微粒子(比重:2.6、融点:600℃)10重量%、粒子径13μmの中空状ガラス微粒子(比重:0.4、融点:750℃)5重量%、及びアルギン酸ナトリウム1重量%を含む水溶液を長径7mm、短径4mm、厚さ1mmの型枠に流し込み板状に成型後、5重量%の塩化カルシウムを含む溶液を噴霧し、50℃で3時間乾燥させ、りん片状ガラス微粒子の凝集成形物を得た。このガラス微粒子凝集物を800℃で15分間焼成し、ガラス粒子4を得た。
得られたガラス粒子4は、板状の形状を有し、粒子全体が均一な白色を示していた。なお、空隙率が22%(平均サイズ11μmの複数の独立気泡)、比重が1.7、平均粒子径が長径5.3mm、短径3.2mm、厚さ0.7mmであった。
また、ガラス粒子4について、実施例1と同様の強度試験を行った結果、ガラス粒子4は、割れた粒子は無く、全ての粒子で初期の形状が保たれており、優れた強度を有していた。
(Test Example 4) Flaky glass fine particles having a particle diameter of 15 μm (specific gravity: 2.6, melting point: 750 ° C.) 25 wt%, flake glass fine particles having a particle diameter of 160 μm (specific gravity: 2.6, melting point: 750 ° C.) ) 10% by weight, glass particles having a particle diameter of 80 μm (specific gravity: 2.6, melting point: 600 ° C.) 10% by weight, hollow glass particles having a particle diameter of 13 μm (specific gravity: 0.4, melting point: 750 ° C.) 5% by weight And an aqueous solution containing 1% by weight of sodium alginate is cast into a mold having a major axis of 7 mm, a minor axis of 4 mm and a thickness of 1 mm, and sprayed with a solution containing 5% by weight of calcium chloride for 3 hours at 50 ° C. It was made to dry and the aggregated molding of flake shaped glass microparticles was obtained. This glass fine particle aggregate was baked at 800 ° C. for 15 minutes to obtain glass particles 4.
The obtained glass particles 4 had a plate-like shape, and the entire particles showed a uniform white color. The porosity was 22% (a plurality of closed cells having an average size of 11 μm), the specific gravity was 1.7, the average particle diameter was 5.3 mm, the minor axis was 3.2 mm, and the thickness was 0.7 mm.
Moreover, as a result of conducting the same strength test as in Example 1 for the glass particles 4, the glass particles 4 had no cracked particles, the initial shape was maintained for all particles, and had excellent strength. It was.

(試験例5)粒子径15μmのりん片状ガラス微粒子(比重:2.6、融点:750℃)5重量%、粒子径80μmのガラス微粒子(比重:2.6、融点:600℃)45重量%、及びアルギン酸ナトリウム1重量%を含む水溶液を長径7mm、短径4mm、厚さ1mmの型枠に流し込み板状に成型後、5重量%の塩化カルシウムを含む溶液を噴霧し、50℃で3時間乾燥させ、りん片状ガラス微粒子の凝集成形物を得た。このガラス微粒子凝集物を800℃で15分間焼成し、ガラス粒子5を得た。
得られたガラス粒子5は、形状が半球状であり、透明であった。なお、空隙率が1%(平均サイズ1μmの複数の独立気泡)、比重が2.6、平均粒子径が長径3.2mm、短径2.2mm、厚さ1.4mmであった。
また、ガラス粒子5について、実施例1と同様の強度試験を行った結果、ガラス粒子5は、割れた粒子は無く、全ての粒子で初期の形状が保たれており、優れた強度を有していた。
(Test Example 5) Flaky glass fine particles having a particle size of 15 μm (specific gravity: 2.6, melting point: 750 ° C.) 5% by weight, glass fine particles having a particle size of 80 μm (specific gravity: 2.6, melting point: 600 ° C.) 45% And an aqueous solution containing 1% by weight of sodium alginate is poured into a mold having a major axis of 7 mm, a minor axis of 4 mm, and a thickness of 1 mm, molded into a plate shape, sprayed with a solution containing 5% by weight of calcium chloride, and 3% at 50 ° C. After drying for a while, an agglomerated molded product of flaky glass fine particles was obtained. This glass fine particle aggregate was baked at 800 ° C. for 15 minutes to obtain glass particles 5.
The obtained glass particles 5 were hemispherical in shape and transparent. The porosity was 1% (a plurality of closed cells having an average size of 1 μm), the specific gravity was 2.6, the average particle diameter was 3.2 mm, the minor axis was 2.2 mm, and the thickness was 1.4 mm.
Further, as a result of conducting the same strength test as in Example 1 for the glass particles 5, the glass particles 5 have no cracked particles, and the initial shape is maintained in all the particles, and has excellent strength. It was.

(試験例6)粒子径15μmのりん片状ガラス微粒子(比重:2.6、融点:750℃)5重量%、粒子径160μmのりん片状ガラス微粒子(比重:2.6、融点:750℃)5重量%、粒子径80μmのガラス微粒子(比重:2.6、融点:600℃)5重量%、粒子径13μmの中空状ガラス微粒子(比重:0.4、融点:750℃)35重量%、及びアルギン酸ナトリウム1重量%を含む水溶液を長径7mm、短径4mm、厚さ1mmの型枠に流し込み板状に成型後、5重量%の塩化カルシウムを含む溶液を噴霧し、50℃で3時間乾燥させ、りん片状ガラス微粒子の凝集成形物を得た。このガラス微粒子凝集物を800℃で15分間焼成し、ガラス粒子6を得た。
得られたガラス粒子6は、板状の形状を有し、粒子全体が均一な白色であった。なお、空隙率が70%(平均サイズ11μmの複数の独立気泡)、比重が0.5、平均粒子径が長径6.0mm、短径3.5mm、厚さ0.8mmであった。しかしながら、ガラス粒子6について、実施例1と同様の強度試験を行った結果、ガラス粒子6は、空隙が過剰に存在するため強度が低下し、64個の粒子が割れており、初期の形状は保持されていなかった。
(Test Example 6) Flaky glass fine particles having a particle diameter of 15 μm (specific gravity: 2.6, melting point: 750 ° C.) 5 wt%, flake glass fine particles having a particle diameter of 160 μm (specific gravity: 2.6, melting point: 750 ° C.) ) 5% by weight, glass particles having a particle size of 80 μm (specific gravity: 2.6, melting point: 600 ° C.) 5% by weight, hollow glass particles having a particle size of 13 μm (specific gravity: 0.4, melting point: 750 ° C.) 35% by weight And an aqueous solution containing 1% by weight of sodium alginate is cast into a mold having a major axis of 7 mm, a minor axis of 4 mm and a thickness of 1 mm, and sprayed with a solution containing 5% by weight of calcium chloride for 3 hours at 50 ° C. It was made to dry and the aggregated molding of flake shaped glass microparticles was obtained. This glass fine particle aggregate was baked at 800 ° C. for 15 minutes to obtain glass particles 6.
The obtained glass particles 6 had a plate-like shape, and the whole particles were uniform white. The porosity was 70% (a plurality of closed cells having an average size of 11 μm), the specific gravity was 0.5, the average particle diameter was 6.0 mm, the minor axis was 3.5 mm, and the thickness was 0.8 mm. However, the glass particles 6 were subjected to the same strength test as in Example 1. As a result, the glass particles 6 were reduced in strength due to the presence of excessive voids, and 64 particles were cracked. It was not retained.

Claims (3)

直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%である白色ガラス粒子の製造方法であり、
平均粒子径200μm以下のガラス微粒子(A)を、固着材、溶剤に分散させた分散液を凝集させて、粒子径0.1mm〜50mmで成形し凝集体を得る工程、該凝集体を200℃〜1500℃で熱処理する工程を含む、白色ガラス粒子の製造方法。
A method for producing white glass particles containing a plurality of closed cells having a diameter of 100 μm or less and having a porosity of 1% to 50%;
A step of agglomerating a dispersion in which glass fine particles (A) having an average particle diameter of 200 μm or less are dispersed in a fixing material and a solvent, and forming the aggregate with a particle diameter of 0.1 mm to 50 mm to obtain an aggregate; The manufacturing method of white glass particle | grains including the process heat-processed at -1500 degreeC.
直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%である白色ガラス粒子の製造方法であり、
平均粒子径200μm以下のガラス微粒子(A)と平均粒子径が該ガラス微粒子(A)の5〜100倍であるガラス粒子(B)を、固着材、溶剤に分散させた分散液を凝集させて、粒子径0.1mm〜50mmで成形し凝集体を得る工程、該凝集体を200℃〜1500℃で熱処理する工程を含む、白色ガラス粒子の製造方法。
A method for producing white glass particles containing a plurality of closed cells having a diameter of 100 μm or less and having a porosity of 1% to 50%;
A dispersion liquid in which glass fine particles (A) having an average particle diameter of 200 μm or less and glass particles (B) having an average particle diameter of 5 to 100 times that of the glass fine particles (A) are dispersed in a fixing material and a solvent are aggregated. A method for producing white glass particles, comprising a step of obtaining an aggregate by molding with a particle size of 0.1 mm to 50 mm, and a step of heat-treating the aggregate at 200 ° C to 1500 ° C.
直径100μm以下の独立気泡を複数内包し、空隙率が1%〜50%である白色ガラス粒子の製造方法であり、
平均粒子径200μm以下のガラス微粒子(A)及び平均粒子径が該ガラス微粒子(A)の5〜100倍であるガラス粒子(B)と平均粒子径200μm以下の中空ガラス粒子(C)を、固着材、溶剤に分散させた分散液を凝集させて、粒子径0.1mm〜50mmで成形し凝集体を得る工程、該凝集体を200℃〜1500℃で熱処理する工程を含む、白色ガラス粒子の製造方法。

A method for producing white glass particles containing a plurality of closed cells having a diameter of 100 μm or less and having a porosity of 1% to 50%;
The average particle diameter 200μm or less of glass particles (A) and the average glass particle (B) particle size of 5 to 100 times of the glass particles (A) and the average particle diameter 200μm or less of the hollow glass particles (C), fixed A white glass particle comprising a step of agglomerating a dispersion liquid dispersed in a material and a solvent , forming a particle having a particle size of 0.1 mm to 50 mm to obtain an aggregate, and a step of heat-treating the aggregate at 200 ° C. to 1500 ° C. Production method.

JP2007028515A 2007-02-07 2007-02-07 White glass particles and method for producing the same Expired - Fee Related JP5086656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028515A JP5086656B2 (en) 2007-02-07 2007-02-07 White glass particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028515A JP5086656B2 (en) 2007-02-07 2007-02-07 White glass particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008189536A JP2008189536A (en) 2008-08-21
JP5086656B2 true JP5086656B2 (en) 2012-11-28

Family

ID=39750006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028515A Expired - Fee Related JP5086656B2 (en) 2007-02-07 2007-02-07 White glass particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5086656B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589833A (en) * 1981-07-06 1983-01-20 Toyoda Boshoku Kk Preparation of foamed glass bead
JPS60226415A (en) * 1984-04-24 1985-11-11 Kanto Kagaku Kk Production of cordierite glass
JPS61236621A (en) * 1985-04-10 1986-10-21 Sekisui Plastics Co Ltd Production of foamed fine glass grain
JPS61251530A (en) * 1985-04-30 1986-11-08 Sekisui Plastics Co Ltd Production of glass coated shell granule
JPH01290538A (en) * 1988-05-17 1989-11-22 Pittsburgh Corning Corp Method for making fluidized bed porous
JPH0930821A (en) * 1995-07-20 1997-02-04 Toyota Motor Corp Glass foam granule, its production, and light-weight filler and light-weight plastic utilizing the same
JP3839537B2 (en) * 1997-01-21 2006-11-01 東ソー株式会社 Production method of opaque quartz glass containing fine bubbles
JP2000026136A (en) * 1998-07-10 2000-01-25 Hitachi Zosen Corp Production of foamed glass
JP2002137913A (en) * 2000-10-24 2002-05-14 Tokuyama Corp Silica gel and its manufacturing method
DE10114484C2 (en) * 2001-03-24 2003-10-16 Heraeus Quarzglas Process for the production of a composite material with an SiO¶2¶ content of at least 99% by weight, and use of the composite material obtained by the process
MX2007010696A (en) * 2005-03-01 2007-10-12 Dennert Poraver Gmbh Method for the production of foamed glass granulate.

Also Published As

Publication number Publication date
JP2008189536A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP6646752B2 (en) Large-sized ceramic plate with low shrinkage and high strength and method for manufacturing the same
KR101027030B1 (en) Moulding material mixture, moulded part for foundry purposes and process of producing a moulded part
JP2967993B2 (en) Hollow glass sphere
CN104289161B (en) A kind of aluminium hydroxide microcapsule of melamine formaldehyde resin cladding and preparation method thereof
JP2011500330A5 (en)
JP2004509983A5 (en)
DE102012020510A1 (en) Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
JP2008517104A (en) Glass microspheres containing many bubble inclusions
Zhou et al. Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process
CN104530294A (en) High-strength silicon dioxide and clay dual nano-composite hydrogel and preparation method thereof
EP2598449A1 (en) Quartz glass body and method and gel body for producing a quartz glass body
EP3301124B1 (en) Polyamide powder for selective sintering method
JP2019002008A (en) Aqueous heat insulation coating and composition thereof
CN106045548A (en) High-strength 3D nano ceramic printing material and preparation method thereof
Wan et al. Sustained-release calcium alginate/diatomite capsules for sustainable self-healing asphalt concrete
CN109574583B (en) High-strength concrete and preparation method thereof
CN111792659A (en) Method for preparing spherical alumina by oil column molding process
JP2018059092A (en) Polyamide powder for selective sintering methods
JP5086656B2 (en) White glass particles and method for producing the same
JP5189779B2 (en) Color rendering glass particles and method for producing the same
Leelamanie et al. Water stable aggregates of Japanese Andisol as affected by hydrophobicity and drying temperature
KR20210067411A (en) Polymer bead and the manufacturing method thereof
CN114349490B (en) Silicon dioxide aerogel heat insulation material and preparation method thereof
Xu et al. Synthesis and characterization of partially hydrolyzed polyacrylamide nanocomposite weak gels with high molecular weights
CN110407212A (en) A kind of nano-carbonate gelinite of polymolecularity and its preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees