JP5085956B2 - Method for producing thermosetting resin molding - Google Patents

Method for producing thermosetting resin molding Download PDF

Info

Publication number
JP5085956B2
JP5085956B2 JP2007044697A JP2007044697A JP5085956B2 JP 5085956 B2 JP5085956 B2 JP 5085956B2 JP 2007044697 A JP2007044697 A JP 2007044697A JP 2007044697 A JP2007044697 A JP 2007044697A JP 5085956 B2 JP5085956 B2 JP 5085956B2
Authority
JP
Japan
Prior art keywords
thermosetting resin
mold
curing
epoxy resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007044697A
Other languages
Japanese (ja)
Other versions
JP2008207403A (en
Inventor
清史 守田
信行 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007044697A priority Critical patent/JP5085956B2/en
Publication of JP2008207403A publication Critical patent/JP2008207403A/en
Application granted granted Critical
Publication of JP5085956B2 publication Critical patent/JP5085956B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱硬化性樹脂成形体の製造方法に関する。   The present invention relates to a method for producing a thermosetting resin molded body.

住設機器や建材等に用いられているカウンター、浴槽、洗面ボウル、シンク、テーブル等には意匠的に優れた人工大理石が用いられている。現在上市されている人工大理石には、大別すると不飽和ポリエステル樹脂系、アクリル樹脂系、ビニルエステル樹脂系、エポキシ樹脂系がある。このうちエポキシ樹脂系人工大理石については、液状エポキシ樹脂、酸無水物系硬化剤および硬化促進剤からなる配合物に無機充填材を添加してあるいは添加せずに、これら成分を含む樹脂組成物を成形して得る。ここで、無機充填材を添加する場合、通常液状配合物100重量部に対し200重量部程度添加するが、得られる成形体は透明感がなく機械的強度も低い。無機充填材を添加しない場合、得られる成形体が変色、あるいは発泡等が生じたり、表面平滑性が悪い等の問題があった。   Artificial marble with excellent design is used for counters, bathtubs, wash bowls, sinks, tables, etc. used in housing equipment and building materials. Artificial marble currently on the market can be broadly classified into unsaturated polyester resin, acrylic resin, vinyl ester resin, and epoxy resin. Among these, for epoxy resin-based artificial marble, a resin composition containing these components with or without the addition of an inorganic filler to a composition comprising a liquid epoxy resin, an acid anhydride-based curing agent, and a curing accelerator. Obtained by molding. Here, when adding an inorganic filler, about 200 weight part is normally added with respect to 100 weight part of liquid formulations, but the molded object obtained does not have a transparent feeling and mechanical strength is also low. When the inorganic filler is not added, there are problems such as discoloration or foaming of the obtained molded product and poor surface smoothness.

以上の問題を解決するために、例えば、エポキシ樹脂と、酸無水物硬化剤と、第4級ホスホニウム塩または二環式アミジン化合物の有機酸塩もしくはこれらの混合物等の硬化促進剤と、ホスファイトを基本骨格に持つものあるいは前記ホスファイトの混合物からなる配合物を着色防止剤とするエポキシ樹脂組成物を用いて成形したものが提案されている(特許文献1参照)。
特開2004−269645号公報
In order to solve the above problems, for example, an epoxy resin, an acid anhydride curing agent, a curing accelerator such as an organic acid salt of a quaternary phosphonium salt or a bicyclic amidine compound or a mixture thereof, and a phosphite Has been proposed using an epoxy resin composition having a coloring inhibitor as a compound having a basic skeleton or a mixture comprising a mixture of the above phosphites (see Patent Document 1).
JP 2004-269645 A

以上のエポキシ樹脂組成物は、成形時の従来の問題点である、変色、発泡、表面平滑性が悪い等の不具合を解決し、透明感のある意匠性に優れたエポキシ樹脂系人工大理石を実現している。しかしながら、用いる硬化促進剤や着色防止剤の種類、量が限られており、配合の自由度がなく、得られる成形体の用途が限定されるという問題があった。また、十分な機械的強度を有するものではなかった。   The above epoxy resin composition solves problems such as discoloration, foaming and poor surface smoothness, which are conventional problems during molding, and realizes an epoxy resin-based artificial marble with a transparent design and excellent design. doing. However, there are problems that the types and amounts of curing accelerators and coloring inhibitors used are limited, there is no degree of freedom in blending, and the use of the resulting molded body is limited. Moreover, it did not have sufficient mechanical strength.

本発明は、以上の通りの事情に鑑みてなされたものであり、硬化促進剤として第4級ホスホニウム塩または二環式アミジン化合物の有機酸塩もしくはこれらの混合物に限定されず、しかも着色防止剤を用いることなしに、機械的強度を低下させることなく、変色や発泡を抑え、表面平滑性に優れた、透明感のある熱硬化性樹脂成形体の製造方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and is not limited to a quaternary phosphonium salt or an organic acid salt of a bicyclic amidine compound or a mixture thereof as a curing accelerator. It is an object of the present invention to provide a method for producing a transparent thermosetting resin molded article that suppresses discoloration and foaming and has excellent surface smoothness without reducing mechanical strength.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、本発明のエポキシ樹脂系人工大理石用熱硬化性樹脂成形体の製造方法は、熱硬化性樹脂としての透明性を有するエポキシ樹脂、硬化剤、硬化促進剤及びチクソ性付与剤のみを含有し、これら配合物のチクソトロビーインデックス(TI値)が1.1以上で、粘度が温度25℃において10000mPa・s以下である熱硬化性樹脂組成物を、熱伝導率が100W/m・℃以上の材質の型に注入して、加熱硬化する。 1stly, the manufacturing method of the thermosetting resin molding for epoxy resin-type artificial marble of this invention only has the epoxy resin which has transparency as a thermosetting resin , a hardening | curing agent, a hardening accelerator, and a thixotropy imparting agent . And a thermosetting resin composition having a thixotropic index (TI value) of 1.1 or more and a viscosity of 10,000 mPa · s or less at a temperature of 25 ° C., having a thermal conductivity of 100 W / m · It is poured into a mold made of a material having a temperature of ℃ or higher and cured by heating.

第2に、上記第1の発明のエポキシ樹脂系人工大理石用熱硬化性樹脂成形体の製造方法において、型の材質が、アルミニウム合金または亜鉛合金である。 2ndly, in the manufacturing method of the thermosetting resin molding for epoxy resin type artificial marble of said 1st invention, the material of a type | mold is an aluminum alloy or a zinc alloy.

上記第1の発明によれば、第4級ホスホニウム塩または二環式アミジン化合物の有機酸塩もしくはこれらの混合物の硬化促進剤に限定されず、また着色防止剤を用いることなしに、機械的強度を低下させることなく、変色や発泡を抑え、表面平滑性に優れた、透明感のある熱硬化性樹脂成形体を製造することができる。   According to the first invention, the mechanical strength of the quaternary phosphonium salt or the organic acid salt of the bicyclic amidine compound or a mixture thereof is not limited, and the mechanical strength is not required without using a color inhibitor. Without lowering the color, it is possible to produce a thermosetting resin molded article having a transparent feeling, excellent in surface smoothness, suppressing discoloration and foaming.

上記第2の発明によれば、上記の効果をより一層向上させることができる。   According to the second aspect, the above effect can be further improved.

本発明は前記のとおりの特徴をもつものであるが、以下に、本発明を実施するための最良の形態を説明する。   The present invention has the features as described above, and the best mode for carrying out the present invention will be described below.

本発明は、前記のとおり、熱硬化性樹脂、硬化剤、硬化促進剤とともにチクソ性付与剤を必須成分として含有し、それら配合物のチクソトロビーインデックス(TI値)が1.1以上で、粘度が温度25℃において10000mPa・s以下である熱硬化性樹脂組成物を用いる。   As described above, the present invention contains a thixotropic agent as an essential component together with a thermosetting resin, a curing agent, and a curing accelerator, and the thixotropic index (TI value) of the blend is 1.1 or more. A thermosetting resin composition having a viscosity of 10,000 mPa · s or less at a temperature of 25 ° C. is used.

チクソ性付与剤を添加することにより、ぬれ性、流れ性、粘度が変わる。チクソ性付与剤を含有していない、樹脂主体の熱硬化性樹脂組成物は、それを成形材料として注型型を用いて成形すると、成形材料の硬化反応が開始する部分が金型の内壁面から離れた中心付近から開始することになり、引けが発生する。本発明は特に所定の粘度を維持しつつ、チクソ性を付与することで、成形時においてその成形材料が金型に面している表面より硬化を開始させることで、樹脂成形体の表面の発泡を抑えるとともに引けをなくしている。これにより、機械的強度を低下させずに表面平滑性に優れた樹脂成形体を得ることができる。TI値が1.1未満では、成形時において、いまだ成形材料の硬化反応が開始する部分が型の内壁面から離れた中心付近から開始するため、引けが発生してしまう。TI値の上限値としては、特に限定するものではないが、一般的にチクソ性が高くなると粘度も高くなって流れ性が悪くなり、これに伴い成形性が悪くなるので、例えば、5程度であることが考慮される。   Addition of a thixotropic agent changes wettability, flowability, and viscosity. When a resin-based thermosetting resin composition containing no thixotropic agent is molded using a casting mold as a molding material, the part where the curing reaction of the molding material starts is the inner wall surface of the mold. It will start from the vicinity of the center away from, and close will occur. The present invention provides a thixotropy while maintaining a predetermined viscosity, in particular, and at the time of molding, the molding material starts curing from the surface facing the mold, thereby foaming the surface of the resin molded body. It suppresses and closes are lost. Thereby, the resin molding excellent in surface smoothness can be obtained, without reducing mechanical strength. If the TI value is less than 1.1, at the time of molding, the part where the curing reaction of the molding material still starts from the vicinity of the center away from the inner wall surface of the mold, so that the shrinkage occurs. The upper limit of the TI value is not particularly limited, but generally, when the thixotropy is increased, the viscosity is also increased and the flowability is deteriorated. It is considered that there is.

なお、TI値は揺変度と呼ばれるもので、JIS K6901に準拠して測定することができる。   Note that the TI value is called a fluctuation degree, and can be measured according to JIS K6901.

以上のチクソ性付与剤は、無機系のものあるいは有機系のものであってもよく、特に制限されるものではない。無機系のチクソ性付与剤としては、微粉シリカ系やベントナイト系等が挙げられるが透明性の点から微粉シリカ系が好ましい。有機系のチクソ性付与剤としては、ひまし油系やポリアマイド系が使用できる。チクソ性付与剤の添加量としては、熱硬化性樹脂、硬化剤、硬化促進剤の種類や量によって異なり、得られる熱硬化性樹脂組成物のTI値が1.1以上で、かつ粘度が温度25℃において10000mPa・s以下となるように適宜に設定される。   The thixotropic agent may be inorganic or organic, and is not particularly limited. Examples of the inorganic thixotropic agent include fine silica and bentonite, but fine silica is preferred from the viewpoint of transparency. As the organic thixotropic agent, castor oil or polyamide can be used. The addition amount of the thixotropic agent varies depending on the type and amount of the thermosetting resin, the curing agent, and the curing accelerator, the TI value of the obtained thermosetting resin composition is 1.1 or more, and the viscosity is the temperature. It is appropriately set so as to be 10,000 mPa · s or less at 25 ° C.

本発明は、上記熱硬化性樹脂組成物の粘度が、温度25℃において10000mPa・s以下となるように、各成分の配合量を適宜に設定している。本発明は後述するように無機充填材を配合してもよいが、配合しなくてもチクソ性付与剤を添加することで上記粘度に調整可能である。これにより、透明感のある樹脂成形体を得ることができる。また、上記粘度とすることで、熱硬化性樹脂組成物の注型型への流れ性が良好となる。粘度の下限値は特に限定するものではないが、粘度が低すぎると成形性が悪くなるおそれがあるので、一般的には3000程度であることが考慮される。温度25℃における熱硬化性樹脂組成物の粘度が10000mPa・sを超える場合には、注型型への流れ性が悪くなり、これに伴い成形性が悪くなる。   In the present invention, the blending amount of each component is appropriately set so that the viscosity of the thermosetting resin composition is 10,000 mPa · s or less at a temperature of 25 ° C. In the present invention, an inorganic filler may be blended as described later, but the viscosity can be adjusted by adding a thixotropic agent without blending. Thereby, the resin molded object with a transparent feeling can be obtained. Moreover, the fluidity | liquidity to the casting type | mold of a thermosetting resin composition becomes favorable by setting it as the said viscosity. The lower limit of the viscosity is not particularly limited, but if the viscosity is too low, the moldability may be deteriorated, so that it is generally considered to be about 3000. When the viscosity of the thermosetting resin composition at a temperature of 25 ° C. exceeds 10,000 mPa · s, the flowability to the casting mold is deteriorated, and the moldability is deteriorated accordingly.

上記熱硬化性樹脂組成物における熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、シリコン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ビニルエステル樹脂等が挙げられる。エポキシ樹脂を用いる場合には、具体的には、汎用のビスフェノールAジグリシジルエーテルの他、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、環状脂肪族エポキシ樹脂等の透明性を有する樹脂が挙げられる。硬化物の着色性、硬化性およびコスト面を考慮すると、ビスフェノールAジグリシジルエーテルが好ましい。また、ノボラック型エポキシ樹脂、ポリオレフィン型エポキシ樹脂等の樹脂成分、比較的低粘度のモノエポキシサイドやポリエポキシサイド等の反応性希釈剤を本発明の所定の効果に影響を及ぼさない範囲内で適宜配合することができる。   Examples of the thermosetting resin in the thermosetting resin composition include an epoxy resin, a polyimide resin, a phenol resin, a silicon resin, an unsaturated polyester resin, an acrylic resin, and a vinyl ester resin. In the case of using an epoxy resin, specifically, in addition to general-purpose bisphenol A diglycidyl ether, there are transparent resins such as hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and cyclic aliphatic epoxy resins. Can be mentioned. In view of the colorability, curability and cost of the cured product, bisphenol A diglycidyl ether is preferred. Further, a resin component such as a novolac type epoxy resin or a polyolefin type epoxy resin, or a reactive diluent such as a relatively low viscosity monoepoxy side or polyepoxy side is suitably used within a range not affecting the predetermined effect of the present invention. Can be blended.

硬化剤および硬化促進剤は、熱硬化性樹脂に応じて適宜に選択される。例えば、エポキシ樹脂を熱硬化性樹脂として用いたときの硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水トリメリット酸、無水ピロメリット酸、無水メチルハイミック酸、無水マレイン酸等の酸無水物硬化剤が挙げられる。着色性や耐候性を考慮すると2重結合がないヘキサヒドロ無水フタル酸またはメチルヘキサヒドロ無水フタル酸が好ましい。なお、両者を併用することも可能である。同様に、エポキシ樹脂を熱硬化性樹脂として用いたときの硬化促進剤としては、従来公知の化合物、第3級アミン類や第4級ホスホニウム塩、第4級アンモニウム塩、イミダゾール類、エポキシ−アミンダクト、尿素型アダクト等の潜在性硬化促進剤等が挙げられる。   The curing agent and the curing accelerator are appropriately selected according to the thermosetting resin. For example, curing agents when epoxy resin is used as thermosetting resin include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrotrimellitic anhydride, pyromellitic anhydride Acid anhydride curing agents such as acid, methyl hymic anhydride, and maleic anhydride are listed. In consideration of colorability and weather resistance, hexahydrophthalic anhydride or methylhexahydrophthalic anhydride having no double bond is preferable. In addition, it is also possible to use both together. Similarly, as a curing accelerator when an epoxy resin is used as a thermosetting resin, conventionally known compounds, tertiary amines, quaternary phosphonium salts, quaternary ammonium salts, imidazoles, epoxy-amines are used. Examples thereof include latent curing accelerators such as ducts and urea type adducts.

硬化剤および硬化促進剤の配合量は、熱硬化性樹脂組成物として一般的に用いられている範囲内で適宜に設定することができ、特に限定されるものではない。具体的には、熱硬化性樹脂100重量部に対して硬化剤50〜95重量部、硬化促進剤0.5〜5重量部配合することができる。   The compounding amounts of the curing agent and the curing accelerator can be appropriately set within a range generally used as a thermosetting resin composition, and are not particularly limited. Specifically, 50 to 95 parts by weight of the curing agent and 0.5 to 5 parts by weight of the curing accelerator can be blended with 100 parts by weight of the thermosetting resin.

本発明における熱硬化性樹脂組成物は、必要に応じて、水酸化アルミニウム、シリカ、ガラスフリット等の充填材を添加してもよい。これにより、得られる樹脂成形体の曲げ弾性率を向上させることができる。その添加量としては、熱硬化性樹脂と硬化剤と硬化促進剤との配合物100重量部に対して、100重量部以下の範囲であることが考慮される。100重量部を超えると、樹脂成形体の曲げ強度が劣り、透明感が損なわれてしまう場合があるので好ましくない。充填材の添加量の下限値としては、特に限定されるものではない。充填材の添加量が少ないほど得られる樹脂成形体の透明感が向上し、曲げ強度が大きくなる傾向にある。なお、充填材の添加量が多ければ、その熱硬化性樹脂組成物の粘度が高くなる傾向にある。   The thermosetting resin composition in the present invention may contain a filler such as aluminum hydroxide, silica, glass frit, etc., if necessary. Thereby, the bending elastic modulus of the resin molding obtained can be improved. The amount added is considered to be in the range of 100 parts by weight or less with respect to 100 parts by weight of the blend of the thermosetting resin, the curing agent, and the curing accelerator. When the amount exceeds 100 parts by weight, the bending strength of the resin molded body is inferior, and the transparency may be impaired. It does not specifically limit as a lower limit of the addition amount of a filler. The smaller the amount of filler added, the better the transparency of the resulting resin molded product, and the greater the bending strength. In addition, if there is much addition amount of a filler, it exists in the tendency for the viscosity of the thermosetting resin composition to become high.

さらに必要に応じて酸化防止剤や紫外線吸収剤を添加することもできる。   Furthermore, antioxidants and ultraviolet absorbers can be added as necessary.

本発明は、以上の熱硬化性樹脂組成物を熱伝導率が100W/m・℃以上の材質の型に注入して、例えば、90〜150℃程度の温度範囲で30分〜3時間加熱硬化している。これにより、成形時において、熱硬化性樹脂組成物の反応硬化がより金型表面から反応を開始させることができ、本発明のような樹脂主体の熱硬化性樹脂組成物においては引けの発生をより一層抑え、表面平滑性が優れた樹脂成形体を得ることができる。しかも金型の熱による変色を防ぐことができる。熱伝導率が100W/m・℃未満である場合には、成形時において、熱硬化性樹脂組成物への熱伝導が低下し、金型表面に近い熱硬化性樹脂組成物の硬化反応が遅くなって、熱硬化性樹脂組成物全体に硬化反応が開始することになる。その結果、金型の内壁面から離れた熱硬化性樹脂組成物の中心付近の硬化反応による熱収縮が、金型に面している熱硬化性樹脂組成物の表面に影響することになり、表面平滑性が良好な樹脂成形体を得ることができない。 In the present invention, the above thermosetting resin composition is injected into a mold of a material having a thermal conductivity of 100 W / m · ° C. or more and, for example, is heated and cured in a temperature range of about 90 to 150 ° C. for 30 minutes to 3 hours. doing. Thereby, at the time of molding, the reaction curing of the thermosetting resin composition can start the reaction from the mold surface more, and in the thermosetting resin composition mainly composed of resin as in the present invention, the occurrence of shrinkage is caused. It is possible to obtain a resin molded body that is further suppressed and excellent in surface smoothness. Moreover, discoloration of the mold due to heat can be prevented. When the thermal conductivity is less than 100 W / m · ° C., the heat conduction to the thermosetting resin composition decreases during molding, and the curing reaction of the thermosetting resin composition close to the mold surface is slow. Thus, the curing reaction starts in the entire thermosetting resin composition. As a result, thermal shrinkage due to the curing reaction near the center of the thermosetting resin composition away from the inner wall surface of the mold will affect the surface of the thermosetting resin composition facing the mold, A resin molded article with good surface smoothness cannot be obtained.

熱伝導率の上限については、熱伝導率が高ければ高いほどよく特に限定されるものではないが、入手可能な型の材質を考慮すると一般的には200W/m・℃程度とすることができる。具体的な型の材質としては、アルミニウム合金、亜鉛合金等を例示することができる。これらは、いずれも上記効果をより確実に実現でき、入手の容易性、コスト等の見地からも好ましい。   The upper limit of the thermal conductivity is not particularly limited as the thermal conductivity is higher, but in general, it can be set to about 200 W / m · ° C. in consideration of the material of the available mold. . Specific examples of the material include an aluminum alloy and a zinc alloy. These are all preferable from the standpoints of availability, cost, etc., because the above-mentioned effects can be realized more reliably.

以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって本発明が限定されることはない。   Hereinafter, examples will be shown and described in more detail. Of course, the present invention is not limited to the following examples.

<実施例1>
ビスフェノールAジグリシジルエーテル型エポキシ樹脂(エポキシ当量190)100重量部、メチルヘキサヒドロ無水フタル酸(酸無水物当量160)93重量部、2エチル4メチルイミダゾ−ル2重量部、チクソ性付与剤として微粉シリカ(比表面積380m/g)6重量部を混合し、減圧脱泡して得られた配合物を、2枚の厚み3ミリのアルミニウム合金板で10ミリのスペーサーを挟んだ注型型に注型した。
<Example 1>
Bisphenol A diglycidyl ether type epoxy resin (epoxy equivalent 190) 100 parts by weight, methylhexahydrophthalic anhydride (acid anhydride equivalent 160) 93 parts by weight, 2 ethyl 4-methylimidazole 2 parts by weight, as thixotropic agent A casting mold in which 6 parts by weight of finely divided silica (specific surface area 380 m 2 / g) is mixed and degassed under reduced pressure, and a 10 mm spacer is sandwiched between two 3 mm thick aluminum alloy plates Cast.

この注型型を100℃の熱風乾燥機に60分、さらに110℃に昇温後30分、さらに130℃に昇温後30分放置し、取り出した後室温にて冷却し脱型して成形体を得た。   This casting mold is left in a hot air dryer at 100 ° C. for 60 minutes, further raised to 110 ° C. for 30 minutes, further raised to 130 ° C. for 30 minutes, taken out, cooled at room temperature, demolded and molded. Got the body.

この成形体は、機械的強度(曲げ強度、曲げ弾性率)に問題はなく、透明感が有り、変色や発泡の無い表面平滑性の良いものであった。
<実施例2>
実施例1において、注型型として、アルミニウム合金板の代わりに亜鉛合金板を用いた以外は同様である。
This molded product had no problem in mechanical strength (bending strength, flexural modulus), had a transparent feeling, and had good surface smoothness without discoloration or foaming.
<Example 2>
In Example 1, it is the same except having used the zinc alloy plate instead of the aluminum alloy plate as a casting mold.

この成形体は、機械的強度に問題はなく、透明感が有り、変色や発泡の無い表面平滑性の良いものであった。
<比較例1>
ビスフェノールAジグリシジルエーテル型エポキシ樹脂(エポキシ当量190)100重量部、メチルヘキサヒドロ無水フタル酸(酸無水物当量160)93重量部、2エチル4メチルイミダゾ−ル2重量部、チクソ性付与剤として微粉シリカ(比表面積380m/g)1重量部を混合し、減圧脱泡して得られた配合物を、2枚の厚み3ミリの鉄板で10ミリのスペーサーを挟んだ注型型に注型した。
This molded article had no problem in mechanical strength, had a transparent feeling, and had good surface smoothness without discoloration or foaming.
<Comparative Example 1>
Bisphenol A diglycidyl ether type epoxy resin (epoxy equivalent 190) 100 parts by weight, methylhexahydrophthalic anhydride (acid anhydride equivalent 160) 93 parts by weight, 2 ethyl 4-methylimidazole 2 parts by weight, as thixotropic agent Mix 1 part by weight of finely divided silica (specific surface area 380 m 2 / g) and degas the mixture under reduced pressure, and pour it into a casting mold with a 10 mm spacer sandwiched between two 3 mm thick steel plates. Typed.

この注型型を100℃の熱風乾燥機に60分、さらに110℃に昇温後30分、さらに130℃に昇温後30分放置し、取り出した後室温にて冷却し脱型して成形体を得た。   This casting mold is left in a hot air dryer at 100 ° C. for 60 minutes, further raised to 110 ° C. for 30 minutes, further raised to 130 ° C. for 30 minutes, taken out, cooled at room temperature, demolded and molded. Got the body.

この成形体は透明感が有るが、黄変、発泡が生じており、表面平滑性が良くなかった。機械的強度は実施例1〜2と同程度であった。
<比較例2>
比較例1において、注型型として、アルミニウム合金板の代わりにFRP(繊維強化プラスチック)板を用いた以外は同様である。
Although this molded article had a transparent feeling, yellowing and foaming occurred, and the surface smoothness was not good. The mechanical strength was comparable to Examples 1-2.
<Comparative example 2>
In the comparative example 1, it is the same except having used the FRP (fiber reinforced plastic) board instead of the aluminum alloy board as a casting mold.

この成形体は透明感が有るが、黄変、発泡が生じており、表面平滑性が良くなかった。機械的強度は実施例1〜2と同程度であった。
<比較例3>
ビスフェノールAジグリシジルエーテル型エポキシ樹脂(エポキシ当量190)100重量部、メチルヘキサヒドロ無水フタル酸(酸無水物当量160)93重量部、2エチル4メチルイミダゾ−ル2重量部、平均粒径10ミクロンの水酸化アルミニウム250重量部を混合し減圧脱泡して得られた配合物を、2枚の厚み3ミリの鉄板で10ミリのスペーサーを挟んだ注型型に注型した。
Although this molded article had a transparent feeling, yellowing and foaming occurred, and the surface smoothness was not good. The mechanical strength was comparable to Examples 1-2.
<Comparative Example 3>
Bisphenol A diglycidyl ether type epoxy resin (epoxy equivalent 190) 100 parts by weight, methylhexahydrophthalic anhydride (acid anhydride equivalent 160) 93 parts by weight, 2 ethyl 4-methylimidazole 2 parts by weight, average particle size 10 microns A mixture obtained by mixing 250 parts by weight of aluminum hydroxide and degassing under reduced pressure was cast into a casting mold with two 10 mm spacers sandwiched between 3 mm thick iron plates.

この注型型を100℃の熱風乾燥機に60分、さらに110℃に昇温後30分、さらに130℃に昇温後30分放置し、取り出した後室温にて冷却し脱型して成形体を得た。   This casting mold is left in a hot air dryer at 100 ° C. for 60 minutes, further raised to 110 ° C. for 30 minutes, further raised to 130 ° C. for 30 minutes, taken out, cooled at room temperature, demolded and molded. Got the body.

この成形体は変色や発泡が無く、表面平滑性が良好であったが、透明感はなく、曲げ強度が低かった。   This molded article was free from discoloration and foaming and had good surface smoothness, but was not transparent and had low bending strength.

表1に、実施例と比較例の配合と各種物性の評価結果を示した。   Table 1 shows the composition of Examples and Comparative Examples and the evaluation results of various physical properties.

Figure 0005085956
Figure 0005085956

なお、各種物性は以下のとおり評価した。
配合物粘度(mPa・s/25℃):ビスコテスター VT550(メーカー:リオン)を用いて測定した。
TI値:JIS K6901に準拠して測定した。
透明感:5mm厚の平板の成形体を形成し、これを紙面上に成形体を配して目視により紙面の印刷を確認した。文字が読めれば「○」、読みづらければ「△」、読めなければ「×」とした。
変色:成形体を目視により判断した。
発泡:成形体を目視により判断した。
表面平滑性:上記透明感の評価に使用したサンプルを定盤上に配し、ひけ(熱収縮により発生する凹み)の発生を確認した。
曲げ強度(MPa):JIS K7171に準拠して測定した。
曲げ弾性率(MPa):JIS K7171に準拠して測定した。
Various physical properties were evaluated as follows.
Formulation viscosity (mPa · s / 25 ° C.): Measured using a Bisco Tester VT550 (manufacturer: Rion).
TI value: Measured according to JIS K6901.
Transparency: A 5 mm-thick flat molded body was formed, and the molded body was placed on the paper surface, and printing on the paper surface was confirmed visually. If the character can be read, it is “◯”, if it is difficult to read, “△”, otherwise it is “×”.
Discoloration: The molded product was judged visually.
Foaming: The molded product was judged visually.
Surface smoothness: The sample used for the evaluation of the transparency was placed on a surface plate, and the occurrence of sink marks (dents generated by heat shrinkage) was confirmed.
Bending strength (MPa): Measured according to JIS K7171.
Flexural modulus (MPa): Measured according to JIS K7171.

表1の結果より、配合物のTI値が1.1以上で、粘度が温度25℃において10000mPa・s以下である熱硬化性樹脂組成物を、熱伝導率が100W/m・℃以上の材質の型に注入して加熱硬化した実施例1〜2の成形体は、いずれも変色や発泡がなく、かつ表面平滑性や機械的強度に優れて、透明感のあることが確認できた。一方、熱伝導率が100W/m・℃未満の材質の型を用いた比較例1〜2の成形体は、変色、発泡が生じ、表面平滑性に問題があることが確認できた。また、粘度が温度25℃において10000mPa・sを超える熱硬化性樹脂組成物を、熱伝導率が100W/m・℃未満の材質の型に注入して加熱硬化した比較例3の成形体は、透明感がなく、曲げ強度が劣ることが確認できた。   From the results shown in Table 1, a thermosetting resin composition having a TI value of 1.1 or more and a viscosity of 10,000 mPa · s or less at a temperature of 25 ° C. is a material having a thermal conductivity of 100 W / m · ° C. or more. It was confirmed that the molded products of Examples 1 and 2 which were injected into the mold and heat-cured were free from discoloration and foaming, excellent in surface smoothness and mechanical strength, and transparent. On the other hand, it was confirmed that the molded bodies of Comparative Examples 1 and 2 using a mold having a thermal conductivity of less than 100 W / m · ° C. were discolored and foamed and had a problem in surface smoothness. Further, the molded article of Comparative Example 3 in which a thermosetting resin composition having a viscosity exceeding 10000 mPa · s at a temperature of 25 ° C. was poured into a mold of a material having a thermal conductivity of less than 100 W / m · ° C. and heat-cured, It was confirmed that there was no transparency and the bending strength was inferior.

Claims (2)

熱硬化性樹脂としての透明性を有するエポキシ樹脂、硬化剤、硬化促進剤及びチクソ性付与剤のみを含有し、これら配合物のチクソトロビーインデックス(TI値)が1.1以上で、粘度が温度25℃において10000mPa・s以下である熱硬化性樹脂組成物を、熱伝導率が100W/m・℃以上の材質の型に注入して、加熱硬化することを特徴とするエポキシ樹脂系人工大理石用熱硬化性樹脂成形体の製造方法。 Contains only transparent epoxy resin as thermosetting resin , curing agent, curing accelerator and thixotropic agent, thixotropic index (TI value) of these blends is 1.1 or more, viscosity is An epoxy resin-based artificial marble characterized by injecting a thermosetting resin composition having a thermal conductivity of 10000 mPa · s or less at a temperature of 25 ° C. into a mold of a material having a thermal conductivity of 100 W / m · ° C. or more and heat-curing it. Method for thermosetting resin molding for use . 型の材質が、アルミニウム合金または亜鉛合金であることを特徴とする請求項1に記載のエポキシ樹脂系人工大理石用熱硬化性樹脂成形体の製造方法。 The method for producing a thermosetting resin molding for epoxy resin-based artificial marble according to claim 1, wherein the material of the mold is an aluminum alloy or a zinc alloy.
JP2007044697A 2007-02-23 2007-02-23 Method for producing thermosetting resin molding Expired - Fee Related JP5085956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044697A JP5085956B2 (en) 2007-02-23 2007-02-23 Method for producing thermosetting resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044697A JP5085956B2 (en) 2007-02-23 2007-02-23 Method for producing thermosetting resin molding

Publications (2)

Publication Number Publication Date
JP2008207403A JP2008207403A (en) 2008-09-11
JP5085956B2 true JP5085956B2 (en) 2012-11-28

Family

ID=39784131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044697A Expired - Fee Related JP5085956B2 (en) 2007-02-23 2007-02-23 Method for producing thermosetting resin molding

Country Status (1)

Country Link
JP (1) JP5085956B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199640A (en) * 1986-02-28 1987-09-03 Nippon Shokubai Kagaku Kogyo Co Ltd Heat-resistant, hot water-resistant curable composition
JP2515344B2 (en) * 1987-07-24 1996-07-10 松下電工株式会社 One-part liquid epoxy resin composition for sealing
JPH04314744A (en) * 1991-04-12 1992-11-05 Showa Denko Kk Heat-absorbing particulate filler and production thereof
JP2922121B2 (en) * 1994-09-20 1999-07-19 ヤマハリビングテック株式会社 Artificial stone and method for producing the same
JPH10279780A (en) * 1997-02-06 1998-10-20 Toto Ltd Molded resin article and its production
JP4128675B2 (en) * 1998-10-30 2008-07-30 住友ゴム工業株式会社 Resin composition
JP2001121542A (en) * 1999-08-17 2001-05-08 Polyplastics Co Void suppressing mold and molding method
JP2004269645A (en) * 2003-03-07 2004-09-30 Toto Ltd Resin molded article and method for producing the same

Also Published As

Publication number Publication date
JP2008207403A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
KR101846978B1 (en) Epoxy resin composition for resin transfer molding of fiber-reinforced composite material, fiber-reinforced composite material, and method for producing same
JP6335610B2 (en) Liquid discharge head
US4732962A (en) High temperature epoxy tooling composition of bisphenol-A epoxy, trifunctional epoxy, anhydride curing agent and an imidazole catalyst
US4925886A (en) High temperature epoxy tooling composition of bifunctional epoxy, trifunctional epoxy, anhydride, imidazole and interstitially matched filler
JP2015151457A (en) liquid epoxy resin composition and liquid epoxy resin molding material
US5322864A (en) Epoxy resin composition and cured product thereof
JP5085956B2 (en) Method for producing thermosetting resin molding
JP2018002923A (en) Method for producing electric/electronic component, epoxy resin composition for injection molding, and electric/electronic component
JP4779994B2 (en) Thermosetting resin composition and resin molded product thereof
JP4752326B2 (en) Epoxy resin composition for molding, molded cured product, and method for producing the molded cured product
JP2009091471A (en) Epoxy resin composition for casting, and ignition coil and method for producing the same
JP2016094562A (en) One-liquid type epoxy resin composition and electric and electronic component insulation treated by using the same
JPS6112724A (en) Epoxy resin composition
JPH05222271A (en) Resin composition
US8586654B2 (en) Anisotropic composite
JP6655359B2 (en) Method for producing electronic / electric parts and epoxy resin composition
JP2014040538A (en) Epoxy resin composition of double-liquid type
JP6539017B2 (en) Two-component epoxy resin composition and method of manufacturing case mold type capacitor
JPH02175749A (en) Sealing resin composition
JPH01271422A (en) Composition for vibration damper and vibration damper
JP2007031476A (en) Epoxy resin composition for molding material, molded and cured product thereof, and method for producing the molded and cured product
JP4957884B2 (en) Epoxy resin composition and semiconductor device
JP2010280746A (en) Thermosetting resin composition, and electric and electronic part
WO2019087463A1 (en) Epoxy resin composition, circuit board, and method for producing circuit board
JP2005041925A (en) Epoxy resin sealing material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees