JP5081487B2 - Ultrasonic disperser - Google Patents

Ultrasonic disperser Download PDF

Info

Publication number
JP5081487B2
JP5081487B2 JP2007101074A JP2007101074A JP5081487B2 JP 5081487 B2 JP5081487 B2 JP 5081487B2 JP 2007101074 A JP2007101074 A JP 2007101074A JP 2007101074 A JP2007101074 A JP 2007101074A JP 5081487 B2 JP5081487 B2 JP 5081487B2
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric body
contact
ultrasonic dispersion
emulsified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007101074A
Other languages
Japanese (ja)
Other versions
JP2008253947A (en
Inventor
清輝 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007101074A priority Critical patent/JP5081487B2/en
Publication of JP2008253947A publication Critical patent/JP2008253947A/en
Application granted granted Critical
Publication of JP5081487B2 publication Critical patent/JP5081487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軽量、小型化が可能な超音波分散装置に関する。   The present invention relates to an ultrasonic dispersion apparatus that can be reduced in weight and size.

超音波を使用して、乳化、分散する技術は一般的によく知られている。
例えば、特許文献1では、狭い流路中に乳化すべき2液相を通過せしめて連続乳化を行う超音波連続乳化装置が提案されている。また、特許文献2では、ボルト締めランジュバン製の超音波振動子を使用した超音波乳化装置が開示されている。さらに、特許文献3では、金属管の外周にカラーを設け、そのカラーの外周に超音波変換器を固定する管状超音波処理装置が開示され、特許文献4では、超音波振動子の超音波振動を、超音波伝送体を介して処理槽内の超音波放射体に伝え、この超音波放射体から照射される超音波により処理槽内の被処理流体を超音波処理する装置が開示されている。
しかしながら、これらの超音波処理装置は、いずれも予め複数の液を混合した後、混合液を管内又は槽内通過させるものであり、異なる複数の液体を接触させると同時に超音波処理し、混合、乳化又は分散するものではなかった。
更に、特許文献2〜4等の公知の超音波乳化装置は、エネルギーを多く必要とする(数100Wから1kW程度)ので有線式であり、線の取り回しや使用場面が限られるといった問題があった。
The technique of emulsifying and dispersing using ultrasonic waves is generally well known.
For example, Patent Document 1 proposes an ultrasonic continuous emulsification apparatus that performs continuous emulsification by passing two liquid phases to be emulsified in a narrow flow path. Patent Document 2 discloses an ultrasonic emulsification apparatus using an ultrasonic vibrator made of bolted Langevin. Furthermore, Patent Document 3 discloses a tubular ultrasonic processing apparatus in which a collar is provided on the outer periphery of a metal tube and an ultrasonic transducer is fixed to the outer periphery of the collar. Patent Document 4 discloses an ultrasonic vibration of an ultrasonic transducer. Is transmitted to the ultrasonic radiator in the processing tank via the ultrasonic transmission body, and an apparatus for ultrasonically processing the fluid to be processed in the processing tank by the ultrasonic wave irradiated from the ultrasonic radiator is disclosed. .
However, all of these ultrasonic treatment devices mix a plurality of liquids in advance and then allow the mixed liquid to pass through the pipe or the tank. It was not emulsified or dispersed.
Furthermore, known ultrasonic emulsification apparatuses such as Patent Documents 2 to 4 require a large amount of energy (several hundreds to 1 kW), and are therefore wired, so that there is a problem that the handling of the lines and the usage scenes are limited. .

特公昭35−14000号公報Japanese Patent Publication No. 35-14000 特開平4−59032号公報JP-A-4-59032 特表平6−504483号公報Japanese translation of PCT publication No. 6-504843 特開2005―192113号公報JP 2005-192113 A

本発明は、異なる複数の液体を接触すると同時に超音波処理することにより、低振動で混合、乳化又は分散が可能であり、軽量・小型化が可能な超音波分散装置を提供することを課題とする。   It is an object of the present invention to provide an ultrasonic dispersion apparatus that can be mixed, emulsified or dispersed with low vibration by contacting and sonicating a plurality of different liquids at the same time, and capable of being reduced in weight and size. To do.

本発明は、超音波を発生する圧電体と、該圧電体と面接触し2液以上の液体を混合、乳化又は分散させる構造体とからなり、該構造体が2以上の流入管と、1つの流出管と、該流入管と該流出管とが連結してなる混合部とを具備し、2液以上の液体がそれぞれ該流入管を通って該混合部へ流入し、更に該混合部で超音波を受けつつ衝突して混合、乳化又は分散処理された後、混合、乳化又は分散された液剤が流出管を通って流出するように構成された超音波分散装置を提供するものである。   The present invention includes a piezoelectric body that generates ultrasonic waves, and a structure that is in surface contact with the piezoelectric body and mixes, emulsifies, or disperses two or more liquids. The structure includes two or more inflow pipes, 1 Two outflow pipes, and a mixing section formed by connecting the inflow pipe and the outflow pipe, and two or more liquids respectively flow into the mixing section through the inflow pipe. The present invention provides an ultrasonic dispersion device configured such that a liquid agent mixed, emulsified or dispersed after being collided while being subjected to ultrasonic waves and mixed, emulsified or dispersed, flows out through an outflow pipe.

本発明により、異なる複数の液体を接触すると同時に超音波処理することにより、低振動で混合、乳化又は分散が可能な超音波分散装置を提供することができる。更に、低振動に加えて、構造体の外側から振動させ、超音波のエネルギーを構造体全体でその内部に集中させることにより、乾電池や充電池での使用が容易となり、使用場所を選ぶ必要がなくなり、かつ軽量・小型化し得る超音波分散装置を提供することができる。   According to the present invention, it is possible to provide an ultrasonic dispersion apparatus capable of mixing, emulsifying, or dispersing with low vibration by simultaneously contacting a plurality of different liquids and performing ultrasonic treatment. Furthermore, in addition to low vibration, it is vibrated from the outside of the structure and the ultrasonic energy is concentrated inside the entire structure, making it easy to use with dry batteries and rechargeable batteries. It is possible to provide an ultrasonic dispersion device that is eliminated and can be reduced in weight and size.

本発明の超音波分散装置の実施の態様について、図面を参照して説明する。図1は、本発明の超音波分散装置の一実施態様を示す断面模式図である。
図1に示すように、超音波分散装置1は、超音波を発生する圧電体10と、圧電体10と面接触し2液以上の液体を混合、乳化又は分散させる構造体20とからなる。構造体20は、2つ以上の流入管21、21' と、1つの流出管22と、流入管21、21' と流出管22とが連結してなる混合部30とを具備する。
流入管21、21' は、圧電体10と構造体20とが接触する面と略平行な方向に配設されている。また、流出管22は、圧電体10と構造体20とが接触する面近傍から面外方向に延びるように配設されることが好ましく、図1に示すように、圧電体10と構造体20とが接触する面に略直交する方向に延びるように配設されることが特に好ましい。
なお、圧電体10と構造体20とが接触する面は、通常、接着剤で超音波振動に耐えられる強度に接着・固定される。
流入管21、21' 及び流出管22の管内断面形状は、円形、楕円形、正方形、長方形等のいずれでも良い。
混合部30は、図1において円の点線で囲われた部分を示し、流入管21、21' と流出管22との連結部23のみならず、流入管21、21' の一部及び流出管22の一部をも含む。
本発明においては、混合、乳化又は分散前の液体を「液体」といい、混合、乳化又は分散後の液体を「液剤」という。
Embodiments of the ultrasonic dispersion apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the ultrasonic dispersion apparatus of the present invention.
As shown in FIG. 1, the ultrasonic dispersion apparatus 1 includes a piezoelectric body 10 that generates ultrasonic waves, and a structure 20 that is in surface contact with the piezoelectric body 10 and mixes, emulsifies, or disperses two or more liquids. The structure 20 includes two or more inflow pipes 21, 21 ′, one outflow pipe 22, and a mixing unit 30 formed by connecting the inflow pipes 21, 21 ′ and the outflow pipe 22.
The inflow pipes 21 and 21 ′ are arranged in a direction substantially parallel to the surface where the piezoelectric body 10 and the structure 20 are in contact with each other. Further, the outflow pipe 22 is preferably arranged so as to extend in the out-of-plane direction from the vicinity of the surface where the piezoelectric body 10 and the structure 20 are in contact with each other, and as shown in FIG. It is particularly preferable to be disposed so as to extend in a direction substantially perpendicular to the surface in contact with.
In addition, the surface where the piezoelectric body 10 and the structure 20 are in contact is usually bonded and fixed with an adhesive to a strength that can withstand ultrasonic vibration.
The in-tube cross-sectional shapes of the inflow pipes 21, 21 ′ and the outflow pipe 22 may be any of circular, elliptical, square, rectangular, and the like.
The mixing part 30 shows a part surrounded by a dotted line in FIG. 1, and not only the connecting part 23 between the inflow pipes 21 and 21 ′ and the outflow pipe 22, but also a part of the inflow pipes 21 and 21 ′ and the outflow pipe. A part of 22 is also included.
In the present invention, the liquid before mixing, emulsification or dispersion is referred to as “liquid”, and the liquid after mixing, emulsification or dispersion is referred to as “liquid agent”.

本発明の超音波分散装置1は、上記の構成の装置により、2液以上の液体がそれぞれ流入管21、21' を通って混合部30へ流入し、更に混合部30で超音波を受けつつ衝突して混合、乳化又は分散し、混合、乳化又は分散された液剤が流出管22を通って流出することを特徴とする。超音波の圧力と振動により活性化され混合、乳化又は分散され易い状態になった複数の液体が衝突することにより、一気に混合、乳化又は分散が進行し、混合、乳化又は分散した液剤が流出管22内で超音波振動により更に安定な混合、乳化又は分散状態となる。
混合部30に超音波振動エネルギーを集中するためには、圧電体10と構造体20とが接触した面から前記混合部の中心(特に、連結部23の中心)までの距離を超音波の波長の長さの1/8の整数倍とすることが好ましい。
The ultrasonic dispersion apparatus 1 of the present invention is configured so that two or more liquids flow into the mixing unit 30 through the inflow pipes 21 and 21 ′ and receive ultrasonic waves in the mixing unit 30. It is characterized by mixing, emulsifying or dispersing by colliding, and the mixed, emulsified or dispersed liquid flowing out through the outflow pipe 22. When a plurality of liquids activated by ultrasonic pressure and vibration collide with each other and easily mixed, emulsified or dispersed, the mixture, emulsification or dispersion progresses all at once, and the mixed, emulsified or dispersed liquid agent flows out. In 22, a more stable mixed, emulsified or dispersed state is obtained by ultrasonic vibration.
In order to concentrate the ultrasonic vibration energy on the mixing unit 30, the distance from the surface where the piezoelectric body 10 and the structure 20 are in contact to the center of the mixing unit (particularly, the center of the connecting unit 23) is set to the wavelength of the ultrasonic wave. It is preferable to make it an integral multiple of 1/8 of the length of.

本発明の超音波分散装置1に用いられる圧電体10及び構造体20の形状は、立方体、直方体、四角柱等でも良いが、円板状、円盤状又はドーナツ状が好ましい。圧電体10の外径は構造体20の外径より小さくても良いし、同じでも良い。
圧電体10は、圧電振動子のみでも良いが、圧電振動子に増幅用ホーンが付属したものでも良い。圧電振動子を作動する発振回路及び電源(電池等)は、超音波分散装置1の外部に設置されるのが好ましい。
The shape of the piezoelectric body 10 and the structure 20 used in the ultrasonic dispersion apparatus 1 of the present invention may be a cube, a rectangular parallelepiped, a quadrangular prism, or the like, but a disk shape, a disk shape, or a donut shape is preferable. The outer diameter of the piezoelectric body 10 may be smaller than or equal to the outer diameter of the structure 20.
The piezoelectric body 10 may be a piezoelectric vibrator alone, or a piezoelectric vibrator with an amplifying horn attached thereto. It is preferable that an oscillation circuit and a power source (battery or the like) for operating the piezoelectric vibrator are installed outside the ultrasonic dispersion apparatus 1.

図2は、本発明の超音波分散装置の他の実施態様を示す断面模式図である。図2−a乃至図2−gでは、いずれも流入管21、21' が、圧電体10と構造体20とが接触する面と略平行な方向に配設されている。また、図2−a乃至図2−d、図2−f及び図2−gでは、流出管22は、圧電体10と構造体20とが接触する面に略直交する方向に延びるように配設されている。図2−eでは、流出管22は、圧電体10と構造体20とが接触する面と略平行な方向に配設されている。   FIG. 2 is a schematic cross-sectional view showing another embodiment of the ultrasonic dispersion apparatus of the present invention. 2A to 2G, the inflow pipes 21 and 21 ′ are arranged in a direction substantially parallel to the surface where the piezoelectric body 10 and the structure body 20 are in contact with each other. 2A to 2D, 2F, and 2G, the outflow pipe 22 is arranged so as to extend in a direction substantially orthogonal to the surface where the piezoelectric body 10 and the structure 20 are in contact. It is installed. In FIG. 2E, the outflow pipe 22 is disposed in a direction substantially parallel to the surface where the piezoelectric body 10 and the structure 20 are in contact.

図2−aでは、液体及び液剤の滞留時間を長くとるために混合部30にポット形状の液体及び液剤の滞留部を設けている。これにより、液体及び液剤が超音波振動を受ける時間が長くなるので、更に安定な混合、乳化又は分散状態の液剤が得られることとなる。
図2−bでは、流入管21、21' の管内断面積(内径)を流出管22の管内断面積(内径)より小さくすることにより、液体の衝突時の衝撃度を高めて、混合、乳化又は分散性を向上する。図示はしないが逆に流入管21、21'の管内断面積を流出管22の管内断面積より大きくすることにより、管の詰まりを防止できる。
図2−cでは、流入管21、21' の管内断面積(内径)を流出管22の管内断面積(内径)より大きくすると共に、流入管21、21' それぞれを折り曲げ、液体が連結部23で衝突する前に、それぞれの液体が単独で予備衝突し、液体の活性を高めて、混合、乳化又は分散性を向上する。
In FIG. 2A, in order to increase the residence time of the liquid and the liquid agent, the mixing part 30 is provided with a pot-like liquid and liquid agent retention part. As a result, the time during which the liquid and the liquid agent are subjected to ultrasonic vibration becomes longer, so that a more stable mixed, emulsified or dispersed liquid agent can be obtained.
In FIG. 2B, the in-tube cross-sectional area (inner diameter) of the inflow pipes 21 and 21 ′ is made smaller than the in-tube cross-sectional area (inner diameter) of the outflow pipe 22, thereby increasing the impact level at the collision of the liquid, and mixing and emulsification. Or dispersibility is improved. Although not shown, conversely, by making the in-tube cross-sectional area of the inflow pipes 21 and 21 ′ larger than the in-tube cross-sectional area of the outflow pipe 22, clogging of the pipe can be prevented.
In FIG. 2C, the in-tube cross-sectional area (inner diameter) of the inflow pipes 21 and 21 ′ is made larger than the in-tube cross-sectional area (inner diameter) of the outflow pipe 22, and the inflow pipes 21 and 21 ′ are bent, respectively. Before the collision, the respective liquids are preliminarily collided alone to increase the activity of the liquid and improve the mixing, emulsification or dispersibility.

図2−dでは、圧電体10を大口径の円板状とし、外径を構造体20の外径と同じとしたので、それぞれの液体が衝突前に流入管21で超音波をより長時間受けるので、より活性化され、混合、乳化又は分散性を向上する。
図2−eでは、流出管22が、圧電体10と構造体20とが接触する面と略平行な方向に配設されているので、液剤が流出管22で超音波振動を受ける時間が短くなり、液剤の混合、乳化又は分散状態の安定性という点では、図2−a乃至図2−d及び図2−f乃至図2−gには及ばない。
一方、図2−f及び図2−gでは、構造体20中の流出管22の長さを長くしたことにより、超音波振動エネルギーの強い管内部分を2カ所得ることができので、乳化又は分散した液剤が流出管22内で、更に強力な超音波振動を受け、更に安定な混合、乳化又は分散状態となり、特に好ましい。
In FIG. 2D, since the piezoelectric body 10 has a large-diameter disk shape and the outer diameter is the same as the outer diameter of the structure 20, the ultrasonic waves are applied to the inflow pipe 21 for a longer time before each liquid collides. Since it receives, it becomes more activated and improves mixing, emulsification or dispersibility.
In FIG. 2E, since the outflow tube 22 is disposed in a direction substantially parallel to the surface where the piezoelectric body 10 and the structure 20 are in contact, the time during which the liquid agent is subjected to ultrasonic vibration in the outflow tube 22 is short. Thus, in terms of the stability of mixing, emulsification, or dispersion of the liquid agent, it does not reach FIGS. 2-a to 2-d and FIGS. 2-f to 2-g.
On the other hand, in FIG. 2-f and FIG. 2-g, since the length of the outflow tube 22 in the structure 20 is increased, two portions in the tube having strong ultrasonic vibration energy can be obtained. The obtained liquid agent is particularly preferable because it is subjected to stronger ultrasonic vibration in the outflow pipe 22 and becomes a more stable mixed, emulsified or dispersed state.

図3は、本発明の超音波分散装置の実施態様の構造体の液体の流入及び液剤の流出の経路を示す平面模式図である。図3−a乃至図3−hにおいては、圧電体10と構造体20とが接触する面と略平行な方向に流入管21、21' 、21'' 、21''' が配設されている。図3−a乃至図3−fにおいては、圧電体10と構造体20とが接触する面近傍から面外方向に延びるように流出管22が配設されている。
図3−a及び図3−bでは、いずれも流入管21、21' が2つ存在し、図3−aは流入管21、21' が互いに対向して、同一直線を形成するように配設され、図3−bは、流入管21、21' が互いにV字形を形成するように配設されている。2つの流入管21、21' が成す角度は、5〜180°、好ましくは30〜180°まで自由に採り得る。
FIG. 3 is a schematic plan view showing the flow path of the liquid and the flow of the liquid in the structure of the embodiment of the ultrasonic dispersion apparatus of the present invention. In FIGS. 3A to 3H, inflow pipes 21, 21 ′, 21 ″, 21 ′ ″ are arranged in a direction substantially parallel to a surface where the piezoelectric body 10 and the structure 20 are in contact with each other. Yes. 3A to 3F, the outflow pipe 22 is disposed so as to extend in the out-of-plane direction from the vicinity of the surface where the piezoelectric body 10 and the structure 20 are in contact with each other.
3A and 3B, there are two inflow pipes 21 and 21 ', and FIG. 3A is arranged so that the inflow pipes 21 and 21' face each other and form the same straight line. In FIG. 3B, the inflow pipes 21 and 21 'are arranged so as to form a V shape. The angle formed by the two inflow pipes 21 and 21 ′ can be freely set to 5 to 180 °, preferably 30 to 180 °.

図3−c乃至図3−eでは、流入管21、21' 、21'' が3つ存在し、図3−cでは、流入管21、21' 、21'' が互いにY字形を形成するように配設され、図3−dでは、互いにT字形を形成するように配設されている。また、図3−eでは、3つの流入管21、21' 、21'' が矢印形を形成するように配設されている。3つの流入管21、21' 、21'' の内、2つが成す角度は、5〜350°、好ましくは30〜300°まで自由に採り得る。
図3−fでは、流入管21、21' 、21'' 、21''' が4つ存在し、互いに略十字形を形成するように配設されている。
図3−gでは、圧電体10と構造体20とが接触する面と略平行な方向に2つの流入管21、21' 及び1つの流出管22が配設されている。
図3−hは、予め予備的に混合した液体を一直線に連結された流入管21から流出管22へ衝突することなくスムーズに流すものであり、比較例に相当するものである。
In FIGS. 3C to 3E, there are three inflow pipes 21, 21 ′ and 21 ″. In FIG. 3C, the inflow pipes 21, 21 ′ and 21 ″ form a Y-shape. In FIG. 3D, they are arranged so as to form a T shape. In FIG. 3E, three inflow pipes 21, 21 ′, 21 ″ are arranged so as to form an arrow shape. Of the three inflow pipes 21, 21 ', 21'', the angle formed by two can be freely selected from 5 to 350 °, preferably 30 to 300 °.
In FIG. 3F, there are four inflow pipes 21, 21 ′, 21 ″, 21 ′ ″, which are arranged so as to form a substantially cross shape.
In FIG. 3G, two inflow pipes 21 and 21 ′ and one outflow pipe 22 are arranged in a direction substantially parallel to the surface where the piezoelectric body 10 and the structure 20 are in contact with each other.
FIG. 3H shows a preliminarily mixed liquid that flows smoothly without colliding from the inflow pipe 21 connected in a straight line to the outflow pipe 22, and corresponds to a comparative example.

本発明の超音波分散装置1に用いられる構造体20の材質として、例えば、アクリル樹脂(伝達速度:2,700m/s、振幅:0.97μmp−p、ヤング率:9MPa)、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂(伝達速度:2,210m/s、振幅:1.15μmp−p、ヤング率:4MPa)、ポリエチレン樹脂(伝達速度:1,950m/s、振幅:1.48μmp−p、ヤング率:3MPa)、ポリウレタン樹脂(硬度40)(伝達速度:1,600m/s、振幅:0.02μmp−p、ヤング率:2MPa)、アルミニウム合金5056(伝達速度:5,211m/s、振幅:0.02μmp−p、ヤング率:71MPa)等が用いられる。材質は単体で良いが、複合系(樹脂又は金属からなる材料を一体成形されたもの等)でも良い。また構造体の材質で特に伝達速度が高く、ヤング率が低い樹脂で特性が良い。
ここで、伝達速度及び振幅は、図4に示す振動速度測定箇所(距離:L)にて振動速度計を用いて測定した。なお、図4−aは本発明の超音波分散装置1の断面模式図である。図4−bは図4−aの装置1を上から見た平面模式図である。
Examples of the material of the structure 20 used in the ultrasonic dispersion apparatus 1 of the present invention include acrylic resin (transmission speed: 2,700 m / s, amplitude: 0.97 μmp-p, Young's modulus: 9 MPa), acrylonitrile-butadiene- Styrene (ABS) resin (transmission speed: 2,210 m / s, amplitude: 1.15 μmp-p, Young's modulus: 4 MPa), polyethylene resin (transmission speed: 1,950 m / s, amplitude: 1.48 μmp-p, Young Rate: 3 MPa), polyurethane resin (hardness 40) (transmission speed: 1,600 m / s, amplitude: 0.02 μmp-p, Young's modulus: 2 MPa), aluminum alloy 5056 (transmission speed: 5,211 m / s, amplitude: 0.02 μmp-p, Young's modulus: 71 MPa) or the like is used. The material may be a single material, but may be a composite system (such as a material integrally formed of resin or metal). In addition, the material of the structure is particularly good when it has a high transmission speed and a low Young's modulus.
Here, the transmission speed and the amplitude were measured using a vibration velocimeter at a vibration speed measurement location (distance: L) shown in FIG. FIG. 4A is a schematic cross-sectional view of the ultrasonic dispersion apparatus 1 of the present invention. FIG. 4B is a schematic plan view of the device 1 in FIG.

本発明の超音波分散装置1に用いられる液体として、例えば、乳化した液剤を製造する場合は、水相成分の液体及び油相成分の液体が好適に用いられる。例えば油相成分としてサラダ油、水相成分として精製水を用い、(油5−20%)の乳化液剤を製造する場合が挙げられる。水相成分同士を混合する場合としては、精製水と水溶性の1,3−ブチレングリコールを混合し、例えば5%水溶液を製造する場合が挙げられる。油相成分同士を混合する場合としては、パラメトキシケイ皮酸2−エチルヘキシルとメチルシクロポリシロキサンとを混合し、質量比(1:1)の混合物を製造する場合が挙げられる。
また、油相成分、水相成分の少なくとも一方が、多液であったり、固形分を入れたものであっても良い。例えば、油相成分がパラメトキシケイ皮酸2−エチルヘキシル及びメチルシクロポリシロキサンに固形分セタノールを溶かした混合物、並びにパラメトキシケイ皮酸2−エチルヘキシルとメチルシクロポリシロキサンとの混合物であって、水相成分として精製水と1,3−ブチレングリコールとの混合物を用い、これら3種の液体を混合して、乳化液剤を製造する場合が挙げられる。
本発明の超音波分散装置1を用いて、2液以上の液体を混合、乳化又は分散させて1種の液剤を製造することにより、乳化液剤を使用する直前に製造することができる。また、界面活性剤を含まない形で、乳化液剤や微粒子分散液剤等を製造することができる。
For example, in the case of producing an emulsified liquid as the liquid used in the ultrasonic dispersion apparatus 1 of the present invention, an aqueous phase component liquid and an oil phase component liquid are preferably used. For example, salad oil is used as the oil phase component, and purified water is used as the water phase component to produce an emulsion of (oil 5-20%). Examples of mixing aqueous phase components include a case where purified water and water-soluble 1,3-butylene glycol are mixed to produce, for example, a 5% aqueous solution. As a case where oil phase components are mixed together, there is a case where 2-ethylhexyl paramethoxycinnamate and methylcyclopolysiloxane are mixed to produce a mixture having a mass ratio (1: 1).
Further, at least one of the oil phase component and the water phase component may be a multi-liquid or a solid component. For example, the oil phase component may be a mixture of 2-methoxyhexyl paramethoxycinnamate and methylcyclopolysiloxane in which solid cetanol is dissolved, and a mixture of 2-ethylhexyl paramethoxycinnamate and methylcyclopolysiloxane, The case where a mixture of purified water and 1,3-butylene glycol is used as a phase component, and these three liquids are mixed to produce an emulsion liquid.
By using the ultrasonic dispersion apparatus 1 of the present invention, two or more liquids are mixed, emulsified or dispersed to produce one type of liquid, which can be produced immediately before using the emulsified liquid. Moreover, an emulsified liquid agent, a fine particle dispersion liquid agent, etc. can be manufactured in the form which does not contain surfactant.

実施例に用いた圧電体等の形状・材料、超音波条件及び評価方法
1.圧電体
タブレット(形状:ドーナッツ)型圧電振動子(タムラ製作所社製、商標「TBLE1507」)及びディッシュ(形状:円板状)型圧電振動子(同、商標「TDSE20」)に、エポキシ系2液硬化型接着剤を用いて、構造体を接着した。実施例1〜3、6、8、9及び比較例2はタブレット型、4、5、7、10はディッシュ型とした。また、比較例1は構造体を接着せずにタブレット型のみとした。
また、比較例3〜5はボルト締めランジュバン型(BLT)振動子とした。
2.液体及び液剤
実施例1〜10は、いずれも油相成分としてサラダ油、水相成分として精製水を用い、油10%の乳化液剤を製造した。比較例1〜5は、いずれも油相成分としてのサラダ油と水相成分としての精製水を予め手でシェイキングし混合した液体を用いた。
3.構造体の形状及び材料
実施例1〜4及び6〜8は、いずれも図2−f及び図3−a記載の形状(太い円筒と細い円筒の複合形状)で、太い円筒部分の直径は20mm、厚さは16.6mmであり、細い円筒部分の直径は10mm、厚さは5.5mmであった。材料として実施例1〜4及び7ではABS樹脂(伝達速度:2,210m/s、振幅:1.15μmp−p、ヤング率:4MPa)を、実施例6ではポリエチレン樹脂(伝達速度:1,950m/s、振幅:1.48μmp−p、ヤング率:3MPa)を、実施例8ではアルミニウム合金5056(伝達速度:5,211m/s、振幅:0.02μmp−p、ヤング率:71MPa)を用いた。実施例5は図2−f及び図3−a記載の形状で、太い円筒部分の直径は20mm、厚さは20.3mmであり、細い円筒部分の直径は10mm、厚さは6.8mmであった。材料としてアクリル樹脂(伝達速度:2,700m/s、振幅:0.97μmp−p、ヤング率:9MPa)を用いた。
実施例9及び10は構造体の波長をずらした例で、図2−f及び図3−a記載の形状で、太い円筒部分の直径は20mm、厚さは18mmであり、細い円筒部分の直径は10mm、厚さは5.5mmであった。材料としてABS樹脂を用いた。
比較例1及び3〜5は、液体を100mlビーカーに計量し、比較例1は圧電体に防水を施した素子を直接液体に接触させ、比較例3〜5は、ボルト締めランジュバン型(BLT)振動子を直接液体に接触させた。比較例2は、図2−e及び図3−h記載の形状で、太い円筒部分の直径は20mm、厚さは11.1mmで液を通過させた。
4.超音波条件
実施例1〜10及び比較例1及び2はいずれも100kHz、比較例3〜5はボルト締めランジュバン型(BLT)振動子は70kHzの超音波をそれぞれ発生させた。また、実施例1〜7、9、10及び比較例5では、充電池単3型4本を使用し、2Wの出力の電源を用いた。実施例8ならびに比較例3及び4の電源は、W数を表1及び2に示した。
5.乳化状態の評価
以下の評価基準により、目視にて評価した。
良好:得られた液剤は白濁であり、良好に乳化していた。
やや良好:得られた液剤にわずかに分離が見られたが、ほぼ良好に乳化しており実用上問題なかった。
やや不良:得られた液剤に分離が見られ、乳化が不十分であった。
不良:得られた液剤は分離し、乳化していなかった。
1. Shape / material such as piezoelectric material used in examples, ultrasonic conditions and evaluation method Piezoelectric Tablet (shape: donut) type piezoelectric vibrator (trade name “TBLE1507” manufactured by Tamura Corporation) and dish (shape: disk-like) type piezoelectric vibrator (same trade name: “TDSE20”), two epoxy liquids The structure was bonded using a curable adhesive. Examples 1-3, 6, 8, 9 and Comparative Example 2 were tablet-type, and 4, 5, 7, and 10 were dish-type. In Comparative Example 1, only the tablet type was used without attaching the structure.
Comparative Examples 3 to 5 were bolt-clamped Langevin type (BLT) vibrators.
2. Liquids and Liquids In Examples 1 to 10, an emulsion liquid of 10% oil was produced using salad oil as the oil phase component and purified water as the water phase component. In each of Comparative Examples 1 to 5, a liquid in which salad oil as an oil phase component and purified water as an aqueous phase component were previously shaken by hand and mixed was used.
3. Shape and Material of Structure Examples 1 to 4 and 6 to 8 are all the shapes described in FIGS. 2-f and 3-a (a composite shape of a thick cylinder and a thin cylinder), and the diameter of the thick cylindrical portion is 20 mm. The thickness was 16.6 mm, the diameter of the thin cylindrical portion was 10 mm, and the thickness was 5.5 mm. In Examples 1 to 4 and 7, the material is ABS resin (transmission speed: 2,210 m / s, amplitude: 1.15 μmp-p, Young's modulus: 4 MPa), and in Example 6, polyethylene resin (transmission speed: 1,950 m). / S, amplitude: 1.48 μmp-p, Young's modulus: 3 MPa), Example 8 uses aluminum alloy 5056 (transmission speed: 5,211 m / s, amplitude: 0.02 μmp-p, Young's modulus: 71 MPa) It was. Example 5 has the shape shown in FIGS. 2F and 3A, the diameter of the thick cylindrical portion is 20 mm and the thickness is 20.3 mm, the diameter of the thin cylindrical portion is 10 mm, and the thickness is 6.8 mm. there were. Acrylic resin (transmission speed: 2,700 m / s, amplitude: 0.97 μmp-p, Young's modulus: 9 MPa) was used as the material.
Examples 9 and 10 are examples in which the wavelength of the structure is shifted, and in the shapes described in FIGS. 2-f and 3-a, the diameter of the thick cylindrical part is 20 mm, the thickness is 18 mm, and the diameter of the thin cylindrical part. Was 10 mm and the thickness was 5.5 mm. ABS resin was used as the material.
In Comparative Examples 1 and 3-5, the liquid was measured in a 100 ml beaker. In Comparative Example 1, a waterproof element was contacted with the liquid directly. In Comparative Examples 3-5, bolted Langevin type (BLT) The vibrator was brought into direct contact with the liquid. Comparative Example 2 has the shape described in FIGS. 2E and 3H, and the liquid was allowed to pass through the thick cylindrical portion with a diameter of 20 mm and a thickness of 11.1 mm.
4). Ultrasonic Conditions Examples 1 to 10 and Comparative Examples 1 and 2 both generated ultrasonic waves of 100 kHz, and Comparative Examples 3 to 5 generated ultrasonic waves of 70 kHz with bolted Langevin type (BLT) transducers. Moreover, in Examples 1-7, 9, 10 and Comparative Example 5, four AA-type rechargeable batteries were used, and a power source with 2 W output was used. For the power sources of Example 8 and Comparative Examples 3 and 4, the W numbers are shown in Tables 1 and 2.
5. Evaluation of emulsified state It evaluated visually by the following evaluation criteria.
Good: The obtained liquid was cloudy and was well emulsified.
Slightly good: Although slight separation was observed in the obtained liquid agent, it was emulsified almost satisfactorily, and there was no practical problem.
Slightly poor: Separation was observed in the obtained liquid agent, and emulsification was insufficient.
Poor: The obtained liquid was separated and not emulsified.

実施例1〜10及び比較例1〜5
上記のものを用い、表1及び2に示す条件で、実施例1〜10及び比較例1〜5の15種類の得られた乳化液剤の乳化状態を評価した。結果を表1及び2に示す。
Examples 1-10 and Comparative Examples 1-5
Using the above, under the conditions shown in Tables 1 and 2, the emulsified state of 15 types of the obtained emulsions of Examples 1 to 10 and Comparative Examples 1 to 5 was evaluated. The results are shown in Tables 1 and 2.

Figure 0005081487
Figure 0005081487

Figure 0005081487
Figure 0005081487

表1及び2により明らかなように、実施例1〜10の本発明の超音波分散装置は、比較例1及び2の超音波分散装置と比較して、異なる複数の液体の衝突と超音波処理とを同時に行う相乗効果によって、低振動で分散・乳化が可能となり、乾電池や充電池での使用が容易となるので、使用場所を選ぶ必要がなくなり、かつ軽量・小型化ができる超音波分散装置を提供するができた。さらに、本発明の超音波分散装置を用いることにより、界面活性剤を含まない形で、新鮮な乳化液剤や微粒子分散液剤等を製造することができることとなった。
実施例9及び10は構造体の波長を超音波の波長の1/8の整数倍からずらしたので、実施例2及び4の良好な乳化状態と比較して、やや良好な乳化状態のレベルに留まったが、実用上問題のない乳化状態であった。
充電池単3タイプを8本使用することにより、10Wの電力を圧電体に付加可能であるが、充電池の重量がおよそ250g近くになる。軽量・小型化を目的としている機器で、本体重量を200g以上とすると重く操作性が悪くなることから、実施例1〜10において、10W以下の電力、特に実施例1〜7、9及び10において、2Wの電力で良好な乳化状態を得たのは、驚くべき効果と言える。
一方、ボルト締めランジュバン型(BLT)振動子を用いた比較例3及び4は、複数の液体を衝突させることなく、良好な乳化状態を得たが、AC電源を必要とし、超音波分散装置を軽量・小型化することができなかった。比較例5は付加電力が低いためBLT振動子を有効に作動させることができず、乳化状態は不十分であった。
As is clear from Tables 1 and 2, the ultrasonic dispersion apparatus of the present invention of Examples 1 to 10 is different from the ultrasonic dispersion apparatuses of Comparative Examples 1 and 2 in the collision and ultrasonic treatment of different liquids. Because of the synergistic effect of the simultaneous operation, dispersion and emulsification are possible with low vibration, making it easy to use in dry batteries and rechargeable batteries, so there is no need to select the place of use, and the ultrasonic dispersion device can be reduced in weight and size Could be provided. Furthermore, by using the ultrasonic dispersion apparatus of the present invention, it was possible to produce a fresh emulsion liquid, fine particle dispersion liquid, etc. in a form not containing a surfactant.
Since Examples 9 and 10 shifted the wavelength of the structure from an integer multiple of 1/8 of the wavelength of the ultrasonic wave, compared to the good emulsified state of Examples 2 and 4, the level of the emulsified state was slightly better. Although it stayed, it was in an emulsified state with no practical problems.
By using eight AA type rechargeable batteries, it is possible to add 10 W of electric power to the piezoelectric body, but the weight of the rechargeable battery is approximately 250 g. In the device aiming at light weight and downsizing, if the weight of the main body is 200 g or more, it becomes heavy and the operability deteriorates. Therefore, in Examples 1 to 10, power of 10 W or less, particularly in Examples 1 to 7, 9 and 10 Obtaining a good emulsified state with a power of 2 W is a surprising effect.
On the other hand, Comparative Examples 3 and 4 using a bolted Langevin type (BLT) vibrator obtained a good emulsified state without colliding a plurality of liquids, but required an AC power source, and installed an ultrasonic dispersion device. It was not possible to reduce the weight and size. In Comparative Example 5, since the applied power was low, the BLT vibrator could not be operated effectively, and the emulsified state was insufficient.

本発明の超音波分散装置は、化粧品、薬品、食品、ヘアケア製品等の液剤商品を使用直前に簡便に製造する超音波分散装置として好適に用いられる。   The ultrasonic dispersion apparatus of the present invention is suitably used as an ultrasonic dispersion apparatus for simply producing liquid products such as cosmetics, medicines, foods, and hair care products immediately before use.

本発明の超音波分散装置の一実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows one embodiment of the ultrasonic dispersion apparatus of this invention. 本発明の超音波分散装置の他の実施態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the other embodiment of the ultrasonic dispersion apparatus of this invention. 本発明の超音波分散装置の実施態様の構造体の液体の流入及び液剤の流出の経路を示す平面模式図である。It is a plane schematic diagram which shows the path | route of the inflow of the liquid of the structure of the embodiment of the ultrasonic dispersion apparatus of this invention, and the outflow path of a liquid agent. 本発明の超音波分散装置の振動速度の測定箇所を示す断面模式図である。It is a cross-sectional schematic diagram which shows the measurement location of the vibration speed of the ultrasonic dispersion apparatus of this invention.

符号の説明Explanation of symbols

1:超音波分散装置
10:圧電体
20:構造体
21:流入管
22:流出管
23:連結部
30:混合部
1: Ultrasonic dispersion device 10: Piezoelectric body 20: Structure 21: Inflow pipe 22: Outflow pipe 23: Connection part 30: Mixing part

Claims (5)

超音波を発生する圧電体と、該圧電体と面接触し2液以上の液体を混合、乳化又は分散させる構造体とからなり、
該構造体は、太い円筒と細い円筒とが互いの円筒端面で同心円状に連結してなる複合形状であり、2以上の流入管と、1つの流出管と、該流入管と該流出管とが連結してなる混合部とを具備し、
前記圧電体は、構造体の太い円筒端面と面接触しており、
前記2以上の流入管の流入口がそれぞれ前記太い円筒外周面にあり、
前記流出管の流出口が前記細い円筒端面にあり、
2液以上の液体がそれぞれ該流入管を通って該混合部へ流入し、
更に該混合部で超音波を受けつつ衝突して混合、乳化又は分散処理された後、混合、乳化又は分散された液剤が流出管を通って流出するように構成された超音波分散装置。
A piezoelectric body that generates ultrasonic waves and a structure that is in surface contact with the piezoelectric body and mixes, emulsifies, or disperses two or more liquids;
The structure has a composite shape in which a thick cylinder and a thin cylinder are concentrically connected to each other at the end surfaces of the cylinders , and two or more inflow pipes, one outflow pipe, the inflow pipe, the outflow pipe, And a mixing part formed by coupling,
The piezoelectric body is in surface contact with the thick cylindrical end surface of the structure,
The inlets of the two or more inflow pipes are respectively on the outer circumference of the thick cylinder;
The outlet of the outlet pipe is at the end of the thin cylinder;
Two or more liquids each flow into the mixing section through the inflow pipe,
Furthermore, an ultrasonic dispersion apparatus configured such that a liquid agent mixed, emulsified or dispersed is collided while receiving ultrasonic waves in the mixing unit and mixed, emulsified or dispersed, and then the mixed, emulsified or dispersed liquid flows out through the outflow pipe.
前記流出管が、前記圧電体と前記構造体とが接触する面近傍から面外方向に延びるように配設されてなる請求項1に記載の超音波分散装置。   The ultrasonic dispersion apparatus according to claim 1, wherein the outflow pipe is disposed so as to extend in an out-of-plane direction from a vicinity of a surface where the piezoelectric body and the structure are in contact with each other. 前記流出管が、前記圧電体と前記構造体とが接触する面に略直交する方向に延びるように配設されてなる請求項2に記載の超音波分散装置。   The ultrasonic dispersion apparatus according to claim 2, wherein the outflow pipe is disposed so as to extend in a direction substantially orthogonal to a surface where the piezoelectric body and the structure are in contact with each other. 前記流入管が、前記圧電体と前記構造体とが接触する面と略平行な方向に配設されてなる請求項1〜3のいずれかに記載の超音波分散装置。   The ultrasonic dispersion apparatus according to claim 1, wherein the inflow pipe is disposed in a direction substantially parallel to a surface where the piezoelectric body and the structure are in contact with each other. 前記圧電体と前記構造体とが接触する面から前記混合部の中心までの距離が超音波の波長の1/8の整数倍である請求項1〜4のいずれかに記載の超音波分散装置。   The ultrasonic dispersion apparatus according to any one of claims 1 to 4, wherein a distance from a surface where the piezoelectric body and the structure are in contact to a center of the mixing unit is an integral multiple of 1/8 of an ultrasonic wavelength. .
JP2007101074A 2007-04-06 2007-04-06 Ultrasonic disperser Active JP5081487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101074A JP5081487B2 (en) 2007-04-06 2007-04-06 Ultrasonic disperser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101074A JP5081487B2 (en) 2007-04-06 2007-04-06 Ultrasonic disperser

Publications (2)

Publication Number Publication Date
JP2008253947A JP2008253947A (en) 2008-10-23
JP5081487B2 true JP5081487B2 (en) 2012-11-28

Family

ID=39978086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101074A Active JP5081487B2 (en) 2007-04-06 2007-04-06 Ultrasonic disperser

Country Status (1)

Country Link
JP (1) JP5081487B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290247B2 (en) * 2019-06-19 2023-06-13 国立大学法人東北大学 Ultrasonic treatment device and ultrasonic treatment method
CN112390509A (en) * 2020-10-30 2021-02-23 广州绿邦环境技术有限公司 Sludge modifying agent and production process thereof
CN115814625B (en) * 2022-11-03 2023-09-08 武汉新烽光电股份有限公司 Gas dissolution quantity measuring instrument

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778967A (en) * 1980-11-04 1982-05-17 Toshiba Corp Apparatus for injecting emulsified liquid
JPH0459032A (en) * 1990-06-21 1992-02-25 Nippon Steel Corp Ultrasonic emulsifier
JP2005224746A (en) * 2004-02-16 2005-08-25 Sumitomo Bakelite Co Ltd Minute reaction device and reaction method
JP4543312B2 (en) * 2004-08-10 2010-09-15 横河電機株式会社 Microreactor

Also Published As

Publication number Publication date
JP2008253947A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US10350514B2 (en) Separation of multi-component fluid through ultrasonic acoustophoresis
US10724029B2 (en) Acoustophoretic separation technology using multi-dimensional standing waves
US9340435B2 (en) Separation of multi-component fluid through ultrasonic acoustophoresis
KR101591112B1 (en) Ultrasonic treatment chamber for preparing emulsions
EP2903715B1 (en) Acoustophoretic separation technology using multi-dimensional standing waves
US4118797A (en) Ultrasonic emulsifier and method
JPH11347392A (en) Stirrer
JP5081487B2 (en) Ultrasonic disperser
JP3278846B2 (en) Modular unit for tubular sonicator
US20130315025A1 (en) Method of ultrasonic cavitation treatment of liquid media and the objects placed therein
WO2009102678A3 (en) Mechanical and ultrasound atomization and mixing system
Nguyen et al. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone
JP2014528339A5 (en)
Doinikov et al. Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. I. Case of modes 0 and m
CN104093480A (en) Method for simultaneous cavitation treatment of liquid media varying in composition
Lipkens et al. Separation of micron-sized particles in macro-scale cavities by ultrasonic standing waves
CN100537019C (en) Energy conversion method and device for ultrasonic liquid processing
WO2013172708A1 (en) Method for size-sorting microbubbles and apparatus for the same
CN108160601B (en) Ultrasonic cleaning method
US20160136598A1 (en) Ultrasonic system for mixing multiphase media and liquids, and associated method
RU2592801C1 (en) Combined static mixer-activator
EP4101525A1 (en) Ultrasonic processor for nanoemulsions and nanoliposomes production
JP3178958U (en) Liquid mixing device
KR200249519Y1 (en) A multiple magnetostrictive materal to generate continuous ultrasonic wave
RU2476261C1 (en) Method of exciting acoustic vibrations in fluid medium and apparatus (versions) for realising said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5081487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250