JP2005233459A - Method for disposal of weapons by explosion - Google Patents

Method for disposal of weapons by explosion Download PDF

Info

Publication number
JP2005233459A
JP2005233459A JP2004040298A JP2004040298A JP2005233459A JP 2005233459 A JP2005233459 A JP 2005233459A JP 2004040298 A JP2004040298 A JP 2004040298A JP 2004040298 A JP2004040298 A JP 2004040298A JP 2005233459 A JP2005233459 A JP 2005233459A
Authority
JP
Japan
Prior art keywords
weapon
explosive
neumann
explosion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004040298A
Other languages
Japanese (ja)
Inventor
Takeisa Arita
武功 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004040298A priority Critical patent/JP2005233459A/en
Publication of JP2005233459A publication Critical patent/JP2005233459A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/06Dismantling fuzes, cartridges, projectiles, missiles, rockets or bombs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently disposing of weapons such as shells left in a sea and a ground for a long period. <P>SOLUTION: In the disposal of the weapons by explosion in which a powder is enclosed in a metal or plastic container, an explosive is installed in the container having a Neumann structure on the surface of the weapon, and the weapon is overhauled by cutting with a jet generated by the Neumann structure or the powder stored in the weapon is exploded. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、不要な地雷や砲弾等の兵器の爆破処理方法に関する。   The present invention relates to a method for explosive treatment of weapons such as unnecessary landmines and shells.

爆薬で覆い爆破して処理するハロゲン化物の無害化方法(例えば、特許文献1参照)やコンクリ−ト基礎に定着された二重壁式鋼製のチャンバ−内で金属の爆発加工や不要な弾薬類や有害物質を処理する際に生じる騒音、衝撃及び有毒な汚染性の爆発生成物を抑制すべく爆発過程を封じ込める方法(例えば、特許文献2参照)、ガス中和剤等を用いた毒ガスや毒ガス弾の無害化処理方法(例えば、特許文献3参照)、爆薬の爆発力を一定方向に集中させるノイマン構造で金属を切断加工する方法(例えば非特許文献1参照)がある。
特開平11−128880公報 特表2002−542444公報 特開2002−159588公報 松原重一著「爆薬による鋼材切断の研究」 株式会社大阪造船所研究開発部発行、昭和55年7月発行
Methods for detoxifying halides that are covered with explosives and processed by detonation (see, for example, Patent Document 1), and explosive processing of metals and unnecessary ammunition in a double-walled steel chamber fixed to a concrete base A method of containing the explosion process to suppress noise, impact and toxic and polluting explosive products generated when treating substances and harmful substances (for example, see Patent Document 2), poisonous gas using a gas neutralizer, etc. There are methods for detoxifying poison gas bullets (for example, see Patent Document 3) and methods for cutting metal with a Neumann structure that concentrates the explosive power of explosives in a certain direction (for example, see Non-Patent Document 1).
JP-A-11-128880 Special table 2002-542444 gazette JP 2002-159588 A Published by Shigekazu Matsubara, “Research on cutting steel with explosives”, Osaka Shipyard Co., Ltd., published in July 1980

本発明は、不要となった地雷や砲弾等の兵器を安全で効率的に無害化する爆破処理方法を提供することを目的とする。   An object of the present invention is to provide a blast treatment method that can safely and efficiently detoxify weapons such as landmines and shells that are no longer needed.

本発明者は前記課題を解決すべく鋭意研究を重ねた結果、ノイマン構造を有する爆薬を用いると、砲弾等の兵器の周囲全体を爆薬で覆った状態で爆破処理していた従来法に比べて、爆破に要する爆薬量が大巾に低減できることや爆破の際に生じる飛散物による隔壁等の損傷も低減できることを見出し、本発明を完成するに至った。
即ち、本発明は下記のとおりである。
1.金属やプラスチックの容器に火薬類を内包する兵器の爆破処理において、該兵器の表面にノイマン構造の凹みを持つ容器に爆薬を設置して、該ノイマン構造より発生するジェットで該兵器を切断解体又は兵器に収納される火薬類を爆破することを特徴とする兵器の爆破処理方法。
2.爆薬が、ペンスリット、ヘキソ−ゲン、トリニトロトルエン、ダイナマイトの1種または2種以上からなることを特徴とする前記1.記載の兵器の爆破処理方法。
3.ノイマン構造の凹みを持つ容器が、アルミや銅や鉄等の金属板又はプラスチック板のライナ−を有することを特徴とする前記1.または2.記載の兵器の爆破処理方法。
4.兵器が、地雷、砲弾、または手榴弾であることを特徴とする前記1.〜3.いずれかに記載の兵器の爆破処理方法。
5.爆破処理が、真空密閉された空間または水中で行われることを特徴とする前記1.〜4.いずれかに記載の兵器の爆破処理方法。
6.水中の爆破処理がノイマン構造の凹みに水を介在させずに行われることを特徴とする前記1.〜5.いずれかに記載の兵器の爆破処理方法。
As a result of intensive studies to solve the above problems, the present inventor used an explosive having a Neumann structure, compared with the conventional method in which the entire periphery of a weapon such as a cannonball was covered with an explosive. The present inventors have found that the amount of explosives required for blasting can be greatly reduced and that damage to partition walls and the like caused by scattered materials generated during blasting can be reduced.
That is, the present invention is as follows.
1. In the blasting process of weapons containing explosives in a metal or plastic container, the explosive is placed in a container having a Neumann structure dent on the surface of the weapon, and the weapon is cut or disassembled with a jet generated from the Neumann structure. Blast treatment method for weapons, characterized by blowing up explosives stored in weapons.
2. The explosive is composed of one kind or two or more kinds of pen slit, hexogen, trinitrotoluene and dynamite. Destruction method for listed weapons.
3. 1. The container having a Neumann-shaped recess has a liner made of a metal plate such as aluminum, copper, or iron, or a plastic plate. Or 2. Destruction method for listed weapons.
4). 1. The weapon is a land mine, cannonball, or grenade. ~ 3. A method of blasting a weapon according to any one of the above.
5). 1. The blasting treatment is performed in a vacuum-sealed space or in water. ~ 4. A method of blasting a weapon according to any one of the above.
6). 1. The above-described 1. characterized in that the underwater blast treatment is performed without interposing water in the dent of the Neumann structure. ~ 5. A method of blasting a weapon according to any one of the above.

本発明によれば、兵器の爆砕処理に要する爆薬の斉発薬量が低減する。このために爆破による公害も低減させることができる。   According to the present invention, the amount of explosives required for explosive treatment of weapons is reduced. For this reason, pollution caused by blasting can be reduced.

以下、本願発明について、特にその好ましい実施態様を中心に説明する。
本発明のノイマン構造とは爆薬の爆轟方向端末に円錐形や半球形やL字形などの金属等のライナ−を入れて爆轟させるとき、ライナ−の崩壊に伴って金属微粒子が放出され、これが棒状の集団をなして進行し、ジェットを形成する。ライナ−を装着しない場合でも爆薬の爆轟方向端末に円錐形や半球状やL字形の凹みがあれば爆薬成分中の未反応生成物、とガスとの混合微粒子が放出されてジェットが形成され、ジェットが衝突した物体には深い穿孔が生じる。こうした現象はモンロ−効果、あるいは、ノイマン効果と称されている(以下、ノイマン効果と略称する)。こうした効果を発揮する形状をノイマン構造と云う。
Hereinafter, the present invention will be described with a focus on preferred embodiments.
The Neumann structure of the present invention means that when a liner such as a cone, hemisphere, or L-shaped metal is placed in the detonation direction terminal of the explosive and detonated, metal particles are released along with the collapse of the liner, This proceeds in a rod-like group, forming a jet. Even when the liner is not installed, if there is a conical, hemispherical, or L-shaped depression at the detonation direction terminal of the explosive, unreacted products in the explosive component and mixed fine particles of gas are released to form a jet. Deep perforations occur in the object that the jet collides with. Such a phenomenon is called the Monroe effect or the Neumann effect (hereinafter referred to as Neumann effect). A shape that exhibits such an effect is called a Neumann structure.

本発明の爆薬は公知の産業用や軍事用の爆薬が使用される。好ましくはペンスリットやヘキソ−ゲンを主体とする可塑性爆薬、ペンスリットやヘキソ−ゲンとトリニトロトルエンからなる成型爆薬、ダイナマイト、含水爆薬(スラリ−爆薬、エマルション爆薬)、硝安油剤爆薬等も金属やプラスチック等の容器に収納され、ノイマン構造を有する円柱状または紐状等の形状に成型して使用される。特に好ましいのは、ノイマン構造を有するペンスリットを主成分とするシ−ト爆薬(旭化成ケミカルズ、商品名)である。成型された爆薬のノイマン構造の頂角はノイマン効果を生じる凹みがあれば良い。好ましくはノイマン効果を生じる凹みの弧の角度が90度のものが使用される。爆薬自体に頂角90度の凹み部を成型して使用すると爆薬成分中の未反応成分混合ガスや不活性物、例えばエマルション爆薬にあっては気泡剤として添加されているガラスマイクロバルン等の微細粒子が放出され、これが棒状の集団をなして進行し、ジェットが形成され、金属物体等を穿孔又は切断することができる。従って、凹み部へのライナ−使用は必ずしも必要ではないが、凹み部にライナ−を使用するとノイマン効果は改善する。   As the explosive of the present invention, known industrial or military explosives are used. Preferably, plastic explosives mainly composed of pen slits and hexogens, molded explosives consisting of pen slits and hexogens and trinitrotoluene, dynamite, hydrous explosives (slurry explosives, emulsion explosives), and saponified oil explosives are also metals and plastics. It is stored in a container such as a cylinder, and is used after being molded into a columnar shape or a string shape having a Neumann structure. Particularly preferred is a sheet explosive (Asahi Kasei Chemicals, trade name) mainly composed of a pen slit having a Neumann structure. The apex angle of the Neumann structure of the molded explosive should have a dent that produces the Neumann effect. It is preferable that the angle of the dent arc that generates the Neumann effect is 90 degrees. If a dent with an apex angle of 90 degrees is molded and used in the explosive itself, a mixture of unreacted components in the explosive components and inert substances, such as glass microbaluns added as foaming agents in the case of emulsion explosives, etc. Particles are released and travel in a rod-like mass, forming a jet that can pierce or cut metal objects and the like. Therefore, it is not always necessary to use a liner in the recess, but if a liner is used in the recess, the Neumann effect is improved.

本発明のライナ−はアルミや銅や鉄等の金属板やブラスチック板が使用される。好ましくはアルミや銅や鉄の金属製ライナ−である。金属製ライナ−の形状は円柱状や紐状等の爆薬に作られたノイマン構造の形に合わせて円錐形や半球形、L字形が好ましく使用される。金属製ライナ−の厚みは0.5〜3mmが好ましい。より好ましくは0.7〜1.5mmが使用される。特に、窓枠等に使用されるL字型のアルミサッシは安価で入手容易なライナ−である。
本発明で処理される兵器は、地雷、砲弾、または手榴弾等であり、有毒ガスを含有する場合、含有しない場合がある。特に、長期間に渡り海中や地中に放置されて起爆装置の作動しない兵器や起爆装置を除いて放置された兵器が主体である。
For the liner of the present invention, a metal plate such as aluminum, copper or iron or a plastic plate is used. An aluminum, copper or iron metal liner is preferred. The shape of the metal liner is preferably a conical shape, a hemispherical shape, or an L shape according to the shape of the Neumann structure formed in a columnar or string-shaped explosive. The thickness of the metal liner is preferably 0.5 to 3 mm. More preferably, 0.7 to 1.5 mm is used. In particular, an L-shaped aluminum sash used for a window frame or the like is an inexpensive and easily available liner.
The weapon to be treated in the present invention is a mine, a cannonball, a grenade or the like, and may or may not contain a toxic gas. In particular, weapons that have been left in the sea or in the ground for a long period of time and weapons that have been left unattended except for detonators are mainly used.

本発明の爆破処理は、真空密閉された空間や水中で実施されることが好ましい。真空チャンバ−等の爆発室で爆破処理すると、爆砕時に発生する爆発音や爆砕された金属片の飛散距離の抑制に効果的である。また、非真空チャンバ−内での爆砕も可能である。非真空チャンバ−内で爆破処理する場合はバケツ等に水を張り、その中に砲弾等の兵器を沈めて爆破すると砲弾等周囲の水が砲弾等の金属破片の飛散速度を低減して周囲に配置した防爆壁等の損傷を低減できる。   The blast treatment of the present invention is preferably performed in a vacuum-sealed space or water. Explosion treatment in an explosion chamber such as a vacuum chamber is effective for suppressing explosion sound generated at the time of explosion and the scattering distance of the crushed metal pieces. Also, explosion in a non-vacuum chamber is possible. When blasting in a non-vacuum chamber, water is applied to a bucket, etc., and if a bomb or other weapon is submerged in it, the surrounding water reduces the scattering speed of metal shards such as bombs to the surroundings. Damage to the installed explosion-proof wall can be reduced.

以下、本発明の実施形態の一例を図1〜図4に従って説明するが、本発明は以下に説明する具体的態様に限定されるものではない。図1は、起爆装置(1)と端末に円錐状の凹み、即ちノイマン構造を有する柱状爆薬(2、3)と頂角(4)がθの円錐形金属ライナ−(5)と砲弾等の兵器(6)から構成される。電気雷管等の起爆装置(1)で柱状爆薬(2)が爆轟すると、金属ライナ−(5)の崩壊に伴って金属微粒子が放出され、これが棒状の集団をなして進行し、ジェツトを形成し、このジェットが砲弾等の兵器(6)の金属壁に孔を開け、兵器(6)が収納する炸薬等を誘爆させて爆破処理する方法である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to FIGS. 1 to 4, but the present invention is not limited to the specific modes described below. FIG. 1 shows a conical dent in a detonator (1) and a terminal, that is, a columnar explosive (2, 3) having a Neumann structure, a conical metal liner (5) having an apex angle (4), a shell, etc. Composed of weapons (6). When the columnar explosive (2) is detonated by the detonator (1) such as an electric detonator, metal particles are released along with the collapse of the metal liner (5), which progresses in a rod-like group to form a jet. In this method, a hole is made in the metal wall of the weapon (6) such as a shell, and the explosive treatment is performed by inviting the glaze stored in the weapon (6).

図2は、起爆装置(7)と端末に半球形の凹み、即ちノイマン構造を有する柱状爆薬(8、9)と半球形金属ライナ−(10)と砲弾等の兵器(11)から構成される。電気雷管等の起爆装置(7)で柱状爆薬(8)が爆轟すると、金属ライナ−(10)の崩壊に伴って金属微粒子が放出され、これが棒状の集団をなして進行し、ジェツトを形成し、このジェットが砲弾等の兵器(11)の金属壁に孔を開け、兵器(11)が収納する炸薬等を誘爆させて爆破処理する方法である。   FIG. 2 shows a detonator (7), a hemispherical depression at the terminal, that is, a columnar explosive (8, 9) having a Neumann structure, a hemispherical metal liner (10), and a weapon such as a shell (11). . When the columnar explosive (8) is detonated by the detonator (7) such as an electric detonator, metal particles are released along with the collapse of the metal liner (10), which progresses in a rod-like group to form a jet. In this method, the jet pierces the metal wall of the weapon (11) such as a cannonball and blasts the glaze and the like stored in the weapon (11).

図3は、起爆装置(12)とL字形の凹み、即ちノイマン構造を有する紐状爆薬(13)と頂角(14)が約90度のL字型金属ライナ−(15)と兵器の金属外壁(16)から構成される。電気雷管等の起爆装置(12)で紐状爆薬(13)が爆轟すると、金属ライナ−(15)の崩壊に伴って金属微粒子が放出され、これが棒状の集団をなして進行し、ジェツトを形成し、このジェットが兵器の金属外壁(16)を切断し、兵器内部の火薬類回収、または兵器内部の火薬類を誘爆させる等による解体・爆破処理する方法である。   FIG. 3 shows a detonator (12), an L-shaped dent, a string-shaped explosive (13) having a Neumann structure, an L-shaped metal liner (15) with an apex angle (14) of about 90 degrees, and a weapon metal. It consists of an outer wall (16). When the string explosive (13) is detonated by the detonator (12) such as an electric detonator, metal fine particles are released along with the collapse of the metal liner (15), and this proceeds in a rod-like group, This is a method in which this jet cuts the metal outer wall (16) of the weapon and recovers the explosives inside the weapon or explodes the explosives inside the weapon.

図4は、起爆装置(17)とL字形の凹み、即ちノイマン構造を有する紐状爆薬(18)と頂角(19)が約90度のL字型金属ライナ−(20)と兵器の金属外壁(21)から構成される。電気雷管等の起爆装置(17)で紐状爆薬(18)が爆轟すると、金属ライナ−(20)の崩壊に伴って金属微粒子が放出され、これが棒状の集団をなして進行し、ジェツトを形成し、このジェットが兵器の金属外壁(21)を切断し、兵器内部の火薬類回収、または兵器内部の火薬類を誘爆させる等による解体・爆破処理する方法である。
次に、実施例および比較例によって説明する。
FIG. 4 shows a detonator (17), an L-shaped dent, a string explosive (18) having a Neumann structure, an L-shaped metal liner (20) with an apex angle (19) of about 90 degrees, and a metal of the weapon. It consists of an outer wall (21). When the string-shaped explosive (18) is detonated by the detonator (17) such as an electric detonator, metal particles are released along with the collapse of the metal liner (20), and this proceeds in a rod-like group, This is a method in which the jet cuts the metal outer wall (21) of the weapon and recovers the explosives inside the weapon, or explodes the explosives inside the weapon.
Next, examples and comparative examples will be described.

以下、実施例および比較例において実施した試験法、すなわち模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法について説明する。
[模擬砲弾爆砕試験A法]
予め、火薬学会規格ES−41(1)爆速測定用JISG3452鋼管(管長300mm、肉厚3.5mm)にシ−ト爆薬(旭化成ケミカルズ、商品名)400gを充填した模擬砲弾を製作する。次いで、前記の模擬砲弾の外壁に試料を固定したのち、前記の試料を6号電気雷管で起爆し、前記の外壁に隔てられた模擬砲弾内シ−ト爆薬が完爆するか否かを調査し、完爆は○、不完爆は×と表示した。
Hereinafter, the test methods carried out in the examples and comparative examples, that is, the simulated shell explosion test A method, the steel plate fracture test, and the simulated shell explosion test B method will be described.
[Simulated shell explosion test method A]
A simulated cannonball in which 400 g of sheet explosive (Asahi Kasei Chemicals, trade name) is filled in advance with a pyrotechnic association standard ES-41 (1) JIS G3452 steel pipe (explosion length 300 mm, wall thickness 3.5 mm) for explosion speed measurement is manufactured. Next, after fixing the sample on the outer wall of the simulated shell, the sample was detonated with a No. 6 electric detonator and investigated whether or not the sheet explosive in the simulated shell separated by the outer wall was completely detonated. The complete explosion was indicated as ○, and the incomplete explosion was indicated as ×.

[鉄鋼板破断試験]
予め、製作した鉄鋼板(縦200mm、横400mm、肉厚9mm)を砂上に静置する。次いで、前記の鉄鋼板表面の中央部に試料を固定したのち、前記の試料を6号電気雷管で起爆して前記の鉄鋼板が穿孔または切断するか否かを調査し、完全に穿孔又は切断した場合は○、一部に接続箇所が残った場合は△、穿孔又は切断に至らなかった場合は×と表示した。
[Steel and steel fracture test]
The produced steel plate (length 200 mm, width 400 mm, wall thickness 9 mm) is placed on the sand in advance. Next, after fixing the sample to the center of the steel plate surface, the sample was detonated with a No. 6 electric detonator to investigate whether the steel plate was drilled or cut, and completely drilled or cut. When it did, it was indicated as “◯”, when a part of the connection remained, “△”, and when it did not drill or cut, it was indicated as “X”.

[模擬砲弾爆砕試験B法]
予め、JISG3445鋼管(管長300mm、肉厚12mm)にシ−ト爆薬(旭化成ケミカルズ、商品名)800gを充填した模擬砲弾を製作する。次いで、前記の模擬砲弾の外壁に試料を固定したのち、前記の試料を6号電気雷管で起爆し、前記の外壁に隔てられた模擬砲弾内のシ−ト爆薬が完爆するか否かを調査し、完爆は○、不完爆は×と表示した。
[Simulated bomb explosion test B method]
A simulated cannonball is prepared in advance by filling 800 g of sheet explosive (Asahi Kasei Chemicals, trade name) in a JIS G3445 steel pipe (pipe length 300 mm, wall thickness 12 mm). Next, after fixing the sample to the outer wall of the simulated shell, the sample was detonated with a No. 6 electric detonator, and whether or not the sheet explosive in the simulated shell separated by the outer wall was completely detonated. Surveys were conducted, and complete explosions were indicated as ○ and incomplete explosions as ×.

[実施例1]
底部に円錐形の凹みを有するアルミ円筒容器(内径;32.5mm、高さ;50mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にペンスリット系爆薬(旭化成ケミカルズ(株)、商品名;シ−ト爆薬)70gを充填し、円錐形ノイマン構造を有する円柱状爆薬の試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 1]
Pen slit explosive (Asahi Kasei Chemicals Co., Ltd.) with an aluminum cylindrical container (inner diameter: 32.5 mm, height: 50 mm, side wall thickness: 0.2 mm, bottom wall thickness: about 0.5 mm) having a conical recess at the bottom. ), Trade name: sheet explosives) 70 g filled, cylindrical cylindrical explosive sample with conical Neumann structure is manufactured, and simulated cannonball explosion test method A, steel plate fracture test, simulated shell explosion test B method The results are shown in Table 1.

[実施例2]
底部に半球形の凹みを有するアルミ円筒容器(内径;32.5mm、高さ;50mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にペンスリット系爆薬(旭化成ケミカルズ(株)、商品名;シ−ト爆薬)70gを充填し、半球形ノイマン構造を有する円柱状爆薬の試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 2]
Pen slit explosive (Asahi Kasei Chemicals Co., Ltd.) on an aluminum cylindrical container (inner diameter: 32.5 mm, height: 50 mm, side wall thickness: 0.2 mm, bottom wall thickness: about 0.5 mm) having a hemispherical recess at the bottom. ), Trade name: sheet explosives) 70 g filled, columnar explosive sample with hemispherical Neumann structure is manufactured, and simulated shell explosion test method A, steel plate fracture test, simulated shell explosion test B method The results are shown in Table 1.

[実施例3]
L字形のアルミ板(長さ;220mm、巾;14mm、辺;10mm、肉厚;0.75mm、頂角;90℃)の長手方向にペンスリット系爆薬(旭化成ケミカルズ(株)商品名;シ−ト爆薬)200gを密に張り付けてL字形ノイマン構造を有する紐状爆薬の試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 3]
Pen-slit explosive (Asahi Kasei Chemicals Co., Ltd., trade name) in the longitudinal direction of an L-shaped aluminum plate (length: 220 mm, width: 14 mm, side: 10 mm, wall thickness: 0.75 mm, apex angle: 90 ° C.) -Gauze explosives) 200 g of tightly attached string-shaped explosive samples having an L-shaped Neumann structure were prepared, and the simulated shell explosion test method A, steel sheet fracture test, and simulated shell explosion test method B were performed. 1 is displayed.

[実施例4]
底部に円錐形の凹みを有するアルミ円筒容器(内径;32.5mm、高さ;200mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にダイナマイト(旭化成ケミカルズ(株)、商品名;2号榎)100gを充填して円錐形ノイマン構造を有する円柱状爆薬の試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 4]
Dynamite (Asahi Kasei Chemicals Co., Ltd.), an aluminum cylindrical container (inner diameter: 32.5 mm, height: 200 mm, side wall thickness: 0.2 mm, bottom wall thickness: about 0.5 mm) having a conical recess at the bottom Name: No. 2 榎) Cylindrical explosive sample with a conical Neumann structure filled with 100 g was manufactured, and the simulated cannonball explosion test method A, steel plate breakage test, simulated shell explosion test B method were performed. Displayed in Table 1.

[実施例5]
底部に半球形の凹みを有するアルミ円筒容器(内径;32.5mm、高さ;200mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にダイナマイト(旭化成ケミカルズ(株)、商品名;2号榎)100gを充填して半球形ノイマン構造を有する試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 5]
Dynamite (Asahi Kasei Chemicals Co., Ltd.), an aluminum cylindrical container (inner diameter: 32.5 mm, height: 200 mm, side wall thickness: 0.2 mm, bottom wall thickness: about 0.5 mm) having a hemispherical recess at the bottom Name: No. 2 榎) A sample with a hemispherical Neumann structure filled with 100 g was prepared, and the simulated shell explosion test method A, steel sheet fracture test, simulated shell explosion test method B were performed, and the results are shown in Table 1. did.

[実施例6]
L字形のアルミ板(長さ;220mm、巾;28mm、辺;20mm、肉厚;0.75mm、頂角;90℃)の長手方向にダイナマイト(旭化成ケミカルズ(株)、商品名;2号榎)200gを紐状に密に張り付けてL字形ノイマン構造を有する紐状爆薬の試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 6]
Dynamite (Asahi Kasei Chemicals Corporation, trade name: No. 2) in the longitudinal direction of an L-shaped aluminum plate (length: 220 mm, width: 28 mm, side: 20 mm, wall thickness: 0.75 mm, apex angle: 90 ° C.) ) A string-shaped explosive sample having an L-shaped Neumann structure is manufactured by attaching 200 g tightly in a string shape, and a simulated shell explosion test method A, a steel sheet fracture test, and a simulated shell explosion test method B are performed. 1 is displayed.

[実施例7]
底部に半球形の凹みを有するアルミ円筒容器(内径;32.5mm、高さ;200mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にエマルション爆薬(旭化成ケミカルズ(株)、商品名;サンベックスマグナム)100gを充填して半球形ノイマン構造を有する試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Example 7]
Emulsion explosive (Asahi Kasei Chemicals Co., Ltd.) on an aluminum cylindrical container (inner diameter: 32.5 mm, height: 200 mm, side wall thickness: 0.2 mm, bottom wall thickness: about 0.5 mm) having a hemispherical recess at the bottom. A sample having a hemispherical Neumann structure filled with 100 g of a product name (Sambex Magnum) was manufactured, and a simulated shell explosion test method A, a steel plate fracture test, and a simulated shell explosion test B method were performed. displayed.

[比較例1]
底部がフラットのアルミ円筒容器(内径;32.5mm、高さ;200mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にペンスリット系爆薬(旭化成ケミカルズ(株)商品名;シ−ト爆薬)約160gを充填した試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Comparative Example 1]
An aluminum cylindrical container having a flat bottom (inner diameter: 32.5 mm, height: 200 mm, side wall thickness: 0.2 mm, bottom wall thickness: about 0.5 mm) and a pen slit explosive (trade name of Asahi Kasei Chemicals Corporation); A sample filled with about 160 g of a sheet explosive was manufactured, and a simulated bomb explosion test A method, a steel sheet fracture test, and a simulated bomb explosion test B method were performed. The results are shown in Table 1.

[比較例2]
紐状(薬径;40mm、薬長;220mm)に成型したペンスリット系爆薬(旭化成ケミカルズ(株)、商品名;シ−ト爆薬)約360gを製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Comparative Example 2]
About 360 g of pen-slit explosive (Asahi Kasei Chemicals Co., Ltd., trade name: sheet explosive) molded into a string (powder size: 40 mm, length: 220 mm) is manufactured. The fracture test and simulated shell explosion test B method were conducted, and the results are shown in Table 1.

[比較例3]
底部がフラットのアルミ円筒容器(内径;32.5mm、高さ;200mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にダイナマイト(旭化成ケミカルズ(株)、商品名;2号榎)200gを充填したる試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
[Comparative Example 3]
Dynamite (Asahi Kasei Chemicals Co., Ltd., trade name: No. 2) in a flat aluminum cylindrical container (inner diameter: 32.5 mm, height: 200 mm, side wall thickness 0.2 mm, bottom wall thickness: about 0.5 mm) Ii) A sample filled with 200 g was manufactured, and a simulated bullet explosion test A method, a steel plate fracture test, and a simulated bullet explosion test B method were performed. The results are shown in Table 1.

[比較例4]
底部がフラットのアルミ円筒容器(内径;32.5mm、高さ;200mm、側部肉厚0.2mm、底部肉厚;約0.5mm)にエマルション爆薬(旭化成ケミカルズ(株)、商品名;サンベックスマグナム)200gを密充填した試料を製作し、模擬砲弾爆砕試験A法、鉄鋼板破断試験、模擬砲弾爆砕試験B法を行い、その結果を表1に表示した。
以上から明らかなように、本発明の兵器の爆破処理方法は少量の爆薬で効率的に砲弾等の兵器を無害化することが分かる。
[Comparative Example 4]
An aluminum explosive container (Asahi Kasei Chemicals Co., Ltd., trade name: Sun) on an aluminum cylindrical container with a flat bottom (inner diameter: 32.5 mm, height: 200 mm, side wall thickness 0.2 mm, bottom wall thickness: about 0.5 mm) Samples closely packed with 200 g of (Bex Magnum) were manufactured, and a simulated bomb explosion test A method, a steel sheet fracture test, and a simulated bomb explosion test B method were performed. The results are shown in Table 1.
As is apparent from the above, it can be seen that the method for treating a blast of a weapon according to the present invention efficiently detoxifies a weapon such as a shell with a small amount of explosive.

Figure 2005233459
Figure 2005233459

本発明の兵器の爆破処理方法は、長年に渡り地中や海中に放置された砲弾等の兵器の無害化処理に好適に利用できる。   The method for explosive treatment of weapons of the present invention can be suitably used for detoxification treatment of weapons such as shells left in the ground or in the sea for many years.

本発明の円錐形ノイマン構造を有する円柱状爆薬を兵器表面の一部にセットした例を示す図である。It is a figure which shows the example which set the cylindrical explosive which has the conical Neumann structure of this invention to a part of weapon surface. 本発明の半球形のノイマン構造を有する円柱状爆薬を兵器表面の一部にセットした例を示す図である。It is a figure which shows the example which set the cylindrical explosive which has the hemispherical Neumann structure of this invention to a part of weapon surface. 本発明のL字形のノイマン構造を有する紐状爆薬を兵器表面の一部にセットした例を示す図である。It is a figure which shows the example which set the string-shaped explosive which has the L-shaped Neumann structure of this invention to a part of weapon surface. 本発明のL字形のノイマン構造を有する紐状爆薬を兵器表面の一部にセットした例を示す図である。It is a figure which shows the example which set the string-shaped explosive which has the L-shaped Neumann structure of this invention to a part of weapon surface.

符号の説明Explanation of symbols

(1)起爆装置(電気雷管)
(2)爆薬
(3)爆薬の断面
(4)ノイマン構造の頂角(θ)
(5)ライナ−
(6)兵器の一部分
(7)起爆装置(電気雷管)
(8)爆薬
(9)爆薬の断面
(10)ライナ−
(11)兵器の一部分
(12)起爆装置(電気雷管)
(13)爆薬
(14)ノイマン構造の頂角(θ)
(15)ライナ−
(16)兵器の一部分
(17)起爆装置(電気雷管)
(18)爆薬
(19)ノイマン構造の頂角(θ)
(20)ライナ−
(21)兵器の一部分
(1) Detonator (electric detonator)
(2) Explosive (3) Explosive cross section (4) Neumann structure apex angle (θ)
(5) Liner
(6) Part of weapon (7) Detonator (electric detonator)
(8) Explosive (9) Explosive cross section (10) Liner
(11) Part of the weapon (12) Detonator (electric detonator)
(13) Explosives (14) Neumann structure apex angle (θ)
(15) Liner
(16) Part of weapon (17) Detonator (electric detonator)
(18) Explosive (19) Neumann structure apex angle (θ)
(20) Liner
(21) A portion of weapons

Claims (6)

金属やプラスチックの容器に火薬類を内包する兵器の爆破処理において、該兵器の表面にノイマン構造の凹みを持つ容器に爆薬を設置して、該ノイマン構造より発生するジェットで該兵器を切断解体又は該兵器に収納される火薬類を爆破することを特徴とする兵器の爆破処理方法。   In the blasting process of weapons containing explosives in a metal or plastic container, the explosive is placed in a container having a Neumann structure dent on the surface of the weapon, and the weapon is cut or disassembled with a jet generated from the Neumann structure. A method for explosive treatment of a weapon, comprising exploding explosives stored in the weapon. 爆薬が、ペンスリット、ヘキソ−ゲン、トリニトロトルエン、ダイナマイトの1種または2種以上からなることを特徴とする請求項1記載の兵器の爆破処理方法。   2. The method according to claim 1, wherein the explosive comprises one or more of pen slit, hexogen, trinitrotoluene, and dynamite. ノイマン構造の凹みを持つ容器が、アルミや銅や鉄等の金属板又はプラスチック板のライナ−であることを特徴とする請求項1または2記載の兵器の爆破処理方法。   3. The method according to claim 1, wherein the container having a Neumann dent is a liner made of a metal plate such as aluminum, copper or iron, or a plastic plate. 兵器が地雷、砲弾、または手榴弾であることを特徴とする請求項1〜3いずれかに記載の兵器の爆破処理方法。   4. The method for treating explosion of a weapon according to claim 1, wherein the weapon is a land mine, a shell or a grenade. 爆破処理が真空密閉された空間または水中で行われることを特徴とする請求項1〜4いずれかに記載の兵器の爆破処理方法。   The method for blasting a weapon according to any one of claims 1 to 4, wherein the blasting is performed in a vacuum-sealed space or in water. 水中の爆破処理がノイマン構造の凹みに水を介在させずに行われることを特徴とする請求項1〜5いずれかに記載の兵器の爆破処理方法。   The method for blasting a weapon according to any one of claims 1 to 5, wherein the blasting treatment in water is performed without interposing water in the dent of the Neumann structure.
JP2004040298A 2004-02-17 2004-02-17 Method for disposal of weapons by explosion Pending JP2005233459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040298A JP2005233459A (en) 2004-02-17 2004-02-17 Method for disposal of weapons by explosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040298A JP2005233459A (en) 2004-02-17 2004-02-17 Method for disposal of weapons by explosion

Publications (1)

Publication Number Publication Date
JP2005233459A true JP2005233459A (en) 2005-09-02

Family

ID=35016607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040298A Pending JP2005233459A (en) 2004-02-17 2004-02-17 Method for disposal of weapons by explosion

Country Status (1)

Country Link
JP (1) JP2005233459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008325A (en) * 2007-06-28 2009-01-15 Ihi Aerospace Co Ltd Disposal method of explosive
JP2009544924A (en) * 2006-07-21 2009-12-17 テー・デー・アー・アルムマン・エス・アー・エス Ignition device for the destruction of shells
US11187512B1 (en) * 2019-08-29 2021-11-30 The United States Of America As Represented By The Secretary Of The Navy Apparatus for detonating munitions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544924A (en) * 2006-07-21 2009-12-17 テー・デー・アー・アルムマン・エス・アー・エス Ignition device for the destruction of shells
JP2009008325A (en) * 2007-06-28 2009-01-15 Ihi Aerospace Co Ltd Disposal method of explosive
US11187512B1 (en) * 2019-08-29 2021-11-30 The United States Of America As Represented By The Secretary Of The Navy Apparatus for detonating munitions

Similar Documents

Publication Publication Date Title
US3188955A (en) Explosive charge assemblies
EP1867947B1 (en) Blasting method
EP1734334B1 (en) Blasting method
JP4653198B2 (en) Method to suppress fragmentation of shrapnel and grenade while destroying grenade bullet
JP4691654B2 (en) Pressure vessel and blast treatment facility equipped with the same
US8516937B2 (en) Blast treatment method and blast treatment device
WO2012049834A1 (en) Blast treatment method and blast treatment device
US6881383B1 (en) Explosive destruction system for disposal of chemical munitions
US20150040745A1 (en) Pyrotechnic slug
CN1503895A (en) Method and installation for destroying rocket mounted on ammunition
JP3987870B1 (en) Purification method in pressure-resistant container for blast treatment
JP5095660B2 (en) Blast treatment method and blast treatment apparatus
JP5095657B2 (en) Blast treatment method and blast treatment apparatus
JP2005233459A (en) Method for disposal of weapons by explosion
EP2573505B1 (en) Method for cleaning inside of pressure tight container for blasting treatment
RU2335731C2 (en) Method of action on substances and objects by consecutive shock waves
US20120272854A1 (en) Method for combating explosive-charged weapon units, and projectile designed for the same
US9139486B2 (en) Method and device for decommissioning bodies containing explosive material
Kumar et al. Importance of Forensic Investigation in Explosion: A Case study
Van Ham Investigations of risks connected to sea-dumped munitions
RU2508522C1 (en) Method and device of explosion utilisation of ammunition in liquid medium
WO2022090160A1 (en) Unexploded ordnance disposal method and system
UA105913U (en) BORONBEAN THERMOBARIC BATTLE