JP5070995B2 - Confocal microscope - Google Patents
Confocal microscope Download PDFInfo
- Publication number
- JP5070995B2 JP5070995B2 JP2007222185A JP2007222185A JP5070995B2 JP 5070995 B2 JP5070995 B2 JP 5070995B2 JP 2007222185 A JP2007222185 A JP 2007222185A JP 2007222185 A JP2007222185 A JP 2007222185A JP 5070995 B2 JP5070995 B2 JP 5070995B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- focusing
- cover glass
- objective lens
- confocal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0036—Scanning details, e.g. scanning stages
- G02B21/0044—Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/241—Devices for focusing
- G02B21/245—Devices for focusing using auxiliary sources, detectors
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
- Automatic Focus Adjustment (AREA)
Description
本発明は、対物レンズの焦点面を光軸方向に一定に保持する自動合焦装置を備えた共焦点顕微鏡装置に関する。 The present invention relates to a confocal microscope apparatus including an automatic focusing device that holds a focal plane of an objective lens constant in an optical axis direction.
顕微鏡の対物レンズをアクチュエータで駆動することで、自動的な合焦制御を実行する自動焦点装置が従来から知られている。この装置では、顕微鏡の対物レンズの焦点位置からのずれを検出し、そのずれの検出信号に応じて圧電素子等のアクチュエータにより対物レンズを移動させ、合焦させている(特許文献1参照)。このような自動焦点装置は、金属顕微鏡など、表面観察を行う場合に観察対象物の表面への自動合焦を可能とするものである。 2. Description of the Related Art Conventionally, an autofocus device that performs automatic focusing control by driving an objective lens of a microscope with an actuator is known. In this apparatus, a deviation from the focal position of the objective lens of the microscope is detected, and the objective lens is moved and focused by an actuator such as a piezoelectric element in accordance with the detection signal of the deviation (see Patent Document 1). Such an autofocus device enables automatic focusing on the surface of an observation object when performing surface observation such as a metal microscope.
しかし、生物顕微鏡では、カバーガラスの内側に置かれた細胞等の観察対象物を観察するという特殊性があり、カバーガラスの内側に置かれた細胞等の観察対象物への自動合焦が必要となる。特に、対物レンズとして油浸レンズを使用する場合には、カバーガラスと油との境界で光の反射が起こらず、カバーガラスの表面への合焦が不可能となるため、必須となる。 However, the biological microscope has the special feature of observing observation objects such as cells placed inside the cover glass, and automatic focusing on the observation objects such as cells placed inside the cover glass is necessary. It becomes. In particular, when an oil immersion lens is used as the objective lens, light reflection does not occur at the boundary between the cover glass and oil, and focusing on the surface of the cover glass becomes impossible, which is essential.
この要求に対応して、従来技術の第1として、単一ビームの検焦光により細胞などの試料を乗せるカバーガラスの表面または裏面に反射光を生じさせ、所定の光学系を用いて反射光から非点収差を作り出し、非点収差の変化から焦点位置を検出するものがある。 In response to this requirement, as a first conventional technique, reflected light is generated on the front or back surface of a cover glass on which a sample such as a cell is placed by single beam focusing light, and the reflected light is reflected using a predetermined optical system. In some cases, astigmatism is generated from the image and the focal position is detected from the change in astigmatism.
また、従来技術の第2として、検焦ビームを試料に当て、試料の表面での反射光を受光素子近傍のピンホールによる共焦点方式で検出し、反射光の強度から焦点面を検出するものがある。 In addition, as a second conventional technique, a focused beam is applied to the sample, the reflected light on the surface of the sample is detected by a confocal method using a pinhole near the light receiving element, and the focal plane is detected from the intensity of the reflected light There is.
このような共焦点共焦点顕微鏡装置の先行技術としては下記のような特許文献が知られている。 As prior art of such a confocal confocal microscope apparatus, the following patent documents are known.
第1の従来技術の場合、検焦光の単一ビームがカバーガラスの表面または裏面に集光した場合、すなわち対物レンズの焦点がカバーガラスの表面または裏面に合った場合、非点収差がほぼ0となり、この値が試料観察をする際の対物レンズの位置の基準となる。 In the case of the first prior art, when a single beam of focusing light is focused on the front or back surface of the cover glass, that is, when the objective lens is focused on the front or back surface of the cover glass, astigmatism is substantially reduced. This value becomes 0, and this value is a reference for the position of the objective lens when the sample is observed.
しかし、検焦光の焦点がカバーガラス表面または裏面に合った場合、検焦光のビーム径が極小に集光され、ガラス面の状態の影響を受けやすくなる。例えば、前記集光点のガラス面におけるゴミ、傷や試料の存在、面の歪みや傾き場合、非点収差が0ではなく、不安定になり、観察の基準位置が変化してしまう。 However, when the focusing light is focused on the front or back surface of the cover glass, the beam diameter of the focusing light is focused to a minimum and is easily affected by the state of the glass surface. For example, when dust, scratches or sample are present on the glass surface of the light condensing point, or when the surface is distorted or tilted, the astigmatism is not zero but becomes unstable and the observation reference position changes.
第2の従来技術の場合、検焦光の単一ビームを試料面に集光して計測する方式であるため、同様に「不安定」の問題が生じるので、検焦光のスキャン範囲をライン状に広げる方法を用いている。しかし、スキャン範囲が1次元のラインであるため、根本的な解決法ではなく、また、そのために合焦速度が低下するという問題がある。 In the case of the second prior art, since a single beam of focused light is collected and measured on the sample surface, the problem of “unstable” occurs in the same way, so the scanning range of the focused light is lined up. The method of spreading in a shape is used. However, since the scanning range is a one-dimensional line, this is not a fundamental solution, and there is a problem that the focusing speed is lowered due to this.
本発明は上記従来技術の課題を解決するためになされたもので、高い安定性の自動合焦機能を有する共焦点顕微鏡装置を提供することを目的としている。 The present invention has been made to solve the above-described problems of the prior art, and an object thereof is to provide a confocal microscope apparatus having a highly stable automatic focusing function.
このような課題を達成するために、本発明のうち請求項1記載の発明は、
ニポウディスク方式共焦点スキャナと蛍光顕微鏡からなる共焦点顕微鏡装置において、
ニポウディスクのピンホールを通過した複数の照射ビームに対する、試料を保持するカバーガラスの裏面又は表面からの反射光を前記ニポウディスクのピンホール通過後に検出する検出光学系と、
この検出光学系により得られる前記反射光の光量に基づいて、前記蛍光顕微鏡の対物レンズの焦点を前記カバーガラスの裏面又は表面を基準とする合焦位置に合わせる合焦手段とを備えたことを特徴とする。
In order to achieve such a problem, the invention according to
In a confocal microscope apparatus consisting of a Nipo Disc confocal scanner and a fluorescence microscope,
For a plurality of illumination beams passing through the pinhole of the Nipkow disk, a detection optical system for detecting light reflected from the rear surface or the surface of the cover glass for holding a sample after pinhole passage of the Nipkow disk,
Focusing means for adjusting the focal point of the objective lens of the fluorescence microscope to a focusing position based on the back surface or the surface of the cover glass based on the amount of the reflected light obtained by the detection optical system. Features.
請求項2記載の発明は、
請求項1記載の共焦点顕微鏡装置において、
前記反射光の光源として、励起光及びそれによって励起された試料から発生する蛍光よりも波長の長いレーザ光を出力する検焦光源と、
この検焦光源を前記励起光に混合して、前記共焦点スキャナに入射する混合手段と、
を備えたことを特徴とする。
The invention according to
The confocal microscope apparatus according to
As a light source of the reflected light, a focusing light source that outputs laser light having a longer wavelength than excitation light and fluorescence generated from a sample excited by the excitation light; and
Mixing means for mixing the focusing light source with the excitation light and entering the confocal scanner;
It is provided with.
請求項3記載の発明は、
請求項1又は2に記載の共焦点顕微鏡装置において、
前記合焦手段は、前記対物レンズの焦点を前記カバーガラスの表面又は裏面から所定量だけ深くすることで、前記対物レンズの焦点を前記合焦位置に位置づけることを特徴とする。
The invention described in claim 3
The confocal microscope apparatus according to
The focusing means positions the focus of the objective lens at the focus position by deepening the focus of the objective lens by a predetermined amount from the front or back surface of the cover glass.
本発明の創薬スクリーニング装置によれば、ニポウディスク方式共焦点スキャナと蛍光顕微鏡からなる共焦点顕微鏡装置において、試料を照射する励起光のうち、前記試料を保持するカバーガラスの裏面又は表面からの反射光をニポウディスクのピンホール通過後に検出する検出光学系と、この検出光学系により得られる前記反射光の光量に基づいて、前記蛍光顕微鏡の対物レンズの焦点を前記カバーガラスの裏面又は表面を基準とする合焦位置に合わせる合焦手段とを備えたことによって、ピンホール通過後の複数の照射ビームによりカバーガラスの裏面又は表面の形状の影響が平均化されるので、高い安定性の自動合焦機能を有する共焦点顕微鏡装置を提供することができる。 According to the drug discovery screening apparatus of the present invention, in the confocal microscope apparatus comprising the Niipou disc type confocal scanner and the fluorescence microscope, the reflection from the back surface or the surface of the cover glass holding the sample out of the excitation light that irradiates the sample. Based on the detection optical system for detecting light after passing through the pinhole of the Niipou disc, and the amount of the reflected light obtained by this detection optical system, the focal point of the objective lens of the fluorescence microscope is based on the back surface or the surface of the cover glass. Since the influence of the shape of the back surface or the front surface of the cover glass is averaged by a plurality of irradiation beams after passing through the pinhole, the automatic focusing with high stability is provided. A confocal microscope apparatus having a function can be provided.
以下本発明の実施の形態について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は本発明の実施の形態に係る、共焦点顕微鏡装置の一実施例を示す構成ブロック図である。共焦点スキャナ100は顕微鏡200に接続されており、レーザ光源20から出射された平行励起光束L1aはマイクロレンズアレイディスク(MLディスクという)3により複数の個別の光束に集光される。分光特性を持つ平板ミラーからなる第1のダイクロイックミラー(DMという)7を透過後、複数の光束のそれぞれが集光してニポウディスク4の個々のピンホールを通過し、顕微鏡200の対物レンズ8により、ディッシュ、ウェルプレートなどの試料(細胞)保持器(以下保持器と記す)1に載置された試料2の1つに集光され、試料2の蛍光試薬を励起し、試料2から蛍光信号L2(図1の実線)が発生する。ここで、試料2上の焦点位置で各光束のそれぞれは1点に集光するが、光束全体からなる観測面は所定の広がりを持つ。MLディスク3とニポウディスク4は連結部材5で機械的に連結された状態で、回転中心軸6の周りを回転する。この回転により、複数のピンホールからなる列を通過する光が試料面をスキャンする。
FIG. 1 is a configuration block diagram showing an example of a confocal microscope apparatus according to an embodiment of the present invention. The
試料2の蛍光試薬が発した蛍光信号L2は対物レンズ8を通り、ニポウディスク4の個々のピンホール上に集光される。個々のピンホールを通過した蛍光信号L2はDM7で反射され、リレーレンズ9及びリレーレンズ12を介して、カメラ300上に共焦点光学像が結像される。リレーレンズ9と12の間にあるバンドパスフィルタ11は試料2からの蛍光L2のみを透過し、他の波長の光を遮断する分光特性を持つ。ダイクロイックミラー10は励起光L1aの波長のみを反射し、他の波長の光を透過する分光特性を持つ。
The fluorescent signal L2 emitted from the fluorescent reagent of the
上述の構成では、ニポウディスク4のピンホールが並んでいる平面に対し、試料2上の被観察平面と、カメラ300の受光面とは互いに光学的に共役な関係に配置してあるので、カメラ300には試料2の光学的断面像、すなわち共焦点画像が結像される。したがって、試料2の共焦点画像をカメラ300の受光面上に形成することができるため、多数の被検査試料をマトリックス上に並べた保持器1を顕微鏡200と共焦点スキャナ100に対して相対的に移動させることにより、試料全数の共焦点画像を高速に取り込むことができる。
In the above-described configuration, the observation plane on the
以下、自動検焦(オートフォーカス)の機構について説明する。励起光束L1a(図1の鎖線)が保持器1の底面にあるカバーガラスに入射したとき、空気とガラスの屈折率の差によって入射光量の4%程度反射される。この励起光の反射光L1bがダイクロイックミラー7に達した時、殆どの部分は透過するが、一部反射される。ダイクロイックミラー7の分光特性の一例を図2のチャートに示す。この例では、励起光に波長488nmのレーザを使用し、ダイクロイックミラー7は励起光の95%を透過し、5%を反射する特性を持つ。
Hereinafter, the automatic focusing mechanism will be described. When the excitation light beam L1a (the chain line in FIG. 1) is incident on the cover glass on the bottom surface of the
ダイクロイックミラー7によって反射された励起光L1bはリレーレンズ9を通過して、ダイクロイックミラー10によって反射され、バンドパスフィルタ13とリレーレンズ14を通って、受光器15に入射される。バンドパスフィルタ13は励起光L1bの波長のみを透過し、他の波長を遮断する特性を持つ。 The excitation light L 1 b reflected by the dichroic mirror 7 passes through the relay lens 9, is reflected by the dichroic mirror 10, passes through the band pass filter 13 and the relay lens 14, and enters the light receiver 15. The bandpass filter 13 has a characteristic of transmitting only the wavelength of the excitation light L1b and blocking other wavelengths.
焦点調整部16は、受光器15から出力される検出信号を微分演算し、この微分値を所定の目標値と比較する。制御回路17は(PID演算などにより)焦点調整部16から出力される偏差信号に対応する制御信号を出力する。レンズアクチュエータ18は制御回路17から出力される信号により制御され、対物レンズ8をZ方向(光軸方向)に移動させる。
The
上記において、ダイクロイックミラー10、バンドパスフィルタ13、リレーレンズ14及び受光器15は、試料2を照射する励起光L1aのうち、試料2を保持するカバーガラスの裏面又は表面からの反射光L1bをニポウディスク4のピンホール通過後に検出する検出光学系110を構成する。
In the above, the dichroic mirror 10, the bandpass filter 13, the relay lens 14, and the light receiver 15 are configured to transmit the reflected light L1b from the back surface or the front surface of the cover glass holding the
また、焦点調整部16、制御回路17及びレンズアクチュエータ18は、この検出光学系110により得られる反射光L1bの光量に基づいて、蛍光顕微鏡200の対物レンズ8の焦点をカバーガラスの裏面又は表面を基準とする合焦位置に合わせる合焦手段400を構成する。
Further, the
図3は対物レンズ8の焦点位置と受光器15での受光光量の関係を示す説明図である。対物レンズ8の焦点がカバーガラス表面1bに合った時、反射光L1bが最も強くなる。焦点がずれれば、共焦点効果により、反射光L1bがニポウディスク4のピンホールを通過できず、反射光L1bが急激に減少する。そして、焦点がカバーガラスの裏面1cに合った時、反射光が再び強くなる。 FIG. 3 is an explanatory diagram showing the relationship between the focal position of the objective lens 8 and the amount of light received by the light receiver 15. When the objective lens 8 is focused on the cover glass surface 1b, the reflected light L1b is the strongest. If the focus shifts, the reflected light L1b cannot pass through the pinhole of the Niipou disc 4 due to the confocal effect, and the reflected light L1b rapidly decreases. When the focus is on the back surface 1c of the cover glass, the reflected light becomes stronger again.
このように、反射光量を測定することによって、対物レンズ8の焦点がカバーガラスの表裏面1b又は1cに合ったことを検出することができる。したがって、反射光の光量を測定してカバーガラスの表面1b又は裏面1cを検出し、図3のように表面1b又は裏面1cから、対物レンズ8を一定量d1又はd2移動して、試料2を観察する観察面とすることができる。調整部16の目標値を0とすることにより、対物レンズ8を制御基準面(カバーガラスの表面1bまたは裏面1c)へ制御することができるので、基準面から一定量d1又はd2の移動は焦点調整部16で与える目標値により設定することができる。
In this way, by measuring the amount of reflected light, it can be detected that the focus of the objective lens 8 is aligned with the front and back surfaces 1b or 1c of the cover glass. Therefore, the amount of reflected light is measured to detect the front surface 1b or back surface 1c of the cover glass, and the objective lens 8 is moved by a certain amount d1 or d2 from the front surface 1b or back surface 1c as shown in FIG. It can be an observation surface to be observed. By setting the target value of the adjusting
上記のような共焦点顕微鏡装置によれば、受光器15から合焦基準面を定める際にカバーガラス表面(裏面)において多くの位置の情報を平均化した値を得ることができる。すなわち、単一ビームでなく観察面の全範囲からの反射光を用いるため、カバーガラスの表面(裏面)の形状の影響を平均化することとなるので、表裏面におけるゴミ、傷や試料の存在、面の歪みや傾き等の影響が受けにくくなる。したがって、高い安定性で対物レンズの焦点位置を検出することができる。 According to the confocal microscope apparatus as described above, when the in-focus reference plane is determined from the light receiver 15, a value obtained by averaging information on many positions on the cover glass front surface (back surface) can be obtained. In other words, since the reflected light from the entire area of the observation surface is used instead of a single beam, the influence of the shape of the surface (back surface) of the cover glass is averaged, so the presence of dust, scratches and samples on the front and back surfaces This makes it less susceptible to surface distortion and tilt. Therefore, the focal position of the objective lens can be detected with high stability.
なお、対物レンズ8がドライ系の場合、カバーガラスの表面1bを利用し、液浸(解像度をあげるため、対物レンズ8とカバーガラスの表面1bの間を液で充填する)の場合はカバーガラスの裏面1cを合焦基準面として利用する。 When the objective lens 8 is a dry system, the cover glass surface 1b is used, and in the case of liquid immersion (in order to increase the resolution, the space between the objective lens 8 and the cover glass surface 1b is filled with liquid). Is used as the focusing reference plane.
また、上記の実施例では、受光量の微分値を目標値に制御したが、これに限らず、焦点調整部16で受光量の最大値を検出して基準面(カバーガラスの裏面又は表面)を決定し、この基準面からのずれを目標値により設定してもよい。
また、検出光学系は図1のものに限られず、励起光の反射光を蛍光光から分離することができる任意の手段を用いることができる。
In the above embodiment, the differential value of the received light amount is controlled to the target value. However, the present invention is not limited to this, and the reference surface (back surface or front surface of the cover glass) is detected by detecting the maximum value of the received light amount by the
The detection optical system is not limited to that shown in FIG. 1, and any means capable of separating the reflected light of the excitation light from the fluorescent light can be used.
図4は図1の共焦点顕微鏡装置の一変形例で、焦点面検出光として、励起光とは別の波長を持つ検焦光を用いるものを示す構成ブロック図である。図1と同じ部分は同一の記号を付して重複する説明を省略する。 FIG. 4 is a structural block diagram showing a modification of the confocal microscope apparatus of FIG. 1, which uses focusing light having a wavelength different from that of excitation light as focal plane detection light. The same parts as those in FIG. 1 are denoted by the same symbols, and redundant description is omitted.
検焦光束L3aは、一般に利用される励起光及び蛍光よりも長波長側(例えば波長780nm)にある赤外レーザ光源120を用いて発生する。ダイクロイックミラー19は、励起光束L1aを反射し、検焦光束L3aを透過することにより、検焦光束L3aを励起光束L1aと混合して共焦点スキャナ100に入射する。ダイクロイックミラー70は例えば図5の分光特性を持つタイプとする。検焦光780nmに対して透過と反射は50:50である。したがって、検焦光束L3a(図4の鎖線)の一部が保持器1の底面にあるカバーガラスで反射され、この検焦光の反射光L3bがダイクロイックミラー70に達した時、50%が反射される。その後は図1の場合の励起光の反射光L1bと同様の経路を通って、受光器15に入射される。
The focusing light beam L3a is generated by using an infrared laser light source 120 that is on the longer wavelength side (for example, wavelength 780 nm) than excitation light and fluorescence that are generally used. The dichroic mirror 19 reflects the excitation light beam L1a and transmits the focusing light beam L3a, thereby mixing the focusing light beam L3a with the excitation light beam L1a and entering the
ここで、ダイクロイックミラー19は、この検焦光源を励起光に混合して、共焦点スキャナに入射する混合手段を構成する。 Here, the dichroic mirror 19 constitutes a mixing unit that mixes the focusing light source with excitation light and enters the confocal scanner.
図4のような構成の焦点顕微鏡装置によれば、図1の構成では、励起光そのものを利用するため、ダイクロイックミラー7で反射される励起光が数%しかなく、受光器15での光量が小さいのに対し、受光器15で受ける検焦光量を約5倍強くすることができる。したがって、合焦動作がさらに安定化する。その他の点は図1の場合と同様である。 According to the focus microscope apparatus having the configuration as shown in FIG. 4, in the configuration of FIG. 1, the excitation light itself is used, so that only a few percent of the excitation light is reflected by the dichroic mirror 7, and the light quantity at the light receiver 15 is small. Although it is small, the amount of focused light received by the light receiver 15 can be increased about five times. Therefore, the focusing operation is further stabilized. The other points are the same as in FIG.
なお、混合手段はダイクロイックミラーに限られず、2つの光束を混合、合成することのできる任意の手段を用いることができる。 The mixing means is not limited to the dichroic mirror, and any means that can mix and synthesize two light beams can be used.
また、本発明は、上記実施例や変形例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。 The present invention is not limited to the above-described embodiments and modifications, and includes many changes and modifications without departing from the essence thereof.
2 試料
4 ニポウディスク
8 対物レンズ
19 混合手段
200 蛍光顕微鏡
100 ニポウディスク方式共焦点スキャナ
110 検出光学系
120 検焦光源
400 合焦手段
L1a 励起光
1c 裏面
1b 表面
2 Sample 4 Nipo disk 8 Objective lens 19 Mixing means 200
Claims (3)
ニポウディスクのピンホールを通過した複数の照射ビームに対する、試料を保持するカバーガラスの裏面又は表面からの反射光を前記ニポウディスクのピンホール通過後に検出する検出光学系と、
この検出光学系により得られる前記反射光の光量に基づいて、前記蛍光顕微鏡の対物レンズの焦点を前記カバーガラスの裏面又は表面を基準とする合焦位置に合わせる合焦手段とを備えたことを特徴とする共焦点顕微鏡装置。 In a confocal microscope apparatus consisting of a Nipo Disc confocal scanner and a fluorescence microscope,
For a plurality of illumination beams passing through the pinhole of the Nipkow disk, a detection optical system for detecting light reflected from the rear surface or the surface of the cover glass for holding a sample after pinhole passage of the Nipkow disk,
Focusing means for adjusting the focal point of the objective lens of the fluorescence microscope to a focusing position based on the back surface or the surface of the cover glass based on the amount of the reflected light obtained by the detection optical system. A confocal microscope device.
この検焦光源を前記励起光に混合して、前記共焦点スキャナに入射する混合手段と、
を備えたことを特徴とする請求項1記載の共焦点顕微鏡装置。 As a light source of the reflected light, a focusing light source that outputs laser light having a longer wavelength than excitation light and fluorescence generated from a sample excited by the excitation light; and
Mixing means for mixing the focusing light source with the excitation light and entering the confocal scanner;
The confocal microscope apparatus according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007222185A JP5070995B2 (en) | 2007-08-29 | 2007-08-29 | Confocal microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007222185A JP5070995B2 (en) | 2007-08-29 | 2007-08-29 | Confocal microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009053578A JP2009053578A (en) | 2009-03-12 |
JP5070995B2 true JP5070995B2 (en) | 2012-11-14 |
Family
ID=40504694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007222185A Active JP5070995B2 (en) | 2007-08-29 | 2007-08-29 | Confocal microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5070995B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10426348B2 (en) | 2008-03-05 | 2019-10-01 | Purdue Research Foundation | Using differential time-frequency tissue-response spectroscopy to evaluate living body response to a drug |
WO2011160064A1 (en) * | 2010-06-17 | 2011-12-22 | Purdue Research Foundation | Digital holographic method of measuring cellular activity and of using results to screen compounds |
JP5287566B2 (en) * | 2009-07-15 | 2013-09-11 | 横河電機株式会社 | Confocal microscope |
US10401793B2 (en) | 2010-06-17 | 2019-09-03 | Purdue Research Foundation | Digital holographic method of measuring cellular activity and measuring apparatus with improved stability |
DE102013208927A1 (en) * | 2013-05-14 | 2014-11-20 | Carl Zeiss Microscopy Gmbh | Method for 3D high-resolution localization microscopy |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4370554B2 (en) * | 2002-06-14 | 2009-11-25 | 株式会社ニコン | Autofocus device and microscope with autofocus |
JP2005284136A (en) * | 2004-03-30 | 2005-10-13 | Olympus Corp | Observation device and focusing method for observation device |
-
2007
- 2007-08-29 JP JP2007222185A patent/JP5070995B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009053578A (en) | 2009-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6355934B1 (en) | Imaging system for an optical scanner | |
US8643946B2 (en) | Autofocus device for microscopy | |
US11409092B2 (en) | Parallel multi-region imaging device | |
EP0753779B1 (en) | Confocal microscope | |
JP2016500849A (en) | Optical microscope and microscope observation method | |
JPWO2008081729A1 (en) | Laser scanning confocal microscope | |
CN105203507A (en) | Telecentric , wide-field fluorescence scanning systems and methods | |
JP5070995B2 (en) | Confocal microscope | |
US10634890B1 (en) | Miniaturized microscope for phase contrast and multicolor fluorescence imaging | |
JP2017215546A (en) | Confocal microscope | |
JP2009505126A (en) | Microscope and method for total reflection microscopy | |
CN113631980A (en) | Confocal microscope unit and confocal microscope | |
JP6534662B2 (en) | Microscope for evanescent illumination and point raster scan illumination | |
US10697764B2 (en) | Sample shape measuring apparatus for calculating a shape of a sample disposed between an illumination optical system and an observation optical system | |
JP5287566B2 (en) | Confocal microscope | |
EP3951467A1 (en) | Scanning microscope unit | |
JP7311591B2 (en) | Method and microscope for determining the refractive index of optical media | |
WO2000050878A1 (en) | Imaging system for an optical scanner | |
JP2007072391A (en) | Laser microscope | |
AU2020366521B2 (en) | Virtual fiducials | |
EP2283343B1 (en) | Optical illumination apparatus and method | |
JP2018194634A (en) | Light field microscope | |
US9335533B2 (en) | Adjustable total internal reflectance microscopy (TIRFM) illuminator apparatus | |
EP3751327A1 (en) | Method of and apparatus for monitoring a focus state of a microscope | |
JP2012141452A (en) | Automatic focus mechanism and microscope device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120724 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5070995 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |