JP5075470B2 - Catalytic combustion reactor for organic exhaust gas - Google Patents

Catalytic combustion reactor for organic exhaust gas Download PDF

Info

Publication number
JP5075470B2
JP5075470B2 JP2007126801A JP2007126801A JP5075470B2 JP 5075470 B2 JP5075470 B2 JP 5075470B2 JP 2007126801 A JP2007126801 A JP 2007126801A JP 2007126801 A JP2007126801 A JP 2007126801A JP 5075470 B2 JP5075470 B2 JP 5075470B2
Authority
JP
Japan
Prior art keywords
support
exhaust gas
gas
catalyst
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007126801A
Other languages
Japanese (ja)
Other versions
JP2008281291A (en
Inventor
徹 黒田
勝昌 西島
宣生 百冨
俊裕 佐藤
美栄治 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007126801A priority Critical patent/JP5075470B2/en
Publication of JP2008281291A publication Critical patent/JP2008281291A/en
Application granted granted Critical
Publication of JP5075470B2 publication Critical patent/JP5075470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、例えば、工場等から排出される有機物含有排ガスを、触媒燃焼処理して無害化するための触媒燃焼反応器に関する。   The present invention relates to a catalytic combustion reactor for detoxifying an organic substance-containing exhaust gas discharged from a factory or the like by catalytic combustion treatment.

例えば、アクリル酸、メタクリル酸製造設備を有する工場等から排出されるような有機物含有排ガス(以下、単に排ガスと言う。)は、無害化する処理が必要である。排ガスとしては、化学工場等のプロセスから配管を通して排出されるものの他に、塗装工場等の様にプロセスが建屋等で覆われた中で、プロセスから漏洩した有機物を含有したガスを建屋内の空気とともに吸引して集めたもの等が含まれる。   For example, organic matter-containing exhaust gas (hereinafter simply referred to as exhaust gas) discharged from a factory having acrylic acid and methacrylic acid production facilities needs to be rendered harmless. As exhaust gas, in addition to what is discharged through piping from processes such as chemical factories, gas containing organic matter leaked from the process is covered with air in the building while the process is covered with buildings such as painting factories. Including those collected by suction.

このような排ガスの無害化には、例えば、排ガス中の有機物濃度が数百ppm以上の場合、排ガスを燃焼処理するのが確実であり、経済的である。燃焼処理の方法としては、必要に応じて補助燃料を焚いて燃焼炉内で800℃以上の高温度で直接燃焼する直接燃焼法と、有機物濃度を所定の範囲内に調整して触媒層中で700℃以下の比較的低温で燃焼させる触媒燃焼法とがある。   In order to detoxify such exhaust gas, for example, when the concentration of organic substances in the exhaust gas is several hundred ppm or more, it is certain that the exhaust gas is burnt and is economical. As a method for the combustion treatment, a direct combustion method in which auxiliary fuel is burned as necessary and directly combusted in a combustion furnace at a high temperature of 800 ° C. or higher, and an organic substance concentration is adjusted within a predetermined range in the catalyst layer. There is a catalytic combustion method in which combustion is performed at a relatively low temperature of 700 ° C. or lower.

特許文献1では、直接燃焼法として、排ガスを燃焼炉で燃焼処理する際に、炉壁への燃焼生成物の付着を防止し、排ガス中に含まれる低濃度の可燃性有害成分を効率よく燃焼させることができる、排ガスの燃焼方法及び装置が示されている。燃焼炉内で排ガスを直接燃焼する方法は、複雑な操作を伴わずに安定した処理性が得られるという利点があるが、問題点も抱えている。排ガスの直接燃焼法では、高温(少なくとも800℃以上)で燃焼を行う必要があるため、多くのエネルギーを要する。そのため、多くの補助燃料を要し、燃焼設備や排熱回収設備、さらに排ガス処理設備等のコストがかかる。更に、ダイオキシンやNOx等の発生、大量のエネルギー消費に伴う地球温暖化ガスの発生等も問題である。したがって、大量の希釈ガスを必要とする場合や触媒にとって有害な成分を多量に含むような触媒燃焼に適さない場合を除いては、有機物濃度が高い排ガスは燃焼炉内で直接燃焼するよりも触媒燃焼する方が有利である。   In Patent Document 1, as a direct combustion method, when exhaust gas is burned in a combustion furnace, adhesion of combustion products to the furnace wall is prevented, and low concentration combustible harmful components contained in the exhaust gas are efficiently burned. An exhaust gas combustion method and apparatus that can be produced is shown. The method of directly combusting exhaust gas in a combustion furnace has the advantage that stable processability can be obtained without complicated operations, but it also has problems. In the exhaust gas direct combustion method, since it is necessary to perform combustion at a high temperature (at least 800 ° C. or more), a lot of energy is required. For this reason, a large amount of auxiliary fuel is required, and costs for combustion equipment, exhaust heat recovery equipment, exhaust gas treatment equipment, and the like are required. Furthermore, generation of dioxins, NOx, etc., generation of global warming gas accompanying a large amount of energy consumption, etc. are also problems. Therefore, except when a large amount of diluent gas is required or when it is not suitable for catalytic combustion that contains a large amount of components that are harmful to the catalyst, exhaust gas with a high concentration of organic matter is more effective than direct combustion in a combustion furnace. It is advantageous to burn.

触媒燃焼法は、直接燃焼法と比較して低い温度(700℃以下)で燃焼反応を完結でき、補助燃料を必要としないため、燃焼設備や排熱回収設備が比較的小規模で済み、且つ排ガス処理設備が不要である。また、ダイオキシンやNOxの発生が極めて少なく、エネルギー消費も少ないため地球温暖化ガスの発生量も少ない等、地球に優しい方法と言える。   The catalytic combustion method can complete the combustion reaction at a lower temperature (700 ° C. or lower) than the direct combustion method, and does not require auxiliary fuel. Therefore, the combustion facility and the exhaust heat recovery facility are relatively small, and Exhaust gas treatment equipment is not required. Moreover, it can be said to be a method that is friendly to the earth, such as generation of dioxin and NOx is extremely small, and energy consumption is also small, so that the generation amount of global warming gas is small.

触媒燃焼法としては、触媒燃焼反応の際、外部への放熱ロス、燃焼反応後の被燃焼反応流体が反応器外表面に接する箇所、及び耐熱性と耐食性を備えた高級材の使用量を最小限とする構造を有する触媒燃焼反応器と、触媒構造体とが示されている(特許文献2)。また、特許文献2では、これらの触媒燃焼反応器と触媒構造体とを用いた触媒燃焼反応方法が示されている。
排ガスの触媒燃焼は直接燃焼に比べて低温ではあるが、大きな発熱を伴う反応であり、燃焼開始・停止に伴って触媒層は大きく熱膨張・収縮をする。また、触媒層のガス流入面とガス流出面との間には数百度の温度差が生じ、熱膨張・収縮の大きさが全く異なる。更に、触媒層のガス流入面とガス流出面に位置する支持体と、触媒充填部分とは材質も形状も全く異なるため熱膨張・収縮の程度が全く異なる。従って、ある程度大きな反応器では、触媒層がこれらの熱膨張・収縮による応力の集中がない構造であること、また触媒層の支持体と触媒部分との熱膨張・収縮の差によって触媒層にガスの吹き抜けの原因となるような隙間が生じない構造とすること等が重要である。しかし、特許文献2では、この問題への対策が充分でない。
The catalytic combustion method minimizes the amount of heat loss to the outside during catalytic combustion reaction, the location where the burned reaction fluid contacts the outer surface of the reactor, and the use of high-grade materials with heat resistance and corrosion resistance. A catalytic combustion reactor having a limit structure and a catalyst structure are disclosed (Patent Document 2). Patent Document 2 discloses a catalytic combustion reaction method using these catalytic combustion reactors and a catalyst structure.
Although catalytic combustion of exhaust gas is a low temperature compared with direct combustion, it is a reaction accompanied by large heat generation, and the catalyst layer greatly expands and contracts as combustion starts and stops. Further, a temperature difference of several hundred degrees is generated between the gas inflow surface and the gas outflow surface of the catalyst layer, and the magnitudes of thermal expansion and contraction are completely different. Furthermore, since the material and shape of the support located on the gas inflow surface and gas outflow surface of the catalyst layer and the catalyst filling portion are completely different, the degree of thermal expansion / contraction is completely different. Therefore, in a somewhat large reactor, the catalyst layer has a structure in which stress due to thermal expansion / contraction is not concentrated, and the difference in thermal expansion / contraction between the support of the catalyst layer and the catalyst portion causes gas to enter the catalyst layer. It is important to have a structure that does not cause gaps that cause blow-through. However, Patent Document 2 does not have sufficient countermeasures against this problem.

また、排ガス中の窒素酸化物を接触還元法により処理するための触媒反応器として、ガス流路内に、ガス流入面とガス流出面を金網もしくは多孔板で形成した直方体の触媒充填層を、ガス流入方向に裾を開くように互いに傾斜させ、組み合わせて配置することを特徴とする固気接触反応装置が示されている(特許文献3)。しかし、この装置は排ガス中の窒素酸化物の還元反応を対象としているため、反応による発熱がなく、上記のような熱膨張・収縮への対策はされていない。
以上のように、大きな発熱を伴う排ガスの触媒燃焼を行う反応器として、大きな熱膨張・収縮があっても排ガスの浄化性能を高く保ち、安定に継続できる反応器が望まれている。
特開平6−129627号公報 特開2004−28556号公報 特開昭51−126976号公報
Further, as a catalytic reactor for treating nitrogen oxides in exhaust gas by the catalytic reduction method, a rectangular catalyst packed layer in which a gas inflow surface and a gas outflow surface are formed of a metal mesh or a perforated plate in a gas flow path, A solid-gas contact reaction apparatus characterized by being arranged in combination with each other so as to open a skirt in the gas inflow direction is disclosed (Patent Document 3). However, since this apparatus is intended for the reduction reaction of nitrogen oxides in exhaust gas, there is no heat generated by the reaction, and no measures are taken against the above-described thermal expansion / contraction.
As described above, as a reactor that performs catalytic combustion of exhaust gas with a large amount of heat generation, a reactor that maintains high purification performance of exhaust gas and can continue stably even if there is large thermal expansion / contraction is desired.
JP-A-6-129627 JP 2004-28556 A JP 51-126976 A

上記のような排ガスを浄化する触媒燃焼反応の際には、排ガスの浄化性能を高く保ち、同時にそれが安定に継続できなければ、経済的に所期の目的を達成できない。
即ち、(1)触媒層内の排ガスの滞留時間が均一であること、(2)触媒層の支持体が急速な温度変化や触媒層のガス流入面とガス流出面との間の大きな温度勾配による応力集中がない構造とすること、(3)触媒層の支持体と触媒充填部分の熱膨張・収縮の差によって触媒層にガスの吹き抜けの原因となるような隙間が生じない構造とすること等が必要である。触媒燃焼反応器のスケールがある規模以上になると、安定に継続できることの重要度が増す。
In the case of the catalytic combustion reaction for purifying the exhaust gas as described above, the intended purpose cannot be achieved economically unless the exhaust gas purification performance is kept high and at the same time stable.
That is, (1) the residence time of the exhaust gas in the catalyst layer is uniform, (2) the temperature of the support of the catalyst layer changes rapidly, and a large temperature gradient between the gas inflow surface and the gas outflow surface of the catalyst layer (3) A structure that does not cause gaps in the catalyst layer due to thermal expansion / contraction between the catalyst layer support and the catalyst filling portion. Etc. are necessary. When the scale of the catalytic combustion reactor exceeds a certain scale, the importance of being able to continue stably increases.

本発明では、有機物含有排ガスを触媒燃焼処理して無害化する際に、有機物含有排ガスの浄化性能を高く保ち、同時に安定に継続できる、経済性に優れた有機物含有排ガスの触媒燃焼反応器の提供を目的とする。   In the present invention, when an organic matter-containing exhaust gas is rendered innocuous by catalytic combustion, an organic matter-containing exhaust gas catalytic combustion reactor excellent in economic efficiency that can maintain high purification performance of the organic matter-containing exhaust gas and at the same time can be stably provided. With the goal.

本発明では、外殻容器の内部に、隔壁開口部を有する隔壁が固定され、前記隔壁開口部の周縁部から立ち上がる中空柱状体が設けられ、
前記中空柱状体は、前記隔壁開口部を囲むように立ち上がる複数の板状の触媒層により形成され、
触媒層上蓋によって前記中空柱状体の上方が閉じられて、前記隔壁と前記中空柱状体と前記触媒層上蓋によって前記外殻容器内が仕切られ、仕切られた前記外殻容器の一方の側にガス流入口、もう一方の側にガス流出口が設けられており、
前記複数の板状の触媒層はそれぞれ、
前記隔壁開口部を囲むように立ち上がる、ガス流入面を形成する排ガスが通過可能な支持体及びガス流出面を形成する排ガスが通過可能な支持体と
前記隔壁から立ち上がる、排ガスを通さない2つの側壁と、
それら2つの支持体と2つの側壁により形成された空間内に充填された触媒からなる触媒充填部分と、で形成され、
前記2つの側壁には、前記2つの支持体を嵌め込んでそれらを一定の距離で保持する支持体保持溝が、前記2つの側壁が前記隔壁から立ち上がる方向に沿って形成され、
前記ガス流入面を形成する排ガスが通過可能な支持体及び前記ガス流出面を形成する排ガスが通過可能な支持体が、前記支持体保持溝に嵌め込まれ、前記触媒層の支持体以外の部分及び前記隔壁には固定されず、前記支持体保持溝中で独立に伸縮でき、
前記触媒層の鉛直方向に対する傾斜角度が45°以下であり、
前記ガス流入口から前記外殻容器内に入ったガスが前記触媒層の前記触媒充填部分を通過して前記ガス流出口から排出される有機物含有排ガスの触媒燃焼反応器を提供する。
In the present invention, the inside of the outer shell container, the partition wall is fixed with a partition wall opening, the hollow cylindrical body is provided, et al is rising from the periphery of the partition wall opening,
The hollow columnar body is formed by a plurality of plate-like catalyst layers rising so as to surround the partition opening,
The upper part of the hollow columnar body is closed by an upper lid of the catalyst layer, the inside of the outer shell container is partitioned by the partition wall, the hollow columnar body, and the upper lid of the catalyst layer, and gas is supplied to one side of the partitioned outer shell container. There is a gas outlet on the other side,
Each of the plurality of plate-like catalyst layers is
A support body that rises so as to surround the partition wall opening and through which the exhaust gas forming the gas inflow surface can pass ; and a support body through which the exhaust gas that forms the gas outflow surface can pass ;
Two side walls that rise from the partition wall and do not allow exhaust gas to pass through;
A catalyst-filled portion comprising a catalyst filled in a space formed by the two supports and the two side walls;
On the two side walls, a support holding groove that fits the two supports and holds them at a certain distance is formed along a direction in which the two side walls rise from the partition wall,
Said gas inlet surface gas for forming a can pass support and can pass the exhaust gas to form the gas outlet side support is fitted to the support retaining groove, portions other than the support of the catalyst layer and the partition wall is not fixed to the can stretch independently with the support retaining groove in,
The inclination angle of the catalyst layer with respect to the vertical direction is 45 ° or less,
Provided is a catalytic combustion reactor for organic substance-containing exhaust gas in which gas that has entered the outer shell container from the gas inlet passes through the catalyst filling portion of the catalyst layer and is discharged from the gas outlet .

本発明の有機物含有排ガスの触媒燃焼反応器は、少なくともガス流出面を形成する支持体は、支持体の上端から3〜20%の領域が開口のない閉止板状であるのが好ましい。
また、本発明の有機物含有排ガスの触媒燃焼反応器は、燃焼温度が100〜700℃の有機物含有排ガスの触媒燃焼に用いるのが好ましい。
In the catalytic combustion reactor for organic matter-containing exhaust gas of the present invention, it is preferable that the support forming at least the gas outflow surface has a closed plate shape in which 3% to 20% of the support has no opening.
Moreover, it is preferable to use the catalytic combustion reactor of the organic substance containing exhaust gas of this invention for the catalytic combustion of the organic substance containing exhaust gas whose combustion temperature is 100-700 degreeC.

本発明の有機物含有排ガスの触媒燃焼反応器によれば、例えば、工場等から排出される有機物含有排ガスを触媒燃焼処理して無害化する際、排ガスの浄化性能を高く保つことができるため、経済的に所期の目的を達成できる。   According to the catalytic combustion reactor for organic matter-containing exhaust gas of the present invention, for example, when the organic matter-containing exhaust gas discharged from a factory or the like is made to be harmless by catalytic combustion treatment, the exhaust gas purification performance can be kept high. Can achieve the intended purpose.

以下、本発明の有機物含有排ガスの触媒燃焼反応器(以下、反応器と言うことがある。)の一実施形態例を図1〜5に基づいて説明する。
触媒燃焼反応器1は、図1に示すように、外殻容器10の内部に、排ガスを通さない隔壁20が固定されている。また、隔壁20には、隔壁開口部21が設けられる。
また、この実施形態例の反応器1では、上部にガス流入口11、下部にガス流出口12が設けられる。
Hereinafter, an embodiment of an organic substance-containing exhaust gas catalytic combustion reactor (hereinafter sometimes referred to as a reactor) according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, in the catalytic combustion reactor 1, a partition wall 20 that does not allow exhaust gas to pass is fixed inside an outer shell container 10. The partition wall 20 is provided with a partition wall opening 21.
Further, in the reactor 1 of this embodiment example, a gas inlet 11 is provided in the upper part and a gas outlet 12 is provided in the lower part.

隔壁20上には、図4及び図5に示すように、隔壁開口部21の周縁部から垂直に立ち上がる中空柱状体40が設けられ、該中空柱状体40には触媒層30が形成されている。本実施形態例では、図4に示すように、8個の触媒層30を角柱状に繋げて中空柱状体40としている。   As shown in FIGS. 4 and 5, a hollow columnar body 40 that rises vertically from the peripheral edge of the partition wall opening 21 is provided on the partition wall 20, and a catalyst layer 30 is formed on the hollow columnar body 40. . In the present embodiment example, as shown in FIG. 4, eight catalyst layers 30 are connected in a prismatic shape to form a hollow columnar body 40.

触媒層30には、図5に示すように、排ガスを通さない側壁22が設けられており、該側壁22には支持体保持溝23、24が形成されている。
また、触媒層30は、ガス流入面を形成する支持体31(以下、支持体31と言う。)とガス流出面を形成する支持体32(以下、支持体32と言う。)とが、側壁22に形成された支持体保持溝23、24にそれぞれ嵌めこまれ、ガス流入面およびガス流出面が常に一定の距離となるように配置される。さらに、触媒層30には、2つの側壁22、支持体31、32により形成される空間内に触媒粒子が充填されている。
このように、中空柱状体40は支持体保持溝23、24を有し、該支持体保持溝23、24を用いて、中空柱状体40の対向する側面に一定の距離となるように支持体31と支持体32とが配置され、該支持体31、32の間に触媒が充填されて触媒層30が形成される。
また、本実施形態例では、支持体31、32は、図2のように、隔壁20上に垂直に設けられている。また、触媒層30の上端面は、触媒層上蓋42により閉じられている。
また、支持体31、32は、支持体保持溝23、24に嵌め込まれるだけであり、隔壁20及び触媒層上蓋42とは固定されない。したがって、反応器1では、支持体31及び支持体32は、それぞれ独立に伸縮できる。
As shown in FIG. 5, the catalyst layer 30 is provided with side walls 22 that do not allow exhaust gas to pass therethrough, and support body holding grooves 23 and 24 are formed in the side walls 22.
Further, the catalyst layer 30 includes a support 31 (hereinafter referred to as the support 31) that forms a gas inflow surface and a support 32 (hereinafter referred to as a support 32) that forms a gas outflow surface. 22 are respectively fitted in the support holding grooves 23 and 24 formed so that the gas inflow surface and the gas outflow surface are always at a constant distance. Further, the catalyst layer 30 is filled with catalyst particles in a space formed by the two side walls 22 and the supports 31 and 32.
As described above, the hollow columnar body 40 has the support body holding grooves 23 and 24, and the support body holding grooves 23 and 24 are used so that the distance between the opposite side surfaces of the hollow columnar body 40 is a constant distance. 31 and a support 32 are disposed, and a catalyst is filled between the supports 31 and 32 to form the catalyst layer 30.
In the present embodiment, the supports 31 and 32 are provided vertically on the partition wall 20 as shown in FIG. The upper end surface of the catalyst layer 30 is closed by a catalyst layer upper lid 42.
Further, the supports 31 and 32 are only fitted into the support holding grooves 23 and 24, and are not fixed to the partition wall 20 and the catalyst layer upper lid 42. Therefore, in the reactor 1, the support 31 and the support 32 can be expanded and contracted independently.

本発明の反応器1では、上記のように、8個の触媒層30を角柱状に繋いだものを一組として、中空柱状体40が形成されている。中空柱状体40の上方開口部41は、シール板43により塞がれ(図1)、支持体31側から触媒層30を通過した排ガスが上方開口部から反応器上部13へと流れ込んだり、ガス流入口11から入った排ガスが触媒層30を通らずに中空柱状体40内に流入したりしないようにされる。
1つの中空柱状体40の側面に形成する触媒層30は、8個に限定されない。例えば、6個又は10個の触媒層30を角柱状に繋いでもよく、触媒層30を1つだけ有し、それ以外の部分が全て排ガスを通さない側壁とする構造であってもよい。
中空柱状体40の個数も限定されず、反応器1内に複数設けることができる(図4では4個)。例えば、3個であっても5個であってもよい。中空柱状体40及び中空柱状体40の側面に形成される触媒層30の数は、触媒燃焼処理を行う排ガス量から決まる所要触媒量、触媒層厚さ、ガス通過面積等から最も適当な数を計算により決めればよい。
In the reactor 1 of the present invention, as described above, the hollow columnar body 40 is formed with a set of eight catalyst layers 30 connected in a prismatic shape. The upper opening 41 of the hollow columnar body 40 is closed by the seal plate 43 (FIG. 1), and the exhaust gas that has passed through the catalyst layer 30 from the support 31 side flows into the reactor upper part 13 from the upper opening, The exhaust gas entering from the inflow port 11 is prevented from flowing into the hollow columnar body 40 without passing through the catalyst layer 30.
The number of catalyst layers 30 formed on the side surface of one hollow columnar body 40 is not limited to eight. For example, six or ten catalyst layers 30 may be connected in a prismatic shape, or may have a structure in which only one catalyst layer 30 is provided and all other portions are sidewalls through which exhaust gas does not pass.
The number of hollow columnar bodies 40 is not limited, and a plurality of hollow columnar bodies 40 can be provided in the reactor 1 (four in FIG. 4). For example, the number may be three or five. The number of catalyst layers 30 formed on the side surfaces of the hollow columnar body 40 and the hollow columnar body 40 is the most appropriate number based on the required catalyst amount, the catalyst layer thickness, the gas passage area, etc. determined from the amount of exhaust gas for performing catalytic combustion treatment. It may be determined by calculation.

支持体31、32の排ガス流入面及び排ガス流出面は、例えば、金網や多孔板等により形成する。支持体32は、該支持体32の上端から3〜20%の領域が、開口がなく、排ガスが通過しない閉止板状の支持体上部34となっており、支持体開口面36の部分だけがガス流出面を形成するのがよい(図2及び図3)。また、支持体31にも同様の閉止板状の支持体上部33を設け、支持体開口面35だけがガス流入面を形成するようにしてもよい。支持体31及び支持体32は、長方形の枠37に桟38を取り付け、金網39を張った形状のものであり、これらが側壁22の支持体保持溝23及び支持体保持溝24にそれぞれ嵌め込まれる。尚、閉止板状の支持体上部は、支持体31のみに設けてもよい。   The exhaust gas inflow surface and the exhaust gas outflow surface of the supports 31 and 32 are formed by, for example, a metal net or a perforated plate. In the support 32, a region of 3 to 20% from the upper end of the support 32 is a closed plate-like support upper portion 34 that has no opening and does not pass exhaust gas, and only the portion of the support opening surface 36 is present. A gas outflow surface should be formed (FIGS. 2 and 3). Alternatively, the support 31 may be provided with a similar support plate-like support upper portion 33 so that only the support opening surface 35 forms a gas inflow surface. The support 31 and the support 32 have a shape in which a bar 38 is attached to a rectangular frame 37 and a wire mesh 39 is stretched, and these are fitted into the support holding groove 23 and the support holding groove 24 of the side wall 22, respectively. . Note that the upper part of the support in the shape of a closing plate may be provided only on the support 31.

以上のように、反応器1では、隔壁開口部21を有する隔壁20が外殻容器10の内部に固定され、該隔壁20には隔壁開口部21の周縁部から立ち上がる中空柱状体40が設けられ、中空柱状体40の上方開口部41が閉じられて外殻容器10内が仕切られている。また、中空柱状体40の側面には触媒層30が形成されているため、ガス流入口11から反応器上部13へと流入した排ガスは、ガス流入面を形成する支持体31側から、ガス流出面を形成する支持体32側へと触媒層30中を通過し、隔壁開口部21から反応器下部14へと入り、ガス流出口12から排出される。   As described above, in the reactor 1, the partition wall 20 having the partition wall opening 21 is fixed inside the outer shell container 10, and the partition wall 20 is provided with the hollow columnar body 40 rising from the peripheral edge of the partition wall opening 21. The upper opening 41 of the hollow columnar body 40 is closed to partition the outer shell container 10. Further, since the catalyst layer 30 is formed on the side surface of the hollow columnar body 40, the exhaust gas flowing into the reactor upper part 13 from the gas inlet 11 flows out of the gas from the support 31 side forming the gas inlet surface. It passes through the catalyst layer 30 toward the support 32 forming the surface, enters the reactor lower part 14 through the partition opening 21, and is discharged from the gas outlet 12.

例えば、工場等からの排ガスを触媒燃焼処理して無害化する場合、触媒燃焼反応器には処理後の排ガス中の有機物濃度を少なくとも1ppm以下とするような高い浄化率(反応率)が求められる。このような高い浄化率を得るためには、排ガスが触媒層内に滞留する時間を均一にしなければならない。滞留時間が均一でない場合、平均の滞留時間が所定の値であっても、滞留時間の短い部分を通る排ガスの浄化率が低くなり、全体の浄化率が低下する。また、滞留時間の短い部分は一般にガスの流動抵抗が小さいため、排ガスが選択的にその部分に多く流れ、全体の浄化率低下が加速される。滞留時間を均一にするには、触媒充填部分50の厚さaが均一であること、即ち支持体31と支持体32との距離aが一定となるように触媒層30を形成させることが重要である。   For example, when the exhaust gas from a factory or the like is made to be harmless by catalytic combustion treatment, the catalytic combustion reactor is required to have a high purification rate (reaction rate) so that the organic matter concentration in the exhaust gas after treatment is at least 1 ppm or less. . In order to obtain such a high purification rate, the time during which the exhaust gas stays in the catalyst layer must be made uniform. If the residence time is not uniform, even if the average residence time is a predetermined value, the purification rate of the exhaust gas passing through the portion where the residence time is short is lowered, and the overall purification rate is lowered. Further, since the gas flow resistance is generally small in the portion where the residence time is short, a large amount of exhaust gas selectively flows into the portion, and the reduction in the overall purification rate is accelerated. In order to make the residence time uniform, it is important that the catalyst layer 30 is formed so that the thickness a of the catalyst filling portion 50 is uniform, that is, the distance a between the support 31 and the support 32 is constant. It is.

また、触媒充填部分50の厚さa(支持体31と支持体32との距離a)は、以下に示すような範囲内であるのが好ましい。厚さaが下限値以上であれば、排ガスが触媒層30を通過する時の圧力損失ΔPが極端に小さくならず、排ガスの偏流や吹き抜けが起きにくくなり、均一な流速(押出し流れ)が得られる。厚さaの下限値は、反応器1に流入する排ガスの流速及び触媒の形状や粒子径にもよるが、少なくとも触媒粒子径の数十倍であると考えられる。一方、厚さaが上限値以下であれば、触媒層30を通過する排ガスの圧力損失ΔPが大きくなりすぎず、排ガスを送るのに大きな動力を必要としないで済む。この場合には、設備費用や運転費用を抑えることができ、経済性に優れる。厚さaの上限値は、反応器1に流入する排ガスの流速及び触媒の形状や粒子径等によって決まる。   Moreover, it is preferable that the thickness a (distance a between the support 31 and the support 32) of the catalyst-filled portion 50 is in the range as shown below. If the thickness a is equal to or greater than the lower limit value, the pressure loss ΔP when the exhaust gas passes through the catalyst layer 30 is not extremely reduced, and it is difficult for the exhaust gas to drift or blow through, and a uniform flow rate (extruded flow) is obtained. It is done. The lower limit value of the thickness a is considered to be at least several tens of times the catalyst particle diameter, although it depends on the flow rate of the exhaust gas flowing into the reactor 1 and the shape and particle diameter of the catalyst. On the other hand, if the thickness a is equal to or less than the upper limit value, the pressure loss ΔP of the exhaust gas passing through the catalyst layer 30 does not become too large, and a large amount of power is not required to send the exhaust gas. In this case, the equipment cost and the operation cost can be suppressed, and the economy is excellent. The upper limit value of the thickness a is determined by the flow rate of the exhaust gas flowing into the reactor 1, the shape of the catalyst, the particle diameter, and the like.

排ガスの触媒燃焼では、排ガス中の可燃物の種類や濃度、触媒の種類によって多少の違いはあるが、通常、燃焼温度を100〜700 ℃の範囲に調整するのがよい。触媒層30に入る排ガス温度が着火温度より低いと、排ガス中の可燃物の燃焼反応が起こらない。したがって、排ガスは着火温度以上まで予熱されて触媒層30に供給される必要があり、その温度は可燃物の種類等によって異なるが少なくとも100℃以上である。また、触媒層30に供給された排ガスは燃焼反応により温度がさらに上昇するが、排ガス中の有機物が完全に燃焼しても燃焼温度が700℃を超えないようにするのがよい。これは長期的に安定した浄化率を維持するために、燃焼温度を触媒の熱劣化が進行する温度よりも低く抑える必要があるためである。この温度上限値は、触媒の種類等によって熱劣化温度が違うために異なるが、大部分の触媒ではその温度は700℃以下である。ただし、高い浄化率を得るためには排ガスの燃焼温度は高い方がよい。したがって、燃焼温度は上記の触媒の熱劣化が進行する温度より低い範囲内で、できる限り高くするのが望ましい。   In catalytic combustion of exhaust gas, although there are some differences depending on the type and concentration of combustibles in the exhaust gas and the type of catalyst, it is usually preferable to adjust the combustion temperature in the range of 100 to 700 ° C. When the exhaust gas temperature entering the catalyst layer 30 is lower than the ignition temperature, the combustion reaction of the combustible material in the exhaust gas does not occur. Therefore, the exhaust gas needs to be preheated to an ignition temperature or higher and supplied to the catalyst layer 30, and the temperature is at least 100 ° C. or higher although it varies depending on the type of combustible material. Moreover, although the temperature of the exhaust gas supplied to the catalyst layer 30 further increases due to the combustion reaction, it is preferable that the combustion temperature does not exceed 700 ° C. even if the organic matter in the exhaust gas is completely combusted. This is because it is necessary to keep the combustion temperature lower than the temperature at which the thermal degradation of the catalyst proceeds in order to maintain a stable purification rate in the long term. The upper temperature limit varies depending on the type of catalyst and the like because the thermal deterioration temperature differs, but the temperature is 700 ° C. or less for most catalysts. However, in order to obtain a high purification rate, the combustion temperature of the exhaust gas should be high. Therefore, it is desirable that the combustion temperature be as high as possible within a range lower than the temperature at which the thermal degradation of the catalyst proceeds.

以上のように、排ガスの触媒燃焼では、排ガスの燃焼温度を触媒層30のガス流入面(支持体31)で100℃以上、触媒層30のガス流出面(支持体32)で700℃以下となるようにコントロールするのがよい。触媒層30のガス流出面の温度のコントロールは、燃焼による排ガスの断熱温度上昇が所定範囲内に収まるように、排ガス中の可燃物濃度を空気等で希釈して調節する方法が採られる。   As described above, in the catalytic combustion of exhaust gas, the combustion temperature of exhaust gas is 100 ° C. or more on the gas inflow surface (support 31) of the catalyst layer 30 and 700 ° C. or less on the gas outflow surface (support 32) of the catalyst layer 30. It is good to control so that it becomes. The temperature of the gas outflow surface of the catalyst layer 30 is controlled by diluting and adjusting the combustible concentration in the exhaust gas with air or the like so that the adiabatic temperature rise of the exhaust gas due to combustion is within a predetermined range.

触媒燃焼反応では、上述のように触媒層30の温度は常温よりもかなり高い温度になる。一方、触媒層30の熱容量は比較的小さいため、燃焼反応が始まると急速に温度が上昇し、逆に可燃物が無くなれば急速に温度が低下する。また、燃焼反応が定常状態であっても、触媒層30のガス流入面(支持体31)とガス流出面(支持体32)との間には大きな温度差が生じる。従って、触媒層30の支持体31、32の構造設計では、熱による材料の膨張・収縮に伴う応力の集中がないように特別の配慮が必要である。例えば、本実施形態例のように、支持体31、32を支持体保持溝23、24に嵌め込み、隔壁20及び触媒層上蓋42には固定しないようにすればよい。このようにすれば、支持体31、32は互いに拘束し合うこともなく、互いの支持体が独立に熱膨張・収縮できる。また、こうすることにより支持体31、32は、支持体保持溝23、24の中をスライドして熱に応じて自由に伸縮することができる。したがって、触媒層30は熱膨張・収縮が起きても、触媒層30の応力の集中を避けることができ、安定に燃焼反応が行える。
触媒層の形状としては、本実施形態例に示したような直方体状の触媒層30や、それを幾つか組み合わせた中空柱状体40のようなものが好ましい。
In the catalytic combustion reaction, as described above, the temperature of the catalyst layer 30 is considerably higher than the normal temperature. On the other hand, since the heat capacity of the catalyst layer 30 is relatively small, the temperature rises rapidly when the combustion reaction starts, and conversely, the temperature drops rapidly when there is no combustible material. Even if the combustion reaction is in a steady state, a large temperature difference occurs between the gas inflow surface (support 31) and the gas outflow surface (support 32) of the catalyst layer 30. Therefore, in the structural design of the supports 31 and 32 of the catalyst layer 30, special consideration is necessary so that there is no concentration of stress accompanying expansion and contraction of the material due to heat. For example, the support bodies 31 and 32 may be fitted into the support body holding grooves 23 and 24 so as not to be fixed to the partition wall 20 and the catalyst layer upper lid 42 as in this embodiment. If it does in this way, the support bodies 31 and 32 will not mutually restrain, but a mutual support body can be thermally expanded / contracted independently. In addition, by doing this, the support bodies 31 and 32 can slide freely in the support body holding grooves 23 and 24 and freely expand and contract in accordance with heat. Therefore, even if the catalyst layer 30 undergoes thermal expansion / contraction, the stress concentration of the catalyst layer 30 can be avoided and a stable combustion reaction can be performed.
As the shape of the catalyst layer, a rectangular parallelepiped catalyst layer 30 as shown in this embodiment or a hollow columnar body 40 obtained by combining some of them is preferable.

この実施形態例では、支持体31、32は、支持体の上端から3〜20%の領域である支持体上部33、34が閉止板状となっている。したがって、支持体31、32は、支持体開口面35、36の部分だけ排ガスが通過できるようになっている。これは、支持体31から触媒層30へと流入した排ガスを、少なくとも距離aだけ、触媒充填部分50中を通過させるためである。
即ち、触媒層30の上部での排ガスの短絡を防止するためである。触媒充填部分50は小粒径の触媒粒子の集合体である。したがって、触媒層30の内部の触媒充填部分50と、支持体31、32とは材質も形状も全く違うため、熱膨張・収縮の程度が大きく異なる。閉止板状の支持体上部34の領域が、支持体32の上端から3%以上であれば、触媒充填部分50の上端面51が、熱膨張・収縮をしても常に支持体上部34の部分にある状態にでき、触媒層30は、排ガスが流入する支持体開口面36の部分までは触媒が必ず充填されている状態となる。そのため、排ガスの触媒充填部分50内の通過は、常に距離aが保障される。また、閉止板状の支持体上部34の領域が、支持体32の上端から20%以下であれば、排ガスの流量を多くでき、高い効率で排ガスが浄化できる。以上のように、少なくとも支持体32に、閉止板状の支持体上部34を設けることにより、触媒充填部分50のうち支持体上部34の領域にある部分を、支持体31、32と触媒充填部分50との熱膨張・収縮の差の調整代とできる。
In this embodiment, the support bodies 31 and 32 have a support plate upper part 33 and 34 in a region of 3 to 20% from the upper end of the support body. Therefore, the exhaust gas can pass through the support bodies 31 and 32 only at the portions of the support opening surfaces 35 and 36. This is because the exhaust gas flowing into the catalyst layer 30 from the support 31 is allowed to pass through the catalyst filling portion 50 at least by the distance a.
That is, it is for preventing the short circuit of the exhaust gas in the upper part of the catalyst layer 30. The catalyst filling portion 50 is an aggregate of small catalyst particles. Therefore, the catalyst filling portion 50 inside the catalyst layer 30 and the supports 31 and 32 are completely different in material and shape, so that the degree of thermal expansion / contraction is greatly different. If the region of the upper plate 34 in the form of a closing plate is 3% or more from the upper end of the support 32, the upper end surface 51 of the catalyst filling portion 50 is always the portion of the upper support 34 even if thermal expansion / contraction occurs. The catalyst layer 30 is in a state in which the catalyst is surely filled up to the portion of the support opening surface 36 into which the exhaust gas flows. Therefore, the distance a is always guaranteed for the exhaust gas to pass through the catalyst filling portion 50. Further, if the area of the upper support 34 in the shape of a closing plate is 20% or less from the upper end of the support 32, the flow rate of the exhaust gas can be increased and the exhaust gas can be purified with high efficiency. As described above, at least the support 32 is provided with the closing plate-like support upper portion 34, so that the portion of the catalyst filling portion 50 in the region of the support upper portion 34 is replaced with the supports 31 and 32 and the catalyst filling portion. The adjustment allowance for the difference in thermal expansion / contraction from 50 is possible.

次に、本発明の有機物含有排ガスの触媒燃焼反応器の他の実施形態例を図6及び図7に基づいて説明する。
触媒燃焼反応器2(以下、反応器2と言う。)は、図6に示すように、外殻容器60の内部に、排ガスを通さない隔壁70が固定されている。また、隔壁70には隔壁開口部71が設けられている。
また、反応器2には、上部にガス流入口61、下部にガス流出口62が設けられる。
Next, another embodiment of the catalytic combustion reactor for organic substance-containing exhaust gas of the present invention will be described with reference to FIGS.
As shown in FIG. 6, in the catalytic combustion reactor 2 (hereinafter referred to as the reactor 2), a partition wall 70 that does not allow exhaust gas to pass is fixed inside the outer shell container 60. The partition wall 70 is provided with a partition wall opening 71.
Further, the reactor 2 is provided with a gas inlet 61 at the upper part and a gas outlet 62 at the lower part.

反応器2は、反応器1と同様に、隔壁開口部71の周縁部に中空柱状体90が設けられ、該中空柱状体90には触媒層80が形成される。
触媒層80は、反応器1の場合と同様に、ガス流入面を形成する支持体81(以下、支持体81と言う。)とガス流出面を形成する支持体82(以下、支持体82と言う。)とが、一定の距離となるように配置され、内部に触媒が充填されることにより形成される(図7)。また、支持体81、82は隔壁70上に傾斜させて設けられ、触媒層80が傾斜している。触媒層80と、鉛直方向とがなす傾斜角度α、βは、共に45°以下である。また、傾斜角度α、βは異なっていてもよい。
中空柱状体90は、傾斜した触媒層80を2個突き合わせ、その側面部分(側面93)は排ガスを通さない壁体とし、触媒層80の上端面が触媒層上蓋91で閉じられ、中空柱状体上部はシール板92で塞がれている。したがって、触媒層80を通過したガスが反応器上部63へと流れ込んだり、ガス流入口61から入った排ガスが触媒層80を通らずに中空柱状体90内に流入したりしない。
また、支持体81、82は、反応器1と同様に、側壁72に設けられた支持体保持溝に嵌め込まれ、隔壁70及び触媒層上蓋91には固定されない。
In the reactor 2, similarly to the reactor 1, a hollow columnar body 90 is provided on the peripheral edge of the partition wall opening 71, and a catalyst layer 80 is formed on the hollow columnar body 90.
As in the case of the reactor 1, the catalyst layer 80 includes a support body 81 (hereinafter referred to as a support body 81) that forms a gas inflow surface and a support body 82 (hereinafter referred to as a support body 82) that forms a gas outflow surface. Are formed at a constant distance and filled with a catalyst (FIG. 7). The supports 81 and 82 are provided on the partition wall 70 so as to be inclined, and the catalyst layer 80 is inclined. The inclination angles α and β formed by the catalyst layer 80 and the vertical direction are both 45 ° or less. Further, the inclination angles α and β may be different.
The hollow columnar body 90 abuts two inclined catalyst layers 80, the side surface portion (side surface 93) is a wall body that does not allow exhaust gas to pass through, and the upper end surface of the catalyst layer 80 is closed by the catalyst layer upper lid 91. The upper part is closed with a seal plate 92. Therefore, the gas that has passed through the catalyst layer 80 does not flow into the reactor upper part 63, and the exhaust gas that has entered from the gas inlet 61 does not flow into the hollow columnar body 90 without passing through the catalyst layer 80.
Similarly to the reactor 1, the supports 81 and 82 are fitted into support holding grooves provided on the side wall 72 and are not fixed to the partition wall 70 and the catalyst layer upper lid 91.

中空柱状体90は、隔壁70上に複数個配置される(図6では3個)。中空柱状体90の数は特に限定されず、反応器1の場合と同様に、燃焼処理する排ガス量から決まる所要触媒量、触媒層の厚さ、ガス通過面積などから最も適当な数を計算により決めればよい。   A plurality of the hollow columnar bodies 90 are arranged on the partition wall 70 (three in FIG. 6). The number of the hollow columnar bodies 90 is not particularly limited. As in the case of the reactor 1, the most appropriate number is calculated from the required catalyst amount determined from the amount of exhaust gas to be burned, the thickness of the catalyst layer, the gas passage area, and the like. Just decide.

支持体81及び支持体82は、反応器1と同様に、金網や多孔板等によりガス流入面及びガス流出面を形成する。支持体82は、支持体82の上端から3〜20%の領域に、開口のない閉止板状の支持体上部84が設けられ、支持体開口面86の部分だけがガス流出面となるのがよい(図7)。また、支持体81にも同様の閉止板状の支持体上部83を設け、支持体開口面85の部分だけがガス流入面となるようにしてもよい。尚、閉止板上の部分は支持体81にのみ設けてもよい。
支持体81及び支持体82は、反応器1と同様に枠87に桟88を取り付け、金網89を張った形状のものであり、側壁72に設けた支持体保持溝にそれぞれ嵌めこむことにより傾斜させて設ける。
As in the case of the reactor 1, the support 81 and the support 82 form a gas inflow surface and a gas outflow surface by a metal mesh, a perforated plate, or the like. The support 82 is provided with a closed plate-like support upper portion 84 having no opening in an area of 3 to 20% from the upper end of the support 82, and only the portion of the support opening surface 86 becomes a gas outflow surface. Good (Fig. 7). Further, the support member 81 may be provided with a similar support plate-like support upper portion 83 so that only the support opening surface 85 becomes a gas inflow surface. The portion on the closing plate may be provided only on the support 81.
The support 81 and the support 82 have a shape in which a crosspiece 88 is attached to a frame 87 and a wire mesh 89 is stretched in the same manner as in the reactor 1, and are inclined by being fitted in support support grooves provided on the side walls 72. To be provided.

以上のように、反応器2では、反応器1と同様に、外殻容器60が仕切られており、ガス流入口61から反応器上部63へと流入したガスが、ガス流入面を形成する支持体81側からガス流出面を形成する支持体82側へと触媒層80中を通過し、隔壁開口部71から反応器下部64へと入り、ガス流出口62から排出される。   As described above, in the reactor 2, as in the reactor 1, the outer shell container 60 is partitioned, and the gas that flows from the gas inlet 61 to the reactor upper part 63 forms a gas inflow surface. It passes through the catalyst layer 80 from the body 81 side to the support 82 side forming the gas outflow surface, enters the reactor lower part 64 through the partition wall opening 71, and is discharged from the gas outlet 62.

触媒充填部分100の厚さb(支持体81と支持体82との距離b)は、反応器1の厚さaと同じ範囲内とするのが好ましい。厚さbが下限値以上であれば、排ガスが触媒層80を通過する時の圧力損失ΔPが極端に小さくならず、排ガスの編流や吹き抜けが起きにくくなり、均一な流速(押出し流れ)が得られる。一方、厚さbが上限値以下であれば、触媒層80を通過する排ガスの圧力損失ΔPが大きくなりすぎず、排ガスを送るのに大きな動力を必要としないで済み、設備費用や運転費用を抑えることができ、経済性に優れる。   The thickness b (distance b between the support 81 and the support 82) of the catalyst-packed portion 100 is preferably in the same range as the thickness a of the reactor 1. If the thickness b is equal to or greater than the lower limit value, the pressure loss ΔP when the exhaust gas passes through the catalyst layer 80 is not extremely reduced, and the exhaust gas is less likely to be knitted or blown out, resulting in a uniform flow rate (extrusion flow). can get. On the other hand, if the thickness b is less than or equal to the upper limit value, the pressure loss ΔP of the exhaust gas passing through the catalyst layer 80 does not become too large, and no large power is required to send the exhaust gas. It can be suppressed and is economical.

反応器2でも反応器1と同様に、触媒層80の上部での排ガスの短絡を防止するために、支持体82の上端から3〜20%の領域に閉止板上の支持体上部84を設けている。支持体81、82と、触媒充填部分100とは材質も形状も全く異なるため、熱膨張・収縮の程度が大きく異なる。
閉止板状の支持体上部84の領域が、支持体82の上端から3%以上であれば、触媒充填部分100の上端面101が、熱膨張・収縮をしても常に支持体上部83、84の範囲にある状態にでき、触媒層80の排ガスが流入する支持体開口面85、86の部分には触媒が必ず充填されている状態となる。そのため、排ガスの触媒充填部分100内の通過は、距離bが保障される。また、閉止板状の支持体上部84の領域が、支持体82の上端から20%以下であれば、排ガスの流量を多くでき、燃焼を高い効率で行える。以上のように、少なくとも支持体82に閉止板状の支持体上部84を設けることにより、触媒充填部分100のうち支持体上部84の領域にある部分を、支持体81、82と触媒充填部分100との熱膨張・収縮の差の調整代とできる。
In the reactor 2, similarly to the reactor 1, in order to prevent a short circuit of exhaust gas at the upper part of the catalyst layer 80, a support upper part 84 on the closing plate is provided in a region of 3 to 20% from the upper end of the support 82. ing. Since the supports 81 and 82 and the catalyst-filled portion 100 are completely different in material and shape, the degree of thermal expansion / contraction is greatly different.
If the region of the upper end plate-like support 84 is 3% or more from the upper end of the support 82, the upper end portions 83, 84 of the upper end surface 101 of the catalyst filling portion 100 are always expanded and contracted even if the upper end surface 101 is thermally expanded / contracted. In other words, the portions of the support opening surfaces 85 and 86 into which the exhaust gas from the catalyst layer 80 flows are always filled with the catalyst. Therefore, the distance b is ensured for the exhaust gas to pass through the catalyst-filled portion 100. Moreover, if the area | region of the support plate upper part 84 of a closing plate shape is 20% or less from the upper end of the support body 82, the flow volume of waste gas can be increased and combustion can be performed with high efficiency. As described above, at least the support 82 is provided with the closing plate-like support upper portion 84 so that the portions of the catalyst filling portion 100 in the region of the support upper portion 84 are separated from the supports 81 and 82 and the catalyst filling portion 100. The adjustment allowance for the difference in thermal expansion / contraction with

また、反応器1では触媒層30が鉛直に設けられているため、支持体31、32と触媒充填部分50とが異なった膨張率で伸縮したとしても、触媒粒子は重力の影響で適宜隙間を埋めるように移動する。したがって、触媒層30の支持体開口面35、36の部分には触媒粒子が満たされた状態が保たれ、排ガスが通過する触媒充填部分の厚さが均一に保たれる。反応器2では、触媒層80を傾斜させて設けているため、前記のような重力による効果を得るためには、傾斜角度α、βを45°以下にする必要がある。  In addition, since the catalyst layer 30 is provided vertically in the reactor 1, even if the supports 31 and 32 and the catalyst filling portion 50 expand and contract at different expansion rates, the catalyst particles appropriately have gaps due to the influence of gravity. Move to fill. Therefore, the portions of the support opening surfaces 35 and 36 of the catalyst layer 30 are kept filled with the catalyst particles, and the thickness of the catalyst filling portion through which the exhaust gas passes is kept uniform. In the reactor 2, since the catalyst layer 80 is provided with an inclination, the inclination angles α and β must be set to 45 ° or less in order to obtain the effect of gravity as described above.

以上、本発明の有機物含有排ガスの触媒燃焼反応器について、二つの実施形態例を説明したが、実施形態はこの二つに限定されるものではない。例えば、直方体状の触媒層30を繋げた中空柱状体40の代わりに、同心円筒のような形状の触媒層を設けてもよい。また、ガス流入口とガス流出口、及び支持体31と支持体32とを入れ換え、反応器の下側から上側へと排ガスが流れるようにしてもよい(反応器2でも同じ)。本発明の触媒燃焼反応器で使用される触媒としては、通常の触媒燃焼反応に用いられるものであればその種類や形状は特に制限されない。例えば、スチレン、酢酸のような有機物を含有する排ガスであれば、PtあるいはPd等の触媒を用いることができる。
また、本発明の触媒燃焼反応器で処理される有機物含有排ガスとしては、可燃性有機化合物を含むガスであれば特に限定されないが、例えば、イソブチレン又はターシャリーブチルアルコールを気相酸化してメタクロレイン又はメタクリル酸を製造する際に生成される排ガス、プロピレンを気相酸化してメタクロレイン又はメタクリル酸を製造する際に生成される排ガスが挙げられる。かかる排ガスには、可燃性有機化合物として、イソブチレン、プロピレン、一酸化炭素、酢酸、メタクリル酸、アクリル酸等が含まれている。
As mentioned above, although two example embodiments were described about the catalyst combustion reactor of the organic substance containing exhaust gas of the present invention, the embodiment is not limited to these two. For example, instead of the hollow columnar body 40 in which the rectangular parallelepiped catalyst layers 30 are connected, a catalyst layer having a shape like a concentric cylinder may be provided. Alternatively, the gas inlet and the gas outlet, and the support 31 and the support 32 may be interchanged so that the exhaust gas flows from the lower side to the upper side of the reactor (the same applies to the reactor 2). The type and shape of the catalyst used in the catalytic combustion reactor of the present invention are not particularly limited as long as it is used for a normal catalytic combustion reaction. For example, a catalyst such as Pt or Pd can be used if it is an exhaust gas containing an organic substance such as styrene or acetic acid.
Further, the organic substance-containing exhaust gas treated in the catalytic combustion reactor of the present invention is not particularly limited as long as it contains a combustible organic compound. For example, methacrolein is obtained by gas phase oxidation of isobutylene or tertiary butyl alcohol. Or the exhaust gas produced | generated when manufacturing methacrylic acid and the waste gas produced | generated when vapor-phase-oxidizing propylene and producing methacrolein or methacrylic acid are mentioned. Such exhaust gas contains isobutylene, propylene, carbon monoxide, acetic acid, methacrylic acid, acrylic acid and the like as combustible organic compounds.

本発明の触媒燃焼反応器によれば、例えば、工場等からの有機物含有排ガスを触媒燃焼処理して無害化する際に、浄化性能を高く保つことができるため、経済的に優れている。また、触媒燃焼法は、直接燃焼法と比較して低温度で燃焼反応が完結できるため、補助燃料を必要とせずエネルギー消費量が少なく経済的である。また、ダイオキシンやNOxの発生が無く、地球温暖化ガスの発生量も少ないため地球に優しい方法である。本発明の触媒燃焼反応器は、有機物含有排ガスの触媒燃焼処理をより経済的に遂行する上で大きな効果があり、触媒燃焼法の普及が促進されると思われる。   According to the catalytic combustion reactor of the present invention, for example, when an organic matter-containing exhaust gas from a factory or the like is subjected to catalytic combustion treatment to be detoxified, the purification performance can be kept high, so that it is economically superior. In addition, the catalytic combustion method can complete the combustion reaction at a lower temperature than the direct combustion method, so that it does not require an auxiliary fuel and is low in energy consumption and economical. In addition, since there is no generation of dioxin or NOx and the generation amount of global warming gas is small, the method is friendly to the earth. The catalytic combustion reactor of the present invention has a great effect in performing the catalytic combustion treatment of the organic substance-containing exhaust gas more economically, and it seems that the spread of the catalytic combustion method is promoted.

本発明の一実施形態例である触媒燃焼反応器1の縦断面図である。1 is a longitudinal sectional view of a catalytic combustion reactor 1 that is an embodiment of the present invention. 図1の触媒層30部分の詳細な縦断面図である。It is a detailed longitudinal cross-sectional view of the catalyst layer 30 part of FIG. 本発明の触媒層30の支持体32側から見た正面図である。It is the front view seen from the support body 32 side of the catalyst layer 30 of this invention. 本発明の一実施形態例である触媒燃焼反応器1の横断面図である。1 is a cross-sectional view of a catalytic combustion reactor 1 that is an embodiment of the present invention. 図4の触媒層30部分の詳細な横断面図である。It is a detailed cross-sectional view of the catalyst layer 30 part of FIG. 本発明の他の実施形態例である触媒燃焼反応器2の縦断面図である。It is a longitudinal cross-sectional view of the catalytic combustion reactor 2 which is the other embodiment of this invention. 図6の中空柱状体90部分の詳細な縦断面図である。It is a detailed longitudinal cross-sectional view of the hollow columnar body 90 part of FIG.

符号の説明Explanation of symbols

1 触媒燃焼反応器
2 触媒燃焼反応器
10 外殻容器
11 ガス流入口
12 ガス流出口
20 隔壁
21 隔壁開口部
30 触媒層
31 ガス流入面を形成する支持体
32 ガス流出面を形成する支持体
40 中空柱状体
60 外殻容器
70 隔壁
71 隔壁開口部
80 触媒層
81 ガス流入面を形成する支持体
82 ガス流出面を形成する支持体
90 中空柱状体
DESCRIPTION OF SYMBOLS 1 Catalytic combustion reactor 2 Catalytic combustion reactor 10 Outer shell container 11 Gas inlet 12 Gas outlet 20 Partition wall 21 Partition opening 30 Catalyst layer 31 Support body which forms gas inflow surface 32 Support body which forms gas outflow surface 40 Hollow columnar body 60 outer shell container 70 partition wall 71 partition wall opening 80 catalyst layer 81 support body forming gas inflow surface 82 support body forming gas outflow surface 90 hollow columnar body

Claims (3)

外殻容器の内部に、隔壁開口部を有する隔壁が固定され、前記隔壁開口部の周縁部から立ち上がる中空柱状体が設けられ、
前記中空柱状体は、前記隔壁開口部を囲むように立ち上がる複数の板状の触媒層により形成され、
触媒層上蓋によって前記中空柱状体の上方が閉じられて、前記隔壁と前記中空柱状体と前記触媒層上蓋によって前記外殻容器内が仕切られ、仕切られた前記外殻容器の一方の側にガス流入口、もう一方の側にガス流出口が設けられており、
前記複数の板状の触媒層はそれぞれ、
前記隔壁開口部を囲むように立ち上がる、ガス流入面を形成する排ガスが通過可能な支持体及びガス流出面を形成する排ガスが通過可能な支持体と
前記隔壁から立ち上がる、排ガスを通さない2つの側壁と、
それら2つの支持体と2つの側壁により形成された空間内に充填された触媒からなる触媒充填部分と、で形成され、
前記2つの側壁には、前記2つの支持体を嵌め込んでそれらを一定の距離で保持する支持体保持溝が、前記2つの側壁が前記隔壁から立ち上がる方向に沿って形成され、
前記ガス流入面を形成する排ガスが通過可能な支持体及び前記ガス流出面を形成する排ガスが通過可能な支持体が、前記支持体保持溝に嵌め込まれ、前記触媒層の支持体以外の部分及び前記隔壁には固定されず、前記支持体保持溝中で独立に伸縮でき、
前記触媒層の鉛直方向に対する傾斜角度が45°以下であり、
前記ガス流入口から前記外殻容器内に入ったガスが前記触媒層の前記触媒充填部分を通過して前記ガス流出口から排出される有機物含有排ガスの触媒燃焼反応器。
Inside the outer shell container, the partition wall is fixed with a partition wall opening, the hollow cylindrical body is provided, et al is rising from the periphery of the partition wall opening,
The hollow columnar body is formed by a plurality of plate-like catalyst layers rising so as to surround the partition opening,
The upper part of the hollow columnar body is closed by an upper lid of the catalyst layer, the inside of the outer shell container is partitioned by the partition wall, the hollow columnar body, and the upper lid of the catalyst layer, and gas is supplied to one side of the partitioned outer shell container. There is a gas outlet on the other side,
Each of the plurality of plate-like catalyst layers is
A support body that rises so as to surround the partition wall opening and through which the exhaust gas forming the gas inflow surface can pass ; and a support body through which the exhaust gas that forms the gas outflow surface can pass ;
Two side walls that rise from the partition wall and do not allow exhaust gas to pass through;
A catalyst-filled portion comprising a catalyst filled in a space formed by the two supports and the two side walls;
On the two side walls, a support holding groove that fits the two supports and holds them at a certain distance is formed along a direction in which the two side walls rise from the partition wall,
Said gas inlet surface gas for forming a can pass support and can pass the exhaust gas to form the gas outlet side support is fitted to the support retaining groove, portions other than the support of the catalyst layer and the partition wall is not fixed to the can stretch independently with the support retaining groove in,
The inclination angle of the catalyst layer with respect to the vertical direction is 45 ° or less,
A catalyst combustion reactor for organic substance-containing exhaust gas in which gas entering the outer shell container from the gas inlet passes through the catalyst filling portion of the catalyst layer and is discharged from the gas outlet .
少なくともガス流出面を形成する支持体は、支持体の上端から3〜20%の領域が開口のない閉止板状である、請求項1に記載の有機物含有排ガスの触媒燃焼反応器。   2. The catalytic combustion reactor for exhaust gas containing organic matter according to claim 1, wherein the support forming at least the gas outflow surface is a closed plate shape having no opening in an area of 3 to 20% from the upper end of the support. 燃焼温度が100〜700℃の有機物含有排ガスの触媒燃焼に用いる、請求項1または2に記載の有機物含有排ガスの触媒燃焼反応器。   The catalytic combustion reactor for organic matter-containing exhaust gas according to claim 1 or 2, which is used for catalytic combustion of an organic matter-containing exhaust gas having a combustion temperature of 100 to 700 ° C.
JP2007126801A 2007-05-11 2007-05-11 Catalytic combustion reactor for organic exhaust gas Active JP5075470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126801A JP5075470B2 (en) 2007-05-11 2007-05-11 Catalytic combustion reactor for organic exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126801A JP5075470B2 (en) 2007-05-11 2007-05-11 Catalytic combustion reactor for organic exhaust gas

Publications (2)

Publication Number Publication Date
JP2008281291A JP2008281291A (en) 2008-11-20
JP5075470B2 true JP5075470B2 (en) 2012-11-21

Family

ID=40142249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126801A Active JP5075470B2 (en) 2007-05-11 2007-05-11 Catalytic combustion reactor for organic exhaust gas

Country Status (1)

Country Link
JP (1) JP5075470B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554037Y2 (en) * 1978-10-12 1980-01-30
JPS5561430U (en) * 1978-10-19 1980-04-26
JPS58156525U (en) * 1982-04-07 1983-10-19 バブコツク日立株式会社 Denitration equipment

Also Published As

Publication number Publication date
JP2008281291A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
KR100728170B1 (en) Carbon dioxide separating system
JP2009520943A (en) Microchannel device for removing flammable volatile contaminants
KR20180067644A (en) Activated carbon flue gas purifier and flue gas purifier
Marín et al. Reverse flow reactors as sustainable devices for performing exothermic reactions: Applications and engineering aspects
KR20080092245A (en) Voc oxidizing and decomposing apparatus with preheating function
US20130089822A1 (en) Method for utilization of low-concentration gas mixtures of combustible gas and air with stable heat energy recovery and flow reversal device for implementation of the method
TW201118316A (en) System and method for protection of SCR catalyst
JP2011062663A (en) Method for treating exhaust gas
JP7191056B2 (en) Devices and systems for controlling the decomposition and oxidation of gaseous pollutants
KR101763661B1 (en) Selective Catalytic Reduction Device Using Regenerative Heat Recovery System
HU208498B (en) Method for catalytic firing organic compounds and catalytic firing apparatus for firing organic compounds
JP2010188333A (en) Method of cleaning fluidized bed of diesel exhaust
JP5075470B2 (en) Catalytic combustion reactor for organic exhaust gas
US8728426B2 (en) Hybrid reactor with two reaction zones
RU215634U1 (en) Flue gas cleaning device
KR20180135134A (en) Device and Process for multi-stage of PFC treating reaction occurring in at least two reaction modules including catalytic reactor and acidic gas-removing reactor
KR102580496B1 (en) SNCR-SCR Hybrid NOx Reduction System
KR102554137B1 (en) Flameless Catalyst Thermal Oxydizer
US11839851B2 (en) Reactor system including a catalyst bed module and process for the selective catalytic reduction of nitrogen oxides contained in gas streams
CN215916842U (en) Steam water bag formula exhaust gas purification device and gas cleaning system
US20240207773A1 (en) Fluid reactor device and method for operating a fluid reactor device
KR20240111845A (en) All-in-one pellet catalyst module that minimizes differential pressure loss and method of using the same
JP2005349355A (en) Gas cleaner
WO2016130039A1 (en) Apparatus for sterilizing organic waste and sulphur crude oil
ITMI20120408A1 (en) PROCEDURE FOR COMBINED AND SIMULTANEOUS FILLING FROM COMBUSTION FUMES OF VOLATILE ORGANIC COMPOUNDS, OXIDES OF NITROGEN AND PARTICULATE OF COMBUSTION, AND PLANT TO REALIZE THIS PROCEDURE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R151 Written notification of patent or utility model registration

Ref document number: 5075470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250