JP5071802B2 - Solder balls, solder layers and solder bumps - Google Patents

Solder balls, solder layers and solder bumps Download PDF

Info

Publication number
JP5071802B2
JP5071802B2 JP2008100769A JP2008100769A JP5071802B2 JP 5071802 B2 JP5071802 B2 JP 5071802B2 JP 2008100769 A JP2008100769 A JP 2008100769A JP 2008100769 A JP2008100769 A JP 2008100769A JP 5071802 B2 JP5071802 B2 JP 5071802B2
Authority
JP
Japan
Prior art keywords
solder
oxide film
soldering
balls
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008100769A
Other languages
Japanese (ja)
Other versions
JP2009248156A (en
Inventor
常宏 川田
正芳 伊達
重治 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008100769A priority Critical patent/JP5071802B2/en
Publication of JP2009248156A publication Critical patent/JP2009248156A/en
Application granted granted Critical
Publication of JP5071802B2 publication Critical patent/JP5071802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、電子部品等のはんだ付けに使用される鉛フリーはんだボール及びそれを用いて形成するはんだ層とはんだバンプに関するものである。 The present invention relates to a solder layer and the solder van flop formed by using a lead-free solder balls and it is used for soldering electronic components.

近年、携帯電話などのモバイル機器における実装面積の減少とI/O端子の多ピン化に伴って、半導体パッケージも小型化、高集積化の傾向にある。これにより、半導体パッケージをマザーボードに接続する実装形態も、従来のリードを用いた周辺端子型から、半導体パッケージの底面に格子状に電極端子を形成したタイプへと変遷している。その代表的なものがBGA(Ball Grid Array)である。BGAの電極は、球状に成形されたはんだ、つまりはんだボールを用いてマザーボードの電極へと接続される。   In recent years, as the mounting area of mobile devices such as mobile phones is reduced and the number of I / O terminals is increased, semiconductor packages are also becoming smaller and more highly integrated. As a result, the mounting form in which the semiconductor package is connected to the mother board is also changing from a conventional peripheral terminal type using leads to a type in which electrode terminals are formed in a lattice shape on the bottom surface of the semiconductor package. A typical example is BGA (Ball Grid Array). The electrodes of the BGA are connected to the electrodes of the mother board using solder formed into a spherical shape, that is, solder balls.

はんだボールによる接続は次の手順で行われる。まず、半導体パッケージ上に並ぶ複数の電極上にはんだボールを搭載した後、はんだの融点以上の温度まで加熱してはんだを溶かし、はんだバンプと称されるはんだの突起を電極上に形成する。次に、マザーボードの電極の位置と、先に半導体パッケージ側に形成したはんだバンプの位置が重なるように半導体パッケージをマザーボードに搭載した後、はんだの融点以上の温度まで再度加熱することで、半導体パッケージの電極とマザーボードの電極とを接合する。   Connection by solder balls is performed in the following procedure. First, after mounting solder balls on a plurality of electrodes arranged on a semiconductor package, the solder is melted by heating to a temperature equal to or higher than the melting point of the solder, and solder protrusions called solder bumps are formed on the electrodes. Next, after mounting the semiconductor package on the motherboard so that the position of the electrodes on the motherboard and the position of the solder bumps previously formed on the semiconductor package overlap, the semiconductor package is heated again to a temperature above the melting point of the solder. And the mother board electrode are joined.

半導体パッケージの電極とマザーボードの電極とがはんだバンプによって接合される際、はんだボールの搭載不良やはんだ濡れ不良によって半導体パッケージの電極にはんだバンプが形成されず欠損していた場合、不良品として扱うために欠損率の管理は重要である。また、はんだバンプが欠損していなくても、バンプの高さが電極ごとに大きく異なる場合、高さの低いバンプはマザーボードの電極と接することができないため接合されない。   When semiconductor package electrodes and motherboard electrodes are joined by solder bumps, if solder bumps are not formed on the electrodes of the semiconductor package due to defective mounting of solder balls or poor solder wetting, they are treated as defective products It is important to manage the defect rate. Even if the solder bumps are not missing, if the bump heights differ greatly from one electrode to another, the bumps with a low height cannot be joined because they cannot contact the electrodes on the motherboard.

これらの不良を未然に防ぐため、半導体パッケージの電極上にはんだバンプが形成された時点で、CCDカメラなどからなる画像認識装置によりはんだバンプの欠損を確認したり、レーザー測長計によりはんだバンプの高さばらつきを測定したりする検査が行われ、はんだバンプが全ての電極に形成されており、かつその高さバラつきが許容範囲にあるもののみがマザーボードに搭載される。   In order to prevent these defects in advance, when solder bumps are formed on the electrodes of the semiconductor package, chipping of the solder bumps can be confirmed with an image recognition device such as a CCD camera, and the height of the solder bumps can be measured with a laser length meter. An inspection for measuring the thickness variation is performed, and only the solder bumps are formed on all the electrodes and the height variation is within an allowable range is mounted on the motherboard.

半導体パッケージの接合に用いられる代表的な鉛フリーのはんだボール又ははんだ合金としては、特許文献1や特許文献2に開示されているような、Snを主体とし、AgやCuを添加したものが挙げられる。これらの合金は融点が220〜225℃程度であり、一般的なはんだ付け温度はそれよりも15〜20℃高い240℃である。これらの温度は、Sn単体の場合と比較して5〜10℃程度低いため、半導体パッケージやマザーボードに使用されている樹脂材料の熱損傷による劣化を低減できるといった利点を有する。
特許第3925554号公報 特開2004−1100号公報
Typical lead-free solder balls or solder alloys used for joining semiconductor packages include those mainly composed of Sn and added with Ag or Cu as disclosed in Patent Document 1 and Patent Document 2. It is done. These alloys have a melting point of about 220 to 225 ° C., and a general soldering temperature is 240 ° C., which is 15 to 20 ° C. higher than that. Since these temperatures are about 5 to 10 ° C. lower than the case of Sn alone, there is an advantage that deterioration due to thermal damage of a resin material used for a semiconductor package or a mother board can be reduced.
Japanese Patent No. 3925554 JP 2004-1100 A

このように、Snを主体とし、AgやCuが添加されたはんだ合金は、はんだ付け時の半導体パッケージやマザーボードの熱損傷を低減することが可能である。しかしながら、本発明者がSnを主体とし、AgやCuが添加されたはんだ合金からなるはんだボールについて検討した結果、半導体パッケージの電極上にはんだボールを搭載した時点、またはバンプを形成した時点で黄色く変色(以下、黄化という。)しており、良好な金属光沢がなくなってしまうという問題が発生した。この黄化したはんだボールおよびはんだバンプでは、画像処理装置における照射光、レーザー測長計におけるレーザー光の反射に乱れが生じる。このため、欠損判定やバンプ高さ測定ができないという問題が発生しており、特にはんだ付け時の雰囲気中酸素濃度が高い場合にこの問題は顕著になった。   As described above, the solder alloy mainly composed of Sn and added with Ag or Cu can reduce the thermal damage of the semiconductor package or the mother board at the time of soldering. However, as a result of studying a solder ball made of a solder alloy mainly composed of Sn and added with Ag or Cu, the present inventor has found that the solder ball is mounted on the electrode of the semiconductor package or the bump is formed at the time when the bump is formed. There was a problem of discoloration (hereinafter referred to as yellowing) and loss of good metallic luster. In the yellowed solder balls and solder bumps, the reflection of the irradiation light in the image processing apparatus and the laser light in the laser length meter is disturbed. For this reason, there is a problem that the defect determination and the bump height measurement cannot be performed, and this problem becomes remarkable particularly when the oxygen concentration in the atmosphere at the time of soldering is high.

また、黄化したはんだボールは半導体パッケージ上の電極とのはんだ付け性が著しく低下する。はんだバンプの場合は欠損判定やバンプ高さ測定を合格することができた場合でも、金属光沢を有さないため見た目が悪く、その後の目視検査で不良と判断される不具合が発生していた。結果として、半導体パッケージの生産性と歩留まりが大幅に低下する一因となっていた。   In addition, the soldering property of the yellowed solder balls with the electrodes on the semiconductor package is significantly reduced. In the case of a solder bump, even if the defect determination and the bump height measurement can be passed, the appearance is poor because it does not have a metallic luster, and a defect that is determined to be defective by subsequent visual inspection has occurred. As a result, the productivity and yield of the semiconductor package are greatly reduced.

本発明の目的は、Snを主体とし、AgやCuが添加されたはんだ合金において、はんだ付け時の変色に起因したはんだボールの搭載率向上とはんだバンプの欠損判定、高さ測定、ならびに目視検査での不良の問題を解決するはんだボールを提供することにある。   The object of the present invention is to improve the mounting ratio of solder balls due to discoloration at the time of soldering, to determine the defect of the solder bump, to measure the height, and to visually inspect the solder alloy mainly composed of Sn and to which Ag or Cu is added. An object of the present invention is to provide a solder ball that solves the problem of defects in the soldering.

本発明者らは、Snを主体とし、AgやCuが添加されたはんだ合金からなるはんだボールにおける黄化は表面のSn酸化膜が厚くなると生じるものであり、Sn酸化膜厚を制御することではんだ付け性を損ねることなく変色の発生を大幅に抑制できることを見出し、本発明に到達した。さらには厳密に制御されたわずかな量のCrを添加すると、はんだ付け性は向上し、より変色の発生を低減できる。   The inventors of the present invention have found that yellowing in a solder ball made of a solder alloy mainly composed of Sn and to which Ag or Cu is added occurs when the Sn oxide film on the surface is thickened, and by controlling the Sn oxide film thickness. The inventors have found that the occurrence of discoloration can be significantly suppressed without impairing the solderability, and have reached the present invention. Furthermore, when a small amount of Cr that is strictly controlled is added, the solderability is improved and the occurrence of discoloration can be further reduced.

すなわち本願第一の発明は、質量で0〜4.0%のAgと、0〜1.0%のCuと、残部Sn及び不可避的不純物からなり、表面の黄化度が10以下であることを特徴とするはんだボールである。本発明では表面の酸化膜の厚みが20nm以下であることが好ましい。   That is, the first invention of the present application is composed of 0 to 4.0% Ag, 0 to 1.0% Cu, the balance Sn and unavoidable impurities, and the surface yellowing degree is 10 or less. Solder balls characterized by In the present invention, the thickness of the oxide film on the surface is preferably 20 nm or less.

本願第二の発明は、質量で0〜4.0%のAgと、0〜1.0%のCuと、残部Sn及び不可避的不純物からなり、非晶質のSnO層と結晶質のSnO層とを有することを特徴とするはんだ層である。 The second invention of the present application is composed of 0 to 4.0% Ag by mass, 0 to 1.0% Cu, the balance Sn and inevitable impurities, and includes an amorphous SnO layer and crystalline SnO 2. A solder layer characterized by having a layer.

本願第三の発明は、質量で0〜4.0%のAgと、0〜1.0%のCuと、残部Sn及び不可避的不純物からなり、非晶質のSnO層と結晶質のSnO層とを有することを特徴とするはんだバンプである。 The third invention of the present application is composed of 0 to 4.0% Ag by mass, 0 to 1.0% Cu, the balance Sn and inevitable impurities, and includes an amorphous SnO layer and crystalline SnO 2. A solder bump characterized by having a layer.

本発明のはんだボール、はんだ層およびはんだバンプは、0.2〜3ppmのCrが含まれ、表面にCrが濃化していることが好ましい。   The solder ball, solder layer and solder bump of the present invention preferably contain 0.2 to 3 ppm of Cr, and the surface is preferably enriched with Cr.

本発明によって、Snを主体とし、AgやCuが添加されたはんだ合金からなるはんだボールにおいて、はんだ付け性を損ねることなく、はんだ付け時の変色に起因する、はんだバンプの欠損判定、高さ測定、ならびに目視検査での不良の問題が飛躍的に改善される。   According to the present invention, in a solder ball made of a solder alloy mainly composed of Sn and added with Ag or Cu, chipping determination and height measurement of solder bumps caused by discoloration during soldering without impairing solderability. In addition, the problem of defects in visual inspection is drastically improved.

上述のように本発明の重要な特徴は、Snを主体とし、AgやCuが添加されたはんだ合金からなるはんだボールに、製造後の保管状態を厳密に管理し、表面の黄化、つまりは表面のSn酸化膜を制御したことにある。   As described above, an important feature of the present invention is that a solder ball mainly composed of Sn and made of a solder alloy to which Ag or Cu is added strictly manages the storage state after manufacture, and the surface is yellowed. This is because the surface Sn oxide film is controlled.

Snを主体とし、AgやCuが添加されたはんだ合金からなるはんだボールの場合、最も酸化されやすい元素はSnであり、はんだボール製造直後から、大気中の酸素と反応し酸化膜が形成される。また、はんだ付け時に雰囲気中の酸素と反応してはんだバンプ表面に酸化皮膜を形成する。いずれもSn酸化膜である。前者は保管時の水分および酸素雰囲気により自然に形成され、厚みが増すにつれてはんだ付け性が低下し、金属光沢のある銀白色から光沢のない黄色へと変化する。後者は加熱により形成され、はんだバンプの色は表面酸化皮膜の厚みが増すにつれて金属光沢のある銀白色から光沢のない黄色へと変化する。つまり、はんだボールおよびはんだバンプの黄化は、はんだ中のSnと酸素とが反応した結果、酸化皮膜が厚くなることで発生する。   In the case of a solder ball made of a solder alloy mainly composed of Sn and added with Ag or Cu, the most easily oxidized element is Sn, and immediately after the solder ball is manufactured, it reacts with oxygen in the atmosphere to form an oxide film. . Further, it reacts with oxygen in the atmosphere during soldering to form an oxide film on the surface of the solder bump. Both are Sn oxide films. The former is naturally formed by moisture and oxygen atmosphere at the time of storage, and as the thickness increases, the solderability decreases, and changes from silvery white with metallic luster to yellow with no luster. The latter is formed by heating, and the color of the solder bump changes from silvery white with metallic luster to matte yellow as the thickness of the surface oxide film increases. That is, yellowing of the solder balls and solder bumps occurs when the oxide film becomes thick as a result of the reaction between Sn and oxygen in the solder.

製造直後にはんだボールを不活性ガスに封入した瓶と脱酸素剤を同封し、さらにはガスバリアフィルムにより封止することで、外気を遮断する。これにより自然に形成されるSn酸化膜の成長を抑制でき、はんだボールの黄化を低減できる。不活性ガスとしては窒素よりアルゴンが望ましい。ガスバリアフィルムとしては酸素透過度が<0.5(cc/m2/day/atm)、水蒸気透過度が0.3〜0.7(g/m2/day)を用いることが望ましい。不活性ガス、脱酸素剤、ガスバリアフィルムの三種中少なくとも何れか二種以上を併用すれば黄化低減に効果を見出せる。 Immediately after manufacture, a bottle in which solder balls are enclosed in an inert gas and an oxygen scavenger are enclosed, and further sealed with a gas barrier film to block outside air. Thereby, the growth of the Sn oxide film formed naturally can be suppressed, and the yellowing of the solder ball can be reduced. The inert gas is preferably argon rather than nitrogen. As the gas barrier film, it is desirable to use oxygen permeability <0.5 (cc / m 2 / day / atm) and water vapor permeability 0.3 to 0.7 (g / m 2 / day). If at least any two of the inert gas, oxygen scavenger, and gas barrier film are used in combination, an effect can be found in reducing yellowing.

一方、加熱により形成されるSn酸化膜ははんだ合金にCrを添加した場合、CrはSnよりも酸化されやすい元素であるため、はんだ中のCrは優先的に酸素と反応し、Crが濃化したSn酸化皮膜が形成される。このCr濃度が高いSn酸化皮膜は熱的に安定であり、加熱してもその厚みはほとんど変化しない。このため、Crが添加されたはんだ合金からなるはんだボールによって形成されたはんだバンプは、はんだ付け後もはんだボールとほぼ同様な金属光沢のある銀白色を得ることが可能である。銀白色のはんだバンプは、はんだバンプの欠損判定や高さ測定で不具合が発生する頻度が大幅に低減されるとともに、目視検査においても外観上問題にならない。このようにして、はんだ付け時の変色に起因する半導体パッケージの生産性と歩留まりの問題が飛躍的に改善される。   On the other hand, the Sn oxide film formed by heating, when Cr is added to the solder alloy, is an element that is more easily oxidized than Sn. Therefore, Cr in the solder preferentially reacts with oxygen, and Cr is concentrated. An Sn oxide film is formed. This Sn oxide film having a high Cr concentration is thermally stable, and its thickness hardly changes even when heated. For this reason, a solder bump formed by a solder ball made of a solder alloy to which Cr is added can obtain a silvery white color with a metallic luster substantially the same as that of the solder ball even after soldering. The silver-white solder bumps greatly reduce the frequency of occurrence of defects in solder bump defect determination and height measurement, and do not cause a problem in visual inspection. In this way, the problem of semiconductor package productivity and yield due to discoloration during soldering is drastically improved.

表面の酸化膜厚を20nm以下とする理由は自然に形成されるSn酸化膜は非晶質で弾性変形する。はんだ付け工程時に内部が半溶融状態となった場合20nm以下であれば内部の変形にともない酸化膜が破壊される。20nmより厚い場合、酸化膜は破壊されす、溶融はんだは常に酸化膜に覆われており接合できないためである。 The reason why the surface oxide film thickness is 20 nm or less is that the Sn oxide film formed naturally is amorphous and elastically deformed. When the inside is in a semi-molten state during the soldering process, the oxide film is destroyed due to internal deformation if it is 20 nm or less. If it is thicker than 20 nm, the oxide film is destroyed, and the molten solder is always covered with the oxide film and cannot be joined.

Agの含有量を0〜4.0%とする理由は、AgをSnに添加することでSnの融点が下がるため、はんだ付け温度を低くすることができるためである。これにより、半導体パッケージやマザーボードに使用されている樹脂材料の熱損傷による劣化を低減することができる。ただし、4.0%を超えるAgの添加はかえって融点の上昇を招き、はんだ付け温度を高める必要があるため、熱損傷を引き起こしてしまう。   The reason why the content of Ag is set to 0 to 4.0% is that the soldering temperature can be lowered because the melting point of Sn is lowered by adding Ag to Sn. Thereby, deterioration by the heat damage of the resin material currently used for a semiconductor package or a motherboard can be reduced. However, addition of Ag exceeding 4.0% causes an increase in melting point, and it is necessary to increase the soldering temperature, which causes thermal damage.

Cuの含有量を0〜1.0%とする理由は、Agを添加した場合と同様に、CuをSnに添加することでSnの融点が下がるため、はんだ付け温度を低くすることができるためである。但し、はんだ付け温度を低くする必要がない場合は、Cuの含有量を0としてもよい。ただし、1.0%を超えるCuの添加は、かえって融点の上昇を招き、はんだ付け温度を高める必要があるため、熱損傷を増大してしまう。   The reason for setting the Cu content to 0 to 1.0% is that, similarly to the case of adding Ag, the melting point of Sn is lowered by adding Cu to Sn, so that the soldering temperature can be lowered. It is. However, if it is not necessary to lower the soldering temperature, the Cu content may be zero. However, addition of Cu exceeding 1.0% leads to an increase in melting point, and it is necessary to increase the soldering temperature, thereby increasing thermal damage.

また、前記記載のはんだボールにCrを0.2〜3ppm添加すると加熱による変色抑制に顕著な効果が現れる。添加量を0.2〜3ppmとするのは以下の理由である。添加量が0.2ppmに満たない場合、Sn酸化皮膜を熱的に安定化するにはCrが不足しており、はんだ付け時の加熱によって酸化皮膜は成長し黄化が進行してしまう。添加量が0.2ppm以上になると、Sn酸化皮膜を熱的に安定化するには十分に濃化できる量であり、黄化の進行が抑制される。一方、Crはわずかな量であってもSnの融点を著しく上昇させる元素であるため、必要量以上に添加するとはんだ合金の融点が上昇し、はんだ付け温度も高くしなければならない。はんだ付け温度が高くなると、結果として半導体パッケージやマザーボードに使用されている樹脂材料の熱損傷による劣化を誘発する恐れがある。本発明者は、Crの添加量が3ppmまでは、はんだ付け温度として一般的な240℃でのはんだ付けが可能であることを確認している。   Further, when 0.2 to 3 ppm of Cr is added to the solder balls described above, a remarkable effect appears in suppressing discoloration due to heating. The reason why the addition amount is 0.2 to 3 ppm is as follows. When the addition amount is less than 0.2 ppm, Cr is insufficient to thermally stabilize the Sn oxide film, and the oxide film grows and yellows due to heating during soldering. When the addition amount is 0.2 ppm or more, the amount can be sufficiently concentrated to thermally stabilize the Sn oxide film, and the progress of yellowing is suppressed. On the other hand, Cr is an element that remarkably increases the melting point of Sn even in a small amount. Therefore, if it is added more than the necessary amount, the melting point of the solder alloy increases and the soldering temperature must be increased. When the soldering temperature is increased, there is a risk that the resin material used for the semiconductor package or the mother board is deteriorated due to thermal damage. The present inventor has confirmed that soldering at a general 240 ° C. as a soldering temperature is possible up to 3 ppm of Cr.

純度99.9%以上のSnにAg、Cuを添加した合金を作製した後、直径約0.4mmと0.085mmのはんだボールに成形した。評価したはんだボールの合金組成は3%Ag、0.5%Cu、残部Snとした。はんだボールへの成形には均一液滴噴霧法を用いた。均一液滴噴霧法とは、るつぼ内ではんだ合金を溶解し、溶融はんだをるつぼから排出することにより微小球を製造する方法であり、排出する際に溶融はんだに振動を付与することで、排出された溶融金属を体積の均一な微小球とする方法である。尚、該成形方法における雰囲気は窒素中で行なった。   An alloy in which Ag and Cu were added to Sn having a purity of 99.9% or more was prepared, and then formed into solder balls having diameters of about 0.4 mm and 0.085 mm. The alloy composition of the evaluated solder balls was 3% Ag, 0.5% Cu, and the balance Sn. A uniform droplet spray method was used for forming the solder balls. The uniform droplet spraying method is a method of producing microspheres by melting the solder alloy in the crucible and discharging the molten solder from the crucible, and discharging it by applying vibration to the molten solder when discharging. In this method, the molten metal is made into a microsphere having a uniform volume. The atmosphere in the molding method was performed in nitrogen.

はんだボールの封入条件を不活性ガス、脱酸素剤、ガスバリアフィルムの組合せを変え、JIS C 0028の温湿度サイクル試験を行った後に黄色度と表面の酸素強度を測定した。黄色度はコニカミノルタ製CM−2600d型色彩計により行い、15mm角のトレイにはんだボールが互いに重ならないように一様に並べた後、キセノンランプから発せられた白色光を当てて、反射光を分光センサによりL表色系における黄色度bを求めた。表面の酸化状況を確かめるため、表面酸素強度を測定した。測定は島津製作所製EPM−1610型電子線マイクロアナライザーを用い、加速電圧5kV、試料電流100nmに電子ビームを調整し、はんだボール表面から得られた酸素kα線の特性X線強度である。 The solder ball sealing conditions were changed for the combination of inert gas, oxygen scavenger, and gas barrier film, and the temperature and humidity cycle test of JIS C 0028 was performed, and then the yellowness and surface oxygen intensity were measured. The yellowness is measured with a Konica Minolta CM-2600d colorimeter, and the solder balls are uniformly arranged on a 15 mm square tray so that they do not overlap each other, and then the white light emitted from the xenon lamp is applied to reflect the reflected light. was determined yellowness b * in the L * a * b * color system by spectroscopic sensor. In order to confirm the oxidation state of the surface, the surface oxygen intensity was measured. The measurement is the characteristic X-ray intensity of the oxygen kα ray obtained from the surface of the solder ball by using an EPM-1610 type electron beam microanalyzer manufactured by Shimadzu Corporation and adjusting the electron beam to an acceleration voltage of 5 kV and a sample current of 100 nm.

本発明における不活性ガス、脱酸素剤、ガスバリアフィルムの3種中いずれか2種を併用し温湿度サイクル試験を行ったはんだボールは、不活性ガス、脱酸素剤、ガスバリアフィルムの3種中1種または用いていないはんだボールと比較して、JIS C 0028の温湿度サイクル試験という非常に酸化しやすい環境にあっても試験後の黄色度が10未満であり、黄化の進行が大幅に抑制されていることがわかる。このように、過酷な環境下においても保管時の水分および酸素雰囲気を制御することで金属光沢が試験後も維持されることにより、半導体パッケージの生産性や歩留まりを飛躍的に改善できる。   Solder balls subjected to a temperature and humidity cycle test using any two of the inert gas, oxygen scavenger, and gas barrier film in the present invention are 1 in 3 of inert gas, oxygen scavenger, and gas barrier film. Compared with seed balls or solder balls that are not used, the yellowness after the test is less than 10 even in a highly oxidative environment such as the temperature and humidity cycle test of JIS C 0028. You can see that In this way, even in a harsh environment, by controlling the moisture and oxygen atmosphere during storage, the metallic luster is maintained after the test, so that the productivity and yield of the semiconductor package can be dramatically improved.

作製したはんだボールのはんだ付け時の黄化度合いを評価するため、はんだボールを240℃で2minまたは5min加熱する変色試験を実施し、黄色度bを測定した。Snを主体とし、AgやCuを含むはんだ合金をはんだ付けする場合、通常窒素雰囲気中で行われるが、今回、表面酸化による黄化がより進行しやすい条件として、大気中で加熱した。黄色度と表面酸素強度を測定し、金属光沢の度合いを評価した。 In order to evaluate the degree of yellowing during soldering of the produced solder balls, a discoloration test was performed in which the solder balls were heated at 240 ° C. for 2 minutes or 5 minutes, and the yellowness b * was measured. When soldering a solder alloy mainly composed of Sn and containing Ag or Cu, it is usually performed in a nitrogen atmosphere, but this time, heating was performed in the atmosphere as a condition that yellowing due to surface oxidation is more likely to proceed. The degree of metallic luster was evaluated by measuring yellowness and surface oxygen intensity.

表1に示した直径0.4mmのはんだボールの黄色度測定結果合せ、黄色度を表面酸素強度の関数としてグラフにしたものを図1に示す。図1が示すように、温湿度サイクル試験および加熱による黄色化ともに直線関係にあるが、直線の傾きは異なる。同じ黄色度で比較すると温湿度サイクル試験で形成さる表面酸化膜は酸素を多く取込んでいる。少量の酸素であっても保管状況によっては強固な自然酸化膜が形成され、厚みが増すにつれてはんだ付け性および金属光沢が低下する。   FIG. 1 shows a graph showing the yellowness measured as a function of the surface oxygen intensity in accordance with the yellowness measurement results of the solder balls having a diameter of 0.4 mm shown in Table 1. As shown in FIG. 1, the temperature / humidity cycle test and yellowing by heating are in a linear relationship, but the slope of the straight line is different. When compared with the same yellowness, the surface oxide film formed in the temperature and humidity cycle test takes in a large amount of oxygen. Even with a small amount of oxygen, a strong natural oxide film is formed depending on the storage conditions, and the solderability and metallic luster deteriorate as the thickness increases.

次に黄色度が約13の温湿度サイクル試験後と240℃加熱後の表面付近の断面を透過型電子顕微鏡により観察した結果を図2、図3に示す。温湿度サイクル試験後の酸化膜は非晶質かつ厚み約40nmである。対して加熱後の酸化膜は概ね結晶質となっており、厚み約25nmで観察された。加熱後の酸化膜中に観察される縞模様は格子縞であり、結晶化している様子を表している。   Next, FIG. 2 and FIG. 3 show the results of observation of the cross section near the surface after the temperature / humidity cycle test with a yellowness of about 13 and heating at 240 ° C. using a transmission electron microscope. The oxide film after the temperature and humidity cycle test is amorphous and has a thickness of about 40 nm. On the other hand, the heated oxide film was almost crystalline and was observed at a thickness of about 25 nm. The striped pattern observed in the oxide film after heating is a lattice pattern, indicating that it is crystallized.

はんだボールの黄化を所定値以下に抑制することにより電極とのはんだ付け性が改善されるメカニズムを図4に示す模式図により説明する。製造初期にUDS回収チャンバ内の残留酸素または大気に触れることで、はんだボール1表面に非晶質SnO酸化膜1aが形成される。温湿度サイクルによる変色は梱包剤を通じて介入した酸素により、SnO酸化膜1aがさらに厚く生長する。リフロー条件である240℃に加熱すると、最表面は酸化物で覆われており融点が上昇しているため、内部から溶融が始まる。内部が液状となったはんだボールは変形する。温湿度サイクル時に形成される酸化被膜は非晶質なため、一部で塑性変形が生じるものの弾性変形し易くなり、内部とともに変形してしまう。被膜が強固なため、内部が溶融したはんだボールが電極に接触しても被膜は破損しにくく、内部の溶融したはんだと電極とが接合されることはない。一方、加熱時にはSnO酸化膜1aの表面に更にSnO酸化膜2aが形成される。このSnO酸化被膜は結晶質なため、内部変形に耐えられず塑性変形により破損して、電極端子3a,4aに接触する部分で内部の溶融したはんだ1bと電極端子3a,4aとが接合され、バンプ2を介して半導体パッケージ3が回路基板4に接続される。したがって、はんだボールのはんだ付け性の低下を防ぐためには不活性ガス、脱酸素剤、ガスバリアフィルムの三種中少なくとも何れか二種以上を併用する等の手段により、リフローする前のはんだボールの自然酸化膜の成長を抑制することが重要である。 The mechanism by which the solderability with the electrode is improved by suppressing the yellowing of the solder balls below a predetermined value will be described with reference to the schematic diagram shown in FIG. An amorphous SnO oxide film 1a is formed on the surface of the solder ball 1 by being exposed to residual oxygen in the UDS recovery chamber or the atmosphere at the initial stage of manufacture. In the discoloration due to the temperature and humidity cycle, the SnO oxide film 1a grows thicker due to oxygen intervening through the packing material. When heated to 240 ° C., which is a reflow condition, the outermost surface is covered with an oxide and the melting point is raised, so that melting starts from the inside. Solder balls that have become liquid inside are deformed. Since the oxide film formed during the temperature / humidity cycle is amorphous, some of the oxide film undergoes plastic deformation, but is easily elastically deformed and deforms with the inside. Since the coating is strong, the coating is unlikely to be damaged even when the solder ball whose interior is melted contacts the electrode, and the melted solder and the electrode are not bonded to each other. On the other hand, an SnO 2 oxide film 2a is further formed on the surface of the SnO oxide film 1a during heating. Since this SnO 2 oxide film is crystalline, it cannot withstand internal deformation and is damaged due to plastic deformation, and the inner molten solder 1b and the electrode terminals 3a and 4a are joined at the portion in contact with the electrode terminals 3a and 4a. The semiconductor package 3 is connected to the circuit board 4 through the bumps 2. Therefore, in order to prevent the solder ball solderability from deteriorating, natural oxidation of the solder ball before reflowing is performed by means of using at least any two of inert gas, oxygen scavenger, and gas barrier film. It is important to suppress film growth.

はんだボールの黄色度b*と表面酸素強度の関係を示す。The relationship between the yellowness b * of a solder ball and surface oxygen intensity is shown. 温湿度サイクル試験後のはんだボールの断面TEM観察像を示す。The cross-sectional TEM observation image of the solder ball after a temperature / humidity cycle test is shown. 240℃加熱後のはんだボールの断面TEM観察像を示す。The cross-sectional TEM observation image of the solder ball after 240 degreeC heating is shown. はんだボールのはんだ付け工程の形態図を示す。The form figure of the soldering process of a solder ball is shown.

符号の説明Explanation of symbols

1 はんだボール
1a 非晶質酸化被膜
1b はんだ
2 バンプ
2a 結晶質酸化被膜
3 半導体パッケージ
3a 電極端子
4 回路基板
4a 電極端子
DESCRIPTION OF SYMBOLS 1 Solder ball 1a Amorphous oxide film 1b Solder 2 Bump 2a Crystalline oxide film 3 Semiconductor package 3a Electrode terminal 4 Circuit board 4a Electrode terminal

Claims (3)

質量で0〜4.0%のAgと、0〜1.0%のCuと、残部Sn及び不可避的不純物からなり、表面の黄化度が10以下であることを特徴とするはんだボール。 A solder ball comprising: 0 to 4.0% Ag in mass, 0 to 1.0% Cu, the balance Sn and inevitable impurities, and the surface yellowing degree is 10 or less. 質量で0〜4.0%のAgと、0〜1.0%のCuと、残部Sn及び不可避的不純物からなり、非晶質のSnO層と結晶質のSnO層とを有することを特徴とするはんだ層。 It consists of 0 to 4.0% Ag, 0 to 1.0% Cu, the balance Sn and inevitable impurities, and has an amorphous SnO layer and a crystalline SnO 2 layer. Solder layer. 質量で0〜4.0%のAgと、0〜1.0%のCuと、残部Sn及び不可避的不純物からなり、非晶質のSnO層と結晶質のSnO層とを有することを特徴とするはんだバンプ。 It consists of 0 to 4.0% Ag, 0 to 1.0% Cu, the balance Sn and inevitable impurities, and has an amorphous SnO layer and a crystalline SnO 2 layer. And solder bump.
JP2008100769A 2008-04-08 2008-04-08 Solder balls, solder layers and solder bumps Expired - Fee Related JP5071802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100769A JP5071802B2 (en) 2008-04-08 2008-04-08 Solder balls, solder layers and solder bumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100769A JP5071802B2 (en) 2008-04-08 2008-04-08 Solder balls, solder layers and solder bumps

Publications (2)

Publication Number Publication Date
JP2009248156A JP2009248156A (en) 2009-10-29
JP5071802B2 true JP5071802B2 (en) 2012-11-14

Family

ID=41309330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100769A Expired - Fee Related JP5071802B2 (en) 2008-04-08 2008-04-08 Solder balls, solder layers and solder bumps

Country Status (1)

Country Link
JP (1) JP5071802B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666002B (en) * 2010-08-18 2014-09-10 新日铁住金高新材料株式会社 Solder ball for semiconductor mounting and electronic member
TWI423358B (en) * 2011-08-04 2014-01-11 Nippon Steel & Sumikin Mat Co Solder balls and electronic components for semiconductor encapsulation
JP5807733B1 (en) * 2014-08-29 2015-11-10 千住金属工業株式会社 Solder material, solder joint and method for producing solder material
JP2016068123A (en) * 2014-09-30 2016-05-09 住友金属鉱山株式会社 Au-Sn-Ag-BASED SOLDER ALLOY, SEALED OR JOINED ELECTRONIC EQUIPMENT USING THE SAME AND ELECTRONIC DEVICE MOUNTING THE ELECTRONIC EQUIPMENT
WO2016071971A1 (en) * 2014-11-05 2016-05-12 千住金属工業株式会社 Solder material, solder paste, foam solder, solder joint, and method for controlling solder material
JP5850199B1 (en) * 2015-06-29 2016-02-03 千住金属工業株式会社 Solder material, solder joint and solder material inspection method
JP6892568B2 (en) * 2015-12-21 2021-06-23 ニホンハンダ株式会社 A method for selecting a solder alloy containing Sn as a main component, which has excellent surface properties.
JP5935938B1 (en) * 2015-12-28 2016-06-15 千住金属工業株式会社 A conductive bonding sheet and a method for manufacturing the conductive bonding sheet.
JP6439893B1 (en) 2018-05-25 2018-12-19 千住金属工業株式会社 Solder ball, solder joint and joining method
JP2021044278A (en) 2019-09-06 2021-03-18 キオクシア株式会社 Semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852377B2 (en) * 2002-07-09 2006-11-29 千住金属工業株式会社 Lead-free solder alloy
JP4144415B2 (en) * 2003-01-07 2008-09-03 千住金属工業株式会社 Lead-free solder
CN100509257C (en) * 2003-10-07 2009-07-08 千住金属工业株式会社 Use of lead-free solder ball in producing tin soldering projection and the tin soldering projection thereof
TW200603932A (en) * 2004-03-19 2006-02-01 Senju Metal Industry Co Lead free solder fall
JP4844393B2 (en) * 2004-06-01 2011-12-28 千住金属工業株式会社 Die bonding method and electronic parts
JP2009226481A (en) * 2008-02-29 2009-10-08 Hitachi Metals Ltd Sn BASED SOLDER ALLOY, AND SOLDER BALL USING THE SAME

Also Published As

Publication number Publication date
JP2009248156A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5071802B2 (en) Solder balls, solder layers and solder bumps
TWI595948B (en) A copper ball, a method of bonding the electrode to the electrode, and a method of selecting the same
US9024442B2 (en) Solder ball for semiconductor packaging and electronic member using the same
TWI543835B (en) Welding material, welded joint, and manufacturing method of welding material
JP5584427B2 (en) Electronic member having lead-free solder alloy, solder ball and solder bump
US9320152B2 (en) Solder ball and electronic member
US20220122937A1 (en) Palladium-coated copper bonding wire, manufacturing method of palladium-coated copper bonding wire, semiconductor device using the same, and manufacturing method thereof
KR101345940B1 (en) Solder, soldering method, and semiconductor device
CN108183075B (en) Silver alloy bonding wire and manufacturing method thereof
TWI695892B (en) Solder ball, solder joint and joining method
TWI761683B (en) Cu core balls, solder joints, solder paste and foam solder
JP2009226481A (en) Sn BASED SOLDER ALLOY, AND SOLDER BALL USING THE SAME
WO2013153674A1 (en) Soldering device and method, and manufactured substrate and electronic component
CN108796285B (en) Silver alloy bonding wire and manufacturing method thereof
TWI483354B (en) Tin-based solder ball and semiconductor package including the same
JP2009034692A (en) Solder ball, and solder bump using the same
KR101550560B1 (en) Cu CORE BALL, SOLDER JOINT, FOAM SOLDER AND SOLDER PASTE
KR102198850B1 (en) Low melting solder alloy and solder ball manufactured by using the same
TWI770385B (en) Cu core balls, solder joints, solder paste and foam solder
JP6572996B1 (en) Cu core ball, solder joint, solder paste and foam solder
JP4338497B2 (en) Method for producing solder-coated balls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5071802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees