JP5077928B2 - Purification method for contaminated soil - Google Patents

Purification method for contaminated soil Download PDF

Info

Publication number
JP5077928B2
JP5077928B2 JP2007025358A JP2007025358A JP5077928B2 JP 5077928 B2 JP5077928 B2 JP 5077928B2 JP 2007025358 A JP2007025358 A JP 2007025358A JP 2007025358 A JP2007025358 A JP 2007025358A JP 5077928 B2 JP5077928 B2 JP 5077928B2
Authority
JP
Japan
Prior art keywords
contaminated soil
soil
crushing agent
test
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007025358A
Other languages
Japanese (ja)
Other versions
JP2008194547A (en
Inventor
孝 鹿住
健司 村田
敦 柴山
修 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007025358A priority Critical patent/JP5077928B2/en
Publication of JP2008194547A publication Critical patent/JP2008194547A/en
Application granted granted Critical
Publication of JP5077928B2 publication Critical patent/JP5077928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃焼性組成物の高温燃焼生成ガスを利用して汚染土壌を浄化する方法に関する。   The present invention relates to a method for purifying contaminated soil using a high-temperature combustion product gas of a combustible composition.

昨今、油や揮発性有機化合物(VOCs)などによって汚染された土壌を浄化処理することが求められている。特に、ガソリンスタンドの跡地や工場跡地の土壌には、汚染物質である油成分が浸透し土壌中に何らかの形態で存在している可能性が高く、また近年は大型機械類などの不法投棄が後を絶たず、不法投棄が行われた土壌に大量の油成分が浸透している場合がある。   Recently, it is required to purify soil contaminated with oil, volatile organic compounds (VOCs) and the like. In particular, it is highly probable that oil components, which are pollutants, will permeate into the soil of gas station sites and factory sites and exist in some form in the soil, and in recent years illegal dumping of large machinery has been There are cases where a large amount of oil components have permeated into soil where illegal dumping has been performed.

これらを除去するため、従来から真空抽出法が利用されている。真空抽出法には、地表面から土壌中の汚染領域まで井戸を掘り、その井戸に吸引管を挿入し、地表面に設置した真空ポンプで土壌中の汚染物を吸引除去するものなどがある。
また、化学的な汚染土壌の浄化方法としては、特開2002−292361号公報がある。この方法は、テトラクロロエチレン、トリクロロエチレンなどの有機塩素系化合物やガソリンなどの比較的低い温度で気化する揮発性汚染物質で汚染された地盤中に、生石灰杭を多数埋め込み、汚染物質で汚染された土壌を生石灰杭と土中水との発熱反応により汚染物質を気化して気密空間に回収することにより、汚染土壌を浄化する方法である。気密空間は、埋め込まれた生石灰杭の地表を気密シートで密封敷設することによって形成されている。
In order to remove these, a vacuum extraction method has been conventionally used. The vacuum extraction method includes digging a well from the ground surface to a contaminated area in the soil, inserting a suction pipe into the well, and sucking and removing the contaminant in the soil with a vacuum pump installed on the ground surface.
Moreover, there exists Unexamined-Japanese-Patent No. 2002-292361 as a purification method of chemically contaminated soil. This method embeds a number of quicklime piles in soil contaminated with volatile pollutants that vaporize at relatively low temperatures, such as organic chlorine compounds such as tetrachloroethylene and trichlorethylene, and gasoline. It is a method to purify contaminated soil by evaporating pollutants by exothermic reaction between quicklime piles and soil water and collecting them in an airtight space. The airtight space is formed by sealing and laying the ground surface of the embedded quicklime pile with an airtight sheet.

また、特許第3732783号公報には、生石灰を硫黄(S)分を含む汚染物質で汚染された土壌に混ぜ、それを回収して、炉で加熱することにより、汚染物質中の硫黄分を無害な石膏(硫酸カルシウム:CaSO4)に変え、無害化した土壌を元の場所に戻す方法
が記載されている。
また、特開2005−46699号公報には、微生物活動による有害物質の分解又は改質を利用する生物学的浄化方法であるバイオレメデーションが記載されている。バイオレメデーションは、汚染土壌を一旦掘り出し、微生物又は微生物群を汚染土壌に投与し、浄化した後、掘り出した元の場所へ埋め戻すものであり、ここでは特にシアン化合物による汚染土壌の処方が記載されている。
特開2005−46699号公報 特開2002−292361号公報 特許第3732783号公報
Japanese Patent No. 3732783 discloses that quick lime is mixed with soil contaminated with a pollutant containing sulfur (S), recovered, and heated in a furnace to harm the sulfur in the pollutant harmlessly. A method is described in which the gypsum (calcium sulfate: CaSO 4 ) is replaced and detoxified soil is returned to its original location.
Japanese Patent Application Laid-Open No. 2005-46699 describes bioremediation, which is a biological purification method that utilizes decomposition or modification of harmful substances due to microbial activity. Bioremediation is to excavate contaminated soil, administer microorganisms or groups of microorganisms to contaminated soil, purify them, and then backfill them to the original site where they were excavated. Has been.
JP 2005-46699 A JP 2002-292361 A Japanese Patent No. 3732783

しかし、従来技術による汚染土壌の浄化方法は、掘削のための大型重機、さらにはポンプなどの大型機器類を必要とし、それらの設置場所も広範囲を要することとなる。土壌が汚染された領域がこれらの設置を許容できる条件であればよいが、都市部或いは山間部ではそのような場所の確保が困難である。特に、山間部などは、設置場所を確保するために、樹木の伐採が必要であり、処理後は山林を回復させないと、土砂災害等の虞もあることから、処理に掛かるコストは膨大となる。   However, the conventional method for purifying contaminated soil requires large heavy equipment for excavation and further large equipment such as a pump, and requires a wide range of installation locations. Although the area | region where the soil was contaminated should just be the conditions which can accept | permit these installation, ensuring of such a place is difficult in an urban area or a mountain area. Especially in mountainous areas, it is necessary to cut trees to secure the installation location, and if the forest is not restored after treatment, there is a risk of landslide disasters, etc., and the cost of treatment becomes enormous. .

また、汚染物質が流出するようなものを山間部に不法投棄する例が後を絶たないが、このような不法投棄を行うような場所に、大型重機や設備を持ち込んで土壌の浄化を実施することは非常に困難である。
また、生石灰杭により汚染土壌を浄化する方法は、汚染土壌中に多数打込んだ石灰杭の石灰と水との反応熱で石灰杭の周囲中に含まれる沸点の低い汚染物質(トリクロロエチレン、ガソリンなど)を揮発させ、それを回収するものであるが、この方法は、多数の杭を打ち込み、かつ回収装置を取り付ける必要がある。
また、生石灰を汚染土壌に混ぜて回収して加熱する方法は、汚染土壌中の硫黄(S)分の無害化のための技術であり、かつ加熱炉を必要としている。
In addition, there are many examples of illegal dumping of pollutants in mountainous areas, but large-scale heavy machinery and equipment are brought into the area where such illegal dumping is performed to purify the soil. It is very difficult.
In addition, the method to purify contaminated soil with quick lime piles is a low boiling point pollutant (trichloroethylene, gasoline, etc.) contained in the periphery of lime piles due to the reaction heat between lime and water of lime piles that have been plunged into contaminated soil. ) Is volatilized and recovered, but this method requires driving a large number of piles and attaching a recovery device.
Moreover, the method of mixing quick lime with contaminated soil, collecting it, and heating it is a technique for detoxifying sulfur (S) in the contaminated soil and requires a heating furnace.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、汚染の原位置で、簡易的に、かつ装置の設置に時間を要さず、また広い場所も必要とせずに、短期間で汚染土壌を浄化する方法を提供することにある。   The present invention has been made in order to solve such conventional problems, and the object thereof is the original position of contamination, which is simple, does not require time to install the apparatus, and requires a wide space. It is to provide a method for purifying contaminated soil in a short period of time.

汚染土壌を浄化する方法には、多種多様な技術が存在するが、原位置での処理が可能で、かつ迅速な処理能力を持つ浄化法は存在していない。一方、岩石などを破砕するトンネル工事などでは、爆薬の爆発によって発生する衝撃波や高温・高圧ガスを利用して岩石の破壊を行っている。すなわち、爆薬は、例えば含水爆薬であれば、主成分である硝酸アンモニウム及び有機化合物が爆発することにより、窒素ガス、二酸化炭素、水蒸気などが高温・高圧で発生することがよく知られ、そのエネルギーをトンネル工事、土木工事などに利用している。   There are a wide variety of techniques for purifying contaminated soil, but there is no purification method that can be processed in-situ and has a rapid treatment capacity. On the other hand, in tunnel construction for crushing rocks, etc., rocks are destroyed using shock waves generated by explosion of explosives and high temperature / high pressure gas. That is, if the explosive is, for example, a hydrous explosive, it is well known that nitrogen gas, carbon dioxide, water vapor, etc. are generated at high temperatures and pressures due to the explosion of the main components ammonium nitrate and organic compounds. It is used for tunnel construction and civil engineering work.

本発明者らは、この爆薬によって発生する高温・高圧ガスが、土壌中で汚染物質の分解・蒸発の作用を持つことを見出した。
例えば、破砕剤として酸化第二銅(CuO)38.5wt%、アルミニウム粉(Al)11.5wt%、カリウム明礬(KAl(SO42・12H2O)50.0wt%の混合物を使用した場合について説明する。
破砕剤は、燃焼すると酸化第二銅とアルミニウムが次のテルミット反応を生じる。
3CuO+2Al→Al23+3Cu+ΔH(熱)
KAl(SO42・12H2O+△H→KAl(SO42+12H2O↑(水蒸気ガス)
酸化第二銅3モルとアルミニウム2モルとが反応し、1モルのアルミナと3モルの銅とが生じる。このとき、多量の熱の発生を伴う。テルミット反応に生じる温度は、2500〜3000℃近辺になることが一般的に知られており、この温度ではあらゆる有機化合物は分解してしまう。
The present inventors have found that the high-temperature and high-pressure gas generated by this explosive has a function of decomposing and evaporating pollutants in the soil.
For example, a mixture of cupric oxide (CuO) 38.5 wt%, aluminum powder (Al) 11.5 wt%, and potassium alum (KAl (SO 4 ) 2 .12H 2 O) 50.0 wt% was used as a crushing agent. The case will be described.
When the crushing agent burns, cupric oxide and aluminum cause the following thermite reaction.
3CuO + 2Al → Al 2 O 3 + 3Cu + ΔH (heat)
KAl (SO 4 ) 2 · 12H 2 O + ΔH → KAl (SO 4 ) 2 + 12H 2 O ↑ (water vapor gas)
3 moles of cupric oxide and 2 moles of aluminum react to produce 1 mole of alumina and 3 moles of copper. At this time, a large amount of heat is generated. It is generally known that the temperature generated in the thermite reaction is around 2500 to 3000 ° C., and all organic compounds are decomposed at this temperature.

カリウム明礬(KAl(SO42・12H2O)は、1分子中に12モルの結晶水を持っている。酸化第二銅とアルミニウムとの反応で生じた熱により、分子中の結晶水を水蒸気として放出する。
以上述べた反応により、破砕剤が多量の高温・高圧ガスを発生することになる。この高温・高圧ガスが、土壌中の有機物で構成された汚染物質を分解する。
テルミット反応は、酸化第二銅とアルミニウムに限られるものではなく、酸化第二銅とマグネシウムや酸化鉄と珪素など金属酸化物と金属粉の組合せでも生じるが、爆発に準じた早い燃焼反応が生じ、かつ安全に取り扱うことができるのは、酸化第二銅とアルミニウムとの組合せである。マグネシウム粉は、破砕剤製造時の取り扱い危険性が大きく、破砕剤を製造するには危険である。また、酸化鉄と珪素、酸化鉄とアルミニウムの組合せでは反応速度が遅く、汚染物質中に高温のガスを拡散させても、必要な範囲に拡散する前に冷却されてしまうので、効果がなくなってしまう。
Potassium alum (KAl (SO 4 ) 2 .12H 2 O) has 12 moles of crystal water in one molecule. Due to the heat generated by the reaction between cupric oxide and aluminum, crystal water in the molecule is released as water vapor.
By the reaction described above, the crushing agent generates a large amount of high temperature and high pressure gas. This high-temperature, high-pressure gas decomposes pollutants composed of organic matter in the soil.
The thermite reaction is not limited to cupric oxide and aluminum, but also occurs in combinations of metal oxides and metal powders such as cupric oxide and magnesium, iron oxide and silicon, but a fast combustion reaction occurs according to the explosion. It is a combination of cupric oxide and aluminum that can be handled safely. Magnesium powder has a high handling risk when producing a crushing agent, and is dangerous for producing a crushing agent. Also, the combination of iron oxide and silicon or iron oxide and aluminum has a slow reaction rate, and even if high temperature gas is diffused in the pollutant, it will be cooled before it diffuses to the required range, so the effect is lost. End up.

ところで、汚染地域が山間地などの民家のない場所であれば、雷管付き爆薬・火薬(ダイナマイト、含水爆薬、黒色火薬など)での汚染土壌の浄化も安全上容易であるが、法律の規制には従う必要がある。爆薬・火薬を使用して、汚染土壌を取り去る方法は、爆薬・火薬の使用が火薬類取締法に規制されており、爆薬・火薬の使用は事前に官公庁への届け出を行い許可を得る必要がある。爆薬・火薬の保管は、火薬庫で行い、爆薬・火薬の加工は、火薬類製造所で行うなどが法律で義務づけられている。すなわち、爆薬・火薬を使用したい場所で、使用したいときに使用したいサイズに加工して使用することは、火薬類から公共安全性を確保するための各種法的規制により困難である。
民家に近い市街地、集落、村落の近傍に汚染地域が確認された場合、爆薬・火薬で処理を行うことは、安全確保の上では膨大な労力が必要となる。
また、汚染土壌が地表近傍で発生している場合、爆薬(ダイナマイト、含水爆薬など)を使用すると、爆発の威力が大き過ぎる。汚染土壌の浄化以外に、処理土壌の飛散、処理された周囲に未処理の汚染土壌が飛散したり、大きな音が発生したりするなどの問題が発生する。しかしながら、汚染土壌の浄化作業は、民家の近くで汚染が確認された場合にこそ、浄化処理作業が緊急に必要となってくる。
By the way, if the contaminated area is a place with no private houses such as mountainous areas, it is safe to clean the contaminated soil with explosives and explosives with detonators (dynamite, hydrous explosives, black explosives, etc.). Need to follow. Explosives and explosives are used to remove contaminated soil, and the use of explosives and explosives is regulated by the Explosives Control Law, and the use of explosives and explosives must be notified to the government office in advance to obtain permission. is there. Explosives and explosives are stored in the explosives warehouse, and explosives and explosives are processed by the explosives factory. In other words, it is difficult to process and use the explosives / explosives in the desired size when they are used due to various legal regulations for ensuring public safety from explosives.
If a contaminated area is found near an urban area, village, or village near a private house, processing with explosives and explosives requires enormous effort to ensure safety.
In addition, if contaminated soil is generated near the ground surface, the use of explosives (dynamite, hydrous explosives, etc.) is too powerful. In addition to the purification of the contaminated soil, there are problems such as the scattering of the treated soil, the untreated contaminated soil being scattered around the treated area, and the generation of a loud sound. However, purification work for contaminated soil is urgently needed only when contamination is confirmed near a private house.

そこで、本発明では、コスト、法的規制、安全性を考慮し、爆薬・火薬を使用できる場所では、爆薬・火薬の爆発による汚染土壌物質の処理を行い、法的規制、安全性を考慮すべき場所では、火薬ではない燃焼組成物の燃焼によるガスと熱とによって瞬時に汚染土壌中の汚染物質を処理することとした。
すなわち、本発明には、雷管付き爆薬・火薬(ダイナマイト、含水爆薬、黒色火薬など)を、汚染土壌中に埋め、雷管に専用の発火器で通電することにより、雷管を起爆し、雷管により爆薬・火薬を爆発させ、爆薬・火薬が爆発して生じる高温・高圧ガスにより、汚染土壌中の汚染物質を分解・蒸発させる方法と、急速な燃焼剤(破砕剤)を入れた筐体に火工式点火具を挿入し、これを汚染土壌中に埋め、火工式点火具に専用の発火器で通電することにより、火工式点火具を発火させて筐体毎破砕剤を燃焼させ、高温・高圧ガスを発生させ、汚染土壌中の汚染物質を分解及び/又は蒸発させる方法とがある。
Therefore, in the present invention, in consideration of cost, legal regulations, and safety, in a place where explosives / explosives can be used, the contaminated soil material is processed by explosives / explosive explosions, and legal regulations and safety are considered. At the place where it should be, the pollutants in the contaminated soil were instantly treated by the gas and heat from the combustion of the non-explosive combustion composition.
That is, in the present invention, an explosive / explosive with a detonator (dynamite, hydrous explosive, black explosive, etc.) is buried in the contaminated soil, and the detonator is detonated by energizing it with a dedicated igniter.・ Explosive explosives, high temperature and high pressure gas generated by explosive explosives and explosive explosives, decompose and evaporate pollutants in contaminated soil, and pyrotechnics in a case containing a rapid combustible (crushing agent) Type igniter is inserted, buried in the contaminated soil, and the pyrotechnic igniter is energized with a dedicated igniter to ignite the pyrotechnic igniter and burn the crushing agent for each case. There is a method of generating high-pressure gas to decompose and / or evaporate the pollutants in the contaminated soil.

そこで、請求項1に係る発明は、酸化第二銅とアルミニウム粉とカリウム明礬とから成り燃焼すると前記酸化第二銅と前記アルミニウム粉とのテルミット反応によって高温・高圧ガスを生成する破砕剤を汚染土壌領域充填し、前記破砕剤の燃焼により発生した高温・高圧ガスによって前記汚染土壌中の汚染物質を分解及び気化させることを特徴とする。
請求項2に係る発明は、請求項1記載の汚染土壌の浄化方法において、前記汚染物質は、脂肪族炭化水素、芳香族炭化水素、多環・直鎖炭化水素又はそれらを含む油類、フェノール類、又は揮発性有機化合物、有機塩素化合物であり、それらの単独又は複合汚染物であることを特徴とする。
請求項3に係る発明は、請求項1又は請求項2記載の汚染土壌の浄化方法において、前記破砕剤は、火工式点火具を備えた筐体に填薬されていることを特徴とする。
請求項4に係る発明は、請求項1又は請求項2記載の汚染土壌の浄化方法において、前記汚染土壌領域に孔を穿孔し、その孔に前記破砕剤を填薬した筐体を挿入して前記破砕剤を燃焼させることを特徴とする請求項1記載の汚染土壌の浄化方法。
Therefore, the invention according to claim 1 contaminates the crushing agent that generates high-temperature and high-pressure gas by the thermite reaction between the cupric oxide and the aluminum powder when combusted consisting of cupric oxide, aluminum powder, and potassium alum. It was charged into the soil region, wherein the decomposing and vaporizing the contaminants in the contaminated soil by high temperature and high pressure gas generated by combustion of the crushing agent.
The invention according to claim 2 is the purification method for contaminated soil according to claim 1, wherein the pollutant is an aliphatic hydrocarbon, an aromatic hydrocarbon, a polycyclic / linear hydrocarbon, or an oil containing them, phenol Or a volatile organic compound or an organic chlorine compound, which is characterized by being a single or a composite contaminant thereof.
The invention according to claim 3 is the purification method of contaminated soil according to claim 1 or claim 2 , wherein the crushing agent is filled in a housing having a pyrotechnic igniter. .
According to a fourth aspect of the present invention, in the method for purifying contaminated soil according to the first or second aspect , a hole is drilled in the contaminated soil region, and a casing filled with the crushing agent is inserted into the hole. The method for purifying contaminated soil according to claim 1, wherein the crushing agent is burned.

請求項5に係る発明は、請求項3記載の汚染土壌の浄化方法において、前記破砕剤及び前記火工式点火具の点火薬は、非火薬組成物であることを特徴とする。
請求項6に係る発明は、請求項3ないし請求項5の何れか記載の汚染土壌の浄化方法において、前記破砕剤を填薬する筐体は、紙製又は耐性を付与した紙製又は樹脂製であることを特徴とする
The invention according to claim 5 is the method for purifying contaminated soil according to claim 3, wherein the crushing agent and the igniting agent of the pyrotechnic igniter are non-explosive compositions.
The invention according to claim 6 is the method for purifying contaminated soil according to any one of claims 3 to 5 , wherein the casing for filling the crushing agent is made of paper or made of paper or resin imparted with resistance. It is characterized by being .

本発明によれば、汚染土壌中に燃焼によって大量のガスと熱を発生させる燃焼性物質を装填し、燃焼により発生した高温ガスを汚染土壌に与えることによって、原位置で、簡易的に、かつ装置の設置に時間を要さず、また広い場所も必要とせずに、短期間で汚染土壌を浄化することが可能となる。
また、本発明によれば、汚染領域の土壌の堅さ、水分の量などに無関係に浄化の作業を施工できる。すなわち、汚染物質が、汚泥の形状で滞留した沢、沼などでの施工も簡単に実施することが可能である。
また、本発明において、高温の燃焼ガスで有機物質を分解処理するので、有機物質の種類を選択しない。すなわち、汚染物質が現在社会的に問題化している揮発性有機化合物(VOCs)や有機塩素化合物であっても処理が可能である。
従って、平成15年2月に施行された汚染土壌対策法において定められている、揮発性有機化合物(VOCs)による汚染源の除去に極めて有効な方法である。
According to the present invention, a contaminated soil is loaded with a combustible substance that generates a large amount of gas and heat by combustion, and a high temperature gas generated by combustion is given to the contaminated soil. It is possible to purify contaminated soil in a short period of time without requiring time for installation of the apparatus and without requiring a large space.
Further, according to the present invention, it is possible to perform the purification work regardless of the soil hardness and the amount of moisture in the contaminated area. That is, it is possible to easily carry out construction in a swamp or swamp where the pollutant stays in the form of sludge.
In the present invention, since the organic substance is decomposed with the high-temperature combustion gas, the type of the organic substance is not selected. That is, even if the pollutant is a volatile organic compound (VOCs) or an organic chlorine compound which is currently a social problem, it can be treated.
Therefore, it is an extremely effective method for removal of pollution sources by volatile organic compounds (VOCs), which is defined in the Contaminated Soil Countermeasures Law enacted in February 2003.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る汚染土壌の浄化方法の一実施形態に使用した実験装置を示す。
本実施形態に使用した実験装置は、縦24cm、横24cm、高さ35cm、缶厚0.5cmのペール缶12に、赤玉土2を高さ30cmで装填し、赤玉土2の硬度が5〜10kg/cm2になるようにプレスして通常の土壌の雰囲気を模擬し、ここにφ70〜150mmの円柱状の穴2aを作製し、そこに汚染物質としてn−ヘキサデカン(C1634)(以下、単にヘキサデカンと称する)を用いた濃度既知の汚染土壌3を装填し赤玉土2と同様の硬度に調整し、汚染土壌3の中に形成した装填孔4に、火工式点火具8及び破砕剤7の入った薬包1を装填し、再び汚染土壌3を50mm入れ、合計100mmの高さとし、さらに、赤玉土2でその上を100mm覆い、周囲の赤玉土2と同じ高さに調整することによって構成されている。薬包1には火工式点火具8に電流を流して発火させるための白金線付き脚線5が取り付けてある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an experimental apparatus used in one embodiment of a method for purifying contaminated soil according to the present invention.
The experimental apparatus used in this embodiment is a pail can 12 having a height of 24 cm, a width of 24 cm, a height of 35 cm, and a can thickness of 0.5 cm. It was pressed to 10 kg / cm 2 to simulate a normal soil atmosphere, and a cylindrical hole 2a with a diameter of 70 to 150 mm was produced here, and n-hexadecane (C 16 H 34 ) (as a contaminant) Hereinafter, contaminated soil 3 with a known concentration using hexadecane is loaded and adjusted to the same hardness as red crust 2, and pyrotechnic igniters 8 and 8 are formed in loading holes 4 formed in contaminated soil 3. The medicine pack 1 containing the crushing agent 7 is loaded, and 50 mm of contaminated soil 3 is put again, the total height is 100 mm, and the top is covered with 100 mm of red ball soil 2 and adjusted to the same height as the surrounding red ball soil 2. It is configured by The medicine package 1 is provided with a platinum wire-attached leg wire 5 for causing an electric current to flow through a pyrotechnic igniter 8 to ignite.

本実施形態では、破砕剤7として酸化第二銅38.5wt%、カリウム明礬50.0wt%、アルミニウム11.5wt%を使用した。
図2は、破砕剤7を入れた筐体6及び火工式点火具8の概要を示す。破砕剤7を2〜5gを秤量し、防水性能を備えた底付き段ボール製筐体6に入れた。段ボール製の縁部10付き蓋9の中心部に設けた穴9aに火工式点火具8の白金線付き脚線5を通し、火工式点火具8を蓋9に取り付けた。火工式点火具8を取り付けた蓋9の縁部10内に破砕剤7を入れた筐体6を差し込む。筐体6を蓋9の縁部10の奥まで差し込んだら蓋9の縁部10と筐体6を粘着テープ11で結合する。
In the present embodiment, cupric oxide 38.5 wt%, potassium alum 50.0 wt%, and aluminum 11.5 wt% were used as the crushing agent 7.
FIG. 2 shows an outline of the housing 6 and the pyrotechnic igniter 8 in which the crushing agent 7 is put. 2 to 5 g of the crushing agent 7 was weighed and placed in a bottomed cardboard housing 6 having waterproof performance. The leg wire 5 with the platinum wire of the pyrotechnic igniter 8 was passed through the hole 9 a provided in the center of the lid 9 with the edge 10 made of cardboard, and the pyrotechnic igniter 8 was attached to the lid 9. A casing 6 in which a crushed agent 7 is put is inserted into an edge 10 of a lid 9 to which a pyrotechnic igniter 8 is attached. When the housing 6 is inserted all the way to the edge 10 of the lid 9, the edge 10 of the lid 9 and the housing 6 are joined with an adhesive tape 11.

図3は、火工式点火具8を示す。厚み約0.3mm、長さ35mm、外径7.2mmのアルミニウム製管体18の内部の上部側には、カプセル23に覆われた保護キャップ22が有り、保護キャップ22の中に点火薬16が0.2g入っている。アルミニウム製管体18の内部下側には、着火薬17が1.15g入っている。白金線付脚線5は、市販品であり、アルミニウム製管体18に入る樹脂製の塞栓15が付いている。塞栓15の長さは約14mmである。白金線付き脚線5は樹脂被覆されているが、塞栓15よりアルミニウム製管体18側は3.5mm長で被覆がなく、直径約0.5mmの銅線19である。この銅線19に細い白金線20が溶接された状態で市販されている。   FIG. 3 shows a pyrotechnic igniter 8. A protective cap 22 covered with a capsule 23 is provided on the upper side of the aluminum tubular body 18 having a thickness of about 0.3 mm, a length of 35 mm, and an outer diameter of 7.2 mm. 0.2g. 1.15 g of ignition powder 17 is contained in the lower side of the inside of the aluminum tube body 18. The leg wire 5 with a platinum wire is a commercial product, and has a resin embolus 15 that enters the aluminum tube body 18. The length of the embolus 15 is about 14 mm. The platinum wire-attached leg wire 5 is resin-coated, but the aluminum tube 18 side from the embolus 15 is 3.5 mm long with no coating, and is a copper wire 19 having a diameter of about 0.5 mm. This copper wire 19 is commercially available with a thin platinum wire 20 welded thereto.

点火薬16は、酸化銅(CuO)90wt%とボロン(B)10wt%とを混合したものである。保護キャップ22の中に点火薬16を0.2g秤量し、先端の孔約1.5mmを塞ぐために、カプセル23を被せ白金線付き脚線5と結合する。着火薬17は、酸化銅(CuO)81wt%とアルミニウム(Al)16wt%とボロン(B)3wt%とを外割8wt%のニトロセルロース(NC)バインダーとして混合造粒した薬剤である。アルミニウム製管体18に着火薬17を1.15g秤量して、点火薬16の組立済み白金線付き脚線5の塞栓15をアルミニウム製管体18に入れ、塞栓15の上部がアルミニウム製管体18の上部より5mm程度上部とになるようにする。その後、塞栓15とアルミニウム製管体18とをカシメ装置でカシメて結合する。アルミニウム製管体18と塞栓15とをカシメると、カシメ溝21ができ、アルミニウム製管体18と塞栓15とが結合する。塞栓15は樹脂であり、カシメることによりアルミニウム製管体18内の密閉性が確保される。   The igniting agent 16 is a mixture of 90 wt% of copper oxide (CuO) and 10 wt% of boron (B). 0.2 g of the igniting agent 16 is weighed in the protective cap 22, and the capsule 23 is put on and bonded to the leg wire 5 with the platinum wire in order to close the hole of about 1.5 mm at the tip. The igniting agent 17 is a chemical obtained by mixing and granulating 81 wt% of copper oxide (CuO), 16 wt% of aluminum (Al), and 3 wt% of boron (B) as an nitrocellulose (NC) binder of 8 wt%. 1.15 g of the igniting agent 17 is weighed in the aluminum tube 18, the plug 15 of the assembled platinum wire leg wire 5 of the igniter 16 is put in the aluminum tube 18, and the upper portion of the plug 15 is an aluminum tube. It should be about 5 mm above the top of 18. Thereafter, the embolus 15 and the aluminum tube 18 are joined by caulking with a caulking device. When the aluminum tube 18 and the plug 15 are crimped, a crimp groove 21 is formed, and the aluminum tube 18 and the plug 15 are coupled. The embolus 15 is a resin, and the sealing inside the aluminum tube body 18 is secured by caulking.

火工式点火具8は、市販のコンデンサー式発破器(ニッサン発破器DX型DX−50−D、日本油脂株式会社製)を使って電流を流すことにより、白金線20が電線爆発を起こす。この電線爆発で生じる高温の白金線20の破片が点火薬16の中に入ることにより、点火薬16が燃焼し、着火薬17が伝火燃焼する。着火薬17は、ボロン(B)が酸化剤(BaCrO4)により酸化され、二酸化ボロン(B23)となる。このとき多量の熱(ΔH)が発生する。発生した熱(ΔH)は、アルミニウム製管体18を溶かし、破砕剤7を点火する。
2B+3BaCrO4→B23+3BaO+3CrO2+ΔH↑
試験に使用した汚染土壌3は、赤玉土2(密度1.25g/ml)1lにヘキサデカン(C1634:密度0.773g/ml)17〜83mlを均一になるように手で混ぜて作成した。
ヘキサデカンは沸点が約286℃であり、この温度を超える環境下では蒸発する。また、急激な温度上昇雰囲気環境下になった場合は分解を起こし、かつ破砕剤の燃焼ガスに含まれる酸素との反応により燃焼も生じると考えられる。
The pyrotechnic igniter 8 causes an electric wire explosion in the platinum wire 20 by passing a current using a commercially available condenser blaster (Nissan blaster DX type DX-50-D, manufactured by NOF Corporation). When the fragments of the high-temperature platinum wire 20 generated by the electric wire explosion enter the igniting agent 16, the igniting agent 16 burns and the ignition agent 17 conducts and burns. In the ignition agent 17, boron (B) is oxidized by an oxidizing agent (BaCrO 4 ) to become boron dioxide (B 2 O 3 ). At this time, a large amount of heat (ΔH) is generated. The generated heat (ΔH) melts the aluminum tube 18 and ignites the crushing agent 7.
2B + 3BaCrO 4 → B 2 O 3 + 3BaO + 3CrO 2 + ΔH ↑
Contaminated soil 3 used in the test was prepared by mixing 17 to 83 ml of hexadecane (C 16 H 34 : density 0.773 g / ml) with 1 l of red ore 2 (density 1.25 g / ml) by hand so as to be uniform. did.
Hexadecane has a boiling point of about 286 ° C. and evaporates in an environment exceeding this temperature. Further, it is considered that when the atmosphere is rapidly increased in temperature, decomposition occurs and combustion occurs due to reaction with oxygen contained in the combustion gas of the crushing agent.

次に、本実施形態の作用を説明する。
汚染土壌3の中心付近に設置した薬包1に、所定の電流を通電し、薬包1に設置された火工式点火具8を発火し、破砕剤7に伝火し破砕剤7を瞬時に燃焼させた。破砕剤7の燃焼により1000℃以上の高温ガスが発生し、同時に汚染土壌3に対して高圧力が与えられ、汚染土壌3の汚染物質は、急激な高温・高圧ガスにより分解、気化し土壌中の汚染物質濃度が低下した。
図4に示すように、処理後、薬包1のあった部分には生成孔13ができ、生成孔13の周囲と赤玉土2の間に汚染土壌3が張り付いている。また、生成孔13には多数のクラック14ができている。クラック14の周囲に張り付いた処理された汚染土壌3を回収して、処理量の測定を行った。
Next, the operation of this embodiment will be described.
A predetermined current is passed through the medicine package 1 installed near the center of the contaminated soil 3 to ignite the pyrotechnic igniter 8 installed in the medicine package 1, and the heat is transferred to the crushing agent 7 to instantly apply the crushing agent 7. Burned. Combustion of the crushing agent 7 generates a high-temperature gas of 1000 ° C. or higher, and at the same time, a high pressure is applied to the contaminated soil 3. The pollutants in the contaminated soil 3 are decomposed and vaporized by the rapid high-temperature / high-pressure gas. The pollutant concentration decreased.
As shown in FIG. 4, after the treatment, the generation hole 13 is formed in the portion where the medicine package 1 was present, and the contaminated soil 3 is stuck between the periphery of the generation hole 13 and the red ball soil 2. In addition, a large number of cracks 14 are formed in the generation hole 13. The treated contaminated soil 3 stuck around the crack 14 was collected, and the amount of treatment was measured.

汚染土壌3中の浄化処理後の汚染物質の濃度をソックスレー抽出法と重量法により定量分析した。ソックスレー抽出法については、例えばJIS K 0102に準じて実施した。一般的なソックスレー抽出器は、最下部のフラスコに溶媒(ヘキサン)を入れ、中間部に円筒ろ紙に入れた固体の試料を入れ、上部に焼結ガラス冷却管が付いた装置である。フラスコを加熱すると溶媒は蒸発し、最上部の冷却管で凝結する。この溶媒は、滴下する際に固体試料に滴り落ち、目的成分を少量溶かしこんだ後、フラスコに戻る。通常の場合、目的成分は溶媒より沸点が高いため、このサイクルを繰り返すことで、フラスコ内には徐々に目的成分が濃縮される。還流する溶媒は、目的成分を含まないので飽和することはなく、比較的少量の溶媒で効率よく抽出を行うことができる。実際には、汚染土壌3を10g円筒ろ紙に採取し、抽出にはn−ヘキサン100mlを加え、3時間のソックスレー抽出を行った。その後、濃縮をロータリーエバポレータを用いて実施し、さらに60℃に設定した乾燥機で15分間乾燥し、電子天秤によって重量測定を行い、目的物質の定量測定を行った。その結果、初期の汚染濃度に比べ、破砕剤7により処理された土壌の汚染濃度は初期濃度から30〜70%低減し、破砕剤7の発火燃焼と同時の極短時間で汚染濃度が低減することが確認された。   The concentration of the pollutant after the purification treatment in the contaminated soil 3 was quantitatively analyzed by the Soxhlet extraction method and the gravimetric method. The Soxhlet extraction method was performed according to, for example, JIS K 0102. A general Soxhlet extractor is a device in which a solvent (hexane) is placed in the bottom flask, a solid sample placed in a cylindrical filter paper is placed in the middle, and a sintered glass cooling tube is attached on the top. When the flask is heated, the solvent evaporates and condenses in the top cooling tube. When the solvent is dropped, the solvent drops on the solid sample, dissolves a small amount of the target component, and then returns to the flask. Usually, since the target component has a boiling point higher than that of the solvent, the target component is gradually concentrated in the flask by repeating this cycle. Since the refluxing solvent does not contain the target component, it does not saturate and can be extracted efficiently with a relatively small amount of solvent. Actually, the contaminated soil 3 was collected on a 10 g cylindrical filter paper, and extraction was performed by adding 100 ml of n-hexane and performing Soxhlet extraction for 3 hours. Then, concentration was performed using a rotary evaporator, and further dried for 15 minutes with a drier set at 60 ° C., and the weight was measured with an electronic balance to quantitatively measure the target substance. As a result, compared to the initial contamination concentration, the contamination concentration of the soil treated with the crushing agent 7 is reduced by 30 to 70% from the initial concentration, and the contamination concentration is reduced in a very short time at the same time as the combustion of the crushing agent 7. It was confirmed.

破砕剤7の代わりに爆薬やダイナマイトの使用も可能であるが、本実施形態の場合、施行の状態により汚染土壌3が単に撒き散らされるだけの場合もあり、常に良好な結果になるとはいえない。従って、破砕剤7のように密閉状態でも爆速が低く比較的穏やかな燃焼が行われる薬剤がより好ましい。
このように、本発明によれば、掘削のための大型重機、さらにはポンプ等の大型機器類を必要とせず、それらの設置場所も必要とせず、燃焼によって発生した高温ガスを汚染土壌に与えることによって、汚染の原位置で、浄化が可能で、不用な土壌の運搬、掘り返しが必要なく、施行する上で最低限の土壌掘削のみを行えば瞬時に浄化ができる。
かつ、装置の設置に時間を要さず、迅速な浄化が可能であり、従来法のように長期間の施工例や立ち入り禁止等の措置が不用となる。簡易に、かつ装置の設置に時間を要さず、また広い場所も必要とせずに、短期間で汚染土壌を浄化することが可能となる。
Explosives and dynamite can be used instead of the crushing agent 7, but in the case of this embodiment, the contaminated soil 3 may be simply scattered depending on the state of enforcement, and it cannot be said that the result is always good. . Therefore, a chemical that has a low explosion speed and performs relatively gentle combustion, such as the crushing agent 7, is more preferable.
As described above, according to the present invention, large heavy equipment for excavation and further large equipment such as a pump are not required, and the installation place is not required, and high temperature gas generated by combustion is given to the contaminated soil. Therefore, it is possible to purify at the original position of the contamination, there is no need to transport and dig up unnecessary soil, and it is possible to purify instantly if only minimal soil excavation is carried out.
In addition, the installation of the apparatus does not require time, and rapid purification is possible, and measures such as long-term construction examples and entry prohibition as in the conventional method are unnecessary. It is possible to purify the contaminated soil in a short period of time, without requiring time for installation of the apparatus and without requiring a large space.

なお、上記実施形態では、破砕剤7を用いる場合について説明したが、本発明はこれに限らず、爆発による急激な温度上昇と高温・高圧ガスの発生を伴う燃焼性組成物であれば特に限定するものではない。
また、上記実施形態においては、汚染土壌として、一般的な土壌について説明したが、本発明はこれに限らず、粘土質土壌、砂質・礫質土壌、泥質や地下水近傍の軟質土壌などにも当然に適用できる。また、汚染土壌の状態としては、これらの汚染土壌において汚染だまりとして汚染物質が存在する場合にでも当然に適用できる。
In the above embodiment, the case where the crushing agent 7 is used has been described. However, the present invention is not limited to this, and the present invention is not particularly limited as long as it is a combustible composition that involves a rapid temperature increase due to explosion and generation of high-temperature / high-pressure gas. Not what you want.
In the above embodiment, general soil has been described as contaminated soil. However, the present invention is not limited to this, and clay soil, sandy / gravel soil, mud, soft soil near groundwater, and the like are used. Is also applicable naturally. In addition, as a state of the contaminated soil, it can be naturally applied even when a pollutant exists in the contaminated soil as a contamination pool.

以下、本発明を実施例によりさらに説明する。
図1に示す実験装置を用いて破砕剤7を火工式点火具8で発火燃焼させ、汚染土壌3中の汚染物質をソックスレー抽出法と重量法により定量分析した。
試験No.1は、汚染土壌3中のヘキサデカンの濃度を1.7vol%、汚染土壌3の径を105mm、破砕剤7の薬量を2gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度1.7vol%が0.71vol%となっており、試験前の濃度を100%とすると、試験後は42%に低下していた。すなわち、58%のヘキサデカンが処理されたことを確認した。
Hereinafter, the present invention will be further described by examples.
The crushing agent 7 was ignited and burned with the pyrotechnic igniter 8 using the experimental apparatus shown in FIG. 1, and the pollutants in the contaminated soil 3 were quantitatively analyzed by the Soxhlet extraction method and the gravimetric method.
Test No. 1 is an experiment in which the concentration of hexadecane in the contaminated soil 3 is 1.7 vol%, the diameter of the contaminated soil 3 is 105 mm, and the dosage of the crushing agent 7 is 2 g. The amount of hexadecane in the contaminated soil 3 after the experiment is The concentration of 1.7 vol% before the test was 0.71 vol%, and when the concentration before the test was 100%, it decreased to 42% after the test. That is, it was confirmed that 58% of hexadecane was processed.

試験No.2は、汚染土壌3中のヘキサデカンの濃度を1.7vol%、汚染土壌3の径を150mm、破砕剤7の薬量を2gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度1.7vol%が0.42vol%となっており、試験前の濃度を100%とすると、試験後は25%に低下していた。すなわち、75%のヘキサデカンが処理されたことを確認した。
試験No.3は、汚染土壌3中のヘキサデカンの濃度を1.7vol%、汚染土壌3の径を70mm、破砕剤7の薬量を2gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度1.7vol%が0.61vol%となっており、試験前の濃度を100%とすると、試験後は36%に低下していた。すなわち、64%のヘキサデカンが処理されたことを確認した。
Test No. 2 was tested by setting the concentration of hexadecane in the contaminated soil 3 to 1.7 vol%, the diameter of the contaminated soil 3 to 150 mm, and the amount of the crushing agent 7 to 2 g. The amount of hexadecane in the contaminated soil 3 after the experiment was The concentration of 1.7 vol% before the test was 0.42 vol%, and when the concentration before the test was 100%, it decreased to 25% after the test. That is, it was confirmed that 75% of hexadecane was processed.
Test No. No. 3 was tested with the concentration of hexadecane in the contaminated soil 3 being 1.7 vol%, the diameter of the contaminated soil 3 being 70 mm, and the amount of the crushing agent 7 being 2 g. The amount of hexadecane in the contaminated soil 3 after the experiment was The concentration of 1.7 vol% before the test was 0.61 vol%, and when the concentration before the test was 100%, it decreased to 36% after the test. That is, it was confirmed that 64% of hexadecane was processed.

試験No.4は、汚染土壌3中のヘキサデカンの濃度を1.7vol%、汚染土壌3の径を105mm、破砕剤7の薬量を5gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度1.7vol%が0.68vol%となっており、試験前の濃度を100%とすると、試験後は40%に低下していた。すなわち、60%のヘキサデカンが処理されたことを確認した。
試験No.5は、汚染土壌3中のヘキサデカンの濃度を8.3vol%、汚染土壌3の径を105mm、破砕剤7の薬量を2gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度8.3vol%が3.8vol%となっており、試験前の濃度を100%とすると、試験後は46%に低下していた。すなわち、54%のヘキサデカンが処理されたことを確認した。
試験No.6は、汚染土壌3中のヘキサデカンの濃度を8.3vol%、汚染土壌3の径を105mm、破砕剤7の薬量を5gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度8.3vol%が4.0vol%となっており、試験前の濃度を100%とすると、試験後は48%に低下していた。すなわち、52%のヘキサデカンが処理されたことを確認した。
Test No. No. 4 was tested with the concentration of hexadecane in the contaminated soil 3 being 1.7 vol%, the diameter of the contaminated soil 3 being 105 mm, and the amount of the crushing agent 7 being 5 g. The amount of hexadecane in the contaminated soil 3 after the experiment was The concentration of 1.7 vol% before the test was 0.68 vol%, and when the concentration before the test was 100%, it decreased to 40% after the test. That is, it was confirmed that 60% of hexadecane was processed.
Test No. No. 5 was tested with the concentration of hexadecane in the contaminated soil 3 being 8.3 vol%, the diameter of the contaminated soil 3 being 105 mm, and the amount of the crushing agent 7 being 2 g. The amount of hexadecane in the contaminated soil 3 after the experiment was The concentration of 8.3 vol% before the test was 3.8 vol%, and when the concentration before the test was 100%, it decreased to 46% after the test. That is, it was confirmed that 54% of hexadecane was processed.
Test No. No. 6 was tested by setting the concentration of hexadecane in the contaminated soil 3 to 8.3 vol%, the diameter of the contaminated soil 3 to 105 mm, and the amount of the crushing agent 7 to 5 g. The amount of hexadecane in the contaminated soil 3 after the experiment was The concentration of 8.3 vol% before the test was 4.0 vol%, and when the concentration before the test was 100%, it decreased to 48% after the test. That is, it was confirmed that 52% of hexadecane was processed.

その結果、破砕剤7により処理された汚染土壌3の汚染濃度は、初期の汚染濃度に比べ30〜70%低減し、破砕剤7の発火燃焼と同時の極短時間で汚染濃度が低減することが確認された。
表1は、実験No.1〜No.6の結果を示す。
As a result, the contamination concentration of the contaminated soil 3 treated with the crushing agent 7 is reduced by 30 to 70% compared to the initial contamination concentration, and the contamination concentration is reduced in a very short time simultaneously with the ignition and combustion of the crushing agent 7. Was confirmed.
Table 1 shows Experiment No. 1-No. The result of 6 is shown.

Figure 0005077928
Figure 0005077928

図1に示す実験装置を用いて、火薬取締法において火薬類の範疇とされる組成物を火工式点火具によって起爆し、汚染土壌3中の汚染物質をソックスレー抽出法と重量法により定量分析した。
試験No.7は、産業用爆薬を用いた場合の代表例として試験を実施した。組成物として硝酸アンモニウムと軽油を主とする硝安油剤爆薬を用いて行った。汚染土壌3中のヘキサデカンの濃度を4.32vol%、汚染土壌3の径を105mm、硝安油剤爆薬の薬量を2gを6号電気雷管とペンスリット0.6gにより起爆して実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度4.32vol%が2.48vol%となっており試験前の濃度を100%とすると、試験後は57.7%に低下していた。すなわち、42.3%のヘキサデカンが処理されており、硝安油剤爆薬を用いての処理も可能であることが示された。
Using the experimental equipment shown in Fig. 1, the explosives control method uses a pyrotechnic igniter to detonate a composition that falls within the category of explosives, and quantitatively analyzes the pollutants in the contaminated soil 3 using the Soxhlet extraction method and the gravimetric method. did.
Test No. No. 7 was tested as a representative example when an industrial explosive was used. The composition was prepared using a ammonium nitrate explosive mainly composed of ammonium nitrate and light oil. Experiments were conducted with the concentration of hexadecane in the contaminated soil 3 being 4.32 vol%, the diameter of the contaminated soil 3 being 105 mm, and the amount of the salt oil explosive explosive being 2 g with the No. 6 electric detonator and 0.6 g pen slit. The amount of hexadecane in the later contaminated soil 3 was 2.48 vol% from the concentration of 4.32 vol% before the test, and when the concentration before the test was 100%, it decreased to 57.7% after the test. . That is, 42.3% of hexadecane was treated, and it was shown that treatment with a salt oil explosive was also possible.

試験No.8は、爆薬を用いた場合の代表例として試験を実施した。組成物としてシクロ-1,3,5-トリメチレン-2,4,6-トリニトラミン(RDX)と可塑剤を主とする爆薬(コンポジションC4)を用いて行った。汚染土壌3中のヘキサデカンの濃度を4.32vol%、汚染土壌3の径を105mm、コンポジションC4の薬量を1gを6号電気雷管とペンスリット0.6gにより起爆して実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度4.32vol%が2.51vol%となっており試験前の濃度を100%とすると、試験後は58.1%に低下していた。すなわち、41.9%のヘキサデカンが処理されており、コンポジションC4を用いての処理も可能であることが示された。
試験No.9は、火薬を用いた場合の代表例として黒色火薬を用いて試験を実施した。黒色火薬の組成は硝酸カリウム、木炭、イオウの3成分からなる。汚染土壌3中のヘキサデカンの濃度を4.32vol%、汚染土壌3の径を105mm、黒色火薬の薬量を7gとして実験したところ、実験後の汚染土壌3中のヘキサデカンの量は試験前の濃度4.32vol%が2.48vol%となっており試験前の濃度を100%とすると、試験後は57.4%に低下していた。すなわち、42.6%のヘキサデカンが処理されており、黒色火薬を用いての処理も可能であることが示された。
この結果、火薬類取締法に定義された火薬類の代表例による処理によっても、汚染土壌3の汚染濃度は、初期の汚染濃度に比べ50〜60%に低減し、破砕剤の場合と同様に極短時間で汚染濃度を低減することが可能である。
表2は、実験No.7〜No.9の結果を示す。
Test No. Test No. 8 was conducted as a representative example when an explosive was used. The composition used was cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and an explosive mainly composed of a plasticizer (composition C4). Experiments were conducted by detonating the concentration of hexadecane in the contaminated soil 3 with 4.32 vol%, the diameter of the contaminated soil 3 with 105 mm, and the composition C4 with a dose of 1 g using a No. 6 electric detonator and 0.6 g pen slit. The amount of hexadecane in the later contaminated soil 3 was 2.51 vol% from the concentration of 4.32 vol% before the test, and when the concentration before the test was 100%, it decreased to 58.1% after the test. . That is, 41.9% of hexadecane was treated, and it was shown that treatment with composition C4 is also possible.
Test No. No. 9 was tested using black powder as a representative example when using powder. The composition of black powder consists of three components: potassium nitrate, charcoal and sulfur. When the concentration of hexadecane in the contaminated soil 3 was 4.32 vol%, the diameter of the contaminated soil 3 was 105 mm, and the amount of black powder was 7 g, the amount of hexadecane in the contaminated soil 3 after the experiment was the concentration before the test. 4.32 vol% was 2.48 vol%, and when the concentration before the test was 100%, it decreased to 57.4% after the test. That is, 42.6% of hexadecane was treated, and it was shown that treatment with black powder is possible.
As a result, the contamination concentration of the contaminated soil 3 is reduced to 50 to 60% compared to the initial contamination concentration even by the treatment with the representative example of explosives defined in the Explosives Control Law. It is possible to reduce the contamination concentration in an extremely short time.
Table 2 shows Experiment No. 7-No. The result of 9 is shown.

Figure 0005077928
Figure 0005077928

図5〜図7に示すように、幅2.0m、奥行き2.0m、高さ1.5mのL型擁壁30を4個を準備し、それぞれの背面を利用することによって2m四方のコンクリートの囲いを形成した。この囲いに高さ1.2mまで土を入れ総容積が4.8m3となる試験用模擬土壌31を作製し、破砕剤32を用いた汚染土壌33の処理実験を実施した。全体の土には赤土を用い、汚染土壌32を作製するための土には細粒化した赤玉土を用いた。汚染土壌33は細粒化した赤玉土をミキサーに入れ、攪拌しながら汚染物質であるヘキサデカンをスプレーにより噴霧し赤玉土と混合した。ヘキサデカンは赤玉土に対して3vol%となるように調整した。噴霧終了後も混合を継続し、ヘキサデカンの分散が均一になっていることを濃度分析により確認した。 As shown in FIG. 5 to FIG. 7, four L-shaped retaining walls 30 having a width of 2.0 m, a depth of 2.0 m, and a height of 1.5 m are prepared, and 2 m square concrete is obtained by using the respective back surfaces. Formed an enclosure. Soil was put into this enclosure up to a height of 1.2 m, a test simulated soil 31 having a total volume of 4.8 m 3 was produced, and a treatment experiment for contaminated soil 33 using a crushing agent 32 was performed. Red soil was used as the whole soil, and finely ground red jade soil was used as the soil for producing the contaminated soil 32. The contaminated soil 33 was prepared by adding finely ground red jade soil into a mixer, and spraying hexadecane, which is a pollutant, while mixing with the red jade soil. Hexadecane was adjusted to 3 vol% with respect to the red crust. Mixing was continued after completion of spraying, and it was confirmed by concentration analysis that the dispersion of hexadecane was uniform.

ヘキサデカンを含有した汚染土壌33は、L型擁壁30によって作られた囲いの中心部に予め準備した40cm×40cm×100cmの角柱状の木枠の中に投入され、高さが40cmとなるところまで汚染土壌33を圧縮しながら投入した。投入後この木枠を抜き取り、この結果、図6に示すように4.8m3の試験模擬土壌31の中心部に0.064m3の汚染土壌33が存在するように設置した。ここを初期汚染土壌領域35とした。
中心部に設置された40cm角の汚染土壌33の中心を狙い(図5)、φ10cm、高さ50cmの装填孔34を穿孔し、破砕剤32が汚染土壌33に中央部に位置するように設置した。破砕剤装填後、装填孔34からガスが噴出しないように赤土を固めながらを装填孔34を埋めた。
このとき破砕剤32は樹脂製の容器に充填され、薬量は300gであった。破砕剤32が充填された樹脂製の容器に火工式点火具を挿入し通電により破砕剤32を起爆した。破砕剤32の発火爆発によって発生した高温ガスとそれに伴う圧力を汚染土壌33に作用させた。その後起爆の中心点から一定の距離を設定し、その位置でポーリングによるサンプル採取を行い汚染物質の濃度変化および周囲の土への影響を確認した。
表3は実施例3の結果を示している。
The contaminated soil 33 containing hexadecane is placed in a 40 cm × 40 cm × 100 cm prismatic wooden frame prepared in advance in the center of the enclosure made by the L-shaped retaining wall 30, and the height becomes 40 cm. The contaminated soil 33 was added while compressing. After the addition, this wooden frame was extracted, and as a result, as shown in FIG. 6, it was placed so that 0.064 m 3 of contaminated soil 33 was present at the center of the 4.8 m 3 test simulated soil 31. This was designated as an initial contaminated soil region 35.
Aiming at the center of the 40 cm square contaminated soil 33 installed in the center (FIG. 5), a loading hole 34 having a diameter of 10 cm and a height of 50 cm is drilled so that the crushing agent 32 is located in the center of the contaminated soil 33. did. After loading the crushing agent, the loading hole 34 was filled while solidifying the red soil so that no gas was ejected from the loading hole 34.
At this time, the crushing agent 32 was filled in a resin container, and the drug amount was 300 g. A pyrotechnic igniter was inserted into a resin container filled with the crushing agent 32, and the crushing agent 32 was detonated by energization. The hot gas generated by the ignition explosion of the crushing agent 32 and the pressure accompanying it were applied to the contaminated soil 33. After that, a fixed distance from the center point of the detonation was set, and samples were collected by polling at that position to confirm the change in the concentration of pollutants and the influence on the surrounding soil.
Table 3 shows the results of Example 3.

Figure 0005077928
Figure 0005077928

表3では、深さ40cmの位置における汚染土壌33をサンプリングし濃度分析を実施したところ、起爆ポイントからY2方向に15cm離れた位置では、試験前に調整したヘキサデカンの濃度3vol%が0.7vol%に減少し、試験前の濃度を100%とすると、76.7%の減少となった。また、起爆ポイントからY1、Y2方向に20cmの位置では、0.14vol%および0.49vol%と測定され、試験前の濃度を100%とすると、それぞれ95.3%、83.7%の濃度減少が確認された。(図7)
また、初期の設定のおいて汚染土壌33が設置されていない起爆ポイントから60cm離れた場所においてもヘキサデカンが検出され、破砕剤32の起爆によって生成した高温ガスが土中に微細なクラックを形成していることを裏付けている。
In Table 3, the contaminated soil 33 at a depth of 40 cm was sampled and analyzed for concentration. At a position 15 cm away from the initiation point in the Y2 direction, the concentration of hexadecane adjusted before the test was 0.7 vol%. Assuming that the concentration before the test was 100%, the decrease was 76.7%. In addition, at a position 20 cm in the Y1 and Y2 directions from the initiation point, it was measured as 0.14 vol% and 0.49 vol%, and assuming that the concentration before the test was 100%, the concentrations were 95.3% and 83.7%, respectively. A decrease was confirmed. (Fig. 7)
Further, in the initial setting, hexadecane is detected even at a location 60 cm away from the initiation point where the contaminated soil 33 is not installed, and the high-temperature gas generated by the initiation of the crushing agent 32 forms fine cracks in the soil. That it is.

本発明に係る汚染土壌の浄化方法の一実施形態に使用した実験装置の斜視図である。It is a perspective view of the experimental apparatus used for one Embodiment of the purification method of the contaminated soil which concerns on this invention. 図1における薬包を示す断面図である。It is sectional drawing which shows the medicine package in FIG. 図2における火工式点火具を示す断面図である。It is sectional drawing which shows the pyrotechnic igniter in FIG. 図1に示す実験装置を用いて破砕剤で汚染土壌を浄化処理した後のペール缶内部を示す断面図である。It is sectional drawing which shows the inside of a pail can after carrying out the purification process of the contaminated soil with a crushing agent using the experimental apparatus shown in FIG. 実施例3に係る汚染土壌浄化試験方法の一実施形態に使用した試験土壌の平面図であるIt is a top view of the test soil used for one Embodiment of the contaminated soil purification test method which concerns on Example 3. 実施例3に係る汚染土壌浄化試験方法の一実施形態に使用した試験土壌の断面図であるIt is sectional drawing of the test soil used for one Embodiment of the contaminated soil purification test method which concerns on Example 3. 図5および図6に示す試験土壌を用いて破砕剤で汚染土壌を浄化処理した後のサンプリングポイントを示した平面図である。It is the top view which showed the sampling point after purifying contaminated soil with a crushing agent using the test soil shown in FIG. 5 and FIG.

符号の説明Explanation of symbols

1 薬包
2 赤玉土
2a 穴
3、33 汚染土壌
4、34 装填孔
5 白金線付き脚線
6 筐体
7、32 破砕剤
8 火工式点火具
9 蓋
10 縁部
11 粘着テープ
12 ペール缶
13 生成孔
14 クラック
15 塞栓
16 点火薬
17 着火薬
18 管体
19 銅線
20 白金線
21 カシメ溝
22 保護キャップ
23 カプセル
30 L型擁壁
31 試験用模擬土壌
35 初期汚染土壌領域
DESCRIPTION OF SYMBOLS 1 Medicinal package 2 Red ball 2a Hole 3, 33 Contaminated soil 4, 34 Loading hole 5 Leg wire 6 with a platinum wire 6 Case 7, 32 Crushing agent 8 Pyrotechnic igniter 9 Lid 10 Edge 11 Adhesive tape 12 Pail can 13 Generation hole 14 Crack 15 Embolization 16 Ignition agent 17 Ignition agent 18 Tube 19 Copper wire 20 Platinum wire 21 Caulking groove 22 Protective cap 23 Capsule 30 L-type retaining wall 31 Test simulated soil 35 Initially contaminated soil region

Claims (6)

酸化第二銅とアルミニウム粉とカリウム明礬とから成り燃焼すると前記酸化第二銅と前記アルミニウム粉とのテルミット反応によって高温・高圧ガスを生成する破砕剤を汚染土壌領域充填し、前記破砕剤の燃焼により発生した高温・高圧ガスによって前記汚染土壌中の汚染物質を分解及び気化させることを特徴とする汚染土壌の浄化方法。 When combusted consisting of cupric oxide, aluminum powder, and potassium alum, the contaminated soil region is filled with a crushing agent that generates high-temperature and high-pressure gas by the thermite reaction between the cupric oxide and the aluminum powder . method of purifying contaminated soil, characterized in that to decompose and vaporize the contaminants in the contaminated soil by high temperature and high pressure gas generated by combustion. 前記汚染物質は、脂肪族炭化水素、芳香族炭化水素、多環・直鎖炭化水素又はそれらを含む油類、フェノール類、又は揮発性有機化合物、有機塩素化合物であり、それらの単独又は複合汚染物であることを特徴とする請求項1記載の汚染土壌の浄化方法。   The pollutants are aliphatic hydrocarbons, aromatic hydrocarbons, polycyclic / linear hydrocarbons or oils containing them, phenols, volatile organic compounds, organic chlorine compounds, and single or combined pollution of them. The method for purifying contaminated soil according to claim 1, wherein the method is a waste material. 前記破砕剤は、火工式点火具を備えた筐体に填薬されていることを特徴とする請求項1又は請求項2記載の汚染土壌の浄化方法。 The crushing agent is claim 1 or claim 2 method of purifying contaminated soil wherein it is Hamakusuri to a housing provided with a pyrotechnic igniter. 前記汚染土壌領域に孔を穿孔し、その孔に前記破砕剤を填薬した筐体を挿入して前記破砕剤を燃焼させることを特徴とする請求項1又は請求項2記載の汚染土壌の浄化方法。 3. The purification of contaminated soil according to claim 1 or 2 , wherein a hole is drilled in the contaminated soil region, and a casing filled with the crushing agent is inserted into the hole to burn the crushing agent. Method. 前記破砕剤及び前記火工式点火具の点火薬は、非火薬組成物であることを特徴とする請求項3記載の汚染土壌の浄化方法。 4. The method for purifying contaminated soil according to claim 3, wherein the crushing agent and the pyrotechnic igniter are non-explosive compositions. 前記破砕剤を填薬する筐体は、紙製又は耐性を付与した紙製又は樹脂製であることを特徴とする請求項3ないし請求項5の何れか記載の汚染土壌の浄化方法。 The method for purifying contaminated soil according to any one of claims 3 to 5, wherein the casing for filling the crushing agent is made of paper, paper made of resistance, or resin.
JP2007025358A 2006-03-23 2007-02-05 Purification method for contaminated soil Active JP5077928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025358A JP5077928B2 (en) 2006-03-23 2007-02-05 Purification method for contaminated soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006080382 2006-03-23
JP2006080382 2006-03-23
JP2007025358A JP5077928B2 (en) 2006-03-23 2007-02-05 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2008194547A JP2008194547A (en) 2008-08-28
JP5077928B2 true JP5077928B2 (en) 2012-11-21

Family

ID=39753997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025358A Active JP5077928B2 (en) 2006-03-23 2007-02-05 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP5077928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000217B2 (en) * 2005-10-07 2012-08-15 日興技化株式会社 Method and apparatus for crushing rocks and structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2702716B2 (en) * 1987-06-22 1998-01-26 日本工機株式会社 Crushing composition
US5564861A (en) * 1995-06-06 1996-10-15 Khudenko; Boris M. Thermal method of in-situ soil treatment
JP3108731B2 (en) * 1997-10-23 2000-11-13 工業技術院長 Method of detoxifying organic halides with explosives
US6204429B1 (en) * 1998-04-03 2001-03-20 Washington State University Research Foundation Methods of remediation of chemical contaminants dispersed in geologic media
JP2996659B1 (en) * 1999-02-01 2000-01-11 有限会社地域環境研究所 Contaminated soil treatment method and block material obtained using contaminated soil
JP2003181441A (en) * 2001-12-17 2003-07-02 Nippon Hodo Co Ltd Method for decontaminating and remediating contaminated soil

Also Published As

Publication number Publication date
JP2008194547A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
Oluwoye et al. Atmospheric emission of NOx from mining explosives: A critical review
Pichtel Distribution and fate of military explosives and propellants in soil: a review
JP4934832B2 (en) Method and apparatus for improving contaminated land
Pearson et al. Critical evaluation of proven chemical weapon destruction technologies (IUPAC Technical Report)
US20210364267A1 (en) Munitions and Ordnance Remediation Blanket (MORB) and Methods of Using Same
CN1503895A (en) Method and installation for destroying rocket mounted on ammunition
WO1996039267A1 (en) Combustion facilitated waste and pollution treatment
US6260464B1 (en) In-situ implosion for destruction of dangerous materials
JP5077928B2 (en) Purification method for contaminated soil
JP5000217B2 (en) Method and apparatus for crushing rocks and structures
JP3688855B2 (en) Non-explosive crushing composition
Wilkinson et al. Review of demilitarisation and disposal techniques for munitions and related materials
Stucki Toxicity and degradation of explosives
Clausen et al. Fate and transport of energetics from surface soils to groundwater
Khomeriki et al. Production of industrial explosive substances on the basis of the powders and solid rocket fuel released from the utilization of the expired ammunition
Comfort Remediating RDX and HMX contaminated soil and water
WO2008147669A2 (en) Sulfur-based bulk reductants and methods of using same
Kuykendall CHARACTERIZATION OF EXPLOSIVES TESTING RANGES: ENVIRONMENTAL IMPACTS AND REMEDIATION CONSIDERATIONS
Van Ham Investigations of risks connected to sea-dumped munitions
Brochu et al. Canadian Approach to the Environmental Characterization and Risk Assessment of Military Training
Alaba et al. Assessment of Environmental Effects of Post-Blasted Explosive on the Ecosystem of Old Netim Village in Akamkpa Local Government Area of Cross River State, Nigeria
Maleh et al. RDX properties as a guide to remediation
RU2191766C1 (en) Explosive
Jaramillo Dissolution and sorption of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine and 2, 4, 6-trinitrotoluene residues from detonated phyllosilicate mineral surfaces
JP2005233459A (en) Method for disposal of weapons by explosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5077928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250