JP5073538B2 - Wall damage detection apparatus and damage detection method - Google Patents

Wall damage detection apparatus and damage detection method Download PDF

Info

Publication number
JP5073538B2
JP5073538B2 JP2008058971A JP2008058971A JP5073538B2 JP 5073538 B2 JP5073538 B2 JP 5073538B2 JP 2008058971 A JP2008058971 A JP 2008058971A JP 2008058971 A JP2008058971 A JP 2008058971A JP 5073538 B2 JP5073538 B2 JP 5073538B2
Authority
JP
Japan
Prior art keywords
ultrasonic
wall
reception
distance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008058971A
Other languages
Japanese (ja)
Other versions
JP2009215388A (en
Inventor
昇平 橋口
裕久 山田
雅人 杉浦
道隆 境田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008058971A priority Critical patent/JP5073538B2/en
Publication of JP2009215388A publication Critical patent/JP2009215388A/en
Application granted granted Critical
Publication of JP5073538B2 publication Critical patent/JP5073538B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Coke Industry (AREA)

Description

本発明は、壁面の損傷を検出する技術であって、特に、コークス炉炭化室等の炉について、高温雰囲気中で炉壁に開いた破孔などの損傷を超音波により検出するのに好適な技術に関する。   The present invention is a technique for detecting damage to a wall surface, and is particularly suitable for detecting damage such as broken holes opened in a furnace wall in a high-temperature atmosphere by ultrasonic waves in a furnace such as a coke oven carbonization chamber. Regarding technology.

例えば、鉄鋼業におけるコークス炉は複数の炭化室と各炭化室間の燃焼室とで構成され、炭化室と隣接する燃焼室との間の隔壁が耐火物で構成されている。コークス炉の炭化室は、過酷な条件下で通常20年以上の長期間にわたって連続操業されるものであり、炭化室を構成する耐火煉瓦は熱的、化学的および機械的要因によって徐々に劣化する。そのため耐火煉瓦の劣化に起因し、燃焼室との間の隔壁を構成する耐火物の強度が低下すると、コークス押し出し時にかかる側圧で煉瓦が脱落したり、より広い範囲が崩壊することがある。これを破孔という。炭化室と燃焼室を隔てる隔壁に破孔が生じたままで当該炭化室を用いてコークス製造を継続すると、破孔を通して炭化室と燃焼室との間でガスの流通が発生し、また破孔を通して処理すべき石炭が炭化室から燃焼室に押し出され、燃焼室の閉塞、蓄熱室の閉塞、黒煙の発生、燃焼室煉瓦割れ等のトラブルや炉体損傷を招く原因となる。   For example, a coke oven in the steel industry is composed of a plurality of carbonization chambers and combustion chambers between the carbonization chambers, and a partition wall between the carbonization chamber and the adjacent combustion chamber is composed of a refractory. The carbonizing chamber of a coke oven is operated continuously for a long period of 20 years or more under severe conditions, and the refractory bricks constituting the carbonizing chamber gradually deteriorate due to thermal, chemical and mechanical factors. . For this reason, when the strength of the refractory constituting the partition wall between the combustion chambers is reduced due to deterioration of the refractory brick, the brick may fall off due to the side pressure applied when the coke is extruded, or a wider range may collapse. This is called a hole. If coke production is continued using the carbonization chamber with a hole in the partition wall separating the carbonization chamber and the combustion chamber, gas flow will occur between the carbonization chamber and the combustion chamber through the hole and through the hole. Coal to be treated is pushed out from the carbonization chamber into the combustion chamber, causing troubles such as blockage of the combustion chamber, blockage of the heat storage chamber, generation of black smoke, cracking of the combustion chamber brick, and damage to the furnace body.

従来、コークス炉炭化室の炉壁煉瓦の損傷の状況を把握する手段として、例えば、特許文献1に記載の、レーザと撮像素子を組み合わせた三角測量法あるいは光波距離計により炉壁の凹凸形状を測定する方法が知られている。しかしながら、雰囲気温度が1000℃を超える粉塵環境下における光を使った距離計測手段では投受光器の熱・粉塵対策を十分に行う必要があり、装置あるいは保守のコストが高くなるという問題があった。   Conventionally, as means for grasping the state of damage to the furnace wall brick in the coke oven carbonization chamber, for example, the uneven shape of the furnace wall is obtained by a triangulation method or a light wave distance meter combining a laser and an image sensor described in Patent Document 1. Methods for measuring are known. However, the distance measurement means using light in a dust environment with an ambient temperature exceeding 1000 ° C. has a problem that it is necessary to take sufficient measures against heat and dust of the light emitter / receiver, which increases the cost of the apparatus or maintenance. .

また、熱や粉塵に強い波源としてマイクロ波あるいはミリ波を使った距離計測手段により凹凸形状を測定する方法が、例えば特許文献2に記載されているように提案されている。しかしながらマイクロ波やミリ波の装置はアンテナのみならず送受信に必要な発振器、混合器、導波路のセンサ単体当たりの価格が高いため、センサ数を多くすることができない。少数のセンサでは、炉壁全体を検査するには2次元的に走査することが必要で測定時間もかかるので、実質押し出し操業中での検査は壁一部に限られるのが現状である。   In addition, a method for measuring the concavo-convex shape by distance measuring means using microwaves or millimeter waves as a wave source strong against heat and dust has been proposed as described in Patent Document 2, for example. However, since microwave and millimeter-wave devices are expensive not only for antennas but also for oscillators, mixers, and waveguides necessary for transmission and reception, the number of sensors cannot be increased. With a small number of sensors, in order to inspect the entire furnace wall, it is necessary to scan two-dimensionally and it takes a long measurement time. Therefore, the inspection during the actual extrusion operation is limited to a part of the wall.

なお、上記特許文献には、距離計を用いた方法により炉壁の凹凸形状を知ることはできるが、炉壁の破孔部がある場合の信号処理方法、あるいは破孔の検出方法については記載されていない。   In the above-mentioned patent document, it is possible to know the uneven shape of the furnace wall by a method using a distance meter, but a signal processing method when there is a hole in the furnace wall or a method for detecting a hole is described. It has not been.

一方、粉塵に強いセンサとして空中超音波センサが、特許文献3に記載の液面計をはじめとする高温環境下でのレベル計に応用されている。超音波は雰囲気中の温度により音速が変わるため、温度が変化する層は超音波に対して屈折率の異なる層とみなすことができる。このため、温度分布を有する雰囲気中では超音波が屈折することにより超音波が安定に検出できないという問題があるが、特許文献3では、300℃以上、好ましくは400〜700℃程度の高温液面の測定に際して、超音波の導波管により導波し、導波管内外の超音波の伝播する経路に一定温度、一定流速の流体を流すことにより、液面付近の高温空気層を吹き飛ばし、等価的に内側ほど屈折率の高い(音速の小さい)低温度層をつくることにより導波管外においても音波の導波を実現している。特許文献4には、高温でダスト発生量の多い溶融炉等における溶融物のレベル測定をするための超音波レベル計が開示されている。当該文献では、炉外に設置した超音波センサを送受信し、L字状の導波管内に超音波を伝播させて炉内に導く構成を用いて、1500℃にもなる溶融物の液面レベルの測定が可能であるとされている。   On the other hand, an airborne ultrasonic sensor is applied to a level meter in a high temperature environment such as a liquid level meter described in Patent Document 3 as a sensor resistant to dust. Since the speed of sound of ultrasonic waves changes depending on the temperature in the atmosphere, a layer in which the temperature changes can be regarded as a layer having a refractive index different from that of the ultrasonic wave. For this reason, there is a problem that ultrasonic waves cannot be stably detected due to refraction of ultrasonic waves in an atmosphere having a temperature distribution. However, in Patent Document 3, a high-temperature liquid surface of 300 ° C. or higher, preferably about 400 to 700 ° C. When measuring, a high-temperature air layer near the liquid surface is blown away by flowing a fluid with a constant temperature and a constant flow velocity through the path of ultrasonic waves inside and outside the waveguide. In particular, sound waves are guided outside the waveguide by creating a low-temperature layer having a higher refractive index (lower speed of sound) toward the inner side. Patent Document 4 discloses an ultrasonic level meter for measuring the level of a melt in a melting furnace or the like that generates a large amount of dust at a high temperature. In this document, an ultrasonic sensor installed outside the furnace is transmitted and received, and an ultrasonic wave is propagated in an L-shaped waveguide and guided into the furnace. It is said that it is possible to measure.

しかしながら、特許文献3に記載の、超音波を用いる当該液面計は、稼動状態にあるコークス炉と比べて遥かに低温下において、上記破孔と比べて大きな面積且つ平坦な液面の位置を測定するための装置であり、流体を供給して雰囲気中に流すために大掛かりな装置構成であった。又、特許文献4に記載の超音波レベル計は、超音波センサ自体は炉外に配設されていた。そのため、これらの当該超音波センサを用いた技術は、10m以上の長さを有するコークス炉の炉壁等の損傷の検出に際して、超音波センサを炉内に於いて測定するためにそのまま適用することには大きな困難があった。   However, the liquid level gauge using ultrasonic waves described in Patent Document 3 has a large area and a flat liquid surface position compared to the broken hole at a temperature much lower than that of a coke oven in an operating state. This is an apparatus for measuring, and has a large apparatus configuration for supplying a fluid and flowing it in the atmosphere. Further, in the ultrasonic level meter described in Patent Document 4, the ultrasonic sensor itself is disposed outside the furnace. Therefore, these technologies using the ultrasonic sensor should be applied as they are to measure the ultrasonic sensor in the furnace when detecting damage to the wall of the coke oven having a length of 10 m or more. There were great difficulties.

特開2001−3058号公報JP 2001-3058 A 特開2002−80852号公報JP 2002-80852 A 特開昭63−73117号公報JP 63-73117 A 特開平5−240681号公報Japanese Patent Laid-Open No. 5-240681

以上に述べた従来技術の問題点に鑑みて本発明は、超音波センサを用いてコークスの押し出し操業と同時に実行することも可能な、壁の破孔などの損傷を迅速、高精度に、従来よりも簡便な装置構成、手順によって検出する技術を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention is capable of performing damage such as a hole in the wall quickly and accurately, which can be performed simultaneously with the coke extrusion operation using an ultrasonic sensor. An object of the present invention is to provide a technique for detecting by a simpler apparatus configuration and procedure.

本願発明の要旨とするところは以下の如くである。   The gist of the present invention is as follows.

本願発明の壁の損傷検出装置は、高温雰囲気中において壁に向けて超音波送受信センサにより超音波を発射し、その反射波を前記超音波送受信センサで受信しつつ、該超音波送受信センサを壁に沿って走査させて壁の損傷を検知する超音波損傷検出装置であって、開口端が前記壁に対向し、他の端部に前記超音波送受信センサを備えて、内部に冷却気体を流しながら超音波送受信センサで発生した超音波を伝播させるL字型の導波管と、前記導波管の他の端部に接続されて前記超音波送受信センサ及び導波管に冷却気体を供給する送風管と、前記超音波送受信センサを駆動して超音波のバースト波を発生させ、該超音波送受信センサから出力される受信信号の振幅と受信時刻に基づき、前記壁からの反射波の有無を検出し、反射波が検出されたときに超音波送受信センサから壁面上の反射点までの距離を、また反射波が検出されないときに予め定めた欠測値を距離値として出力する距離計測手段と、前記超音波送受信センサを壁面に沿って走査して、その走査位置を検出する走査位置検出手段と、前記走査位置検出手段で検出された走査位置と前記距離計測手段で計測された距離値とに基づいて、前記欠測値が連続して検出される連続欠測回数により壁の損傷の有無を判別する信号処理手段と、前記信号処理手段で判別された壁の損傷の位置を表示する表示手段と、を備えたことを特徴とする。   The wall damage detection apparatus according to the present invention emits an ultrasonic wave by an ultrasonic transmission / reception sensor toward a wall in a high-temperature atmosphere, and receives the reflected wave by the ultrasonic transmission / reception sensor. An ultrasonic damage detection device that scans along a wall to detect damage to a wall, the opening end faces the wall, the ultrasonic transmission / reception sensor is provided at the other end, and a cooling gas is allowed to flow inside. An L-shaped waveguide for propagating ultrasonic waves generated by the ultrasonic transmission / reception sensor and a cooling gas supplied to the ultrasonic transmission / reception sensor and the waveguide connected to the other end of the waveguide. An ultrasonic burst wave is generated by driving the blower tube and the ultrasonic transmission / reception sensor, and the presence or absence of a reflected wave from the wall is determined based on the amplitude and reception time of the reception signal output from the ultrasonic transmission / reception sensor. Detect and the reflected wave is detected A distance measuring means for outputting the distance from the ultrasonic transmission / reception sensor to the reflection point on the wall surface as a distance value when a reflected wave is not detected, and the ultrasonic transmission / reception sensor on the wall surface. The missing value is calculated based on the scanning position detecting means for scanning along the scanning position and detecting the scanning position, the scanning position detected by the scanning position detecting means and the distance value measured by the distance measuring means. The signal processing means for determining the presence or absence of wall damage based on the number of consecutive missing measurements continuously detected, and the display means for displaying the position of the wall damage determined by the signal processing means And

又、本願発明の炉壁の損傷検出装置は、前記距離計測手段が、超音波の受信信号の振幅を検出する振幅検出部と、予め設定された時間領域内で前記受信信号の振幅の最大値と、該最大値を与える時刻である反射波の受信時刻とを検出する最大振幅検出部と、前記振幅の最大値が予め設定された閾値を満たすときに超音波の受信時刻と送信時刻に基づいて計算した超音波送受信子から壁までの距離を、また満たさないときに欠測値をそれぞれ距離値として出力する距離算出部と、からなることを特徴とする。   Also, in the furnace wall damage detection apparatus of the present invention, the distance measuring means includes an amplitude detection unit for detecting the amplitude of the ultrasonic reception signal, and a maximum value of the amplitude of the reception signal within a preset time domain. And a maximum amplitude detector that detects the reception time of the reflected wave, which is the time for giving the maximum value, and based on the reception time and transmission time of the ultrasonic wave when the maximum value of the amplitude satisfies a preset threshold value And a distance calculation unit that outputs the distance from the ultrasonic transceiver to the wall calculated as described above and outputs a missing value as a distance value when the distance is not satisfied.

又、本願発明の炉壁の損傷検出装置は、前記信号処理装置が、前記超音波送受信センサの壁面の走査位置と、前記走査距離計測手段より出力された距離値とに基づいて、前記距離の欠側値が予め設定された連続欠測回数を基準として、壁の損傷部を判別して検出する損傷判別部を備えることを特徴とする。   Further, in the furnace wall damage detection device of the present invention, the signal processing device is configured to detect the distance based on the scanning position of the wall surface of the ultrasonic transmission / reception sensor and the distance value output from the scanning distance measuring means. It is characterized by comprising a damage discriminating unit for discriminating and detecting a damaged part of the wall on the basis of the number of consecutive missing measurements in which the missing side value is set in advance.

さらに、前記超音波送受信センサを具備するL字型の導波管を、前記走査方向と直交する方向に複数台を並列に配置したことを特徴とする。   Furthermore, a plurality of L-shaped waveguides having the ultrasonic transmission / reception sensor are arranged in parallel in a direction orthogonal to the scanning direction.

本願発明の炉壁の損傷検出方法は、高温雰囲気中において壁に向けて超音波送受信センサにより超音波を発射し、その反射波を前記超音波送受信センサで受信しつつ、該超音波送受信センサを壁に沿って走査させて壁の損傷を検知する超音波損傷検出方法であって、開口端が前記壁に対向し、他の端部に前記超音波送受信センサを備えたL字型の導波管に、該導波管に接続された送風管で内部に冷却気体を流しながら超音波送受信センサで発生した超音波のバースト波を伝播させる工程と、前記超音波送受信センサで、壁で反射した超音波である受信超音波の振幅を検出して、受信信号を出力する工程と、予め設定した受信時間領域内で前記受信超音波の振幅の最大値、及び該最大値の時刻を受信時刻として検出する工程と、前記振幅の最大値が予め設定した閾値を満たすときに超音波の受信時刻と送信時刻に基づいて送受信センサから壁までの距離を計算して距離値とし、また満たさないときに欠測値を距離値として出力する工程と、前記超音波センサを壁に沿って走査しながら前記距離値を記録する工程と、前記距離値の欠側値の連続する回数が、予め設定された連続欠測回数を満たす壁の部分を損傷部として判別して検出する工程とで構成される。   In the method for detecting damage to a furnace wall according to the present invention, an ultrasonic wave is emitted from an ultrasonic transmission / reception sensor toward a wall in a high temperature atmosphere, and the ultrasonic transmission / reception sensor is received while receiving the reflected wave by the ultrasonic transmission / reception sensor. An ultrasonic damage detection method for detecting damage to a wall by scanning along a wall, wherein an open end faces the wall and an L-shaped waveguide is provided with the ultrasonic transmission / reception sensor at the other end. A step of propagating an ultrasonic burst wave generated by the ultrasonic transmission / reception sensor while flowing a cooling gas through the air pipe connected to the waveguide to the tube, and the ultrasonic transmission / reception sensor reflects the reflected wave on the wall The step of detecting the amplitude of the received ultrasonic wave, which is an ultrasonic wave, and outputting the received signal, the maximum value of the amplitude of the received ultrasonic wave within the preset reception time region, and the time of the maximum value as the reception time Detecting, and a maximum of said amplitude Calculating the distance from the transmission / reception sensor to the wall based on the ultrasonic reception time and transmission time when the threshold value satisfies a preset threshold value, and outputting the missing value as the distance value when the threshold value is not satisfied A step of recording the distance value while scanning the ultrasonic sensor along the wall, and a portion of the wall where the number of consecutive missing values of the distance value satisfies a preset number of consecutive missing times. And a step of determining and detecting as a damaged portion.

本発明は、超音波の送受信センサを用い、受信超音波の受信時間領域内にある最大振幅を閾値と比較して、受信超音波の有無を判別し、欠側値の連続性により波孔を検出する。安価な超音波センサを用いることで従来よりもセンサ数を多くすることが可能であり、コークス炉炉壁の損傷の検出に適用した場合には、押し出し操業時に同時に検査を実行することが可能であり、早期に破孔を発見することができる。   The present invention uses an ultrasonic transmission / reception sensor, compares the maximum amplitude within the reception time region of the reception ultrasonic wave with a threshold value, determines the presence or absence of the reception ultrasonic wave, and determines the wavehole by the continuity of the missing value. To detect. By using inexpensive ultrasonic sensors, it is possible to increase the number of sensors than before, and when applied to the detection of damage to coke oven furnace walls, it is possible to perform inspection simultaneously during extrusion operations. Yes, it is possible to detect a puncture early.

以下、本発明の壁面の損傷検出装置および検出方法について、鉄鋼業におけるコークス炉炉壁の破孔を検出する場合を例に、実施するための形態を図面を用いて詳細に説明する。まず図1,2によって損傷(破孔)検出装置の配置と構成の概略を説明した後に、装置の構成要素および損傷検出方法について他の図面も参照して詳細に説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a wall surface damage detection apparatus and detection method according to the present invention will be described below in detail with reference to the drawings, taking as an example the case of detecting a hole in a coke oven furnace wall in the steel industry. First, an outline of the arrangement and configuration of the damage (broken hole) detection device will be described with reference to FIGS. 1 and 2, and the components of the device and the damage detection method will be described in detail with reference to other drawings.

<第1の実施の形態>
図1は本実施の形態の炉壁の損傷検出装置の構成の概略図を示したもので、炉壁6で囲まれた単一のコークス炉炭化室の炉床を上から見た図である。炉壁6に対して超音波を送受信するための、超音波振動子で構成される超音波送受信センサ(超音波センサ)1は導波管11の内部に配置され、導波管11はコークスの押出機5の押し出しビーム51に取り付けられており、導波管11の超音波射出口11aは炭化室の両側の炉壁6に向けられている。図2を用いて後で説明するように導波管11が高さ方向に一台だけ又は複数台、高さ方向に並べて押し出しビーム51に配設されている。以下では超音波送受信センサ1を内蔵した導波管11を複数台並設された構成について記す。このように超音波センサは複数台配置となるので、超音波送受信センサ1を駆動するための距離計2も、各センサに一対一に対応するように押出機5の本体に複数台配置する。高温の炭化室内において超音波送受信センサ1を冷却し、超音波を安定に導波するための冷却用気体の送風を行う送風機16は必ずしも一対一である必要はないが、その送風容量に応じて押出機5本体上に複数台配置すると良い。また、超音波送受信センサ1と距離計2を結ぶ信号線14は、超音波送受信センサ1及び導波管11へ冷却気体を供給するものであり、保護管の役目も果たす耐熱性を有する送風管15内に配線されている。送風管15は、例えばアルミナ、SiN等のセラミックスの管やステンレス管で構成しても良い。さらにコークス炉の外部にある押出機5本体上には、複数の距離計2からの出力される超音波送受信センサ1から炉壁6までの距離値を記録し破孔の有無を検出するための信号処理装置3、および破孔検出結果を表示する表示装置4が搭載されている。なお、押し出しビーム51に押出距離を検出するためのエンコーダ52を取り付けており、信号処理装置3で距離計2の出力する超音波送受信センサ1から炉壁6までの距離値と、超音波センサの走査方向、すなわち押し出し方向(炭化室の奥行き方向)の超音波送受信センサ1の測定位置の情報とを半導体メモリ、ハードディスク又はDVD等で構成する記録装置(図示せず)に記録する。
<First Embodiment>
FIG. 1 is a schematic view of the structure of the furnace wall damage detection apparatus according to the present embodiment, and is a view of a hearth of a single coke oven carbonization chamber surrounded by the furnace wall 6 as viewed from above. . An ultrasonic transmission / reception sensor (ultrasonic sensor) 1 composed of an ultrasonic transducer for transmitting / receiving ultrasonic waves to / from the furnace wall 6 is disposed inside the waveguide 11, and the waveguide 11 is made of coke. It is attached to the extrusion beam 51 of the extruder 5, and the ultrasonic wave injection port 11a of the waveguide 11 is directed to the furnace wall 6 on both sides of the carbonization chamber. As will be described later with reference to FIG. 2, only one or a plurality of waveguides 11 are arranged in the height direction and arranged in the height direction in the extruded beam 51. Hereinafter, a configuration in which a plurality of waveguides 11 including the ultrasonic transmission / reception sensor 1 are arranged in parallel will be described. Since a plurality of ultrasonic sensors are arranged in this way, a plurality of distance meters 2 for driving the ultrasonic transmission / reception sensor 1 are also arranged in the main body of the extruder 5 so as to correspond to each sensor on a one-to-one basis. The blower 16 that cools the ultrasonic transmission / reception sensor 1 in the high-temperature carbonization chamber and blows the cooling gas for stably guiding the ultrasonic wave is not necessarily one-to-one, but depending on the blowing capacity. A plurality of units may be arranged on the main body of the extruder 5. Further, the signal line 14 connecting the ultrasonic transmission / reception sensor 1 and the distance meter 2 supplies cooling gas to the ultrasonic transmission / reception sensor 1 and the waveguide 11, and has a heat-resistant air duct that also serves as a protective tube. 15 is wired. The blower tube 15 may be made of a ceramic tube such as alumina or SiN, or a stainless tube. Furthermore, on the extruder 5 main body outside the coke oven, the distance value from the ultrasonic transmission / reception sensor 1 output from the plurality of distance meters 2 to the furnace wall 6 is recorded to detect the presence or absence of a broken hole. A signal processing device 3 and a display device 4 for displaying a hole detection result are mounted. In addition, the encoder 52 for detecting the extrusion distance is attached to the push beam 51, the distance value from the ultrasonic transmission / reception sensor 1 output from the distance meter 2 to the furnace wall 6 by the signal processing device 3, and the ultrasonic sensor Information on the measurement position of the ultrasonic transmission / reception sensor 1 in the scanning direction, that is, in the pushing direction (the depth direction of the carbonization chamber) is recorded in a recording device (not shown) constituted by a semiconductor memory, a hard disk, a DVD, or the like.

図2は図1に示した押出機5に取り付けられた複数の導波管11を炉壁6に垂直な方向から見た配置図である。図3の説明において後で詳細に記載するが、導波管11はL字型の構造をしており、炉床7に対して平行に、且つ超音波射出口11aは、超音波が炉壁6に垂直に発射されるように向けられて配設されている。導波管11の炉壁6の高さ方向に炉壁レンガと同じ間隔で配置すると炉壁レンガごとの損傷を検出するのに良いが、必ずしも高さ方向のレンガの個数と同じ数だけ並べる必要はなく、破孔が発生すると予想される箇所に重点的に配置してもよい。   FIG. 2 is a layout view of a plurality of waveguides 11 attached to the extruder 5 shown in FIG. 1 as viewed from a direction perpendicular to the furnace wall 6. As will be described in detail later in the description of FIG. 3, the waveguide 11 has an L-shaped structure, is parallel to the hearth 7, and the ultrasonic wave injection port 11 a transmits ultrasonic waves to the furnace wall. 6 is arranged so as to be fired perpendicularly. Although it is good to detect the damage of each furnace wall brick if it arrange | positions in the height direction of the furnace wall 6 of the waveguide 11 at the same space | interval as a furnace wall brick, it is necessary to arrange as many as the number of bricks of a height direction. However, it may be intensively arranged at a place where a hole is expected to occur.

図3は導波管11と当該導波管11に取り付けられた各構成要素の配置を示している。超音波送受信センサ1は送受信兼用の超音波振動子であり、センサマウント13を介して導波管11の内部に取り付けられている。超音波センサ1は圧電素子にコーン共振器などの整合器を接続したタイプの、いわゆる空中超音波センサを用いることができる。コークス炉内の高温雰囲気による放射熱に直接超音波送受信センサ1が曝されるのを避けるため、導波管11はL字型の構造で、その開口端は超音波射出口11aとして炉壁6に対向している。また、放射が導波管11の内壁を多重反射して超音波送受信センサ1へ入射するのを防ぐため、反射鏡12の反射面を含む導波管11内部は耐熱性の物質にて黒く塗られている。又、導波管11内部を粗面に表面加工して可視光及び赤外光に対する反射率を低下させてもよい。導波管11のもう一方の端部11bには送風管15が接続されており、図1に記載の送風機16からの空気又は窒素ガス等の冷却用気体を送風管15内に送ると同時に、内部に配設した超音波センサ1と図1に示した距離計2とを接続する信号線14を熱から保護する役割を担っている。送風管15は導波管11と同じ材質で良いが、雰囲気である1000℃程度の温度に対して耐熱性がある他の部材であっても良い。センサマウント13には冷却用気体を通す孔が開けられており、孔を通して導波管11内部へ送風され、反射鏡12を経て導波管11内を通過した後に炉壁6に吹き付けられる。他方、超音波送受信センサ1から発射した送信波は反射鏡12で反射された後に導波管11内を伝播し炉壁6に到達し、炉壁6で反射波が生じる。送信波の達した炉壁部分に破孔等の顕著な損傷がない場合、反射波の一部又は大部分が導波管11内を伝播し、反射鏡12を経て超音波センサ1で受信される。炉壁部分に損傷がある場合、送信波は乱反射されて、導波管11内部への大きな反射波の戻りは生じないので、超音波送受信センサ1により反射波は検出されないか、小さく検出される。   FIG. 3 shows the arrangement of the waveguide 11 and the components attached to the waveguide 11. The ultrasonic transmission / reception sensor 1 is an ultrasonic transducer for both transmission and reception, and is attached to the inside of the waveguide 11 via a sensor mount 13. As the ultrasonic sensor 1, a so-called aerial ultrasonic sensor of a type in which a matching device such as a cone resonator is connected to a piezoelectric element can be used. In order to avoid direct exposure of the ultrasonic transmission / reception sensor 1 to radiant heat due to a high temperature atmosphere in the coke oven, the waveguide 11 has an L-shaped structure, and the opening end of the waveguide 11 serves as an ultrasonic injection port 11a. Opposite to. Further, in order to prevent radiation from being reflected on the inner wall of the waveguide 11 and entering the ultrasonic transmission / reception sensor 1, the inside of the waveguide 11 including the reflecting surface of the reflecting mirror 12 is painted black with a heat-resistant substance. It has been. Further, the reflectance of visible light and infrared light may be reduced by processing the inside of the waveguide 11 into a rough surface. A blower pipe 15 is connected to the other end portion 11b of the waveguide 11, and at the same time as sending a cooling gas such as air or nitrogen gas from the blower 16 shown in FIG. It plays the role which protects the signal wire | line 14 which connects the ultrasonic sensor 1 arrange | positioned inside and the distance meter 2 shown in FIG. 1 from a heat | fever. The blower tube 15 may be made of the same material as that of the waveguide 11, but may be another member having heat resistance with respect to the temperature of about 1000 ° C. which is an atmosphere. The sensor mount 13 has a hole through which a cooling gas passes. The sensor mount 13 is blown into the waveguide 11 through the hole, passes through the reflector 11 through the reflector 12, and is blown to the furnace wall 6. On the other hand, the transmission wave emitted from the ultrasonic transmission / reception sensor 1 is reflected by the reflecting mirror 12 and then propagates through the waveguide 11 to reach the furnace wall 6, and a reflected wave is generated at the furnace wall 6. When there is no significant damage such as a broken hole in the furnace wall portion where the transmitted wave reaches, a part or most of the reflected wave propagates in the waveguide 11 and is received by the ultrasonic sensor 1 via the reflecting mirror 12. The When the furnace wall portion is damaged, the transmitted wave is diffusely reflected, and a large reflected wave does not return to the inside of the waveguide 11. Therefore, the reflected wave is not detected or detected by the ultrasonic transmission / reception sensor 1. .

超音波送受信センサ1から発射される送信波は、所定の周波数の超音波が複数の波数分連なって構成されたバースト波を用いる。所定の周波数としては数十kHz程度でも良いが、導波管11の長さや検出するべき損傷の大きさによって適宜決めればよい。   The transmission wave emitted from the ultrasonic transmission / reception sensor 1 uses a burst wave composed of ultrasonic waves having a predetermined frequency for a plurality of wave numbers. The predetermined frequency may be about several tens of kHz, but may be determined as appropriate depending on the length of the waveguide 11 and the magnitude of damage to be detected.

図4は本実施の形態の損傷検出装置の距離計測手段である距離計2、及び信号処理手段である信号処理装置3における処理のフローを示す概略図である。図1,2で説明したように、本実施の形態では信号処理装置3一台に対し距離計2は複数台とするので、距離計2で行う処理と信号処理装置3で行う処理は適切に分けなければいけないが、処理の切り分けの説明は後で図5を用いて行う。   FIG. 4 is a schematic diagram showing a processing flow in the distance meter 2 as a distance measuring unit and the signal processing device 3 as a signal processing unit of the damage detection apparatus according to the present embodiment. As described with reference to FIGS. 1 and 2, in the present embodiment, since there are a plurality of distance meters 2 for one signal processing device 3, the processing performed by the distance meter 2 and the processing performed by the signal processing device 3 are appropriately performed. Although it is necessary to divide the processing, the description of the separation of processing will be given later with reference to FIG.

図1を用いて上記のように炉壁6で反射した超音波の反射波を、超音波送受信センサ1で受信して受信信号を得た後の処理について説明する。
(S101)いわゆる通常のAM検波と同じく、受信信号についてバースト波状の受信波形の包絡線を受信信号振幅として検出する(絶対値検波)。
(S102)超音波送受信センサ1は超音波の送受信ともに用いるので、受信信号には送信波(超音波)を発射するための送信信号も含まれることがあるため、受信信号のみを含む時間領域を受信時間領域として予め設定し、この受信時間領域内で受信信号振幅の最大値(最大振幅値)Apおよび最大値の検出時点(最大値検出時点)Tpを検出する。
(S103)上記の(S102)で検出された最大振幅値Apが、予め設定された閾値Athより大きい(あるいは閾値以上)ならば、最大値検出時点Tpを受信時点として送信時点Tsとの差(Tp−Ts)、および音速Vから、超音波センサから炉壁までの距離値Lを、L=V(Tp−Ts)/2で計算する。最大振幅Apが設定された閾値Ath以下(あるいは閾値より小さい)ならば、最大値検出時点は無効と判断し、予め定めた欠測値を距離値とする。
(S104)押出機5がコークス炉の入り口から奥へ(又はその逆方向へ)へ向かって移動する際に、超音波送受信センサ1の走査方向(押し出し方向)の位置情報を参考に、予め定めておいた一定の走査距離、例えば10mmを測定間隔ΔPとして、測定間隔ΔPごとに走査位置Pmと距離値Lと最大振幅値Vpとを記録する。
(S105)距離値が連続して欠測値となる欠測回数Ndが、予め設定された回数(1又は2以上)以上連続して欠測値となるならば、損傷部と判断する。そして、当該損傷部の走査方向(炉の奥行き方向)の開始座標と終了座標とを結ぶ地点を損傷部の炉の奥行き位置として求め、又、損傷を検出した超音送受信波センサ1の設置位置(高さ)から高さ位置を求める。
(S106)上記損傷部の奥行き位置と高さ位置を、液晶画面又はその他の公知の表示素子で構成した表示装置4の画面上に表示する。
A process after the ultrasonic wave reflected by the furnace wall 6 as described above is received by the ultrasonic transmission / reception sensor 1 to obtain a reception signal will be described with reference to FIG.
(S101) As in the so-called normal AM detection, the envelope of the burst waveform of the received signal is detected as the received signal amplitude for the received signal (absolute value detection).
(S102) Since the ultrasonic transmission / reception sensor 1 is used for both transmission and reception of ultrasonic waves, since the reception signal may include a transmission signal for emitting a transmission wave (ultrasonic wave), a time region including only the reception signal is used. A reception time region is set in advance, and the maximum value (maximum amplitude value) Ap of the received signal amplitude and the maximum value detection time point (maximum value detection time point) Tp are detected within the reception time region.
(S103) If the maximum amplitude value Ap detected in the above (S102) is larger than the preset threshold value Ath (or more than the threshold value), the difference from the transmission time point Ts with the maximum value detection time point Tp as the reception time point ( The distance value L from the ultrasonic sensor to the furnace wall is calculated as L = V (Tp−Ts) / 2 from Tp−Ts) and the sound velocity V. If the maximum amplitude Ap is less than or equal to the set threshold value Ath (or smaller than the threshold value), it is determined that the maximum value detection time is invalid, and a predetermined missing value is set as a distance value.
(S104) When the extruder 5 moves from the inlet of the coke oven to the back (or in the opposite direction), the position is determined in advance with reference to the position information of the ultrasonic transmission / reception sensor 1 in the scanning direction (extrusion direction). The scanning position Pm, the distance value L, and the maximum amplitude value Vp are recorded for each measurement interval ΔP, with a predetermined scanning distance, for example, 10 mm as the measurement interval ΔP.
(S105) If the missing number of times Nd at which the distance value becomes the missing value continuously becomes the missing value continuously for a preset number of times (1 or more), it is determined as a damaged part. Then, a point connecting the start coordinate and the end coordinate in the scanning direction (furnace depth direction) of the damaged part is obtained as the depth position of the damaged part furnace, and the installation position of the ultrasonic transmission / reception wave sensor 1 that detects the damage is obtained. The height position is obtained from (height).
(S106) The depth position and height position of the damaged part are displayed on the screen of the display device 4 constituted by a liquid crystal screen or other known display elements.

図4で説明した距離計2及び信号処理装置3の構成のより詳細な図を図5に示す。発振部21で所定の周波数で数波のバースト波として発生された送信電圧信号は送信増幅部22で増幅され、超音波送受信センサ1を駆動して送信波(超音波)を発生させる。図1に記載の炉壁6で反射した反射波は超音波送受信センサ1にて受信され受信電圧信号へ変換され、受信増幅部23で増幅された後、振幅検出部24で受信された超音波による受信電圧信号の振幅が検出される(絶対値検波)。   FIG. 5 shows a more detailed diagram of the configuration of the distance meter 2 and the signal processing device 3 described with reference to FIG. A transmission voltage signal generated as a burst wave of several waves at a predetermined frequency by the oscillating unit 21 is amplified by the transmission amplifying unit 22 and drives the ultrasonic transmission / reception sensor 1 to generate a transmission wave (ultrasonic wave). The reflected wave reflected by the furnace wall 6 shown in FIG. 1 is received by the ultrasonic transmission / reception sensor 1, converted into a reception voltage signal, amplified by the reception amplification unit 23, and then received by the amplitude detection unit 24. Is detected (absolute value detection).

超音波送受信センサ1から出力された受信電圧信号の時間波形には送信電圧信号の時間波形も回路の構成により含まれるため、時間領域設定部26では受信波のみを含む時間領域を最大振幅検出部25に設定する。この設定される時間領域は距離計2の内部に備えた手動スイッチで作業者が設定するか、または外部すなわち信号処理装置3の制御部35からRS232Cケーブルなどの信号伝送ケーブルを使った遠隔操作で距離計2に設定するようにしてもよい。最大振幅検出部25では時間領域設定部26で設定された時間領域での振幅の最大値(最大振幅値)Ap、および最大値の検出時点(最大値検出時点)Tpを検出し、距離算出部27に出力する。当該時間領域において受信電圧信号を検出するには、例えばアナログ回路構成に信号をスイッチング素子で時間的に切り出してもよく、又、ディジタル信号処理によって受信電圧信号対時間のデータから切り出しても良い。   Since the time waveform of the received voltage signal output from the ultrasonic transmission / reception sensor 1 includes the time waveform of the transmitted voltage signal due to the circuit configuration, the time domain setting unit 26 sets the time domain including only the received wave to the maximum amplitude detecting unit. Set to 25. The set time region is set by a worker with a manual switch provided in the distance meter 2 or by remote operation using an external signal transmission cable such as an RS232C cable from the control unit 35 of the signal processing device 3. The distance meter 2 may be set. The maximum amplitude detection unit 25 detects the maximum amplitude value (maximum amplitude value) Ap in the time domain set by the time domain setting unit 26 and the maximum value detection time point (maximum value detection time point) Tp, and the distance calculation unit. 27. In order to detect the received voltage signal in the time domain, for example, the signal may be cut out in time by a switching element in an analog circuit configuration, or may be cut out from the received voltage signal versus time data by digital signal processing.

閾値設定部28では最大振幅検出部25で検出された最大振幅値Apが満足すべき閾値Athを作業者が入力して設定し、距離算出部27に入力して保持させる。この設定される閾値Athは距離計2内部の手動スイッチで設定できるか、または外部すなわち信号処理装置3の制御部35からRS232Cケーブルなどにより遠隔操作で距離計2に設定できる。距離算出部27では、最大振幅値Apが設定された閾値Athより大きい(あるいは閾値以上)とき、発振部21から入力される送信時点Tsの情報を用いて、最大値検出時点Tpを受信時点として送信時点Tsとの差を演算し、又音速Vから距離を算出し距離値Lを信号処理装置3へ出力する。最大振幅値Apが設定された閾値Ath以下(あるいは閾値より小さい)ならば、最大値検出時点Tpは無効と判断し、予め定めた欠測値を距離値Lとして信号処理装置3へ出力する。距離値の有効・無効にかかわらず最大振幅値Apは距離値Lとともに信号処理装置3へ出力される。   In the threshold value setting unit 28, the operator inputs and sets a threshold value Ath that the maximum amplitude value Ap detected by the maximum amplitude detection unit 25 should satisfy, and inputs and sets the threshold value Ath in the distance calculation unit 27. The set threshold value Ath can be set by a manual switch inside the distance meter 2 or can be set in the distance meter 2 by remote operation from the outside, that is, from the control unit 35 of the signal processing device 3 through an RS232C cable or the like. In the distance calculation unit 27, when the maximum amplitude value Ap is larger than the set threshold value Ath (or more than the threshold value), the maximum value detection time point Tp is set as the reception time point using the information of the transmission time point Ts input from the oscillation unit 21. The difference from the transmission time Ts is calculated, the distance is calculated from the sound velocity V, and the distance value L is output to the signal processing device 3. If the maximum amplitude value Ap is less than or equal to the set threshold value Ath (or smaller than the threshold value), it is determined that the maximum value detection time Tp is invalid, and a predetermined missing value is output to the signal processing device 3 as the distance value L. Regardless of whether the distance value is valid or invalid, the maximum amplitude value Ap is output to the signal processing device 3 together with the distance value L.

信号処理装置3においては距離計2の制御、および距離計2から出力された距離値と最大振幅値に基づいて損傷の有無を判別して損傷の検出を行う。制御部35は距離計2の時間領域設定部26および閾値設定部28にそれぞれ検出すべき受信波の時間領域と最大振幅値Apの閾値Athを設定する。位置検出部34は図1の押し出しビーム51に取り付けられたエンコーダ(PLG)52から出力される二相電圧パルスを基に超音波センサ1の走査方向(炉の奥行き方向=押し出し方向)における位置を検出する。距離記録部31では、予め定めておいた一定の走査距離を測定間隔ΔLとして、測定間隔ごとに走査位置および距離計2が出力する距離値と最大振幅値とを信号処理装置3に内蔵する半導体メモリ又はハードディスク等(図に記載せず)に記録する。連続欠測回数設定部33では、距離計2が出力する距離値が連続して欠測値となるならば、損傷部と判断するための、連続欠測回数の下限を設定する。破孔判別部32では距離値が連続欠測回数で指定された回数以上連続して欠測値となるならば、損傷と判断する。表示装置4では、センサの走査位置座標と距離値を常にグラフ表示させると現在測定している位置を作業者が把握することができる。又、損傷の走査方向の開始座標と終了座標を結ぶ地点を損傷部の炉の奥行き方向の位置とし、さらにその高さ位置も表示する。   In the signal processing device 3, damage is detected by determining the presence or absence of damage based on the control of the distance meter 2 and the distance value and maximum amplitude value output from the distance meter 2. The control unit 35 sets the time domain of the received wave to be detected and the threshold Ath of the maximum amplitude value Ap in the time domain setting unit 26 and the threshold setting unit 28 of the distance meter 2, respectively. The position detector 34 determines the position of the ultrasonic sensor 1 in the scanning direction (furnace depth direction = extrusion direction) based on the two-phase voltage pulse output from the encoder (PLG) 52 attached to the extrusion beam 51 of FIG. To detect. In the distance recording unit 31, a predetermined scanning distance is set as a measurement interval ΔL, and a scanning position and a distance value output from the distance meter 2 and a maximum amplitude value are stored in the signal processing device 3 for each measurement interval. Record in memory or hard disk (not shown). The continuous missing measurement number setting unit 33 sets a lower limit of the continuous missing number for determining a damaged portion if the distance value output from the distance meter 2 continuously becomes a missing value. If the distance value becomes the missing value continuously for the number of times specified by the number of consecutive missing measurements, the broken hole discriminating unit 32 judges that the damage has occurred. In the display device 4, when the scanning position coordinates of the sensor and the distance value are always displayed in a graph, the operator can grasp the position currently measured. Further, the point connecting the start coordinate and the end coordinate of the damage scanning direction is set as the position of the damaged portion in the depth direction of the furnace, and the height position is also displayed.

上記の距離計2は、アナログ電子回路で構成するようにしてもよいが、振幅検出部24以後の信号処理は信号をA/D変換した後、ディジタル信号処理器又はパーソナルコンピュータを用いてソフトウェアで各信号処理を実行するようにしてもよい。又、信号処理装置は、パーソナルコンピュータを用いてソフトウェアで各信号処理を実行するのが、高度の信号処理を実現するうえで好ましい。そして、入出力手段として、キーボード、マウス、及びLANボードを具備するとよい。   The distance meter 2 may be configured by an analog electronic circuit. However, the signal processing after the amplitude detector 24 is performed by software using a digital signal processor or a personal computer after A / D conversion of the signal. Each signal processing may be executed. In addition, it is preferable that the signal processing apparatus performs each signal processing by software using a personal computer in order to realize high-level signal processing. As input / output means, a keyboard, a mouse, and a LAN board may be provided.

なお、上記ではバースト波の超音波を送受信して、その受信電圧信号について絶対値検波して得た振幅の大きさで、炉壁6の損傷の有無を評価する方法及び装置を具体的に説明した。その代わりに、受信電圧信号をヘテロダイン検波して、受信電圧信号の位相変化の大きさから、炉壁6の損傷の有無を判別するようにしてもよい。   In the above description, a method and apparatus for evaluating the presence or absence of damage to the furnace wall 6 based on the magnitude of the amplitude obtained by transmitting / receiving burst wave ultrasonic waves and detecting the absolute value of the received voltage signal will be specifically described. did. Instead, the received voltage signal may be heterodyne detected and the presence or absence of damage to the furnace wall 6 may be determined from the magnitude of the phase change of the received voltage signal.

<第2の実施の形態>
図6は本実施の形態の壁の損傷検出方法の測定フローの概略図を示したものである。すなわち、炉壁の損傷の検出方法は、
(S201)L字型に曲げられた導波管11の内部を炉壁6に向けて冷却気体を流しながら、導波管11内に炉壁6からの放射が直接当たらないように配設した超音波送受信センサ1から、壁に向かって超音波のバースト波を送信する、
(S202)炉壁6から反射した超音波を超音波送受信センサ1で受信して、受信電圧信号を出力する、
(S203)受信電圧信号を絶対値検波又はヘテロダイン検波して、炉壁からの反射波による受信電圧信号を検出する、
(S204)上記の(S203)で、炉壁からの反射波による受信電圧信号から、超音波センサから壁までの距離を、検出されなければ欠測として記録する、
(S205)連続欠測回数にて、予め設定した閾値と比較して損傷の有無を判別して検出する、
(S206)検出した損傷部の炉の奥行き方向及び高さ位置を表示装置上に表示する、
手順からなる。
<Second Embodiment>
FIG. 6 shows a schematic diagram of a measurement flow of the wall damage detection method of the present embodiment. In other words, the method for detecting damage to the furnace wall is:
(S201) While the cooling gas is allowed to flow toward the furnace wall 6 inside the waveguide 11 bent into an L shape, the waveguide 11 is disposed so that the radiation from the furnace wall 6 does not directly strike the waveguide 11. An ultrasonic burst wave is transmitted from the ultrasonic transmission / reception sensor 1 toward the wall,
(S202) The ultrasonic wave reflected from the furnace wall 6 is received by the ultrasonic transmission / reception sensor 1, and a reception voltage signal is output.
(S203) absolute value detection or heterodyne detection of the received voltage signal to detect the received voltage signal due to the reflected wave from the furnace wall;
(S204) In (S203) above, from the received voltage signal due to the reflected wave from the furnace wall, the distance from the ultrasonic sensor to the wall is recorded as missing if it is not detected.
(S205) The number of consecutive missing measurements is determined by detecting the presence or absence of damage compared to a preset threshold value.
(S206) Display the depth direction and height position of the detected damaged portion of the furnace on the display device;
Consists of procedures.

本発明の実施例について図面を参照しながら具体的に説明する。図7は本発明の実施の形態の壁の損傷検出装置の一実施例の機器の構成を示す図である。超音波送受信センサ1は車載の障害物検知装置に使用される市販の共振周波数40kHz、外径16mmの空中超音波センサを用いた。超音波送受信センサ1から壁6’までの距離はおよそ500mm程度に配置した。導波管11の内径は小さくすると受信感度が下がり、大きくすると管内径より小さい破孔の検出が難しくなり、また送風機16の送風容量も大きくなるので、上記の周波数の超音波に対しては、導波管11の内径は30mm程度とした。パルス発生器21、送信増幅器22、受信増幅器23は市販の汎用の装置を用いた。また、送信増幅器22および受信増幅器23と、超音波送受信センサ1の間には送信・受信兼用型超音波センサ用の測定回路29を挿入した。受信した受信電圧信号の時間波形は受信増幅器23で増幅され、一旦デジタルオシロスコープ20で取り込んだ後に、USB通信にてパソコン(パーソナルコンピュータ)30へ取り込む。パソコン30では図4の振幅検出から表示までを、図5でいうと距離計2における振幅検出回路24から信号処理装置3、および表示装置4で行っている処理をすべてソフトウェア処理で実行する。   Embodiments of the present invention will be specifically described with reference to the drawings. FIG. 7 is a diagram showing a configuration of an apparatus of an example of the wall damage detection apparatus according to the embodiment of the present invention. As the ultrasonic transmission / reception sensor 1, a commercially available aerial ultrasonic sensor having a resonance frequency of 40 kHz and an outer diameter of 16 mm used for an on-vehicle obstacle detection device was used. The distance from the ultrasonic transmission / reception sensor 1 to the wall 6 'was set to about 500 mm. If the inner diameter of the waveguide 11 is reduced, the receiving sensitivity is lowered, and if it is increased, it becomes difficult to detect a broken hole smaller than the inner diameter of the tube, and the blowing capacity of the blower 16 is also increased. The inner diameter of the waveguide 11 was about 30 mm. Commercially available general-purpose devices were used for the pulse generator 21, the transmission amplifier 22, and the reception amplifier 23. Further, a measurement circuit 29 for a transmission / reception ultrasonic sensor is inserted between the transmission amplifier 22 and the reception amplifier 23 and the ultrasonic transmission / reception sensor 1. The received time waveform of the received voltage signal is amplified by the receiving amplifier 23, and once taken by the digital oscilloscope 20, it is taken into the personal computer 30 by USB communication. In the personal computer 30, the processing from amplitude detection to display in FIG. 4 is executed by software processing from the amplitude detection circuit 24 in the distance meter 2 to the signal processing device 3 and the display device 4 in FIG. 5.

パルス発生器21で周波数40kHz、5波、繰り返し10Hz、電圧2Vppのバースト波を発生させ、送信増幅器22の利得を10倍にして20Vppの電圧バースト波を耐圧100Vppの超音波センサ1に印加した。受信増幅器23の利得は25倍に設定した。デジタルオシロスコープのサンプリング点数は2500点でサンプリング間隔は4μsecである。   The pulse generator 21 generates a burst wave having a frequency of 40 kHz, 5 waves, 10 Hz repetition, and a voltage of 2 Vpp. The gain of the transmission amplifier 22 is multiplied by 10 and a voltage burst wave of 20 Vpp is applied to the ultrasonic sensor 1 having a withstand voltage of 100 Vpp. The gain of the receiving amplifier 23 was set to 25 times. The digital oscilloscope has 2500 sampling points, and the sampling interval is 4 μsec.

まず、炉壁6の正常部6bに導波管11を向けて、800℃にて送風しながら炉壁6からの反射波を受信できるか確認した。図8は800℃における受信波形と振幅検出にて検出した振幅(バースト波の包絡線)をともに示している。   First, the waveguide 11 was directed to the normal part 6b of the furnace wall 6 and it was confirmed that the reflected wave from the furnace wall 6 could be received while blowing air at 800 ° C. FIG. 8 shows both the received waveform at 800 ° C. and the amplitude detected by amplitude detection (envelope of burst wave).

振幅検出は、パソコンを用いてソフトウェア処理にて実行した。その方法を以下に示す。   Amplitude detection was performed by software processing using a personal computer. The method is shown below.

まず取り込んだ信号F(t)を局所的に以下の(1)式のように仮定する。

Figure 0005073538
First, it is assumed that the captured signal F (t) is locally expressed by the following equation (1).
Figure 0005073538

時刻τの近傍の局所時間領域では振幅A(t)と位相φ(t)は一定とみなすと、振幅A(τ)のみを検出する方法1と振幅A(τ)および位相φ(τ)を両方検出する方法2がある。   Assuming that the amplitude A (t) and the phase φ (t) are constant in the local time region near the time τ, the method 1 for detecting only the amplitude A (τ) and the amplitude A (τ) and the phase φ (τ) are There is a method 2 for detecting both.

方法1では信号F(t)を時刻τの近傍の一周期Tで二乗平均すると、以下の(2)式のように振幅A(τ)が算出できる。

Figure 0005073538
In Method 1, when the signal F (t) is square-averaged over one period T in the vicinity of the time τ, the amplitude A (τ) can be calculated as in the following equation (2).
Figure 0005073538

方法2では信号F(t)にcos2πft、sin2πftを乗算した後(3)、(4)式のように一周期Tで平均化後、A(t)、φ(t)を算出する。

Figure 0005073538
Figure 0005073538
In method 2, the signal F (t) is multiplied by cos2πft and sin2πft (3), averaged over one period T as shown in equation (4), and A (t) and φ (t) are calculated.
Figure 0005073538
Figure 0005073538

いずれの方法でも振幅を検出可能であるが、ここでは方法1で振幅検出を行った。   Although amplitude can be detected by any method, amplitude detection was performed by Method 1 here.

超音波の伝播経路に送風し、高温層を除いてやれば高温でも炉壁6の正常部6bからの反射波は十分検出可能であることがわかった。   It was found that the reflected wave from the normal part 6b of the furnace wall 6 can be sufficiently detected even at a high temperature if the ultrasonic wave is blown to the propagation path and the high temperature layer is removed.

炉壁6上で超音波センサ1を走査し最大振幅値を記録した結果を図9に示す。受信波形の検出時間領域は図8に示すように開始時刻を2.5μsec、長さを5μsecとした。破孔部の近傍では最大振幅値が徐々に小さくなる。閾値0.1Vにて距離を算出した結果を図10に示す。閾値以下では算出した距離値を欠測値とした。欠側値の場合、距離をプロットしていないので破孔部が明瞭にわかる。また、導波管11の内径30mmに相当する連続欠測長さを走査測定間隔で除した回数を連続欠測回数として設定しており、自動的に破孔部と認識された。   FIG. 9 shows the result of scanning the ultrasonic sensor 1 on the furnace wall 6 and recording the maximum amplitude value. As shown in FIG. 8, the reception waveform detection time region has a start time of 2.5 μsec and a length of 5 μsec. The maximum amplitude value gradually decreases in the vicinity of the broken hole portion. The result of calculating the distance at the threshold value of 0.1 V is shown in FIG. Below the threshold, the calculated distance value was regarded as a missing value. In the case of the missing side value, since the distance is not plotted, the hole portion can be clearly seen. In addition, the number of times of continuous missing measurement corresponding to the inner diameter of 30 mm of the waveguide 11 divided by the scanning measurement interval is set as the number of consecutive missing measurements, and it was automatically recognized as a broken hole portion.

図7に示した構成にて実施例を説明したが、超音波センサが1個で走査する場合、この構成でも破孔部を十分な精度で検出可能である。超音波センサが複数となる場合は、距離計を構成する回路を準備し、信号処理装置であるパソコンに距離値と最大振幅値のみを入力するようにすればよい。   Although the embodiment has been described with the configuration shown in FIG. 7, when one ultrasonic sensor is scanned, the broken hole portion can be detected with sufficient accuracy even with this configuration. When there are a plurality of ultrasonic sensors, it is only necessary to prepare a circuit constituting a distance meter and input only a distance value and a maximum amplitude value to a personal computer which is a signal processing device.

さらに、上記の実施例の損傷検出装置の耐熱性の評価を別途行なった。1000℃近い炉内に送風管15及び導波管11を固定して設置して、内部に空気を送風機16で供給し、超音波の送受信実験及び耐熱性の評価を行った。1サイクルあたり2分の測定を複数回繰り返したが、超音波の送受信は十分可能であること、及び送受信部に測定上問題となるような大きな熱的劣化は見られなかった。   Furthermore, the heat resistance of the damage detection apparatus of the above example was separately evaluated. The blower tube 15 and the waveguide 11 were fixed and installed in a furnace close to 1000 ° C., and air was supplied to the inside by the blower 16 to perform ultrasonic transmission / reception experiments and heat resistance evaluation. The measurement for 2 minutes per cycle was repeated a plurality of times. However, ultrasonic transmission / reception was sufficiently possible, and there was no significant thermal deterioration in the transmission / reception unit that would cause a measurement problem.

本発明は、壁面の損傷を検出する技術として適用できる。   The present invention can be applied as a technique for detecting wall damage.

本発明の損傷検出装置の構成の概略と当該装置をコークス炉炭化室の炉床面鉛直上方から見た図である。It is the figure which looked at the outline of the structure of the damage detection apparatus of this invention, and the said apparatus from the hearth surface vertical upper direction of the coke oven carbonization chamber. 本発明の損傷検出装置の導波管の配置を、炉壁に垂直な方向から見た図である。It is the figure which looked at arrangement | positioning of the waveguide of the damage detection apparatus of this invention from the direction perpendicular | vertical to a furnace wall. 本発明の損傷検出装置における導波管、及び超音波送受信センサ等の構成要素を、炉壁に対する配置を炉床面鉛直上方から見た図である。It is the figure which looked at arrangement | positioning with respect to a furnace wall from the furnace floor surface vertical upper direction about components, such as a waveguide and an ultrasonic transmission / reception sensor in the damage detection apparatus of this invention. 本発明の損傷検出装置における距離計及び信号処理装置の受信以降の検出処理のフローを示した図である。It is the figure which showed the flow of the detection process after reception of the distance meter and signal processing apparatus in the damage detection apparatus of this invention. 本発明の損傷検出装置の距離計と信号処理装置の内部のブロック構成を示す図である。It is a figure which shows the internal block structure of the distance meter and signal processing apparatus of the damage detection apparatus of this invention. 本発明の損傷検出方法の検出手順を示した図である。It is the figure which showed the detection procedure of the damage detection method of this invention. 本発明の実施例における実験装置の構成を示した図である。It is the figure which showed the structure of the experimental apparatus in the Example of this invention. 本発明の実施例において検出された受信波形(受信電圧信号)とその振幅波形を示す。The reception waveform (reception voltage signal) detected in the Example of this invention and its amplitude waveform are shown. 本発明の実施例において送受信センサの走査位置と検出された最大振幅値との関係を示す図である。It is a figure which shows the relationship between the scanning position of a transmission / reception sensor and the detected maximum amplitude value in the Example of this invention. 本発明の実施例において超音波送受信センサの走査位置と検出された距離との関係を示す図である。It is a figure which shows the relationship between the scanning position of an ultrasonic transmission / reception sensor and the detected distance in the Example of this invention.

符号の説明Explanation of symbols

1 :超音波送受信センサ
2 :距離計
3 :信号処理装置
4 :表示装置
5 :押出機
6 :炉壁
6’:壁
11:導波管
11a:超音波射出口
12:反射鏡
13:センサマウント
14:信号線
15:送風管
51:押し出しビーム
52:エンコーダ
1: Ultrasonic transmission / reception sensor 2: Distance meter 3: Signal processing device 4: Display device 5: Extruder 6: Furnace wall 6 ': Wall 11: Waveguide 11a: Ultrasonic outlet 12: Reflector 13: Sensor mount 14: Signal line 15: Air duct 51: Pushed beam 52: Encoder

Claims (5)

高温雰囲気中において壁に向けて超音波送受信センサにより超音波を発射し、その反射波を前記超音波送受信センサで受信しつつ、該超音波送受信センサを壁に沿って走査させて壁の損傷を検知する超音波損傷検出装置であって、
開口端が前記壁に対向し、他の端部に前記超音波送受信センサを備えて、内部に冷却気体を流しながら超音波送受信センサで発生した超音波を伝播させるL字型の導波管と、
前記導波管の他の端部に接続されて前記超音波送受信センサ及び導波管に冷却気体を供給する送風管と、
前記超音波送受信センサを駆動して超音波のバースト波を発生させ、該超音波送受信センサから出力される受信信号の振幅と受信時刻に基づき、前記壁からの反射波の有無を検出し、反射波が検出されたときに超音波送受信センサから壁面上の反射点までの距離を、また反射波が検出されないときに予め定めた欠測値を距離値として出力する距離計測手段と、
前記超音波送受信センサを壁面に沿って走査して、その走査位置を検出する走査位置検出手段と、
前記走査位置検出手段で検出された走査位置と前記距離計測手段で計測された距離値とに基づいて、前記欠測値が連続して検出される連続欠測回数により壁の損傷の有無を判別する信号処理手段と、
前記信号処理手段で判別された壁の損傷の位置を表示する表示手段と
を備えたことを特徴とする壁の損傷検出装置。
The ultrasonic transmission / reception sensor emits ultrasonic waves toward the wall in a high-temperature atmosphere, and the ultrasonic transmission / reception sensor scans along the wall while receiving the reflected wave by the ultrasonic transmission / reception sensor. An ultrasonic damage detection device for detecting,
An L-shaped waveguide having an open end facing the wall and including the ultrasonic transmission / reception sensor at the other end, and propagating ultrasonic waves generated by the ultrasonic transmission / reception sensor while flowing a cooling gas therein; ,
A blower pipe connected to the other end of the waveguide to supply a cooling gas to the ultrasonic transmission / reception sensor and the waveguide;
The ultrasonic transmission / reception sensor is driven to generate an ultrasonic burst wave. Based on the amplitude and reception time of the reception signal output from the ultrasonic transmission / reception sensor, the presence / absence of a reflected wave from the wall is detected and reflected. Distance measuring means for outputting a distance from the ultrasonic transmission / reception sensor to a reflection point on the wall surface when a wave is detected, and a predetermined missing value as a distance value when no reflected wave is detected;
Scanning position detecting means for scanning the ultrasonic transmission / reception sensor along the wall surface and detecting the scanning position;
Based on the scanning position detected by the scanning position detecting means and the distance value measured by the distance measuring means, the presence / absence of damage to the wall is determined by the number of consecutive missing measurements in which the missing values are continuously detected. Signal processing means for
A wall damage detection apparatus comprising: display means for displaying a wall damage position determined by the signal processing means.
前記距離計測手段は、
超音波の受信信号の振幅を検出する振幅検出部と、
予め設定された時間領域内で前記受信信号の振幅の最大値と、該最大値を与える時刻である反射波の受信時刻とを検出する最大振幅検出部と、
前記振幅の最大値が予め設定された閾値を満たすときに超音波の受信時刻と送信時刻に基づいて計算した超音波送受信センサから壁までの距離を、また満たさないときに欠測値をそれぞれ距離値として出力する距離算出部と、
からなることを特徴とする請求項1に記載の壁の損傷検出装置。
The distance measuring means includes
An amplitude detector for detecting the amplitude of the ultrasonic reception signal;
A maximum amplitude detector that detects a maximum value of the amplitude of the received signal within a preset time region and a reception time of a reflected wave that is a time when the maximum value is given;
The distance from the ultrasonic transmission / reception sensor to the wall calculated based on the reception time and transmission time of the ultrasonic wave when the maximum value of the amplitude satisfies a preset threshold, and the missing value when not satisfying the distance A distance calculation unit that outputs a value;
The wall damage detection device according to claim 1, comprising:
前記信号処理装置は、
前記超音波送受信センサの壁面の走査位置と、前記走査距離計測手段より出力された距離値とに基づいて、前記距離の欠側値が予め設定された連続欠測回数を基準として、壁の損傷部を判別して検出する損傷判別部を備えることを特徴とする請求項1又は請求項2に記載の壁の損傷検出装置。
The signal processing device includes:
Based on the scanning position of the wall surface of the ultrasonic transmission / reception sensor and the distance value output from the scanning distance measuring means, the damage of the wall is determined based on the number of consecutive missing measurements in which the missing value of the distance is set in advance. The wall damage detection device according to claim 1, further comprising a damage determination unit that determines and detects the portion.
前記超音波送受信センサを具備するL字型の導波管を、前記走査方向と直交する方向に複数台を並列に配置したことを特徴とする請求項1〜3のいずれか一項に記載の壁の損傷検出装置。   4. The L-shaped waveguide including the ultrasonic transmission / reception sensor is arranged in parallel in a direction orthogonal to the scanning direction. 5. Wall damage detection device. 高温雰囲気中において壁に向けて超音波送受信センサにより超音波を発射し、その反射波を前記超音波送受信センサで受信しつつ、該超音波送受信センサを壁に沿って走査させて壁の損傷を検知する超音波損傷検出方法であって、
開口端が前記壁に対向し、他の端部に前記超音波送受信センサを備えたL字型の導波管に、該導波管に接続された送風管で内部に冷却気体を流しながら超音波送受信センサで発生した超音波のバースト波を伝播させる工程と、
前記超音波送受信センサで、壁で反射した超音波である受信超音波の振幅を検出して、受信信号を出力する工程と、
予め設定した受信時間領域内で前記受信超音波の振幅の最大値、及び該最大値の時刻を受信時刻として検出する工程と、
前記振幅の最大値が予め設定した閾値を満たすときに超音波の受信時刻と送信時刻に基づいて送受信センサから壁までの距離を計算して距離値とし、また満たさないときに欠測値を距離値として出力する工程と、
前記超音波センサを壁に沿って走査しながら前記距離値を記録する工程と、
前記距離値の欠側値の連続する回数が、予め設定された連続欠測回数を満たす壁の部分を損傷部として判別して検出する工程と
で構成される壁の損傷検出方法。
The ultrasonic transmission / reception sensor emits ultrasonic waves toward the wall in a high-temperature atmosphere, and the ultrasonic transmission / reception sensor scans along the wall while receiving the reflected wave by the ultrasonic transmission / reception sensor. An ultrasonic damage detection method for detecting,
The opening end is opposed to the wall, and the other end is provided with the ultrasonic transmission / reception sensor. A step of propagating the ultrasonic burst wave generated by the acoustic wave transmission / reception sensor;
A step of detecting an amplitude of a reception ultrasonic wave, which is an ultrasonic wave reflected by a wall, and outputting a reception signal by the ultrasonic transmission / reception sensor;
Detecting a maximum value of the amplitude of the received ultrasonic wave within a preset reception time region, and a time of the maximum value as a reception time;
When the maximum value of the amplitude satisfies a preset threshold value, the distance from the transmission / reception sensor to the wall is calculated based on the reception time and transmission time of the ultrasonic wave to obtain a distance value. Outputting as a value;
Recording the distance value while scanning the ultrasonic sensor along a wall;
A wall damage detection method comprising: a step of discriminating and detecting, as a damaged portion, a wall portion in which the number of consecutive missing values of the distance value satisfies a preset number of consecutive missing measurements.
JP2008058971A 2008-03-10 2008-03-10 Wall damage detection apparatus and damage detection method Expired - Fee Related JP5073538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058971A JP5073538B2 (en) 2008-03-10 2008-03-10 Wall damage detection apparatus and damage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058971A JP5073538B2 (en) 2008-03-10 2008-03-10 Wall damage detection apparatus and damage detection method

Publications (2)

Publication Number Publication Date
JP2009215388A JP2009215388A (en) 2009-09-24
JP5073538B2 true JP5073538B2 (en) 2012-11-14

Family

ID=41187585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058971A Expired - Fee Related JP5073538B2 (en) 2008-03-10 2008-03-10 Wall damage detection apparatus and damage detection method

Country Status (1)

Country Link
JP (1) JP5073538B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804730B2 (en) * 2016-05-16 2020-12-23 清水建設株式会社 Inspection method for steel plate concrete structure, manufacturing method for steel plate concrete structure, and inspection jig
US10629966B2 (en) * 2016-11-02 2020-04-21 Feasible, Inc. Modular, adaptable holders for sensors and battery cells for physical analysis
CN107699257A (en) * 2017-10-18 2018-02-16 南京沪友冶金机械制造有限公司 A kind of detection method of coke oven coke oven uprising tube state
JP6692380B2 (en) * 2018-03-09 2020-05-13 帝人株式会社 Inspection method using ultrasonic waves
CN110954035B (en) * 2019-12-18 2023-07-07 交控科技股份有限公司 Waveguide fault monitoring system and method
CN113063859B (en) * 2021-03-25 2024-01-05 广西交科集团有限公司 Nonmetal ultrasonic detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113450U (en) * 1978-01-21 1979-08-09
JP2001040359A (en) * 1999-07-28 2001-02-13 Sumitomo Metal Ind Ltd Process for operating coke oven
JP3917930B2 (en) * 2002-11-22 2007-05-23 新日本製鐵株式会社 Coke oven broken hole detection device and extruder

Also Published As

Publication number Publication date
JP2009215388A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5073538B2 (en) Wall damage detection apparatus and damage detection method
US4848924A (en) Acoustic pyrometer
US8434936B2 (en) Method for performing ultrasonic testing
CN112313023B (en) Acoustic emission sensing in powder bed additive manufacturing
JP6376980B2 (en) Structural deformation detector
US5469742A (en) Acoustic temperature and film thickness monitor and method
US9212956B2 (en) Ultrasonic temperature measurement device
US10145558B2 (en) Method for determining the temperature inside a combustor
JP2003207463A (en) Nondestructive inspection method for concrete structure and structure other than the same
CN110672047A (en) Laser ultrasonic measurement method for thickness of high-temperature metal material
EP2194325A1 (en) Flame detection device and method for detecting a flame
JP2009276095A (en) Non-destructive flaw detecting method and non-destructive flaw detector
JP4577957B2 (en) Tunnel diagnostic equipment
US7938006B2 (en) Non-contact ultrasound materials systems and measurement techniques
JP2004137416A (en) Method and apparatus for detecting coking of wall surface of carbonization chamber in coke oven
KR100989515B1 (en) Pipe conduit block testing equipment using microprocessor and the method thereof
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
JP2016044984A (en) Weld monitoring device and method by ultrasonic wave
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
JP2003329656A (en) Degree of adhesion diagnosis method and device for concrete-sprayed slope
JP4954688B2 (en) Coke oven carbonization chamber furnace wall displacement measurement system, and coke oven carbonization chamber furnace wall displacement measurement method
JPH0961144A (en) Method and apparatus for measurement of thickness of object to be measured
JP3128089B2 (en) Structure of porous plug for molten metal container
JP3596125B2 (en) Method and apparatus for measuring liquid level of molten material in furnace
KR102497237B1 (en) Bubble detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R151 Written notification of patent or utility model registration

Ref document number: 5073538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees