JP5078926B2 - Defect detection method - Google Patents

Defect detection method Download PDF

Info

Publication number
JP5078926B2
JP5078926B2 JP2009041197A JP2009041197A JP5078926B2 JP 5078926 B2 JP5078926 B2 JP 5078926B2 JP 2009041197 A JP2009041197 A JP 2009041197A JP 2009041197 A JP2009041197 A JP 2009041197A JP 5078926 B2 JP5078926 B2 JP 5078926B2
Authority
JP
Japan
Prior art keywords
conductive material
oxide film
potential difference
installation position
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009041197A
Other languages
Japanese (ja)
Other versions
JP2010197166A (en
Inventor
堅也 永久
栄郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009041197A priority Critical patent/JP5078926B2/en
Publication of JP2010197166A publication Critical patent/JP2010197166A/en
Application granted granted Critical
Publication of JP5078926B2 publication Critical patent/JP5078926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、欠陥検出方法に関するものであり、具体的には、クリープ損傷やクリープ疲労損傷の検査に際して、検査対象部位の肉厚を大きく減少させるスキンカットを不要とする技術に関する。   The present invention relates to a defect detection method, and more specifically, to a technique that eliminates the need for a skin cut that greatly reduces the thickness of a site to be inspected when inspecting creep damage or creep fatigue damage.

火力発電所等のボイラやタービンに使用される耐圧部材の中でも、特に温度や圧力が高い部位では、クリープ損傷やクリープ疲労損傷が発生しやすい。このような損傷を受けると、金属組織中にボイドが発生し、それらが合体してき裂に成長・伝播して破壊に至る。 例えば、主蒸気管や再熱蒸気管の他、ボイラ天井ハウジング内のドラムや管寄等の容器、その他容器と炉内伝熱パネルとを接続するスタブ管は、炉外の大気中で高温蒸気を通過させているため、大気中の酸素と部材が化学反応し、部材表面に酸化膜が生成される。こうした部材にも上記のクリープ損傷やクリープ疲労損傷が生じ、特に、母材や溶接金属よりも施工時に複雑な温度履歴を受けた溶接熱影響部でこうした損傷が顕著に現れることが多い。   Among pressure-resistant members used in boilers and turbines of thermal power plants and the like, creep damage and creep fatigue damage are likely to occur particularly in regions where the temperature and pressure are high. When such damage occurs, voids are generated in the metal structure, and they merge together to grow and propagate into the crack, leading to destruction. For example, in addition to the main steam pipe and reheat steam pipe, containers such as drums and pipes in the boiler ceiling housing, and other stub pipes that connect the container and the heat transfer panel in the furnace are used for high-temperature steam in the atmosphere outside the furnace. Therefore, oxygen in the atmosphere and the member chemically react to generate an oxide film on the surface of the member. The above-mentioned creep damage and creep fatigue damage also occur in such a member, and in particular, such damage often appears remarkably in a weld heat-affected zone that receives a more complicated temperature history at the time of construction than a base metal or weld metal.

こうした損傷を検出する為の亀裂欠陥検出技術においては、例えば、部材表面の酸化膜除去や表面を慣らすために金属製部材表面の研削を行った後、浸透探傷検査や磁粉探傷検査を行う手法が一般的に用いられている。亀裂が検出された場合、耐圧部材の必要最小肉厚が確保される範囲内において、亀裂発生部を表面からスキンカットし除去することになる。また、こうしたスキンカット処理によって亀裂除去を行った段階で、必要最小肉厚を割り込んでいる場合は、該当部位に対する溶接補修等を行う。前記スキンカット処理についてはその処理履歴を管理することが行われている(例えば、特許文献1参照)。   In crack defect detection technology for detecting such damage, for example, there is a method of performing penetration inspection and magnetic particle inspection after grinding the surface of a metal member in order to remove the oxide film on the surface of the member and accustom the surface. Commonly used. When a crack is detected, the crack occurrence part is skin-cut from the surface and removed within a range in which the necessary minimum thickness of the pressure-resistant member is ensured. In addition, when the necessary minimum wall thickness is interrupted at the stage where cracks are removed by such skin cut processing, welding repair or the like is performed on the corresponding part. As for the skin cut processing, the processing history is managed (for example, see Patent Document 1).

特開2000−97815号公報JP 2000-97815 A

従来の亀裂欠陥検出技術においては、酸化膜除去等のために検査対象部(溶接熱影響部など)の表面を研削(=スキンカット)するため、耐圧部材中で最も使用条件が過酷な部位の肉厚を減少させることになりやすい。そこで上述のように、検査毎の研削深さを記録したり、残りの肉厚を測定するなどして、耐圧に必要とされる必要最小肉厚までの削り代を管理する必要があった。また、該当部位の削り代が少なくなった場合には、より高コストの検査手法を採用する必要が生じたり、該当部位の溶接補修が必要となる場合もある。さらに、場合によっては母材部や溶接金属部の肉厚が十分に残されていても、部材全体の取替工事が必要となる場合もある。   In the conventional crack defect detection technology, the surface of the inspection target part (welding heat affected part, etc.) is ground (= skin cut) in order to remove the oxide film. It tends to reduce the wall thickness. Therefore, as described above, it is necessary to manage the machining allowance up to the necessary minimum thickness required for pressure resistance by recording the grinding depth for each inspection or measuring the remaining thickness. In addition, when the cutting allowance of the corresponding part is reduced, it may be necessary to adopt a higher cost inspection method, or welding repair of the corresponding part may be required. Furthermore, depending on the case, even if the thickness of the base material portion or the weld metal portion remains sufficiently, replacement work for the entire member may be required.

そこで本発明は上記課題を鑑みてなされたものであり、クリープ損傷やクリープ疲労損傷の検査に際して、検査対象部位の肉厚を大きく減少させるスキンカットを不要とする技術の提供を主たる目的とする。   Accordingly, the present invention has been made in view of the above problems, and a main object of the present invention is to provide a technique that eliminates the need for a skin cut that greatly reduces the thickness of a region to be inspected when inspecting creep damage or creep fatigue damage.

上記課題を解決する本発明の欠陥検出方法は、例えば、火力発電所等のボイラやタービンに使用される耐圧部材などに生じやすいクリープ損傷やクリープ疲労損傷について検出する技術であり、金属部材などの導電材における欠陥検出を行う電位差法を採用した方法である。   The defect detection method of the present invention that solves the above problem is a technique for detecting creep damage or creep fatigue damage that is likely to occur in, for example, pressure-resistant members used in boilers and turbines of thermal power plants, etc. This is a method employing a potential difference method for detecting defects in a conductive material.

電位差法は、導電材に生じた欠陥(亀裂など)を検出するための検査方法であり、欠陥発生が疑われる部位に切削・切断等の処理を行わない非破壊試験である。この電位差法は、金属部材等に亀裂などの欠陥があれば、該当部位周辺に電圧印加した際、欠陥箇所を回避して流れる電流にて電圧降下が生じることを利用し、前記電圧降下を測定し解析することで欠陥のサイズや位置等を推定する。   The potential difference method is an inspection method for detecting a defect (such as a crack) generated in a conductive material, and is a non-destructive test in which processing such as cutting and cutting is not performed on a site where a defect is suspected. This potential difference method uses the fact that if there is a defect such as a crack in a metal member or the like, a voltage drop occurs due to the current flowing around the defective part when a voltage is applied around the relevant part, and the voltage drop is measured. Then, the size and position of the defect are estimated by analysis.

本発明の前記欠陥検出方法は、導電材における欠陥検出を行う電位差法において、前記導電材に関する溶接履歴の情報を、前記導電材の表面の該当箇所にマークを行うか記録媒体に記録する溶接履歴記録工程と、導電材に関する電位差計測を実行するにあたり、該当導電材について計測が初回か否か、前記溶接履歴の情報有無に基づいて判定する第1の判定工程と、前記第1の判定の結果、該当導電材について電位差計測が初めて実行されることが判明した場合、前記導電材表面のマークないし前記記録媒体が示す溶接履歴の情報を読み取り、前記溶接履歴が示す熱影響範囲を回避して前記導電材表面に所定強度の打撃ないし摩擦を加えて酸化膜除去を行う、第1の酸化膜除去工程と、前記第1の判定の結果、該当導電材について過去に電位差計測が実行されていることが判明した場合、該当導電材表面における低融点ガラス封止箇所の有無を判定する第2の判定を実行し、当該第2の判定の結果、低融点ガラス封止箇所が存在した場合、前記導電材表面における低融点ガラスで封止されている箇所に対して所定強度の打撃ないし摩擦を加えて低融点ガラスの除去を行う、第2の酸化膜除去工程と、前記第2の判定の結果、低融点ガラス封止箇所が存在しなかった場合、前記導電材表面のマークないし前記記録媒体が示す溶接履歴の情報と、前記導電材表面のマークないし前記記録媒体が示す電極設置位置の情報を読み取り、前記溶接履歴が示す熱影響範囲および過去に酸化膜除去がなされている箇所を回避して前記導電材表面に所定強度の打撃ないし摩擦を加えて酸化膜除去を行う、第3の酸化膜除去工程と、前記第1〜第3のいずれかの酸化膜除去工程によって酸化膜除去がなされた前記導電材の電極設置位置に電極を当接し、電極間での電流印加および電位差計測を実行し、該当電極設置位置について、前記導電材表面の該当箇所にマークを行うか記録媒体に電極設置位置の情報を記録し、前記電位差計測の実行後、前記酸化膜除去後の前記電極設置位置を低融点ガラスで封止する電位差計測工程と、を実行することを特徴とする。 The defect detection method according to the present invention is a potential difference method for detecting defects in a conductive material. In the potential difference method, welding history information relating to the conductive material is marked or recorded on a recording medium at a corresponding position on the surface of the conductive material. In performing the recording process and the potential difference measurement regarding the conductive material, a first determination step for determining whether the measurement is performed for the conductive material for the first time, based on the presence or absence of information in the welding history, and the result of the first determination When it is found that the potential difference measurement is performed for the conductive material for the first time, the information on the surface of the conductive material or the welding history indicated by the recording medium is read to avoid the heat affected range indicated by the welding history. A first oxide film removing step for removing the oxide film by applying impact or friction with a predetermined strength to the surface of the conductive material, and the potential of the corresponding conductive material in the past as a result of the first determination. When it is found that the measurement is being performed, the second determination for determining the presence or absence of the low melting point glass sealing portion on the surface of the corresponding conductive material is executed, and as a result of the second determination, the low melting point glass sealing portion The second oxide film removing step of removing the low melting point glass by applying a predetermined strength impact or friction to the portion sealed with the low melting point glass on the surface of the conductive material, As a result of the second determination, when there is no low melting point glass sealing portion, the mark on the surface of the conductive material or the welding history information indicated by the recording medium, and the mark on the surface of the conductive material or the recording medium indicate Read the information of the electrode installation position, avoid the heat affected range indicated by the welding history and the place where the oxide film has been removed in the past, and perform the oxide film removal by applying impact or friction of a predetermined strength to the surface of the conductive material. The electrode is brought into contact with the electrode installation position of the conductive material from which the oxide film has been removed by the third oxide film removing step and any one of the first to third oxide film removing steps, and current is applied between the electrodes. And measuring the potential difference, marking the corresponding electrode installation position on the conductive material surface or recording the information on the electrode installation position on the recording medium, and after performing the potential difference measurement and after removing the oxide film And a potential difference measuring step of sealing the electrode installation position with a low-melting glass .

本実施形態の欠陥検出方法の工程例1を示す図である。It is a figure which shows process example 1 of the defect detection method of this embodiment. 本実施形態の摩擦装置例を示す図である。It is a figure which shows the example of a friction apparatus of this embodiment. 本実施形態の欠陥検出方法の工程例2を示す図である。It is a figure which shows process example 2 of the defect detection method of this embodiment. 本実施形態の欠陥検出方法の工程例3を示す図である。It is a figure which shows process example 3 of the defect detection method of this embodiment. 本実施形態の欠陥検出方法の手順例を示すフロー図である。It is a flowchart which shows the example of a procedure of the defect detection method of this embodiment. 本実施形態の導電材と電極設置位置の例を示す図である。It is a figure which shows the example of the electrically-conductive material of this embodiment, and an electrode installation position. 本実施形態における解析結果例を示す図である。It is a figure which shows the example of an analysis result in this embodiment.

−−−欠陥検出方法の実際−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の欠陥検出方法の工程例1を示す図である。ここでの欠陥検出対象としては、一例として、火力発電所等のボイラやタービンに使用される金属製(=つまり導電材)の耐圧部材10を想定できる。また、この耐圧部材10のうち、クリープ損傷やクリープ疲労損傷などの欠陥11が生じやすいとされる、溶接金属12aの周囲に薄い膜状に存在する溶接熱影響部12を検査対象部位として例示する。この溶接熱影響部12は、前記溶接金属12aのすぐ外側にある粗粒域12b、当該粗粒域12bの外側にあって細粒域12cとを含むものである。また、前記耐圧部材10(例:主蒸気管や再熱蒸気管、ボイラ天井ハウジング内のドラムや管寄等の容器、その他容器と炉内伝熱パネルとを接続するスタブ管)は、大気中で高温蒸気を通過させているため、大気中の酸素と部材とが化学反応し、部材表面に酸化膜13が生成されている。
--- Actual defect detection method ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a process example 1 of the defect detection method of the present embodiment. As an example of the defect detection target here, a pressure-resistant member 10 made of metal (ie, a conductive material) used in a boiler or turbine of a thermal power plant or the like can be assumed. Further, among the pressure-resistant members 10, the welding heat affected zone 12 existing in the form of a thin film around the weld metal 12 a where defects 11 such as creep damage and creep fatigue damage are likely to occur is illustrated as an inspection target part. . The weld heat affected zone 12 includes a coarse grain region 12b just outside the weld metal 12a and a fine grain region 12c outside the coarse grain region 12b. In addition, the pressure-resistant member 10 (e.g., main steam pipe, reheat steam pipe, drum or boiler container in the boiler ceiling housing, and other stub pipes connecting the container and the heat transfer panel in the furnace) Since the high temperature steam is passed through, oxygen in the atmosphere and the member chemically react, and the oxide film 13 is generated on the member surface.

勿論、本実施形態の欠陥検出方法において、前記の耐圧部材10のみを欠陥検出対象と限定することはなく、電位差法を適用して欠陥検出を行うべき部材であればいずれのものも対象となりうる。   Of course, in the defect detection method of the present embodiment, the pressure-resistant member 10 is not limited to a defect detection target, and any member that should detect a defect by applying a potential difference method can be a target. .

なお、電位差法は、導電材に生じた欠陥(亀裂など)を検出するための検査方法であり、欠陥発生が疑われる部位に切削・切断等の処理を行わない非破壊試験である。この電位差法は、金属部材等に亀裂などの欠陥があれば、該当部位周辺に電圧印加した際、欠陥箇所を回避して流れる電流にて電圧降下が生じることを利用し、前記電圧降下を測定し解析することで欠陥のサイズや位置等を推定する。   Note that the potential difference method is an inspection method for detecting a defect (such as a crack) generated in a conductive material, and is a nondestructive test in which processing such as cutting and cutting is not performed on a site where a defect is suspected. This potential difference method uses the fact that if there is a defect such as a crack in a metal member or the like, a voltage drop occurs due to the current flowing around the defective part when a voltage is applied around the relevant part, and the voltage drop is measured. Then, the size and position of the defect are estimated by analysis.

本実施形態の欠陥検出方法においては、まず、前記導電材たる耐圧部材10における電極設置位置14に対して所定強度の打撃ないし摩擦を加えて、前記電極設置位置表面の酸化膜13の除去を行う(第1工程)。この酸化膜13の除去にあたっては、前記電極設置位置14の酸化膜13に対し、所定強度の打撃を加える打撃装置20を用いることが想定できる。この打撃装置20は、例えば、電極先端を当接させる為に必要な直径の孔を打通するポンチ21と当該ポンチ21に付勢するバネ機構22とを筐体23に収めた装置である。この打撃装置20を前記電極設置位置14上において、前記ポンチ21にバネを介して取り付けされたボタン24を押下すると、それまで前記ボタン24により筐体内に留め置かれていた前記ポンチ21が、前記バネ機構22の反発力により筐体外方に伸長する。すると前記ポンチ21の先端が前記酸化膜13に衝突し、前記耐圧部材10のフレッシュな部位(非酸化層との意)まで打通することで、電極設置用の開口を形成できる。   In the defect detection method of the present embodiment, first, the electrode installation position 14 of the pressure-resistant member 10 as the conductive material is subjected to a predetermined strength impact or friction to remove the oxide film 13 on the surface of the electrode installation position. (First step). In removing the oxide film 13, it can be assumed that a striking device 20 that strikes the oxide film 13 at the electrode installation position 14 with a predetermined strength is used. The striking device 20 is, for example, a device in which a casing 21 is provided with a punch 21 that punches a hole having a diameter necessary for abutting the electrode tip, and a spring mechanism 22 that biases the punch 21. When the hitting device 20 is pressed on the electrode installation position 14 and a button 24 attached to the punch 21 via a spring is pressed, the punch 21 that has been held in the housing by the button 24 until then is The spring mechanism 22 extends outward from the housing due to the repulsive force. Then, the tip of the punch 21 collides with the oxide film 13 and penetrates to a fresh portion (meaning a non-oxidized layer) of the pressure-resistant member 10, thereby forming an opening for electrode installation.

なお、前記酸化膜13の除去にあたり、前記打撃装置20に代えて、図2に例示する摩擦装置30を用いるとしてもよい。この摩擦装置30は、例えば、前記電極設置位置14の酸化膜13に対し所定強度の摩擦を加えるべく、ブラシ31および当該ブラシ31を取り付ける支持体32と、前記支持体32を介して前記ブラシ31に付勢するバネ機構33とを筐体34に収めた装置である。この摩擦装置30のブラシ31を前記電極設置位置14に当接し、前記支持体32にバネを介して取り付けされたボタン35を押下すると、それまで前記ボタン35により筐体内に留め置かれていた前記支持体32が、前記バネ機構33の反発力により筐体外方に伸長する。すると前記支持体32の先端に固定されているブラシ31が前記酸化膜13を摩擦して擦り取り、前記耐圧部材10のフレッシュな部位(非酸化層との意)を露出させることで、電極設置用の開口を形成できる。   In removing the oxide film 13, the friction device 30 illustrated in FIG. 2 may be used instead of the impact device 20. The friction device 30 includes, for example, a brush 31 and a support 32 to which the brush 31 is attached in order to apply a predetermined strength of friction to the oxide film 13 at the electrode installation position 14, and the brush 31 through the support 32. This is a device in which a spring mechanism 33 for energizing is housed in a housing 34. When the brush 31 of the friction device 30 is brought into contact with the electrode installation position 14 and a button 35 attached to the support body 32 via a spring is pressed, the button 35 has been retained in the casing until then. The support body 32 extends outward from the housing by the repulsive force of the spring mechanism 33. Then, the brush 31 fixed to the front end of the support 32 rubs and scrapes off the oxide film 13 to expose a fresh portion (meaning a non-oxidized layer) of the pressure-resistant member 10. An opening can be formed.

こうして前記電極設置位置14において酸化膜13の除去をした状態が、図1における状態Aとなる。この状態では耐圧部材10の電極設置位置14のうち、1箇所の酸化膜除去がなされている。こうした酸化膜除去の工程は、電極設置位置14の数だけ繰り返し実行する。同図の状態Bでは、計4箇所の電極設置位置14に関する酸化膜除去の工程が実施された状況を示している。   Thus, the state where the oxide film 13 is removed at the electrode installation position 14 is a state A in FIG. In this state, one oxide film is removed from the electrode installation position 14 of the pressure-resistant member 10. Such an oxide film removal process is repeatedly executed for the number of electrode installation positions 14. In the state B in the figure, a state is shown in which the oxide film removal process relating to a total of four electrode installation positions 14 is performed.

その後、酸化膜13が除去された後の開口、つまり前記電極設置位置14に電極を当接する。設置する電極としては、電源1による電流印加を行うための電流印加用電極2と、前記溶接熱影響部12など検査対象部位をはさんだ間での電圧値を電圧測定器3で測定するための電位差計測用電極4とがある。これら電極は導線5で電源1や電圧測定器2に電気的に接続されている。電極設置位置14への電極2、4らの当接が完了したならば、前記電流印加用電極2の間での電流印加、および前記電位差計測用電極3の間での電位差計測を実行する(図1の状態C。第2工程)。   Thereafter, the electrode is brought into contact with the opening after the oxide film 13 is removed, that is, the electrode installation position 14. As an electrode to be installed, a voltage measuring device 3 is used to measure a voltage value between a current application electrode 2 for applying a current from a power source 1 and a portion to be inspected such as the welding heat affected zone 12. There is an electrode 4 for potential difference measurement. These electrodes are electrically connected to the power source 1 and the voltage measuring device 2 by a conductive wire 5. When the abutting of the electrodes 2 and 4 to the electrode installation position 14 is completed, the current application between the current application electrodes 2 and the potential difference measurement between the potential difference measurement electrodes 3 are executed ( State C in Fig. 1. Second step).

続いて、前記第2工程の実行後、前記電極2、4らを電極設置位置14から引き上げて、前記耐圧部材10の表面における酸化膜除去部位を低融点ガラス40で封止する。これによれば、前記酸化膜除去が実行された導電材表面の電極設置位置14について、前記第2工程の実行後にそのまま放置することで酸化膜が再び生じることを予防できるのである。   Subsequently, after the execution of the second step, the electrodes 2, 4 and the like are pulled up from the electrode installation position 14, and the oxide film removal site on the surface of the pressure-resistant member 10 is sealed with the low melting point glass 40. According to this, it is possible to prevent the oxide film from being formed again by leaving the electrode installation position 14 on the surface of the conductive material from which the oxide film has been removed, as it is after the second step.

なお、前記電極らが予め前記打撃装置20(ないし摩擦装置30)を一体に備えているとしてもよい。図3は本実施形態の欠陥検出方法の工程例2を示す図である。この例では、図3に示すように、前記打撃装置20が、上述したポンチ21の先端に電極25を備えており、この電極25には導線26が接続されている。また、各打撃装置20は、予め決められた電極設置位置14にそれぞれ対応するように平面配置され、枠体27に固定されている。前記枠体27は、例えば、所定強度を有する構造材を格子状に組んで固定したものであり、電極設置位置14の数と位置に応じた前記打撃装置20の保持機構(例:打撃装置20をホールドするクランプやクリップなど)を備えている。   The electrodes or the like may be integrated with the striking device 20 (or the friction device 30) in advance. FIG. 3 is a diagram showing a process example 2 of the defect detection method of the present embodiment. In this example, as shown in FIG. 3, the impacting device 20 includes an electrode 25 at the tip of the punch 21 described above, and a conductive wire 26 is connected to the electrode 25. Each striking device 20 is arranged in a plane so as to correspond to each predetermined electrode installation position 14 and is fixed to the frame 27. The frame 27 is, for example, a structure in which a structural material having a predetermined strength is assembled and fixed in a lattice shape, and a holding mechanism (for example, the striking device 20) of the striking device 20 according to the number and positions of the electrode installation positions 14. Equipped with clamps and clips).

この場合、まず、前記耐圧部材10における電極設置位置14に対して所定強度の打撃(ないし摩擦)を加えて、前記電極設置位置表面の酸化膜13の除去を行うべく、前記打撃装置20が取り付けられた枠体27を前記電極設置位置14上(状態A)において、前記ポンチ21にバネを介して取り付けされたボタン24を押下する(当該ボタン24が互いに全て連動しており、1つのボタン押下で全ボタンを押下できる機構であれば好適である)。すると、それまで前記ボタン24により筐体内に留め置かれていた前記ポンチ21が、前記バネ機構22の反発力により筐体外方に伸長する。この時、前記ポンチ21の先端が前記酸化膜13に衝突し、前記耐圧部材10のフレッシュな部位(非酸化層との意)まで打通することで、電極設置用の開口を形成する。   In this case, first, the striking device 20 is attached in order to apply a striking (or friction) with a predetermined strength to the electrode installation position 14 in the pressure-resistant member 10 and to remove the oxide film 13 on the surface of the electrode installation position. On the electrode installation position 14 (state A), the frame body 27 is pressed down on the buttons 24 attached to the punches 21 via springs (the buttons 24 are all linked to each other, and one button is pressed down). Any mechanism that can be used to press all the buttons is preferable). Then, the punch 21 that has been retained in the casing by the button 24 is extended outward from the casing by the repulsive force of the spring mechanism 22. At this time, the tip of the punch 21 collides with the oxide film 13 and penetrates to a fresh portion (meaning a non-oxidized layer) of the pressure-resistant member 10, thereby forming an electrode installation opening.

こうして前記電極設置位置14において酸化膜13の除去をした状態が、図3における状態Bとなる。その後、酸化膜13が除去された後の開口、つまり前記電極設置位置14には、前記打撃装置20のポンチ21が当接されたままとなっている。この状態は、前記ポンチ21の先端に備わる前記電極25が前記開口に当接された状態となる。各電極設置位置14に応じて、前記電極25は電流印加用電極2あるいや電位差計測用電極4となる。 前記電極25の導線26は前記導線5を介してで電源1や電圧測定器2に電気的に接続されている。電極設置位置14への電極25の当接が完了したならば、前記電流印加用電極2の間での電流印加、および前記電位差計測用電極3の間での電位差計測を実行する(図3の状態C。第2工程)。   Thus, the state where the oxide film 13 is removed at the electrode installation position 14 is a state B in FIG. Thereafter, the punch 21 of the striking device 20 remains in contact with the opening after the oxide film 13 is removed, that is, the electrode installation position 14. In this state, the electrode 25 provided at the tip of the punch 21 is in contact with the opening. Depending on each electrode installation position 14, the electrode 25 becomes the current application electrode 2 or the potential difference measurement electrode 4. The conducting wire 26 of the electrode 25 is electrically connected to the power source 1 and the voltage measuring device 2 through the conducting wire 5. When the contact of the electrode 25 with the electrode installation position 14 is completed, the current application between the current application electrodes 2 and the potential difference measurement between the potential difference measurement electrodes 3 are executed (FIG. 3). State C. Second step).

続いて、前記第2工程の実行後、前記電極25を前記枠体27ごと電極設置位置14から引き上げて、前記耐圧部材10の表面における酸化膜除去部位を低融点ガラス40で封止する。これによれば、前記酸化膜除去が実行された導電材表面の電極設置位置14について、前記第2工程の実行後にそのまま放置することで酸化膜が再び生じることを予防できるのである。   Subsequently, after the execution of the second step, the electrode 25 together with the frame body 27 is pulled up from the electrode installation position 14, and the oxide film removal site on the surface of the pressure-resistant member 10 is sealed with the low melting point glass 40. According to this, it is possible to prevent the oxide film from being formed again by leaving the electrode installation position 14 on the surface of the conductive material from which the oxide film has been removed, as it is after the second step.

なお、上述の酸化膜除去を行った電極設置位置14について、前記耐圧部材表面の該当箇所にマーク50を行うか、記録媒体に電極設置位置14の情報を記録する第3工程を実行するとすれば好適である。例えば図4の例では、前記耐圧部材10の表面において、前記酸化膜除去の工程実行後に、酸化膜除去済みを示すマーク50を電極設置位置14のふちに記している(図4の状態A)。或いは、所定の図面作成アプリケーション等を実行させたコンピュータ60のインターフェイス61上で、耐圧部材10に対応するサイズ、形状の図形上に、前記マーク50を電極設置位置14に対応付けて配置するデータ入力を行い、ここで入力されたデータを前記コンピュータ60の記憶装置(=記録媒体)に格納しておくとしてもよい。   If the electrode installation position 14 from which the oxide film has been removed is marked 50 at the corresponding location on the surface of the pressure-resistant member or the third step of recording the information on the electrode installation position 14 on the recording medium is executed. Is preferred. For example, in the example of FIG. 4, on the surface of the pressure-resistant member 10, after execution of the oxide film removal process, a mark 50 indicating that the oxide film has been removed is marked at the edge of the electrode installation position 14 (state A in FIG. 4). . Alternatively, on the interface 61 of the computer 60 on which a predetermined drawing creation application or the like is executed, data input for arranging the mark 50 in association with the electrode installation position 14 on a figure having a size and shape corresponding to the pressure-resistant member 10 The data input here may be stored in the storage device (= recording medium) of the computer 60.

こうした場合、前記第1工程において、前記耐圧部材表面の前記マーク50が示す電極設置位置14の情報を読み取り、過去に酸化膜除去がなされている箇所を回避して前記耐圧部材表面に所定強度の打撃ないし摩擦を加えて酸化膜除去を行うとしてもよい(図4の状態B)。或いは、前記コンピュータ60の記憶装置から前記データを読み出してインターフェイス61に表示させて、前記耐圧部材表面における酸化膜除去済みの電極設置位置14の情報を読み取りとしてもよい。   In such a case, in the first step, the information on the electrode installation position 14 indicated by the mark 50 on the surface of the pressure-resistant member is read, and the portion where the oxide film has been removed in the past is avoided, and the surface of the pressure-resistant member has a predetermined strength. The oxide film may be removed by applying impact or friction (state B in FIG. 4). Alternatively, the data may be read from the storage device of the computer 60 and displayed on the interface 61 to read the information on the electrode installation position 14 from which the oxide film has been removed on the surface of the pressure-resistant member.

図4の例では、前記枠体27を、前記耐圧部材10の上方から前記マーク50の位置および溶接熱影響部12を回避しつつ耐圧部材10の表面にセットしている(状態B)。こうした状態で前記酸化膜除去の工程を実行すれば、前記マーク50の位置および溶接熱影響部12を回避した位置の酸化膜について、除去処理を施せる(図4の状態C)。これによれば、元々きわめて狭小な領域(=電極設置位置)にごく浅く実行される前記酸化膜除去(第1工程)の処理について、処理位置の重複を避けて分散させることになり、前記導電材の減肉をより一層抑制することができる。   In the example of FIG. 4, the frame body 27 is set on the surface of the pressure-resistant member 10 from above the pressure-resistant member 10 while avoiding the position of the mark 50 and the welding heat affected zone 12 (state B). If the oxide film removal step is executed in this state, the removal process can be performed on the oxide film at the position of the mark 50 and the position where the welding heat affected zone 12 is avoided (state C in FIG. 4). According to this, the process of the oxide film removal (first step), which is originally performed very shallowly in an extremely narrow region (= electrode installation position), is dispersed while avoiding the overlap of the processing positions. The thinning of the material can be further suppressed.

なお、前記耐圧部材10に関する溶接履歴の情報を、前記耐圧部材表面の該当箇所にマークを行うか記録媒体に記録する工程を実行するとしてもよい。既に述べたように溶接箇所は、母材や溶接金属よりも施工時に複雑な温度履歴を受けるため、検査対象部位となるためである。マークの手法や記録媒体へのデータ記録の手法については、上述の図4に基づいて示した実施形態と同様でよい。この場合、前記第1工程において、前記耐圧部材表面のマークないし前記記録媒体が示す溶接履歴の情報を読み取り、前記溶接履歴が示す熱影響範囲(例:溶接部位の境界から所定距離までの範囲)を回避して前記耐圧部材表面に所定強度の打撃ないし摩擦を加えて前記酸化膜除去を行うとしてもよい。これによれば、減肉による強度低下等の影響を受けやすい熱影響範囲に対する前記酸化膜除去の工程実施を回避することができる。   In addition, you may perform the process of marking the information of the welding history regarding the said pressure | voltage resistant member 10 in the applicable location of the said pressure | voltage resistant member surface, or recording on a recording medium. This is because, as already described, the welded portion becomes a region to be inspected because it receives a more complicated temperature history during construction than the base metal or weld metal. The mark method and the data recording method on the recording medium may be the same as those in the embodiment shown on the basis of FIG. In this case, in the first step, a mark on the pressure-resistant member surface or information on a welding history indicated by the recording medium is read, and a heat affected range indicated by the welding history (eg, a range from a boundary of a welded part to a predetermined distance). The oxide film may be removed by applying impact or friction with a predetermined strength to the surface of the pressure-resistant member. According to this, it is possible to avoid the process of removing the oxide film with respect to a heat-affected range that is easily affected by a decrease in strength due to thinning.

或いは、図4における電極設置位置14が、前記第2工程の実行後、低融点ガラスで封止されていた場合、その後の前記第1工程において、前記電極設置位置14(=低融点ガラスで封止されている箇所)に対して所定強度の打撃ないし摩擦を加えて低融点ガラス除去を行うとしてもよい。低融点ガラス除去後には、酸化膜が形成されていないフレッシュな電極設置位置14が露出することになる。従って、それに続く前記第2工程において、低融点ガラス除去後の前記電極設置位置に電極を当接し、電極間での電流印加および電位差計測を実行することとなる。つまり、以前に酸化膜除去を行った箇所を避けるのではなく、一度酸化膜除去を行って低融点ガラスで封止処理を施した箇所のみを電極設置位置14として固定的に利用する形態である。これによれば、一度は酸化膜除去を行った箇所について、再度の酸化膜生成を抑止すると共に、電極設置位置を前記低融点ガラスでの封止箇所に固定化することが可能であり、酸化膜除去を行う頻度や箇所をいたずらに増やすことがない。つまり、減肉箇所を前記低融点ガラスでの封止箇所以外に増やすことを抑制できる。   Alternatively, when the electrode installation position 14 in FIG. 4 is sealed with the low-melting glass after the execution of the second process, the electrode installation position 14 (= sealed with the low-melting glass in the first process after that). The low melting point glass may be removed by hitting or rubbing with a predetermined strength with respect to the stopped portion). After the low melting point glass is removed, the fresh electrode installation position 14 where the oxide film is not formed is exposed. Accordingly, in the subsequent second step, an electrode is brought into contact with the electrode installation position after the low melting point glass is removed, and current application and potential difference measurement between the electrodes are executed. In other words, instead of avoiding the place where the oxide film has been previously removed, only the place where the oxide film has been removed and sealed with the low melting point glass is used as the electrode installation position 14 in a fixed manner. . According to this, once the oxide film has been removed, it is possible to suppress the formation of the oxide film again and to fix the electrode installation position to the sealing position with the low melting point glass, The frequency and location for film removal are not increased unnecessarily. That is, it is possible to suppress an increase in the thinned portion other than the sealed portion with the low melting point glass.

−−−欠陥検出方法のフロー例−−−
続いて、本実施形態の欠陥検出方法のフローについて説明する。図5は本実施形態の欠陥検出方法の手順例を示すフロー図である。このフローでは、各処理の詳細については、上述までで既に述べてきたので省略する。ここでまず、導電材に関する溶接履歴の情報を、該当箇所にマークを行うか記録媒体に記録しておく(s100)。その後、本実施形態の欠陥検出方法による欠陥検出手順を行う時、検査対象の導電材について初めての欠陥検出なのか否か判定する(s101)。この判定は、導電材上に記された前記マーク等の有無や記録媒体における該当データの有無を参照すればよい。
--- Flow example of defect detection method ---
Subsequently, a flow of the defect detection method of the present embodiment will be described. FIG. 5 is a flowchart showing a procedure example of the defect detection method of the present embodiment. In this flow, the details of each process have already been described above, and will be omitted. Here, first, the information of the welding history related to the conductive material is marked at a corresponding location or recorded on a recording medium (s100). Then, when performing the defect detection procedure by the defect detection method of this embodiment, it is determined whether it is the first defect detection for the conductive material to be inspected (s101). This determination may be made by referring to the presence or absence of the mark written on the conductive material and the presence or absence of the corresponding data on the recording medium.

例えば、前記ステップs101で、検査対象の導電材について初めての欠陥検出処理であると判定した場合(s101:YES)、前記ステップs100で記録しておいた溶接履歴の情報を読み取り(s102)、熱影響範囲を回避した電極設置位置に対して所定強度の打撃ないし摩擦を加える(s103)。そして、この前記電極設置位置14に対する打撃等により酸化膜が除去された電極設置位置に電極を当接する(s104)。   For example, when it is determined in step s101 that the conductive material to be inspected is the first defect detection process (s101: YES), the welding history information recorded in step s100 is read (s102), and the heat is detected. Stroke or friction with a predetermined strength is applied to the electrode installation position where the influence range is avoided (s103). Then, the electrode is brought into contact with the electrode installation position from which the oxide film has been removed by striking the electrode installation position 14 or the like (s104).

一方、前記ステップs101で、検査対象の導電材について初めての欠陥検出処理でないと判定した場合(s101:NO)、前記導電材表面に低融点ガラスで封止処理された箇所があるか判定する(s109)。ここで低融点ガラスで封止処理された箇所がない場合(s109:NO)、前記ステップs100で記録しておいた溶接履歴の情報を読み取る(s110)。また、該当導電材に対して過去に酸化膜除去がなされた電極設置位置14の情報を、導電材表面のマークや記録媒体から読み取る(s111)。そして、過去に酸化膜除去がなされている箇所および熱影響範囲を回避した電極設置位置に対して所定強度の打撃ないし摩擦を加える(s112)。また、この打撃等により酸化膜が除去された電極設置位置に電極を当接することになる(s104)。   On the other hand, if it is determined in step s101 that the conductive material to be inspected is not the first defect detection process (s101: NO), it is determined whether there is a portion sealed with low-melting glass on the surface of the conductive material ( s109). If there is no portion sealed with the low melting point glass (s109: NO), the welding history information recorded in step s100 is read (s110). Further, information on the electrode installation position 14 where the oxide film has been removed in the past with respect to the corresponding conductive material is read from a mark on the surface of the conductive material or a recording medium (s111). Then, an impact or friction with a predetermined strength is applied to the location where the oxide film has been removed in the past and the electrode installation position that avoids the heat-affected range (s112). Further, the electrode is brought into contact with the electrode installation position from which the oxide film has been removed by this blow or the like (s104).

他方、前記ステップs109で、低融点ガラスで封止処理された箇所があると判定した場合(s109:YES)、前記低融点ガラスに対して所定強度の打撃ないし摩擦を加えて前記低融点ガラスの除去を行い(s113)、その結果露出した電極設置位置14に電極を当接することになる(s114)。   On the other hand, when it is determined in step s109 that there is a portion sealed with the low-melting glass (s109: YES), the low-melting glass is subjected to striking or rubbing with a predetermined strength, and Removal is performed (s113), and as a result, the electrode is brought into contact with the exposed electrode installation position 14 (s114).

続いて、前記電極設置位置14に当接した電極間での電流印加および電位差計測を実行し(s105)、その後に、該当電極設置位置について該当箇所にマークを行うか、記録媒体に電極設置位置の情報を記録する(s106)。また、前記酸化膜除去部位を低融点ガラス40で封止する(s107)。最後に、前記ステップs105で計測した電位差のデータについて電位差法に基づく解析を実行し(s108)、前記導電材における欠陥11の存在を検知することになる。   Subsequently, current application and potential difference measurement are performed between the electrodes in contact with the electrode installation position 14 (s105), and then the corresponding electrode installation position is marked at the corresponding position, or the electrode installation position is set on the recording medium. Is recorded (s106). The oxide film removal site is sealed with the low melting point glass 40 (s107). Finally, an analysis based on a potential difference method is performed on the potential difference data measured in step s105 (s108), and the presence of the defect 11 in the conductive material is detected.

−−−欠陥検出対象の具体例と検出結果−−−
続いて、本実施形態の欠陥検出方法を実際に適用した耐圧部材10と、その欠陥検出結果について示す。図6は本実施形態の導電材と電極設置位置の例を示す図である。ここに示す耐圧部材10は、ボイラ天井ハウジング内の管寄容器である。この管寄10は、構造として、複数の管の開口端を受け入れる管寄部70と、前記管寄部70で管寄せした各管からの流体を集約して通過させるパイプ部71とからなる。管寄部70とパイプ部71とは溶接により接続されている。従って、前記管寄部70とパイプ部71との継ぎ目部分は、前記溶接熱影響部12となっている。また、前記管寄10の表面は酸化膜13で覆われている。
--- Specific examples of defect detection targets and detection results ---
Subsequently, the pressure resistant member 10 to which the defect detection method of the present embodiment is actually applied and the defect detection result will be described. FIG. 6 is a diagram showing an example of the conductive material and the electrode installation position of the present embodiment. The pressure-resistant member 10 shown here is a container in the boiler ceiling housing. As a structure, the header 10 includes a header portion 70 that receives the open ends of a plurality of tubes, and a pipe portion 71 that collects and passes the fluid from the pipes that are gathered by the header portion 70. The nozzle part 70 and the pipe part 71 are connected by welding. Therefore, the joint portion between the nozzle portion 70 and the pipe portion 71 is the welding heat affected zone 12. Further, the surface of the nozzle 10 is covered with an oxide film 13.

また、前記管寄10の表面には、前記酸化膜除去の工程を経て、電流印加用電極2が、「+1」〜「+4」の4本と、「−1」〜「−4」の4本の計8本、設置している(図6参照)。同様に、電位差計測用電極4も、「1」番ピン〜「3」番ピンまで計3本を設置している(図6参照)。この電位差計測用電極4の測定用の組み合わせ例は、図6下段の表に示すように、PairNo.1〜2までとした。つまり各Pairの電位差計測用電極4間の電位差を電圧測定器3で計測することになる。   In addition, on the surface of the nozzle 10, through the oxide film removal process, there are four current application electrodes 2 of “+1” to “+4” and 4 of “−1” to “−4”. A total of eight books are installed (see FIG. 6). Similarly, a total of three potential difference measuring electrodes 4 from “1” pin to “3” pin are installed (see FIG. 6). As shown in the table in the lower part of FIG. 6, the combination examples for measuring the potential difference measuring electrode 4 are Pair Nos. 1 and 2. That is, the potential difference between the potential difference measuring electrodes 4 of each pair is measured by the voltage measuring device 3.

前記管寄10に対しては、本実施形態の欠陥検出方法の検証のため、予め人工的に亀裂を導入しておき、その人工亀裂を挟んだ箇所の電位差を計測することとした。なお、前記人工亀裂は、段階的に複数種類を導入する。第1の亀裂(1段階目)は、前記電位差計測用電極4の2番ピン上に導入されるもので、深さ0.1mm。第2の亀裂(2段階目)は、前記電位差計測用電極4の2番ピン上に前記第1の亀裂(1段階目)として導入済みの亀裂を更に0.2mm深くしたものである。   In order to verify the defect detection method of the present embodiment, a crack is artificially introduced in advance to the tube holder 10, and a potential difference at a portion sandwiching the artificial crack is measured. A plurality of types of artificial cracks are introduced step by step. The first crack (first stage) is introduced on the second pin of the potential difference measuring electrode 4 and has a depth of 0.1 mm. The second crack (second stage) is obtained by further deepening the crack already introduced as the first crack (first stage) on the second pin of the potential difference measuring electrode 4 by 0.2 mm.

上記亀裂を段階的に導入する毎に、下記の(1)〜(4)の各パターンで電流印加をして電位差計測を行い、その出力(電位差変化量)を合計した。
(1)電流印加用電極「+1」←→「−1」の間に電流印加時の電位差変化量を計測。
(2)電流印加用電極「+2」←→「−2」の間に電流印加時の電位差変化量を計測。
(3)電流印加用電極「+3」←→「−3」の間に電流印加時の電位差変化量を計測。
(4)電流印加用電極「+4」←→「−4」の間に電流印加時の電位差変化量を計測。
Each time the crack was introduced stepwise, a potential difference was measured by applying a current in each of the following patterns (1) to (4), and the output (potential difference change amount) was summed.
(1) The amount of change in potential difference during current application is measured between the current application electrodes “+1” ← → “−1”.
(2) The amount of change in potential difference during current application is measured between the current application electrodes “+2” ← → “−2”.
(3) The amount of change in potential difference during current application is measured between the current application electrodes “+3” ← → “−3”.
(4) The amount of change in potential difference during current application is measured between the current application electrodes “+4” ← → “−4”.

また、FC=(Bs/As×Ai/Bi−1)×1000 (ppt)の式で得られるFC値を算定した。   Moreover, the FC value obtained by the formula FC = (Bs / As × Ai / Bi−1) × 1000 (ppt) was calculated.

ここに、
As:モニタリング開始時のPairAの電位差。
Bs:モニタリング開始時の標準試験片の電位差。
Ai:時間iにおけるPairAの電位差。
Bi:時間iにおける標準試験片の電位差。
上述のごとき異なる深さ、位置の人工亀裂を跨った電位差計測用電極のペアにて電位差計測した結果、例えばPair1について、第1段階目:FC=136.6、増減136.6、第2段階目:FC=333.1、増減214.2といった測定結果が得られた。また、この測定結果のうちFC値増減量について、亀裂導入部位に着目してデータ整理するとFC増減量と亀裂深さとの関係に対応が見られる。
here,
As: Potential difference of Pair A at the start of monitoring.
Bs: Potential difference of the standard test piece at the start of monitoring.
Ai: Pair A potential difference at time i.
Bi: Potential difference of the standard test piece at time i.
As a result of potential difference measurement using a pair of potential difference measurement electrodes straddling artificial cracks at different depths and positions as described above, for example, for Pair1, the first stage: FC = 136.6, increase / decrease 136.6, second stage Eye: Measurement results such as FC = 333.1 and increase / decrease 214.2 were obtained. In addition, regarding the FC value increase / decrease amount among the measurement results, if the data is arranged focusing on the crack introduction site, the correspondence between the FC increase / decrease amount and the crack depth can be seen.

また、上記したような測定結果を解析して亀裂深さとFC値増減量との関係をグラフ化したのが、図7に示すグラフである。この図7のグラフに示すように、1段階目の亀裂に関して得られたPair1とPair2のFC値増減量の平均値「80.7」、2段階目の亀裂に関して得られたPair1とPair2のFC値増減量の平均値「150.1」、1段階目+2段階目の亀裂に関して得られたPair1とPair2のFC値増減量の平均値「230.8」、を該当亀裂の深さに応じてグラフ上にプロットすると、亀裂深さとFC値増減量(電位差変化とも言える)との関係はほぼ比例の関係となった。その後は、このグラフを前記管寄10に関する欠陥検出のマスターカーブとし、前記管寄10と同様の耐圧部材について電位差法による電位差計測を行った結果を適用すれば、亀裂等の欠陥サイズを定量化できることになる。   FIG. 7 is a graph showing the relationship between the crack depth and the FC value increase / decrease amount by analyzing the measurement results as described above. As shown in the graph of FIG. 7, the average value of the FC1 increase / decrease amount of Pair1 and Pair2 obtained for the first stage crack is “80.7”, and the FC of Pair1 and Pair2 obtained for the second stage crack. The average value “150.1” of the value increase / decrease amount, and the average value “230.8” of the FC value increase / decrease amount of Pair1 and Pair2 obtained for the first stage + second stage crack, according to the depth of the corresponding crack When plotted on the graph, the relationship between the crack depth and the FC value increase / decrease amount (also referred to as potential difference change) was almost proportional. After that, if this graph is used as a master curve for defect detection related to the pipe 10 and the result of the potential difference measurement by the potentiometric method is applied to the pressure resistant member similar to the pipe 10, the defect size such as a crack is quantified. It will be possible.

以上のように本実施形態によれば、クリープ損傷やクリープ疲労損傷の検査に際して酸化膜除去を行うことで、検査対象部位の肉厚を大きく減少させるスキンカットの実行を回避できる。また、元々きわめて狭小な領域(=電極設置位置)にごく浅く実行される前記酸化膜除去(第1工程)の処理について、処理位置の重複を避けて分散させることが可能であり、前記導電材の減肉をより一層抑制することができる。   As described above, according to the present embodiment, by performing the oxide film removal in the inspection for creep damage or creep fatigue damage, it is possible to avoid the execution of skin cut that greatly reduces the thickness of the inspection target portion. Further, it is possible to disperse the oxide film removal (first step), which is originally performed very shallowly in a very narrow region (= electrode installation position), while avoiding overlapping of the processing positions. Can be further suppressed.

更に、電極設置位置への電極の配置を行ってそのまま前記打撃装置や摩擦装置による前記酸化膜除去の工程を実行することが可能となり、効率的な欠陥検出方法の実行が可能となる。   Furthermore, it is possible to perform the oxide film removal process by the impacting device or the friction device as it is after the electrode is arranged at the electrode installation position, and the efficient defect detection method can be executed.

また、前記酸化膜除去が実行された導電材表面の電極設置位置について、低融点ガラスで封止処理を実行することで、前記第2工程の実行後にそのまま放置することで酸化膜が再び生じる、といった事態を予防できる。こうして一度は酸化膜除去を行った箇所について、再度の酸化膜生成を抑止すると共に、電極設置位置を前記低融点ガラスでの封止箇所に固定化することが可能であり、酸化膜除去を行う頻度や箇所をいたずらに増やすことがない。   Further, with respect to the electrode installation position on the surface of the conductive material from which the oxide film has been removed, by performing a sealing process with low-melting glass, the oxide film is generated again by leaving it as it is after the execution of the second step. Can be prevented. In this way, once the oxide film is removed, it is possible to suppress the formation of the oxide film again, and to fix the electrode installation position to the sealing position with the low melting point glass, and to remove the oxide film. The frequency and location are not increased unnecessarily.

更に、減肉による強度低下等の影響を受けやすい熱影響範囲に対する前記酸化膜除去の工程実施を回避することができる。   Furthermore, it is possible to avoid the oxide film removal process from being performed on a heat-affected range that is easily affected by strength reduction due to thinning.

したがって本実施形態によれば、クリープ損傷やクリープ疲労損傷の検査に際して、検査対象部位の肉厚を大きく減少させるスキンカットが不要となる。   Therefore, according to the present embodiment, when inspecting creep damage or creep fatigue damage, a skin cut that greatly reduces the thickness of the site to be inspected becomes unnecessary.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

1 電源
2 電流印加用電極
3 電圧測定器
4 電位差計測用電極
5、26 導線
10 耐圧部材(導電材)
11 欠陥
12 溶接熱影響部
13 酸化膜
14 電極設置位置
20 打撃装置
21 ポンチ
22、33 バネ機構
23、34 筐体
24、35 ボタン
25 電極
27 枠体
30 摩擦装置
31 ブラシ
32 支持体
40 低融点ガラス
50 マーク
60 コンピュータ
61 インターフェイス
DESCRIPTION OF SYMBOLS 1 Power supply 2 Current application electrode 3 Voltage measuring device 4 Potential difference measurement electrodes 5 and 26 Conductor 10 Pressure-resistant member (conductive material)
DESCRIPTION OF SYMBOLS 11 Defect 12 Welding heat affected zone 13 Oxide film 14 Electrode installation position 20 Impact device 21 Punch 22, 33 Spring mechanism 23, 34 Case 24, 35 Button 25 Electrode 27 Frame body 30 Friction device 31 Brush 32 Support body 40 Low melting point glass 50 mark 60 computer 61 interface

Claims (1)

導電材における欠陥検出を行う電位差法において、
前記導電材に関する溶接履歴の情報を、前記導電材の表面の該当箇所にマークを行うか記録媒体に記録する溶接履歴記録工程と、
導電材に関する電位差計測を実行するにあたり、該当導電材について計測が初回か否か、前記溶接履歴の情報有無に基づいて判定する第1の判定工程と、
前記第1の判定の結果、該当導電材について電位差計測が初めて実行されることが判明した場合、前記導電材表面のマークないし前記記録媒体が示す溶接履歴の情報を読み取り、前記溶接履歴が示す熱影響範囲を回避して前記導電材表面に所定強度の打撃ないし摩擦を加えて酸化膜除去を行う、第1の酸化膜除去工程と、
前記第1の判定の結果、該当導電材について過去に電位差計測が実行されていることが判明した場合、該当導電材表面における低融点ガラス封止箇所の有無を判定する第2の判定を実行し、当該第2の判定の結果、低融点ガラス封止箇所が存在した場合、前記導電材表面における低融点ガラスで封止されている箇所に対して所定強度の打撃ないし摩擦を加えて低融点ガラスの除去を行う、第2の酸化膜除去工程と、
前記第2の判定の結果、低融点ガラス封止箇所が存在しなかった場合、前記導電材表面のマークないし前記記録媒体が示す溶接履歴の情報と、前記導電材表面のマークないし前記記録媒体が示す電極設置位置の情報を読み取り、前記溶接履歴が示す熱影響範囲および過去に酸化膜除去がなされている箇所を回避して前記導電材表面に所定強度の打撃ないし摩擦を加えて酸化膜除去を行う、第3の酸化膜除去工程と、
前記第1〜第3のいずれかの酸化膜除去工程によって酸化膜除去がなされた前記導電材の電極設置位置に電極を当接し、電極間での電流印加および電位差計測を実行し、該当電極設置位置について、前記導電材表面の該当箇所にマークを行うか記録媒体に電極設置位置の情報を記録し、前記電位差計測の実行後、前記酸化膜除去後の前記電極設置位置を低融点ガラスで封止する電位差計測工程と、
を実行することを特徴とする欠陥検出方法。
In the potentiometric method for detecting defects in conductive materials,
Welding history recording process for recording information on the welding history related to the conductive material, or recording the recording material on the recording medium or a mark on the relevant portion of the surface of the conductive material
In performing the potential difference measurement for the conductive material, a first determination step of determining whether the measurement is the first time for the corresponding conductive material, based on the presence or absence of information of the welding history,
As a result of the first determination, when it is found that the potential difference measurement is performed for the conductive material for the first time, the mark on the surface of the conductive material or the welding history information indicated by the recording medium is read, and the heat indicated by the welding history A first oxide film removing step of performing an oxide film removal by applying impact or friction of a predetermined strength to the surface of the conductive material while avoiding an influence range;
As a result of the first determination, when it is found that potential difference measurement has been performed in the past for the corresponding conductive material, a second determination for determining the presence or absence of the low melting point glass sealing portion on the surface of the corresponding conductive material is performed. As a result of the second determination, when there is a low melting point glass sealing portion, a low melting point glass is applied by applying a predetermined strength of striking or friction to the portion sealed with the low melting point glass on the surface of the conductive material. Removing a second oxide film,
As a result of the second determination, if there is no low melting point glass sealing location, the mark on the surface of the conductive material or the welding history information indicated by the recording medium, and the mark on the surface of the conductive material or the recording medium are Read the information of the electrode installation position shown, avoid the heat affected range indicated by the welding history and the location where the oxide film has been removed in the past, and apply a predetermined intensity of striking or friction to the surface of the conductive material to remove the oxide film Performing a third oxide film removing step;
The electrode is brought into contact with the electrode installation position of the conductive material from which the oxide film has been removed by any one of the first to third oxide film removal steps, current application and potential difference measurement are performed between the electrodes, and the corresponding electrode is installed. For the position, mark the corresponding position on the surface of the conductive material or record the information of the electrode installation position on the recording medium, and after performing the potential difference measurement, seal the electrode installation position after removing the oxide film with a low melting point glass. A potential difference measurement process to be stopped;
The defect detection method characterized by performing.
JP2009041197A 2009-02-24 2009-02-24 Defect detection method Expired - Fee Related JP5078926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041197A JP5078926B2 (en) 2009-02-24 2009-02-24 Defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041197A JP5078926B2 (en) 2009-02-24 2009-02-24 Defect detection method

Publications (2)

Publication Number Publication Date
JP2010197166A JP2010197166A (en) 2010-09-09
JP5078926B2 true JP5078926B2 (en) 2012-11-21

Family

ID=42822045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041197A Expired - Fee Related JP5078926B2 (en) 2009-02-24 2009-02-24 Defect detection method

Country Status (1)

Country Link
JP (1) JP5078926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213214B2 (en) * 2020-10-09 2023-01-26 プライムプラネットエナジー&ソリューションズ株式会社 Weld crack detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197846A (en) * 1983-04-25 1984-11-09 Akai Bussan Kk Non-destructive identifying method of steel kind of rolling steel for structure
JPS61264248A (en) * 1985-05-18 1986-11-22 Babcock Hitachi Kk Electric resistance measuring method
JPS62121344A (en) * 1985-11-22 1987-06-02 Hitachi Ltd Defect detecting device
JP2001015033A (en) * 1999-06-28 2001-01-19 Fujitsu Ltd Barrier rib repairing method
JP2001215176A (en) * 2000-01-31 2001-08-10 Toshiba Corp Maintenance and control support system of coating member
JP2003194757A (en) * 2001-12-27 2003-07-09 Toshiba Corp Deterioration diagnosing device for paint film

Also Published As

Publication number Publication date
JP2010197166A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
Sazonova et al. Weld defects and automation of methods for their detection
US20190145933A1 (en) Methods of using nondestructive material inspection systems
CN102590069A (en) Test sample used in stainless steel corrosion test and fabrication method thereof
JP5276497B2 (en) Pipe weld life evaluation method
JP2009174859A (en) Remaining lifetime evaluation method of machine part
JP5078926B2 (en) Defect detection method
WO2019159940A1 (en) Plant inspection method
JP3825378B2 (en) Life evaluation method of heat-resistant steel
Raude et al. Stress corrosion cracking direct assessment of carbon steel pipeline using advanced eddy current array technology
JP2008032480A (en) Damage evaluation method of heat-resistant steel, and damage evaluation device thereof
CN115555756A (en) Detection process for performance of welded joint in postweld heat treatment
JPH04240552A (en) Method for evaluating residual life of metal welding member under high temperature stress
JP2014505885A (en) Metal weight loss probe and metal weight loss probe manufacturing method
Fairchild et al. Full-Scale Testing for Strain-Based Design Pipelines: Lessons Learned and Recommendations
Dolby et al. Welds, their quality and inspection ability for high integrity structures and components
Erenburg et al. Cracking of AISI T22 Reheater Pendant Assembly Tubing of Steam Boiler
US20030062892A1 (en) Use of eddy current to non-destructively measure crack depth
JP2014190792A (en) Defect detection method and inspection method for turbine wing
JP2016090059A (en) Inspection method for soundness of boiler refractory material anchor and inspection device
JPH02248860A (en) Evaluation of residual life of ferrite based heat resistant steel
US20140013821A1 (en) Method of Evaluating Friction Stir Welding Defects
Roskosz Capabilities and limitations of using the residual magnetic field in NDT
US11860082B1 (en) Method of determining an index of quality of a weld in a formed object through mechanical contact testing
JP4869891B2 (en) Multi-layer non-destructive inspection method
JPH0510893A (en) Method for judging boundary part of different kind of metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees