JP5086041B2 - Simple melt viscosity measurement method for thermoplastic resins - Google Patents

Simple melt viscosity measurement method for thermoplastic resins Download PDF

Info

Publication number
JP5086041B2
JP5086041B2 JP2007300292A JP2007300292A JP5086041B2 JP 5086041 B2 JP5086041 B2 JP 5086041B2 JP 2007300292 A JP2007300292 A JP 2007300292A JP 2007300292 A JP2007300292 A JP 2007300292A JP 5086041 B2 JP5086041 B2 JP 5086041B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
melt viscosity
mfr
size
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007300292A
Other languages
Japanese (ja)
Other versions
JP2009128032A (en
Inventor
幸彦 影山
茂数 片
直史 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2007300292A priority Critical patent/JP5086041B2/en
Priority to CNA2008101809817A priority patent/CN101441159A/en
Publication of JP2009128032A publication Critical patent/JP2009128032A/en
Application granted granted Critical
Publication of JP5086041B2 publication Critical patent/JP5086041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、少量の試料でも測定可能な簡易溶融粘度測定方法に関する。   The present invention relates to a simple melt viscosity measurement method capable of measuring even a small amount of sample.

熱可塑性樹脂は軽量で加工性に優れることから、広汎な分野で使用されている。また、加工精度の高まりにつれ成形品は小さく精密になっている。そのため、使用する熱可塑性樹脂の品質のばらつきが製品の品質に大きな影響を与えることから、強度、融点、その他多くの項目について材料樹脂の品質に関する規格が定められており、これらの項目の中に、MFRがある。一方、MFRは樹脂の分子量と相関があるため、実際に使用された製品の劣化状態を判断する指標とされることも多い。
MFRを測定する標準的手法としてはJIS K 7210やISO 1133などがあるが、この方法では特定の装置が必要となるとともに試料3〜8gを必要とする。そのため、製品ごとのばらつきが心配される小さな成形品であっても、幾つかの成形品を集める必要がある。また、部分的に劣化が懸念される製品であっても、劣化を判別しようとしている目的の部分以外に劣化していない箇所を含んだ試料で測定する必要がある。
Thermoplastic resins are used in a wide range of fields because they are lightweight and have excellent processability. Further, as the processing accuracy increases, the molded product becomes smaller and more precise. Therefore, since variations in the quality of the thermoplastic resin used have a significant effect on the quality of the product, standards regarding the quality of the material resin are set for strength, melting point, and many other items. , There is MFR. On the other hand, since MFR has a correlation with the molecular weight of the resin, it is often used as an index for judging the deterioration state of a product actually used.
Standard methods for measuring MFR include JIS K 7210 and ISO 1133, but this method requires a specific device and requires 3 to 8 g of a sample. Therefore, it is necessary to collect some molded products even if they are small molded products that are worried about variations among products. Further, even if a product is partially concerned about deterioration, it is necessary to measure with a sample including a portion that has not deteriorated other than the intended portion for which deterioration is to be determined.

このような状況から、小さな成形品個々や、成形品の特定部分のみで、できるだけ少量でMFRを測定出来る方法が望まれているが、従来、このような方法は何ら提案されていない。   Under such circumstances, there is a demand for a method capable of measuring MFR in as small a quantity as possible with only a small molded product or a specific part of the molded product, but no such method has been proposed.

本発明は、少量の熱可塑性樹脂から簡易的に溶融粘度を測定する方法を提供することであり、更に具体的には、少量の試料からMFRの値を、精度よく測定する手法を提供することである。   The present invention is to provide a method for easily measuring the melt viscosity from a small amount of thermoplastic resin, and more specifically, to provide a method for accurately measuring the MFR value from a small amount of sample. It is.

本発明者は、上記の間題に関して鋭意検討した緒果、熱可塑性樹脂を所定条件で溶融したときの特性とMFRの関係を予め関係式として求めておき、この溶融時の特性を測る事で、得られる値を関係式に入れMFRを求めることが出来ることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above-mentioned problems, the present inventor previously obtained the relationship between the characteristics when the thermoplastic resin is melted under a predetermined condition and the MFR as a relational expression, and measures the characteristics at the time of melting. The present inventors have found that the MFR can be obtained by putting the obtained value into a relational expression, and the present invention has been completed.

すなわち本発明の第1は、熱可塑性樹脂を溶融し、所定条件下で荷重を負荷して得られる圧展物の大きさを、熱可塑性樹脂の溶融粘度の指標とする簡易溶融粘度測定方法である。   That is, the first of the present invention is a simple melt viscosity measuring method in which the size of the extrudate obtained by melting a thermoplastic resin and applying a load under a predetermined condition is used as an index of the melt viscosity of the thermoplastic resin. is there.

本発明の第2は、溶融粘度がMFRであり、熱可塑性樹脂のMFRと圧展物の大きさの相関を予め求め、該相関をもとに、測定目的箇所の熱可塑性樹脂で測定した圧展物の大きさをあてはめることで、測定目的箇所のMFRを求めることを特徴とする、上記記載の簡易溶融粘度測定方法である。   In the second aspect of the present invention, the melt viscosity is MFR, the correlation between the MFR of the thermoplastic resin and the size of the extrudate is obtained in advance, and the pressure measured with the thermoplastic resin at the measurement target location based on the correlation. The simple melt viscosity measuring method according to the above, wherein the MFR of the measurement target location is obtained by applying the size of the exhibit.

本発明の第3は、所定条件が、所定量の熱可塑性樹脂を所定温度においてガラス板間に挟んだ状態で所定加重を所定時間かけることであり、得られる圧展物の大きさが、ガラス板間に圧展された熱可塑性樹脂の面積であることを特徴とする、上記記載の簡易溶融粘度測定方法である。   The third of the present invention is that the predetermined condition is that a predetermined load is applied for a predetermined time in a state where a predetermined amount of a thermoplastic resin is sandwiched between glass plates at a predetermined temperature, and the size of the obtained extrudate is glass. The method for measuring a simple melt viscosity according to the above, characterized in that the area is the area of a thermoplastic resin that is squeezed between plates.

本発明の第4は、所定量の熱可塑性樹脂が予め円形に腑形され、圧展された熱可塑性樹脂の面積が直径で代用されることを特徴とする、上記記載の簡易溶融粘度測定方法である。   A fourth aspect of the present invention is the simple melt viscosity measuring method according to the above, wherein a predetermined amount of the thermoplastic resin is preliminarily formed into a circular shape, and the area of the expanded thermoplastic resin is replaced with a diameter. It is.

本発明の第5は、所定量の熱可塑性樹脂が50mg以下であり、圧展物の大きさが測定可能な量以上であることを特徴とする、上記記載の簡易溶融粘度測定方法である。   According to a fifth aspect of the present invention, there is provided the simple melt viscosity measuring method according to the above, wherein the predetermined amount of the thermoplastic resin is 50 mg or less and the size of the extrudate is not less than a measurable amount.

本発明の第6は、熱可塑性樹脂がポリアセタール樹脂である、上記記載の簡易溶融粘度測定方法である。   A sixth aspect of the present invention is the simple melt viscosity measurement method described above, wherein the thermoplastic resin is a polyacetal resin.

本発明の第7は、上記記載の測定方法により得られる熱可塑性樹脂の溶融粘度を、熱可塑性樹脂成形品の品質管理に用いることを特徴とする、品質管理方法である。   7th of this invention is a quality control method characterized by using the melt viscosity of the thermoplastic resin obtained by the said measuring method for quality control of a thermoplastic resin molded product.

本発明によれば、熱可塑性樹脂のMFRの値を高価な装置を用いることなく、汎用の理化学装置を用い、少量の試料で精度よく測定することが可能となり、それを利用して熱可塑性樹脂成形品のMFR変化まで管理することが可能となる。   According to the present invention, the MFR value of a thermoplastic resin can be accurately measured with a small amount of sample using a general-purpose physics and chemistry apparatus without using an expensive apparatus. It becomes possible to manage the MFR change of the molded product.

予め溶融粘度を測定してある熱可塑性樹脂を溶融し、所定条件下で荷重を負荷して得られる圧展物の大きさを測定することで、溶融粘度と圧展物の大きさとの相関を予め求めておく。そして、溶融粘度を求めたい試料で所定条件での圧展物の大きさを測定し、この相関にあてはめることで、溶融粘度を得ることが出来る。   By measuring the size of the extrudate obtained by melting a thermoplastic resin whose melt viscosity has been measured in advance and applying a load under predetermined conditions, the correlation between the melt viscosity and the size of the extrudate is obtained. Find in advance. The melt viscosity can be obtained by measuring the size of the extrudate under a predetermined condition with a sample for which the melt viscosity is to be obtained, and applying this correlation.

例えば、熱可塑性樹脂を溶融し、所定条件下で荷重を負荷して得られる圧展物の大きさとMFRの関係を予め関係式として求めておくことにより、この圧展物の大きさから、MFRを求めることが出来る。すなわち、所定条件で求めた圧展物の大きさの値を関係式に入れ粘度を求める。   For example, the relationship between the size of the expanded product obtained by melting a thermoplastic resin and applying a load under a predetermined condition and the MFR is obtained in advance as a relational expression. Can be requested. That is, the viscosity is obtained by putting the value of the size of the extrudate obtained under predetermined conditions into the relational expression.

まず、予め測定しようとする樹脂において、MFRと圧展物の大きさの相関を求める。   First, in the resin to be measured in advance, the correlation between the MFR and the size of the extrudate is obtained.

MFRを測定した異なる試料を幾つか用意し、所定量測り取る。このとき、測り取る量は加熱温調装置のホットプレート大きさに応じて、均一に広がった形で圧展物が得られるように決める。また、試料は圧展物が均一に広がりやすいように、円形で同じ厚みになるよう予備腑形しておくことが望ましい。圧展する際には、平板に試料を挟む形で均一に荷重をかけることで、均一に広がる圧展物がえられる。その際、平板としてガラス板を用いることが、圧展物の大きさを観察しやすいので便利である。所定の荷重をかける方法として、分銅を用いることが簡便である。また、所定の温度にコントロールされたホットプレートに、ガラス板を2枚重ねて載せ、分銅をさらに載せて所定温度に予熱しておく。
以上の準備が整った上で、試料を一枚のガラス板中央に置き、その上にもう一枚のガラス板を載せ挟み込む、この状態で試料を所定温度に加熱後、その重ねたガラス板上に同温度に予熱してある荷重用分銅を載せ一定時間負荷を加えたのち、室温までサンプルを冷却する。得られる圧展物の面積は、予め円形に腑形してある試料においては、円形の圧展物が得られることから、直径から簡易に算出出来る。
Prepare several different samples for which MFR was measured and measure a predetermined amount. At this time, the amount to be measured is determined according to the size of the hot plate of the heating temperature control device so that the expanded product is obtained in a uniformly spread form. In addition, it is desirable that the sample is preliminarily shaped so as to be circular and have the same thickness so that the extrudate can easily spread uniformly. When the pressure is spread, a uniform spread can be obtained by applying a uniform load with the sample sandwiched between flat plates. At that time, it is convenient to use a glass plate as a flat plate because the size of the extrudate can be easily observed. As a method of applying a predetermined load, it is convenient to use a weight. In addition, two glass plates are placed on a hot plate controlled at a predetermined temperature, and a weight is further placed thereon to preheat to a predetermined temperature.
After the above preparation is complete, place the sample in the center of one glass plate, and place another glass plate on top of it. In this state, heat the sample to the specified temperature, and then place it on the stacked glass plate. A weight for preheating at the same temperature is put on the plate and a load is applied for a certain period of time, and then the sample is cooled to room temperature. The area of the obtained extrudate can be easily calculated from the diameter because a circular extrudate is obtained in the case of a sample that has been formed into a circular shape in advance.

こうして得られるMFRの異なる試料の圧展物の面積から、この面積とMFR値の相関を求める。   The correlation between this area and the MFR value is obtained from the areas of the extrudates of samples having different MFRs obtained in this way.

MFRを測定しようとする試料において、同じ操作により圧展物の面積を測定すれば、予め求めてある相関に得られた面積をあてはめることで、MFRを求めることができる。   If the area of the extrudate is measured by the same operation in the sample for which MFR is to be measured, the MFR can be obtained by applying the area obtained to the correlation obtained in advance.

本発明に係る熱可塑性樹脂としては、特に制限は無く、単独であっても均一に混じり合う混合物であっても構わない。例えば、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリスチレン、メタクリル樹脂、ポリアセタール(ポリオキシメチレン)、ポリアミド、ポリカーボネートやポリブチレンテレフタレートなどのポリエステル、ポリエステルアミド、ポリフェニレンサルファイド、ABSなどを挙げることが出来る。   The thermoplastic resin according to the present invention is not particularly limited, and may be a single material or a mixture that is uniformly mixed. Examples thereof include polyolefins such as polyethylene and polypropylene, polystyrene, methacrylic resin, polyacetal (polyoxymethylene), polyamide, polyesters such as polycarbonate and polybutylene terephthalate, polyesteramides, polyphenylene sulfide, and ABS.

また、熱可塑性樹脂には、少量の充填材や、安定性を改善するための添加剤などを含むものであっても構わない。   Further, the thermoplastic resin may contain a small amount of a filler, an additive for improving stability, and the like.

本発明で使用される加熱温調装置としては、1℃以内の温度コントロール精度があればよく、融点測定器を利用することが簡便である。ガラス板を使用することが便利であるが、ガラス板はどのようなものでも良く、スライドガラスやカバーガラスが入手しやすく便利である。   The heating temperature control apparatus used in the present invention only needs to have a temperature control accuracy within 1 ° C., and it is easy to use a melting point measuring device. Although it is convenient to use a glass plate, any glass plate may be used, and a slide glass and a cover glass are easily available.

実施例1
従来のMFR測定法(JIS K 7210)により測定されたポリオキシメチレン(以下POM)を用いて測定を行った。
Example 1
Measurement was performed using polyoxymethylene (hereinafter referred to as POM) measured by a conventional MFR measurement method (JIS K 7210).

まず初めに、POMのMFR値が2.4のPOMペレット20mgを精密天秤で測り取り、5φ×2mmのアルミパンに入れ、190℃ホットプレート上で溶融し、形をタブレット状に速やかに整えた。   First, 20 mg of POM pellets having a POM MFR value of 2.4 were measured with a precision balance, placed in a 5φ × 2 mm aluminum pan, melted on a 190 ° C. hot plate, and quickly shaped into a tablet.

次に、190℃にコントロールしたホットプレート上に50gの加重用分銅、約25mm角のガラス板(スライドガラスを切ったもの)を2枚重ねて載せ、190℃に保つ。恒温状態になったらタブレット状にしたものをガラス板の中央に挟み5分間樹脂を加熱溶解した。次にそのガラス板の上に190℃の恒温になっている加重用分銅を30秒間載せ、その後速やかに加重を取り除き室温の鉄板上に載せ室温まで放冷する。   Next, two 50 g weighting weights and approximately 25 mm square glass plates (cut glass slides) are placed on a hot plate controlled at 190 ° C. and kept at 190 ° C. When the temperature reached a constant temperature, the tablet was sandwiched between the glass plates and the resin was dissolved by heating for 5 minutes. Next, a weighting weight having a constant temperature of 190 ° C. is placed on the glass plate for 30 seconds, and then the weight is removed quickly and placed on an iron plate at room temperature and allowed to cool to room temperature.

以上の操作から得られた円形フィルムの直径を、ノギスを用いて2方向以上の直径を測定し、その平均直径を用いてフィルム面積53mmを得た。 The diameter of the circular film obtained from the above operation was measured in two or more directions using a caliper, and a film area of 53 mm 2 was obtained using the average diameter.

更に、MFRが異なるものを同様に測定し、表1の値を得た。この結果を元に、面積とMFR値の関係式を求めy=1.7224ln(x)- 6.4549を得た。   Further, those having different MFRs were measured in the same manner, and the values shown in Table 1 were obtained. Based on this result, a relational expression between the area and the MFR value was obtained to obtain y = 1.7224ln (x) −6.4549.

Figure 0005086041
Figure 0005086041

次に、MFR未知のサンプルについて、前記測定した同操作により測定し得られた面積を式に代入しMFRを求めた。また、JIS K 7210法により測定しその値について検証し、表2に示すように、測定結果がほぼ一致することを確認した。   Next, for the MFR unknown sample, the MFR was obtained by substituting the area obtained by the same measurement as described above into the equation. Moreover, it measured by the JIS K 7210 method, the value was verified, and as shown in Table 2, it was confirmed that the measurement results almost coincided.

Figure 0005086041
Figure 0005086041

実施例2
ポリブチレンテレフタレート(以下PBT)においても、実施例1と同様に関係式が得られることを確認した。
Example 2
In polybutylene terephthalate (hereinafter referred to as PBT), it was confirmed that the relational expression was obtained in the same manner as in Example 1.

即ち、簡易MFRを245℃で実施例1と同様に測定したところ、表3の結果が得られ、図2に示す関係が成立した。   That is, when the simple MFR was measured at 245 ° C. in the same manner as in Example 1, the results shown in Table 3 were obtained, and the relationship shown in FIG. 2 was established.

Figure 0005086041
Figure 0005086041

表1のMFR測定値と溶融粘度の簡易測定値の関係をグラフに表したものである。The relationship between the MFR measurement value of Table 1 and the simple measurement value of melt viscosity is represented in a graph. 表3のMFR測定値と溶融粘度の簡易測定値の関係をグラフに表したものである。The relationship between the MFR measurement value of Table 3 and the simple measurement value of melt viscosity is represented in a graph.

Claims (5)

熱可塑性樹脂を溶融し、所定条件下で荷重を負荷して得られる圧展物の大きさを、熱可塑性樹脂の溶融粘度の指標とする簡易溶融粘度測定方法であって、
前記熱可塑性樹脂の使用量が50mg以下で、圧展物の大きさが測定可能な量以上であり、
前記溶融粘度がメルトマスフローレイト(以下、MFR)であり、熱可塑性樹脂のMFRと圧展物の大きさの相関を予め求め、該相関をもとに、測定目的箇所の熱可塑性樹脂で測定した圧展物の大きさをあてはめることで、測定目的箇所のMFRを求めることを特徴とする、簡易溶融粘度測定方法
It is a simple melt viscosity measurement method in which the size of a spread product obtained by melting a thermoplastic resin and applying a load under predetermined conditions is used as an index of the melt viscosity of the thermoplastic resin ,
The amount of the thermoplastic resin used is 50 mg or less, and the size of the extrudate is not less than the measurable amount,
The melt viscosity is melt mass flow rate (hereinafter referred to as MFR), and the correlation between the MFR of the thermoplastic resin and the size of the extrudate is obtained in advance, and the measurement is performed with the thermoplastic resin at the measurement target location based on the correlation. A simple melt viscosity measuring method characterized in that the MFR of a measurement target location is obtained by applying the size of the extrudate .
所定条件が、所定量の熱可塑性樹脂を所定温度においてガラス板間に挟んだ状態で所定加重を所定時間かけることであり、得られる圧展物の大きさが、ガラス板間に圧展された熱可塑性樹脂の面積であることを特徴とする、請求項に記載の簡易溶融粘度測定方法。 The predetermined condition is to apply a predetermined load for a predetermined time in a state where a predetermined amount of thermoplastic resin is sandwiched between glass plates at a predetermined temperature, and the size of the obtained expanded product is expanded between the glass plates. The simple melt viscosity measuring method according to claim 1 , wherein the area is a thermoplastic resin area. 所定量の熱可塑性樹脂が予め円形に腑形され、圧展された熱可塑性樹脂の面積が直径で代用されることを特徴とする、請求項記載の簡易溶融粘度測定方法。 3. The simple melt viscosity measuring method according to claim 2 , wherein a predetermined amount of the thermoplastic resin is preliminarily formed into a circular shape, and the area of the expanded thermoplastic resin is substituted for the diameter. 熱可塑性樹脂がポリアセタール樹脂である、請求項1〜の何れか1項記載の簡易溶融粘度測定方法。 The simple melt viscosity measuring method according to any one of claims 1 to 3 , wherein the thermoplastic resin is a polyacetal resin. 請求項1〜の何れか1項記載の測定方法により得られる熱可塑性樹脂の溶融粘度を、熱可塑性樹脂成形品の品質管理に用いることを特徴とする、品質管理方法。 A quality control method characterized by using the melt viscosity of the thermoplastic resin obtained by the measurement method according to any one of claims 1 to 4 for quality control of a thermoplastic resin molded product.
JP2007300292A 2007-11-20 2007-11-20 Simple melt viscosity measurement method for thermoplastic resins Active JP5086041B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007300292A JP5086041B2 (en) 2007-11-20 2007-11-20 Simple melt viscosity measurement method for thermoplastic resins
CNA2008101809817A CN101441159A (en) 2007-11-20 2008-11-20 Simple melt viscosity test method of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300292A JP5086041B2 (en) 2007-11-20 2007-11-20 Simple melt viscosity measurement method for thermoplastic resins

Publications (2)

Publication Number Publication Date
JP2009128032A JP2009128032A (en) 2009-06-11
JP5086041B2 true JP5086041B2 (en) 2012-11-28

Family

ID=40725689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300292A Active JP5086041B2 (en) 2007-11-20 2007-11-20 Simple melt viscosity measurement method for thermoplastic resins

Country Status (2)

Country Link
JP (1) JP5086041B2 (en)
CN (1) CN101441159A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434391B2 (en) * 2009-09-02 2014-03-05 マツダ株式会社 Series hybrid vehicle control system
GB2529458A (en) * 2014-08-21 2016-02-24 Skf Ab System and method for assessing rheological properties of grease
CN105784544B (en) * 2015-12-29 2018-04-24 东南大学 A kind of experimental method for being used to determine filling cut of asphaltum road surface viscosity of material requirement
CN105842119A (en) * 2016-03-18 2016-08-10 东旭科技集团有限公司 Method for determining viscosity of glass
CN113848152B (en) * 2021-09-02 2024-05-14 山东东岳高分子材料有限公司 Method for measuring melt viscosity of fluorine-containing polymer
CN114034605B (en) * 2021-10-28 2024-01-16 国高材高分子材料产业创新中心有限公司 Melt flow rate standard substance and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855838A (en) * 1981-09-30 1983-04-02 Fuji Electric Corp Res & Dev Ltd Method of measuring consistency of viscous substance in small quantity
JPS62226036A (en) * 1986-03-28 1987-10-05 Hitachi Chem Co Ltd Method for measuring flowability
JPH068534Y2 (en) * 1987-09-14 1994-03-02 三井東圧化学株式会社 Melt flow rate measuring device
JPH08278244A (en) * 1995-04-10 1996-10-22 Du Pont Mitsui Polychem Co Ltd Method and apparatus for automatic measurement of mfr and swelling ratio
JP2003270116A (en) * 2002-03-18 2003-09-25 Nippon Zeon Co Ltd Method of predicting melt index, and method of manufacturing polymer containing alicyclic structure
JP2007232717A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Disk flow system and fluidity evaluation method

Also Published As

Publication number Publication date
CN101441159A (en) 2009-05-27
JP2009128032A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5086041B2 (en) Simple melt viscosity measurement method for thermoplastic resins
US20170144222A1 (en) Sinterable feedstock for use in 3d printing devices
Tazi et al. Characterization of rheological and thermophysical properties of HDPE–wood composite
DK3087817T3 (en) Procedure for checking the suitability of granular mineral fertilizers to be dispersed.
Hamidi et al. Modelling of sintering during rotational moulding of the thermoplastic polymers
Geoffroy et al. Additive manufacturing of fire‐retardant ethylene‐vinyl acetate
Levi et al. Degradation of polymers by thermal gravimetric techniques
JP6595093B2 (en) Method for evaluating physical properties of plastic resin molded products
Pourali et al. A tale of two polyamides: Comparing the crystallization kinetics of a hot-melt adhesive and a PA 6/66 copolymer
US10464258B2 (en) Method for producing an object by melting a polymer powder in a powder sintering device
Muller et al. Relationship between rheological and surface properties for the sintering process of polymers
Smith et al. Deeper insights into the thermal properties of epoxy thermoset resins using torsion measurements
KR20150064131A (en) Polymer composition and a process for preparing the same
CN103175755B (en) Method for detecting fusing degree of polyvinyl chloride or chlorinated polyvinyl chloride
Duretek et al. Material flow data for numerical simulation of powder injection molding
González et al. Fourier transform infrared spectroscopy in the study of the interaction between PVC and plasticizers: PVC/plasticizer compatibility
Zsoldos et al. Structural analysis of polyolefin-poly (methyl methacrylate) blends
Kasgoz et al. Effect of the comonomer content on the solid‐state mechanical and viscoelastic properties of poly (propylene‐co‐1‐butene) films
US9459197B2 (en) Method for measuring dynamic viscoelasticity of particulate material
Jani et al. Experimental study on the effect of molecular weight and chemical composition distribution on the mechanical response of high‐density polyethylene
CN113337109B (en) Reinforced polyamide composition with high laser transmittance and low water absorption performance as well as preparation method and application thereof
Baumgart et al. Influence of different tempering conditions on the adhesion properties of thermoplastic/liquid silicone rubber combinations
Dimonie et al. Melt rheology of renewable polymers and of new materials based on them as tool in controlling the 3D/4D printability
TW201348275A (en) Core/shell fluoropolymer
Steinhaus et al. Characterization of the auto‐curing behavior of rapid prototyping materials for three‐dimensional printing using dielectric analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5086041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250