JP5070768B2 - Battery with waste liquid storage chamber - Google Patents

Battery with waste liquid storage chamber Download PDF

Info

Publication number
JP5070768B2
JP5070768B2 JP2006231751A JP2006231751A JP5070768B2 JP 5070768 B2 JP5070768 B2 JP 5070768B2 JP 2006231751 A JP2006231751 A JP 2006231751A JP 2006231751 A JP2006231751 A JP 2006231751A JP 5070768 B2 JP5070768 B2 JP 5070768B2
Authority
JP
Japan
Prior art keywords
storage chamber
battery
power generation
generation element
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006231751A
Other languages
Japanese (ja)
Other versions
JP2008059772A (en
Inventor
徳雄 稲益
好伸 安永
明博 藤井
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2006231751A priority Critical patent/JP5070768B2/en
Publication of JP2008059772A publication Critical patent/JP2008059772A/en
Application granted granted Critical
Publication of JP5070768B2 publication Critical patent/JP5070768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リン酸鉄リチウムを活物質として用い、過充電時に高度な安全性を確保することのできる電池に関する。   The present invention relates to a battery that uses lithium iron phosphate as an active material and can ensure a high level of safety during overcharge.

近年、携帯電話、ノートパソコン等の携帯機器類用、電気自動車用などの電源としてエネルギー密度が高く、かつ自己放電が少なくてサイクル特性の良いリチウム二次電池に代表される非水電解質電池が注目されている。   In recent years, non-aqueous electrolyte batteries typified by lithium secondary batteries with high energy density and low self-discharge and good cycle characteristics have attracted attention as power sources for mobile devices such as mobile phones and laptop computers, and electric vehicles. Has been.

現在のリチウム二次電池の主流は、2Ah以下の携帯電話用を中心とした小型民生用である。現在、リチウム二次電池用の正極活物質としては、主としてLiCoO2が用いられている。 The current mainstream of lithium secondary batteries is for consumer use, mainly for mobile phones of 2 Ah or less. Currently, LiCoO 2 is mainly used as a positive electrode active material for lithium secondary batteries.

しかしながら、今後の中型・大型、特に大きな需要が見込まれる産業用途への非水電解質電池の展開を考えた場合、安全性が非常に重要視される。即ち、産業用途では小型民生用では使用されないような高温環境において電池が使用されることを想定する必要があるため、現在の小型電池向けの仕様では必ずしも充分であるとはいえない。   However, safety is very important when considering the development of non-aqueous electrolyte batteries for future medium- and large-sized, especially industrial applications where large demand is expected. That is, since it is necessary to assume that the battery is used in a high-temperature environment that is not used in a small consumer use in industrial applications, the current specification for a small battery is not necessarily sufficient.

特許文献1には、電解液に溶け易い充填ガスを用いて、電解液を加圧充填することにより、電池温度が上昇した時に、電解液中に溶けていたガスが気化し、電池の内圧を上昇させ迅速に安全弁を作動させるばかりでなく、正極あるいは負極の微細孔中の電解液を効率良く電池外部に放出させることのできる電池について記載がある。   In Patent Document 1, by using a filling gas that is easily dissolved in the electrolytic solution, when the battery temperature rises by pressurizing and filling the electrolytic solution, the gas dissolved in the electrolytic solution is vaporized, and the internal pressure of the battery is reduced. There is a description of a battery that not only raises and quickly activates the safety valve, but also allows the electrolyte in the micropores of the positive electrode or negative electrode to be efficiently discharged outside the battery.

しかしながら、この方法では、あらかじめ電解液を500〜1500kPaの圧力で不燃性のガスを充填する必要があるので、通常の電池における電池内部圧力上昇の初期段階を検知して安全弁を開放する設計に採用することができなかった。   However, in this method, it is necessary to fill the electrolyte with non-combustible gas at a pressure of 500 to 1500 kPa in advance, so it is adopted for the design that detects the initial stage of battery internal pressure rise in a normal battery and opens the safety valve I couldn't.

特許文献2には、電池異常と判断された場合に、電池容器内に開口し、この電池容器内よりも減圧することにより電解液を外部に引き抜くようにした電解液引抜手段が設けられた電池について記載がある。   Patent Document 2 discloses a battery provided with an electrolytic solution extraction means that opens into a battery container and extracts the electrolytic solution to the outside by reducing the pressure in the battery container when it is determined that the battery is abnormal. There is a description.

しかしながら、この方法では、電池異常を検知するためのセンサや信号発生及び信号伝達回路、電池容器内を減圧するための吸引ポンプ等を必要とするため装置が大がかりになるうえ、従来電池では、電池容器内を減圧しても、正極、負極及びセパレータからなる発電要素内に保持されている電解液は充分に引き抜くことができず、電池の熱暴走を防止するには不十分であった。   However, this method requires a device for detecting battery abnormality, a signal generation and signal transmission circuit, a suction pump for decompressing the inside of the battery container, etc. Even if the inside of the container is depressurized, the electrolyte retained in the power generation element composed of the positive electrode, the negative electrode, and the separator cannot be sufficiently extracted, and is insufficient to prevent thermal runaway of the battery.

特許文献3には、電池異常時に、開裂溝の開裂後に開裂溝が開裂して非水電解液が排出されるようにした構成について記載がある。   Patent Document 3 describes a configuration in which, when a battery is abnormal, the cleavage groove is cleaved after the cleavage groove is cleaved and the non-aqueous electrolyte is discharged.

しかしながら、開裂溝が開裂しても、実質的には電池容器内の余剰の電解液が排出されるのみであり、正極、負極及びセパレータからなる発電要素内に保持されている電解液は充分に排出できなかった。
特開平6−150975号公報 特開2003−123736号公報 特開2006−99977号公報
However, even if the cleavage groove is cleaved, only the excess electrolyte in the battery container is substantially discharged, and the electrolyte retained in the power generation element composed of the positive electrode, the negative electrode, and the separator is sufficient. Could not discharge.
JP-A-6-150975 JP 2003-123736 A JP 2006-99977 A

本発明は、上記問題点に鑑みなされたものであって、過充電時に高度な安全性を確保することのできる電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery that can ensure a high level of safety during overcharging.

リン酸鉄リチウムを含有する正極を備えた発電要素を収納する発電要素収容室と、電解液を収容しうる廃液収容室と、を備え、前記廃液収容室は前記発電要素収容室の下部に設けられており、前記発電要素収容室は、該発電要素収容室から前記廃液収容室に向けて電解液が流出しうる排出弁を備え、前記排出弁は、通常使用時には電解液の流出を抑止し、前記発電要素収容部の内圧上昇時には電解液の流出を許容するものである、電池。   A power generation element storage chamber for storing a power generation element including a positive electrode containing lithium iron phosphate; and a waste liquid storage chamber capable of storing an electrolyte solution, wherein the waste liquid storage chamber is provided at a lower portion of the power generation element storage chamber The power generation element storage chamber is provided with a discharge valve through which the electrolyte can flow from the power generation element storage chamber toward the waste liquid storage chamber, and the discharge valve suppresses the outflow of the electrolyte during normal use. A battery that allows the electrolyte to flow out when the internal pressure of the power generation element housing increases.

本発明の特徴の一は、正極活物質としてリン酸鉄リチウムを用いたことにある。この特徴により、電池の異常時に、正極、負極及びセパレータからなる発電要素内に保持されている電解液の排出を充分なものとすることができる。即ち、従来電池の正極活物質として用いられているLiCoO2は、α−NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物であるが、このような材料を正極活物質に用いた場合には、充電制御回路の故障等で充電電流が流れ続けた場合、正極の電位が徐々に上昇すると共に、Liの引き抜き反応が継続する一方、ガス発生は少ない。発電要素からのガス発生が少ない場合には、発電要素内に保持されている電解液は実質的に発電要素の系外に押し出されることがない。これに対し、リン酸鉄リチウムを正極活物質として用いると、充電制御回路の故障等で充電電流が流れ続けた場合、約4Vの電位に達すると、それ以降はLiの引き抜き反応が継続しないという特徴を有している。このため、流れ続ける充電電流は専ら電解液の分解に伴うガス発生反応に寄与することとなり、現実には、正極電位が約4.6Vの電位に達した以降は、一気にガス発生が始まることとなる。 One of the features of the present invention is that lithium iron phosphate is used as the positive electrode active material. With this feature, when the battery is abnormal, it is possible to sufficiently discharge the electrolytic solution held in the power generation element including the positive electrode, the negative electrode, and the separator. That is, LiCoO 2 conventionally used as a positive electrode active material of a battery is a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure. When such a material is used as a positive electrode active material, When the charging current continues to flow due to a failure of the charging control circuit or the like, the potential of the positive electrode gradually rises and the Li extraction reaction continues, while gas generation is small. When the gas generation from the power generation element is small, the electrolytic solution retained in the power generation element is not substantially pushed out of the system of the power generation element. On the other hand, when lithium iron phosphate is used as the positive electrode active material, if the charging current continues to flow due to a failure of the charging control circuit or the like, when the potential reaches about 4 V, the Li extraction reaction does not continue thereafter. It has characteristics. For this reason, the charging current that continues to flow contributes exclusively to the gas generation reaction that accompanies the decomposition of the electrolyte. In reality, after the positive electrode potential reaches the potential of about 4.6 V, gas generation starts at once. Become.

正極電位が約4Vに達した以降、特に4.6V以降はガス発生が一気に始まるという前記特徴は、本発明電池において、排出弁が発電要素収容部の内圧上昇を感知する感度を高いものとしていると共に、前記排出弁の設計を容易なものとすることに寄与している。   The characteristic that gas generation starts at once after the positive electrode potential reaches about 4 V, particularly after 4.6 V, makes the discharge valve highly sensitive to detecting an increase in internal pressure of the power generation element accommodating portion in the battery of the present invention. At the same time, the design of the discharge valve is facilitated.

さらに、LiCoO2等のリチウム遷移金属複合酸化物を正極活物質に用いた場合には、充電電流が流れ続けた場合、Liの引き抜き反応に伴って発電要素が温度上昇を続け、温度が150℃を超えた場合にLi1-xCoO2等からの酸素放出反応に起因した熱暴走を誘発する虞があるが、リン酸鉄リチウムを正極活物質として用いると、充電電流が流れ続けた場合、リチウムの引き抜き反応が電解液の分解電位よりも卑な電位で終結することから、以降、過充電時の早い段階でガス発生反応に切り替わり、該ガス発生反応過程では、発電要素の温度上昇原因はジュール熱以外に存在しない。しかも、リン酸鉄リチウムは充電状態で高温にさらされても電解液を酸化させる原因となる酸素の放出反応が起こらないため、安全に電解液を排出できる。 Furthermore, when a lithium transition metal composite oxide such as LiCoO 2 is used as the positive electrode active material, if the charging current continues to flow, the temperature of the power generation element continues to increase with the Li extraction reaction, and the temperature is 150 ° C. However, if lithium iron phosphate is used as the positive electrode active material, the charging current continues to flow, there is a risk of inducing thermal runaway due to oxygen release reaction from Li 1-x CoO 2 or the like. Since the lithium extraction reaction terminates at a base potential lower than the decomposition potential of the electrolyte, it is switched to a gas generation reaction at an early stage during overcharge. In the gas generation reaction process, the cause of the temperature increase of the power generation element is Except for Joule heat. In addition, even when lithium iron phosphate is exposed to a high temperature in a charged state, an oxygen releasing reaction that causes oxidation of the electrolytic solution does not occur, and thus the electrolytic solution can be discharged safely.

前記発電要素から押し出された電解液の流れを順調なものとするため、発電要素の積層断面に垂直な方向に前記廃液収容室を配置することが好ましい。即ち、発電要素が捲回式電極の場合には、捲回軸方向に沿うように前記廃液収容室を配置することが好ましい。   In order to make the flow of the electrolyte extruded from the power generation element smooth, it is preferable to arrange the waste liquid storage chamber in a direction perpendicular to the laminated cross section of the power generation element. That is, when the power generation element is a wound electrode, the waste liquid storage chamber is preferably arranged along the winding axis direction.

廃液収容室は、前記排出弁の作動に伴って減圧となる機構を設けてもよいが、前記廃液収容室を前記発電要素収容室の下部に設けることにより、発電要素から押し出された電解液は重力及び発電要素収容室の内圧上昇によって廃液収容室に導かれる。廃液収容室は、廃液収容室の内圧上昇に伴って外部にガスを排出しうる通気弁を設けてもよい。   The waste liquid storage chamber may be provided with a mechanism for reducing the pressure in accordance with the operation of the discharge valve, but by providing the waste liquid storage chamber in the lower part of the power generation element storage chamber, the electrolyte pushed out from the power generation element is It is led to the waste liquid storage chamber by gravity and the internal pressure increase of the power generation element storage chamber. The waste liquid storage chamber may be provided with a vent valve that can discharge gas to the outside as the internal pressure of the waste liquid storage chamber increases.

本発明電池は、廃液収容室を備えるので、排出された電解液の電池外部への漏出を防止できる。従って、周囲の汚染、回路等の汚損、漏出した電解液の引火等による燃焼を防止できる。   Since the battery of the present invention includes the waste liquid storage chamber, it is possible to prevent the discharged electrolyte from leaking out of the battery. Accordingly, it is possible to prevent the surrounding contamination, the circuit damage, and the combustion due to the ignition of the leaked electrolyte.

本発明によれば、過充電時に高度な安全性を確保することのできる電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery which can ensure high safety | security at the time of overcharge can be provided.

以下、本発明を一実施例にて説明する。 HYPERLINK "https://www.patent.ne.jp/patent/cache/" \l "fig1" 図1は、本発明の電池を示す構造縦断面図である。同図において、正極9、負極10及びセパレータ11を備えた発電要素3が発電要素収容室1に収容されている。   Hereinafter, the present invention will be described with reference to an example. HYPERLINK "https://www.patent.ne.jp/patent/cache/" \ l "fig1" FIG. 1 is a structural longitudinal sectional view showing a battery of the present invention. In the figure, a power generation element 3 including a positive electrode 9, a negative electrode 10, and a separator 11 is accommodated in a power generation element accommodation chamber 1.

前記正極9は、帯状のアルミニウム箔からなる正極集電体の両面に正極活物質としてリン酸鉄リチウムを含有する正極合剤が塗布・プレスによって保持されている。前記負極10は、帯状の銅箔からなる負極集電体の両面に負極活物質としてチタン酸リチウムを含有する負極合剤が塗布・プレスによって保持されている。前記セパレータ11は、ポリエチレン製のシャットダウン機能を有する微多孔性薄膜からなる。前記正極9と前記負極10は前記セパレータ11を介して対向した状態で渦巻き状に巻回され、非水電解質が含浸されて発電要素3を構成している。ここで、セパレータ11は前記正極9及び前記負極10よりも若干幅広く巻かれており、さらに巻芯部および巻き終り部における数回周分は、セパレータ11単独で巻かれており、正極9、負極10間及び外装缶7と電気的に絶縁されている。   In the positive electrode 9, a positive electrode mixture containing lithium iron phosphate as a positive electrode active material is held on both surfaces of a positive electrode current collector made of a strip-shaped aluminum foil by coating and pressing. In the negative electrode 10, a negative electrode mixture containing lithium titanate as a negative electrode active material is held on both surfaces of a negative electrode current collector made of a strip-shaped copper foil by coating and pressing. The separator 11 is made of a microporous thin film having a shutdown function made of polyethylene. The positive electrode 9 and the negative electrode 10 are spirally wound in a state of being opposed to each other with the separator 11 interposed therebetween, and impregnated with a nonaqueous electrolyte to constitute the power generation element 3. Here, the separator 11 is wound slightly wider than the positive electrode 9 and the negative electrode 10, and several turns at the winding core and the end of the winding are wound by the separator 11 alone. 10 and the outer can 7 are electrically insulated.

発電要素収容室1は外装缶7及び金属蓋8によって密閉され、外装缶7の缶底6の一部に、前記発電要素収容室1の内圧上昇を検知して開放する機能を有する排出弁4が備えられている。缶底6の下部には廃液収容室2が設けられ、該廃液収容室2の内圧上昇に伴って外部にガスを排出しうる通気弁5が設けられている。   The power generation element accommodation chamber 1 is sealed with an outer can 7 and a metal lid 8, and a discharge valve 4 having a function of detecting and opening an increase in the internal pressure of the power generation element accommodation chamber 1 at a part of the bottom 6 of the outer can 7. Is provided. A waste liquid storage chamber 2 is provided below the bottom of the can 6, and a vent valve 5 is provided that can discharge gas to the outside as the internal pressure of the waste liquid storage chamber 2 increases.

前記金属蓋8は、外装缶7の開口端より挿入され密閉され、さらに、金属蓋8と外装缶7とはレーザー溶接により封口されている。金属蓋21は絶縁物を介して正極端子と負極端子を有している。前記金属蓋8には、絶縁性材料を介して正極端子12、負極端子13及び復帰式安全弁14が備えられている。   The metal lid 8 is inserted and sealed from the opening end of the outer can 7, and the metal lid 8 and the outer can 7 are sealed by laser welding. The metal lid 21 has a positive terminal and a negative terminal via an insulator. The metal lid 8 is provided with a positive terminal 12, a negative terminal 13, and a resettable safety valve 14 through an insulating material.

次に、本発明による二次電池の製造および組立方法について説明する。外装缶7はインパクト成形や深絞り成形により有底耐圧缶を作り、缶底6部から開口先端部までの寸法を決めて端面をカットする。さらに缶底6部にプレスにより弱点部を刻印して排出弁4をつくる。
金属蓋8は、正極端子12、負極端子13及び復帰式安全弁14及び注入管15が貫通され、密封固定する。正極端子12及び負極端子13は、金属蓋8との密閉性を保つと共に、絶縁物を介して金属蓋に設置しておく。
電池の組立は、帯状の正極9および負極10をセパレータ11を介して渦巻状に巻回しながら正極リード及び負極リードを各極の集電体にスポット溶接または超音波溶接により取り付けて、巻き上げる。巻回された電極群は外周部をテープ等で固定し、正極リード,負極リードをそれぞれ1列に束ねて金属蓋7に固定された正極端子13,負極端子14に溶接等により接続する。
次に、ケース内に電極群を挿入し、金属蓋8を外装缶7の開口端と平行になるまで圧入し、金属蓋8と外装缶7とをレーザー封口により密閉固定する。
最後に注入管15から電解液を注液し、注入管の端部をプレスにより潰して閉塞してから注入管の先端部を溶接密封する。
Next, a method for manufacturing and assembling a secondary battery according to the present invention will be described. The outer can 7 is made of a bottomed pressure can by impact molding or deep drawing, and the end surface is cut by determining the dimension from the can bottom 6 part to the opening tip. Further, the weak point is marked on the bottom 6 part of the can by pressing to make the discharge valve 4.
The metal lid 8 has a positive terminal 12, a negative terminal 13, a return-type safety valve 14, and an injection pipe 15 that pass therethrough and is hermetically fixed. The positive electrode terminal 12 and the negative electrode terminal 13 maintain the hermeticity with the metal lid 8 and are installed on the metal lid via an insulator.
In assembling the battery, the positive electrode lead and the negative electrode lead are attached to the current collector of each electrode by spot welding or ultrasonic welding while winding the belt-like positive electrode 9 and negative electrode 10 in a spiral shape through the separator 11, and the battery is wound up. The wound electrode group is fixed at the outer periphery with a tape or the like, and the positive electrode lead and the negative electrode lead are bundled in one row and connected to the positive electrode terminal 13 and the negative electrode terminal 14 fixed to the metal lid 7 by welding or the like.
Next, an electrode group is inserted into the case, and the metal lid 8 is press-fitted until it is parallel to the opening end of the outer can 7, and the metal lid 8 and the outer can 7 are hermetically fixed by laser sealing.
Finally, an electrolytic solution is injected from the injection tube 15, and the end of the injection tube is crushed and closed by pressing, and then the tip of the injection tube is welded and sealed.

以上、一実施例を示したが、本発明電池を構成するにあたって、セパレータ部分には、耐熱性に優れたガラスマットや紙、熱硬化性樹脂(エンプラ)等を単独、またはシャットダウン機能を有するセパレータと併用して用いることが好ましい。小形電池に使用されているポリエチレンフィルムは外部短絡や過充電によって温度が上昇した時、ポリエチレンフィルム自身の収縮によって前記微多孔が閉じるシャットダウン機能が付加されている。ポリエチレンフィルムのシャットダウン開始温度が約130℃であり、ポリプロピレンフィルムのシャットダウン開始温度は約150℃である。しかしながら、これ以上の温度に上昇した場合、セパレータが溶融するため、内部短絡を引き起こす虞がある。一方、耐熱性に優れたガラスマットや紙、熱硬化性樹脂(エンプラ)等の場合、温度上昇による内部短絡を避けることが可能である。電池温度の上昇とともに発電要素収容室1の内圧が上昇し、排出弁4が作動して電解液が排出されることにより、発電要素3の内部抵抗を上昇させ、電池反応を停止することが可能となる。   As mentioned above, although one Example was shown, when constituting the battery of the present invention, the separator portion is made of a glass mat or paper excellent in heat resistance, a thermosetting resin (engineering plastic) or the like, or a separator having a shutdown function. It is preferable to use in combination. The polyethylene film used in the small battery has a shutdown function that closes the micropores due to the shrinkage of the polyethylene film when the temperature rises due to external short circuit or overcharge. The shutdown start temperature of the polyethylene film is about 130 ° C., and the shutdown start temperature of the polypropylene film is about 150 ° C. However, when the temperature rises above this temperature, the separator melts, which may cause an internal short circuit. On the other hand, in the case of a glass mat or paper excellent in heat resistance, a thermosetting resin (engineering plastic), etc., it is possible to avoid an internal short circuit due to a temperature rise. As the battery temperature rises, the internal pressure of the power generation element accommodating chamber 1 rises, and the discharge valve 4 operates to discharge the electrolyte, thereby increasing the internal resistance of the power generation element 3 and stopping the battery reaction. It becomes.

前記非水電解質としては、有機溶媒(プロピレンカーボネート,エチレンカーボネート,ジエチルカーボネート,ジメチルカーボネート,メチルエチルカーボネート,ジメトキシエタン等の単独または混合物)にLiPF6,LiBF4,LiN(SO2CF32,LiSO3CF3,LiB(C242等の電解質塩を溶解した電解液を用いることができる。 Examples of the non-aqueous electrolyte include organic solvents (propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane and the like alone or in a mixture thereof) LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , An electrolytic solution in which an electrolyte salt such as LiSO 3 CF 3 or LiB (C 2 O 4 ) 2 is dissolved can be used.

前記外装缶7としては、ステンレス鋼,ニッケルめっき鉄,ニッケルめっき銅やアルミニウム等の金属からなる耐圧金属ケースを用いることができる。前記排出弁4は、缶底6に切り込み溝等の弱点部を設けることにより構成してもよい。ここで、排出弁4は、発電要素収容室1内の圧力が前記金属蓋8に備えられた復帰式安全弁14の耐圧よりも上昇した際に開放し、電解液の排出を行うように設計される。即ち、排出弁4の作動圧力は、発電要素収容室1内の温度と、発電要素収容室1(上記実施例では発電要素収容室1は外装缶7と金属蓋8とから構成されている)の耐圧強度から決定される。例えば、復帰式安全弁14が10kg/cm2未満で開放し、排出弁4が10kg/cm2以上で開放するように設計してもよい。排出弁4の外部は廃液収容室2となっており、排出された電解液が該廃液収容室2に溜まる。該廃液収容室2の容積は電池が保持している電解液量以上であることが必要である。また、該廃液収容室2は必ずしも電池外部に対して密閉しなくてもよいが、密閉し、電池の外圧よりも陰圧とすることもできる。さらに、該廃液収容室2に、電解液と接触して電解液に難燃化を付与可能な化合物をあらかじめ配しておいてもよく、このことにより、排出された電解液を難燃化することができ、電解液への二次的な引火を防ぐことができる。 As the outer can 7, a pressure-resistant metal case made of a metal such as stainless steel, nickel-plated iron, nickel-plated copper or aluminum can be used. The discharge valve 4 may be configured by providing a weak point such as a cut groove in the can bottom 6. Here, the discharge valve 4 is designed to open when the pressure in the power generation element accommodation chamber 1 rises above the pressure resistance of the resettable safety valve 14 provided in the metal lid 8 and discharge the electrolyte. The That is, the operating pressure of the discharge valve 4 includes the temperature in the power generation element storage chamber 1 and the power generation element storage chamber 1 (in the above embodiment, the power generation element storage chamber 1 is composed of the outer can 7 and the metal lid 8). It is determined from the withstand pressure strength. For example, the resetting safety valve 14 may be designed to open at less than 10 kg / cm 2 and the discharge valve 4 to be opened at 10 kg / cm 2 or more. The outside of the discharge valve 4 is a waste liquid storage chamber 2, and the discharged electrolyte is collected in the waste liquid storage chamber 2. The volume of the waste liquid storage chamber 2 needs to be greater than or equal to the amount of electrolyte retained by the battery. The waste liquid storage chamber 2 does not necessarily need to be sealed with respect to the outside of the battery, but can be sealed and set to a negative pressure rather than the external pressure of the battery. Further, the waste liquid storage chamber 2 may be pre-arranged with a compound that can be brought into contact with the electrolyte solution and impart flame retardancy to the electrolyte solution, thereby making the discharged electrolyte solution flame retardant. And secondary ignition to the electrolyte can be prevented.

前記金属蓋8に用いる絶縁性材料としては、耐電解液性で、しかも弾性範囲の大きいエチレン・プロピレン・ジエンゴム(EPDM)やフッ素系ゴム等のゴム材が適している。   As the insulating material used for the metal lid 8, rubber materials such as ethylene / propylene / diene rubber (EPDM) and fluorine rubber which are resistant to electrolyte and have a large elastic range are suitable.

以上説明したように、本発明によれば、過充電や外部短絡などによる電池の内圧が復帰式安全弁の限界圧力を超えた圧力で電解液排出弁が作動し、電池内部の電解液が排出電解液受けへ移動する。そのため、電池反応が停止し、破裂や発火など危険な状態を回避できる。この機構は、回路等による制御ではなく、電池そのものの安全機構である。したがって、リチウム二次電池の電池性能を損なうことなく、安全性が飛躍的に向上するものである。本発明は据置型電池に適用することが好ましい。   As described above, according to the present invention, the electrolyte discharge valve operates at a pressure where the internal pressure of the battery due to overcharge or external short circuit exceeds the limit pressure of the resettable safety valve, and the electrolyte inside the battery is discharged and electrolyzed. Move to the liquid receiver. Therefore, the battery reaction is stopped, and a dangerous state such as rupture or ignition can be avoided. This mechanism is not a control by a circuit or the like, but a safety mechanism of the battery itself. Therefore, safety is drastically improved without impairing the battery performance of the lithium secondary battery. The present invention is preferably applied to a stationary battery.

本発明電池の一実施例を示す構造断面図である。It is structural sectional drawing which shows one Example of this invention battery.

符号の説明Explanation of symbols

1 発電要素収容室
2 廃液収容室
3 発電要素
4 排出弁
5 通気弁
6 缶底
7 外装缶
8 金属蓋
9 正極
10 負極
11 セパレータ
12 正極端子
13 負極端子
14 復帰式安全弁
15 注入管
DESCRIPTION OF SYMBOLS 1 Power generation element storage chamber 2 Waste liquid storage chamber 3 Power generation element 4 Discharge valve 5 Vent valve 6 Can bottom 7 Exterior can 8 Metal lid 9 Positive electrode 10 Negative electrode 11 Separator 12 Positive electrode terminal 13 Negative electrode terminal 14 Resettable safety valve 15 Injection pipe

Claims (1)

リン酸鉄リチウムを含有する正極を備えた発電要素を収納する発電要素収容室と、電解液を収容しうる廃液収容室と、を備え、
前記廃液収容室は前記発電要素収容室の下部に設けられており、
前記発電要素収容室は、該発電要素収容室から前記廃液収容室に向けて電解液が流出しうる排出弁を備え、
前記排出弁は、通常使用時には電解液の流出を抑止し、前記発電要素収容部の内圧上昇時には電解液の流出を許容するものである、
電池。
A power generation element storage chamber for storing a power generation element including a positive electrode containing lithium iron phosphate, and a waste liquid storage chamber capable of storing an electrolyte solution,
The waste liquid storage chamber is provided in a lower portion of the power generation element storage chamber,
The power generation element storage chamber includes a discharge valve through which an electrolyte can flow from the power generation element storage chamber toward the waste liquid storage chamber.
The discharge valve suppresses the outflow of the electrolyte during normal use, and allows the outflow of the electrolyte when the internal pressure of the power generation element accommodating portion increases.
battery.
JP2006231751A 2006-08-29 2006-08-29 Battery with waste liquid storage chamber Expired - Fee Related JP5070768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231751A JP5070768B2 (en) 2006-08-29 2006-08-29 Battery with waste liquid storage chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231751A JP5070768B2 (en) 2006-08-29 2006-08-29 Battery with waste liquid storage chamber

Publications (2)

Publication Number Publication Date
JP2008059772A JP2008059772A (en) 2008-03-13
JP5070768B2 true JP5070768B2 (en) 2012-11-14

Family

ID=39242280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231751A Expired - Fee Related JP5070768B2 (en) 2006-08-29 2006-08-29 Battery with waste liquid storage chamber

Country Status (1)

Country Link
JP (1) JP5070768B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056932A (en) * 2011-11-23 2013-05-31 에스케이이노베이션 주식회사 Battery pack
CN107132487A (en) * 2017-06-22 2017-09-05 广州中国科学院工业技术研究院 Secondary cell thermal runaway propagates test system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469836B2 (en) * 1989-04-26 2003-11-25 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2003123736A (en) * 2001-10-09 2003-04-25 Japan Storage Battery Co Ltd Battery

Also Published As

Publication number Publication date
JP2008059772A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP6490053B2 (en) Cylindrical sealed battery and battery pack
JP4802188B2 (en) Electrochemical element having electrode lead with built-in protective element
WO2015146077A1 (en) Cylindrical hermetically sealed battery
EP2312682B1 (en) Secondary battery and method of fabricating the same
JP5538114B2 (en) Secondary battery
CN103718345A (en) Lithium-ion rechargeable battery
KR100696821B1 (en) Li Secondary Battery and Method of fabricating the same
CN102301503A (en) Battery module and battery module assembly using same
JPH10326610A (en) Non-aqueous electrolyte secondary battery
JP2011210390A (en) Battery and battery module
KR20110018415A (en) Assembled sealing body and battery using same
KR101546545B1 (en) Pouch type lithium secondary battery
JP2009218013A (en) Sealed battery
JP2004273139A (en) Lithium secondary battery
WO2014119095A1 (en) Secondary battery
JP2004362956A (en) Secondary battery
KR20080036257A (en) Secondary battery of improved safety
JP2009026674A (en) Lithium ion cell
JP4348492B2 (en) Non-aqueous secondary battery
JP5070768B2 (en) Battery with waste liquid storage chamber
KR101453783B1 (en) Cap assembly and secondary battery using the same
KR102288850B1 (en) The Secondary Battery And The Insulator For Secondary Battery
JP2005251548A (en) Square shape secondary battery
KR100696787B1 (en) Cap Assembly and Lithium Ion Secondary Battery with the same
JP2003243037A (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees