JP5070734B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP5070734B2
JP5070734B2 JP2006138367A JP2006138367A JP5070734B2 JP 5070734 B2 JP5070734 B2 JP 5070734B2 JP 2006138367 A JP2006138367 A JP 2006138367A JP 2006138367 A JP2006138367 A JP 2006138367A JP 5070734 B2 JP5070734 B2 JP 5070734B2
Authority
JP
Japan
Prior art keywords
mold
magnetic field
molten steel
moving magnetic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138367A
Other languages
Japanese (ja)
Other versions
JP2007307577A (en
Inventor
典子 久保
淳 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006138367A priority Critical patent/JP5070734B2/en
Publication of JP2007307577A publication Critical patent/JP2007307577A/en
Application granted granted Critical
Publication of JP5070734B2 publication Critical patent/JP5070734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型内の溶鋼にリニア型の移動磁場を印加して鋳型内の溶鋼流動を制御しながら鋳造する鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of steel in which a linear moving magnetic field is applied to molten steel in a mold to control the flow of molten steel in the mold.

連続鋳造機で鋳造される鋼のスラブ鋳片(以下、単に「鋳片」とも記す)に要求される品質の1つとして、鋳片の非金属介在物(以下、「介在物」と記す)の含有量が少ないことが挙げられる。鋳片に捕り込まれる介在物には、(1):金属Alなどによる溶鋼の脱酸工程で発生し、溶鋼中に懸濁しているアルミナなどの脱酸生成物、(2):タンディッシュや浸漬ノズルで溶鋼内に吹き込まれるArガスなどの不活性ガスのガス気泡、(3):鋳型内の溶鋼湯面上に散布したモールドパウダーが溶鋼中に巻込まれて懸濁したもの、などがある。これらは何れも薄鋼板製品において表面欠陥となるため、何れも少なくすることが重要である。   Non-metallic inclusions (hereinafter referred to as “inclusions”) of slabs as one of the qualities required for steel slab slabs (hereinafter simply referred to as “slabs”) cast by a continuous casting machine It is mentioned that there is little content of. Inclusions trapped in the slab include (1): deoxidation products such as alumina generated in the deoxidation process of molten steel with metallic Al and suspended in the molten steel, (2): tundish and Gas bubbles of inert gas such as Ar gas blown into the molten steel with an immersion nozzle, (3): Mold powder sprayed on the molten steel surface in the mold is suspended in the molten steel, etc. . Since these all cause surface defects in thin steel sheet products, it is important to reduce them all.

しかも、近年、連続鋳造機の生産性を向上させるために、鋳造速度即ち鋳型内への溶鋼の供給速度を増加させた高速鋳造化が推進されている。このような高速鋳造操業では、鋳型内への溶鋼の供給量の増加に伴って鋳型内に注入される溶鋼の吐出流速が増加するために、即ち鋳型内における溶鋼の運動エネルギーが増加するために、溶鋼中に巻込まれるモールドパウダーの発生頻度が高くなるとともに、浸漬ノズルからの吐出流が鋳型短辺側の凝固シェルに衝突した後に分岐して下流側に向かって流れる侵入流の侵入深さが増大し、この侵入流に随伴して未凝固層の深くまで侵入する脱酸生成物が多くなり、これにより鋳片に捕捉される脱酸生成物も多くなり、全体的に鋳片の介在物含有量が増加する傾向となる。   Moreover, in recent years, in order to improve the productivity of a continuous casting machine, high-speed casting has been promoted by increasing the casting speed, that is, the supply speed of molten steel into the mold. In such a high-speed casting operation, the discharge flow rate of the molten steel injected into the mold increases as the amount of molten steel supplied into the mold increases, that is, the kinetic energy of the molten steel in the mold increases. The frequency of occurrence of mold powder wound in the molten steel is increased, and the intrusion depth of the intrusion flow that branches off after the discharge flow from the immersion nozzle collides with the solidified shell on the short side of the mold and flows toward the downstream side is increased. Increasing the amount of deoxidation product that penetrates deeply into the unsolidified layer accompanying this intrusion flow, thereby increasing the amount of deoxidation product trapped in the slab, and overall inclusions in the slab The content tends to increase.

そのため、高速鋳造時のスラブ鋳片の介在物を低減することを目的にして、鋳型内溶鋼の運動エネルギーを低減する手段として、鋳型内の溶鋼に磁場(「磁界」ともいう)を印加し、印加した磁場と移動する溶鋼とで誘導電流を生じさせ、この誘導電流と印加した磁場とが作用して溶鋼に生じる電磁気力を利用し、鋳型内における溶鋼の運動エネルギーを制御する方法が、広く採用されている。   Therefore, for the purpose of reducing inclusions in the slab slab during high speed casting, as a means of reducing the kinetic energy of the molten steel in the mold, a magnetic field (also referred to as “magnetic field”) is applied to the molten steel in the mold, There is a wide range of methods for controlling the kinetic energy of molten steel in the mold by generating an induced current between the applied magnetic field and the moving molten steel and using the electromagnetic force generated in the molten steel by the action of the induced current and the applied magnetic field. It has been adopted.

例えば、特許文献1には、鋳型の長辺方向に沿って水平に移動する磁場(リニア型移動磁場)を、鋳型短辺側から浸漬ノズル側に向かう方向、つまり浸漬ノズルからの溶鋼の吐出方向と反対方向に移動させ、浸漬ノズルからの吐出流に制動力を与えながらスラブ鋳片を連続鋳造する方法が提案されている。また、特許文献2には、鋳型内の溶鋼湯面に一方向に循環する溶鋼流を形成するように、リニア型移動磁場を印加する方法が提案されている。
特開平9−192801号公報 特開平6−606号公報
For example, Patent Document 1 discloses that a magnetic field (linear moving magnetic field) that moves horizontally along the long side direction of a mold is a direction from the short side of the mold toward the immersion nozzle, that is, the discharge direction of molten steel from the immersion nozzle. A method has been proposed in which slab slabs are continuously cast while moving in the opposite direction and applying a braking force to the discharge flow from the immersion nozzle. Patent Document 2 proposes a method of applying a linear moving magnetic field so as to form a molten steel flow that circulates in one direction on the molten steel surface in the mold.
JP-A-9-192801 JP-A-6-606

ところで、鋳型内の溶鋼湯面は、鋳型幅つまり鋳片幅によって定まる固有の周波数、例えば鋳型幅を1/2波長とする或いは1波長とするなどの固有の周波数で湯面変動する場合がある。この湯面変動は「定在波」と称されている。定在波が発生すると共振した状態になることから、鋳型内の湯面変動は極端に大きくなり、従って、モールドパウダーの巻き込みなどの品質面のみならず、操業の安定性の面からも定在波を抑制することが必要不可欠となる。   By the way, the molten steel surface in the mold may fluctuate at a specific frequency determined by the mold width, that is, the slab width, for example, a specific frequency such that the mold width is ½ wavelength or 1 wavelength. . This hot water level fluctuation is called “standing wave”. When standing waves are generated, the mold will resonate and the fluctuation of the molten metal surface in the mold will become extremely large.Therefore, it will not only be in terms of quality such as mold powder entrainment but also in terms of operational stability. It is essential to suppress the waves.

この定在波は、鋳型内溶鋼にリニア型移動磁場を印加した場合、印加する移動磁場の周波数によっては、その発生が助長されることを本発明者等は見出した。つまり、印加するリニア型移動磁場の周波数が定在波の周波数と同一或いはその近傍であるときには、リニア型移動磁場を印加することで、定在波の発生が助長されることを知見した。そして、鋳造速度を高速化するほど、定在波の発生が助長されることも知見した。   The present inventors have found that, when a linear moving magnetic field is applied to molten steel in a mold, generation of this standing wave is promoted depending on the frequency of the moving magnetic field to be applied. That is, it has been found that when the frequency of the applied linear moving magnetic field is the same as or close to the frequency of the standing wave, the generation of the standing wave is promoted by applying the linear moving magnetic field. It was also found that the higher the casting speed, the more the generation of standing waves is promoted.

しかしながら、前述した特許文献1及び特許文献2に開示されるように、従来、印加する移動磁場の周波数と、鋳片幅によって定まる定在波の周波数とを関連させ、移動磁場印加による定在波の助長を防止するべく、印加する移動磁場の周波数を鋳片幅に応じて設定することは、何ら提案されていない。   However, as disclosed in Patent Document 1 and Patent Document 2 described above, conventionally, the frequency of the moving magnetic field to be applied is related to the frequency of the standing wave determined by the slab width, and the standing wave by applying the moving magnetic field is used. In order to prevent this, it has not been proposed to set the frequency of the moving magnetic field to be applied according to the slab width.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳型内の溶鋼にリニア型移動磁場を印加して鋳型内の溶鋼流動を制御するに際し、鋳片幅によって定まる定在波の発生を抑えながら、移動磁場による溶鋼流動制御を行うことのできる、鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to determine whether the flow of the molten steel in the mold is controlled by applying a linear moving magnetic field to the molten steel in the mold and is determined by the width of the slab. It is an object of the present invention to provide a continuous casting method of steel capable of performing molten steel flow control by a moving magnetic field while suppressing generation of waves.

上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、磁場の移動方向が鋳型幅方向であるリニア型移動磁場発生装置を用い、長辺及び短辺を有する矩形状鋳型の中央部に設置された浸漬ノズルから鋳型内に供給された溶鋼にリニア型移動磁場を印加して鋳型内の溶鋼流動を制御しながら鋳造する鋼の連続鋳造方法であって、前記移動磁場の周波数を、スラブ鋳片を鋳造する鋳型の幅寸法に基づき、下記の(1)式を用いて求められる周波数の範囲内とし、鋳型幅によって定まる定在波を防止することを特徴とするものである。但し、(1)式において、fm はリニア型移動磁場の周波数(Hz)、gは重力加速度(m/秒2)、πは円周率(−)、Lは鋳型幅(m)である。 The continuous casting method of steel according to the first invention for solving the above-mentioned problems uses a linear type moving magnetic field generator in which the moving direction of the magnetic field is the mold width direction, and uses a rectangular mold having a long side and a short side. A continuous casting method of steel in which a linear type moving magnetic field is applied to molten steel supplied into a mold from an immersion nozzle installed in a central portion while controlling the flow of molten steel in the mold, and the frequency of the moving magnetic field Is based on the width dimension of the mold for casting the slab slab , and is within the frequency range obtained by using the following equation (1) to prevent standing waves determined by the mold width. is there. In Equation (1), f m is the frequency (Hz) of the linear moving magnetic field, g is the gravitational acceleration (m / sec 2 ), π is the circumference (−), and L is the mold width (m). .

Figure 0005070734
Figure 0005070734

第2の発明に係る鋼の連続鋳造方法は、第1の発明において、前記リニア型移動磁場を印加して前記浸漬ノズルから吐出される溶鋼の吐出流を制動するまたは加速する際には、鋳型幅1/4の鋳型短辺寄りの位置における溶鋼湯面直下の溶鋼流速が、鋳型短辺から浸漬ノズルに向けた溶鋼流を正で表し、浸漬ノズルから鋳型短辺に向けた溶鋼流を負で表したときに、−0.07m/秒から0.05m/秒の範囲内に維持されるように、リニア型移動磁場の磁場強度を調整することを特徴とするものである。   In the continuous casting method for steel according to the second invention, in the first invention, when the linear moving magnetic field is applied to brake or accelerate the discharge flow of the molten steel discharged from the immersion nozzle, The molten steel flow velocity immediately below the molten steel surface at a position near the mold short side with a width of 1/4 indicates the molten steel flow from the short mold side to the immersion nozzle as positive, and the molten steel flow from the immersion nozzle toward the short mold side is negative. In this case, the magnetic field strength of the linear moving magnetic field is adjusted so as to be maintained in a range of −0.07 m / sec to 0.05 m / sec.

第3の発明に係る鋼の連続鋳造方法は、第1の発明において、前記リニア型移動磁場を印加して鋳型内の溶鋼を水平方向に旋回攪拌する際には、鋳型内の凝固シェルと溶鋼との界面における溶鋼流速が0.1m/秒以上に維持されるように、リニア型移動磁場の磁場強度を調整することを特徴とするものである。   In the continuous casting method of steel according to the third invention, in the first invention, when the molten steel in the mold is swirled in the horizontal direction by applying the linear moving magnetic field, the solidified shell and molten steel in the mold The magnetic field strength of the linear type moving magnetic field is adjusted so that the molten steel flow velocity at the interface with is maintained at 0.1 m / second or more.

第4の発明に係る鋼の連続鋳造方法は、第1ないし第3の発明の何れかにおいて、前記鋳型幅が1250mm以上であることを特徴とするものである。   A steel continuous casting method according to a fourth invention is characterized in that, in any one of the first to third inventions, the mold width is 1250 mm or more.

本発明によれば、鋳型内溶鋼にリニア型移動磁場を印加して溶鋼を連続鋳造するに当たり、鋳片幅によって定まる定在波の周波数を回避した範囲の周波数を有する移動磁場を印加するので、定在波の発生を抑制しつつ移動磁場による鋳型内溶鋼流動の制御を行うことができる。その結果、定在波に起因する鋳型内湯面変動量を大幅に減少させることが可能となり、移動磁場印加による効果に加えて定在波に起因する鋳型内湯面変動の低減効果が重なり、脱酸生成物、Arガスなどの不活性ガスのガス気泡、及びモールドパウダーの巻き込みのない、清浄な鋳片を安定して鋳造することができ、工業上有益な効果がもたらされる。   According to the present invention, when continuously casting molten steel by applying a linear moving magnetic field to the molten steel in the mold, a moving magnetic field having a frequency in a range that avoids a standing wave frequency determined by the slab width is applied. It is possible to control the molten steel flow in the mold by the moving magnetic field while suppressing the generation of standing waves. As a result, the amount of fluctuation in the mold surface caused by the standing wave can be greatly reduced, and in addition to the effect of applying the moving magnetic field, the effect of reducing the fluctuation in the mold surface caused by the standing wave overlaps with the deoxidation. It is possible to stably cast a clean slab without a product, a gas bubble of an inert gas such as Ar gas, and a mold powder, and an industrially beneficial effect is obtained.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

先ず、連続鋳造機の鋳型内溶鋼湯面における定在波について説明する。一般に、水槽中の水面における固有振動の周波数は、例えばH.Lamb(“Hydrodynamics”.6thEd.,Dover,New York,(1932))によれば、下記の(2)式で表される。但し、(2)式において、f0は固有振動の周波数(Hz)、gは重力加速度(m/秒2 )、πは円周率(−)、λは固有振動の波長(m)、hは水槽の深さ(m)である。 First, the standing wave on the molten steel surface in the mold of the continuous casting machine will be described. In general, the frequency of the natural oscillation of the water surface in the water tank can be represented for example H.Lamb ( "Hydrodynamics" .6 th Ed ., Dover, New York, (1932)) in accordance with, the following equation (2) . In equation (2), f 0 is the natural vibration frequency (Hz), g is the gravitational acceleration (m / sec 2 ), π is the circular ratio (−), λ is the natural vibration wavelength (m), h Is the depth (m) of the aquarium.

Figure 0005070734
Figure 0005070734

水槽中の水面における固有振動では、水面の水槽内壁に接する位置は必ず振動の自由端となるので、採り得る波長(λ)は、鋳型幅をL(m)とすれば下記の(3)式で表される。但し、(3)式においてnはモード次数(−)である。   In the natural vibration of the water surface in the water tank, the position of the water surface in contact with the inner wall of the water tank is always the free end of vibration. Therefore, the wavelength (λ) that can be taken is the following formula (3) when the mold width is L (m): It is represented by In equation (3), n is the mode order (−).

Figure 0005070734
Figure 0005070734

更に、鋳型の場合、水槽の深さ(h)が鋳型幅(L)に置き換えられる(H≒L)とすると、上記の(2)式は下記の(4)式に書き直される。つまり、鋳型内の溶鋼湯面における定在波の周波数(f0 )は(4)式で表される。 Further, in the case of the mold, if the depth (h) of the water tank is replaced with the mold width (L) (H≈L), the above equation (2) is rewritten as the following equation (4). That is, the frequency (f 0 ) of the standing wave on the surface of the molten steel in the mold is expressed by equation (4).

Figure 0005070734
Figure 0005070734

図1に、連続鋳造機の鋳型内溶鋼湯面における定在波の波形を模式的に示す。図1中に破線で示す波形が定在波であり、また図中に示すnはモード次数である。図1からも明らかなように、モード次数(n)=1の場合の定在波の波長(λ)が鋳型幅(L)の2倍となる。   In FIG. 1, the waveform of the standing wave in the molten steel surface in a mold of a continuous casting machine is typically shown. A waveform indicated by a broken line in FIG. 1 is a standing wave, and n shown in the drawing is a mode order. As is clear from FIG. 1, the wavelength (λ) of the standing wave when the mode order (n) = 1 is twice the mold width (L).

次に、鋳型内溶鋼にリニア型の移動磁場を印加する方法を説明する。図2及び図3は、本発明が適用される、リニア型移動磁場発生装置を備えたスラブ連続鋳造機の鋳型部の概略図であり、図2は概略斜視図、図3は概略正面図である。   Next, a method for applying a linear moving magnetic field to the molten steel in the mold will be described. 2 and 3 are schematic views of a mold part of a slab continuous casting machine equipped with a linear moving magnetic field generator to which the present invention is applied, FIG. 2 is a schematic perspective view, and FIG. 3 is a schematic front view. is there.

図2〜図3において、相対する鋳型長辺4と、この鋳型長辺4の内側に内装された、相対する鋳型短辺5とから、水平断面が矩形状の鋳型1が構成されており、鋳型長辺4と鋳型短辺5とに囲まれて形成される鋳型1の内面空間の所定位置には、鋳型1の上方所定位置に配置されるタンディッシュ(図示せず)の底部に取り付けられた浸漬ノズル2が挿入されている。浸漬ノズル2の下部には、溶鋼7を鋳型短辺5の方向に向かって吐出するための一対の吐出孔6が備えられている。浸漬ノズル2には、浸漬ノズル内壁面へのアルミナ付着を防止するために、Arガスや窒素ガスなどの不活性ガスが吹き込まれる。   In FIG. 2 to FIG. 3, a mold 1 having a rectangular horizontal cross section is configured from the opposed mold long side 4 and the opposed mold short side 5 housed inside the mold long side 4. A predetermined position in the inner surface space of the mold 1 formed by being surrounded by the mold long side 4 and the mold short side 5 is attached to the bottom of a tundish (not shown) disposed at a predetermined position above the mold 1. An immersion nozzle 2 is inserted. A pair of discharge holes 6 for discharging the molten steel 7 in the direction of the mold short side 5 is provided below the immersion nozzle 2. An inert gas such as Ar gas or nitrogen gas is blown into the immersion nozzle 2 in order to prevent alumina from adhering to the inner wall surface of the immersion nozzle.

鋳型長辺4の背面には、浸漬ノズル2を境として鋳型長辺4の幅方向左右で2つに分割された合計4基のリニア型の移動磁場発生装置3が、その鋳造方向の中心位置を吐出孔6の直下位置として、鋳型長辺4を挟んで対向して配置されている。それぞれの移動磁場発生装置3は電源(図示せず)と結線され、また、電源は、磁場の移動方向、周波数(fm )及び磁場強度を制御する制御装置(図示せず)と接続されており、制御装置から入力される磁場移動方向、周波数(fm)及び磁場強度に基づいて電源から供給される電力により、移動磁場発生装置3から印加される磁場強度、周波数(fm )及び磁場移動方向がそれぞれ個別に制御されるようになっている。 On the back side of the mold long side 4, a total of four linear type moving magnetic field generators 3 divided into two on the left and right in the width direction of the mold long side 4 with the immersion nozzle 2 as a boundary are center positions in the casting direction. Is positioned directly below the discharge hole 6 and is opposed to the long side 4 of the mold. Each of the mobile magnetic field generating device 3 is connected to the power supply (not shown), also, the power supply, the moving direction of the magnetic field, and is connected to the frequency (f m) and a control device for controlling the magnetic field strength (not shown) The magnetic field strength, frequency (f m ), and magnetic field applied from the moving magnetic field generator 3 by the power supplied from the power source based on the magnetic field moving direction, frequency (f m ), and magnetic field strength input from the control device. The moving directions are individually controlled.

この移動磁場発生装置3により印加される磁場はリニア型の移動磁場であり、鋳造速度が速くて鋳型内の溶鋼流動を抑制したい場合には、浸漬ノズル2からの溶鋼7の吐出流8に制動力を与えるべく、移動磁場の移動方向を鋳型短辺5の側から浸漬ノズル2の側とする。一方、鋳造速度が遅くて鋳型内の溶鋼流動を促進したい場合には、浸漬ノズル2からの吐出流8に加速力を与えるべく、移動磁場の移動方向を浸漬ノズル2の側から鋳型短辺5の側とする。また、凝固シェル10と溶鋼7との界面の溶鋼流速を増速させて、気泡や介在物の凝固シェル10への捕捉を抑制したい場合には、鋳型長辺4の同一背面側の移動磁場発生装置3の移動磁場の移動方向を同一方向とし、且つ、鋳型長辺4を挟んで対向する移動磁場発生装置3の移動磁場の移動方向を逆方向として、鋳型内の溶鋼7が水平方向に旋回するように印加する。本発明では、これらの3種類の印加方法でリニア型の移動磁場を印加する。図2では、磁場が鋳型短辺5から鋳型1の中央部の浸漬ノズル2に向かって移動する状態を示しており、図2において、FX は溶鋼7の吐出流8に作用する電磁力を表し、VX は移動磁場の移動速度を表し、BYは移動磁場の磁束密度を表している。 The magnetic field applied by the moving magnetic field generator 3 is a linear moving magnetic field. When the casting speed is high and it is desired to suppress the molten steel flow in the mold, the flow is controlled by the discharge flow 8 of the molten steel 7 from the immersion nozzle 2. In order to give power, the moving magnetic field is moved from the mold short side 5 to the immersion nozzle 2 side. On the other hand, when the casting speed is slow and it is desired to promote the flow of molten steel in the mold, the moving direction of the moving magnetic field is changed from the immersion nozzle 2 side to the mold short side 5 in order to give an acceleration force to the discharge flow 8 from the immersion nozzle 2. Let's say that In addition, when it is desired to increase the molten steel flow velocity at the interface between the solidified shell 10 and the molten steel 7 to suppress the trapping of bubbles and inclusions in the solidified shell 10, the generation of a moving magnetic field on the same back side of the mold long side 4 is generated. The movement direction of the moving magnetic field of the apparatus 3 is set to the same direction, and the moving direction of the moving magnetic field of the moving magnetic field generating apparatus 3 facing the mold long side 4 is reversed, and the molten steel 7 in the mold is turned in the horizontal direction. Apply as follows. In the present invention, a linear moving magnetic field is applied by these three types of application methods. FIG. 2 shows a state in which the magnetic field moves from the mold short side 5 toward the immersion nozzle 2 at the center of the mold 1. In FIG. 2, F X represents the electromagnetic force acting on the discharge flow 8 of the molten steel 7. represents, V X represents the moving speed of the moving magnetic field, B Y represents a magnetic flux density of the moving magnetic field.

移動磁場発生装置3には、図2に示すように複数の電磁コイル(但し図3では図示せず)が幅方向に並んで設置されており、隣り合う電磁コイルに流す電流の位相をずらすことにより、リニア型の移動磁場を発生させている。その磁場の移動速度(VX )は、電磁コイルのポールピッチ(τ)と周波数(fm)とから、下記の(5)式によって表される。電磁コイルのポールピッチ(τ)とは、S極からN極までの距離である。 In the moving magnetic field generator 3, a plurality of electromagnetic coils (not shown in FIG. 3) are arranged side by side in the width direction as shown in FIG. 2, and the phase of the current flowing through the adjacent electromagnetic coils is shifted. Thus, a linear moving magnetic field is generated. The moving speed (V X ) of the magnetic field is expressed by the following equation (5) from the pole pitch (τ) and the frequency (f m ) of the electromagnetic coil. The pole pitch (τ) of the electromagnetic coil is the distance from the S pole to the N pole.

Figure 0005070734
Figure 0005070734

ローレンツの法則により、発生する誘導電流(JZ )は下記の(6)で表される。但し、(6)式において、σは溶鋼の電気伝導度、VX は移動磁場の移動速度、BYは移動磁場の磁束密度である。 According to Lorentz's law, the generated induced current (J Z ) is expressed by the following (6). In equation (6), σ is the electric conductivity of the molten steel, V X is the moving speed of the moving magnetic field, and BY is the magnetic flux density of the moving magnetic field.

Figure 0005070734
Figure 0005070734

電磁力(FX )は下記の(7)式で表され、主に磁場の移動方向と同じ向きに電磁力(FX )が作用する。 The electromagnetic force (F X ) is expressed by the following equation (7), and the electromagnetic force (F X ) acts mainly in the same direction as the moving direction of the magnetic field.

Figure 0005070734
Figure 0005070734

前述したように、鋳造速度が速く、鋳型1における溶鋼流動を抑制したい場合には、磁場を両方の鋳型短辺5から浸漬ノズル2の方向に移動させ、電磁力(FX )によって浸漬ノズル2から吐出される溶鋼7の吐出流8を減速させる。逆に、鋳造速度が遅く、鋳型1における溶鋼流動を促進させたい場合には、磁場を浸漬ノズル2から鋳型短辺5の方向に移動させ、電磁力(FX)によって浸漬ノズル2から吐出される溶鋼7の吐出流8を加速させる。鋳型内の溶鋼を水平方向に旋回させる場合には、鋳型長辺4の内壁面に、対向する鋳型長辺4の内壁面の電磁力(FX)とは逆方向の電磁力(FX )を形成し、溶鋼を旋回攪拌する。つまり、リニア型の移動磁場を印加する場合、何れの場合も、(7)式に示すように、移動磁場の周波数(fm)の周期で鋳型内の溶鋼7に電磁力(FX )が作用することになる。 As described above, when the casting speed is high and the flow of molten steel in the mold 1 is to be suppressed, the magnetic field is moved from both mold short sides 5 toward the immersion nozzle 2 and the immersion nozzle 2 is driven by electromagnetic force (F X ). The discharge flow 8 of the molten steel 7 discharged from is decelerated. Conversely, when the casting speed is slow and it is desired to promote the flow of molten steel in the mold 1, the magnetic field is moved from the immersion nozzle 2 toward the mold short side 5 and discharged from the immersion nozzle 2 by electromagnetic force (F X ). The discharge flow 8 of the molten steel 7 is accelerated. When the molten steel in the mold is swung horizontally, the electromagnetic force (F X ) in the direction opposite to the electromagnetic force (F X ) of the inner wall surface of the mold long side 4 facing the inner wall surface of the mold long side 4 And swirl the molten steel. That is, when a linear type moving magnetic field is applied, in any case, as shown in the equation (7), the electromagnetic force (F X ) is applied to the molten steel 7 in the mold at a cycle of the frequency (f m ) of the moving magnetic field. Will work.

本発明者等は、このようにして構成される連続鋳造機において、リニア型移動磁場を印加して鋳型内の溶鋼流動を制御するに当たり、鋳型内の溶鋼湯面9における定在波を抑制するべく検討した。その結果、印加するリニア型移動磁場の周波数(fm )が定在波の周波数(f0 )と同一或いはその近傍であるときには、リニア型移動磁場を印加することで定在波の発生が助長されることを知見した。そして、鋳造速度を高速化するほど、定在波の発生が助長されることも知見した。逆に、リニア型移動磁場の周波数(fm)が定在波の周波数(f0 )と離れていれば、定在波は助長されないことを知見した。 In the continuous casting machine configured as described above, the inventors suppress the standing wave on the molten steel surface 9 in the mold when the linear moving magnetic field is applied to control the flow of the molten steel in the mold. We examined as much as possible. As a result, when the frequency (f m ) of the applied linear type moving magnetic field is the same as or close to the frequency (f 0 ) of the standing wave, the generation of the standing wave is facilitated by applying the linear type moving magnetic field. I found out that It was also found that the higher the casting speed, the more the generation of standing waves is promoted. Conversely, it has been found that if the frequency (f m ) of the linear moving magnetic field is separated from the frequency (f 0 ) of the standing wave, the standing wave is not promoted.

図4は、水モデル実験及び実機の連続鋳造機において発生した定在波の周波数(f0 )とそのときの鋳型幅(L)との関係を示す図である。尚、図4に示す曲線は、モード次数(n)を1、2、3、4として算出した鋳型幅(L)と定在波の周波数(f0)との関係を表す曲線である。図4に示すように、定在波として明確に確認されるのは、モード次数(n)がn=1,2の場合である。 FIG. 4 is a diagram showing the relationship between the water model experiment and the frequency (f 0 ) of the standing wave generated in the actual continuous casting machine and the mold width (L) at that time. The curve shown in FIG. 4 is a curve representing the relationship between the mold width (L) calculated with the mode order (n) being 1, 2, 3, 4 and the standing wave frequency (f 0 ). As shown in FIG. 4, it is clearly confirmed as a standing wave when the mode order (n) is n = 1,2.

つまり、リニア型移動磁場を印加する際に、リニア型移動磁場の周波数(fm )を、モード次数(n)が1及び2の場合の定在波の周波数(f0)から回避すればよいことが分かる。また、図4に示すように、定在波は、鋳型幅(L)つまり鋳片幅が1250mm以上の広幅の場合に発生しやすく、特に、鋳片幅が1250mm以上のスラブ鋳片を鋳造する際に、リニア型移動磁場の周波数に留意すればよいことが分かる。 That is, when applying the linear moving magnetic field, the frequency (f m ) of the linear moving magnetic field may be avoided from the frequency (f 0 ) of the standing wave when the mode order (n) is 1 and 2. I understand that. Further, as shown in FIG. 4, the standing wave is likely to occur when the mold width (L), that is, the slab width is 1250 mm or more, and in particular, casts a slab slab having a slab width of 1250 mm or more. At this time, it can be seen that the frequency of the linear type moving magnetic field should be noted.

鋳型幅(L)が1250mm以上になると、図4に示すように、モード次数(n)が1の場合の定在波の周波数(f0 )は1Hz未満となり、従って、移動磁場の周波数(fm)を定在波の周波数(f0 )よりも小さい側で回避しようとすると、移動磁場の周波数(fm )は0.5Hz程度よりも更に低い、極めて低い周波数となってしまう。移動磁場による電磁力(FX)は移動磁場の周波数(fm )の周期で溶鋼7に作用することから、周波数(fm )が低くなり過ぎると、浸漬ノズル2の吐出孔6から鋳型短辺5に到るまでの期間に移動磁場が印加されないままの吐出流8が発生することになる。この場合には、電磁力(FX)が間歇的に作用することになり、鋳型内溶鋼の流動制御が極めて困難となる。従って、吐出流8が吐出孔6から鋳型短辺5に至るまでの期間に少なくとも1周期以上の移動磁場による電磁力(FX)を吐出流8に作用させる必要がある。 When the mold width (L) is 1250 mm or more, as shown in FIG. 4, the frequency (f 0 ) of the standing wave when the mode order (n) is 1 is less than 1 Hz. If it is attempted to avoid m ) on the side smaller than the frequency (f 0 ) of the standing wave, the frequency (f m ) of the moving magnetic field is much lower than about 0.5 Hz. The electromagnetic force (F X ) due to the moving magnetic field acts on the molten steel 7 at the period of the moving magnetic field frequency (f m ). Therefore, if the frequency (f m ) becomes too low, the mold short from the discharge hole 6 of the immersion nozzle 2. In the period up to the side 5, the discharge flow 8 is generated without applying the moving magnetic field. In this case, the electromagnetic force (F X ) acts intermittently, making it extremely difficult to control the flow of molten steel in the mold. Accordingly, it is necessary to apply an electromagnetic force (F X ) due to a moving magnetic field of at least one cycle to the discharge flow 8 during the period from the discharge hole 6 to the mold short side 5.

そこで、本発明では、移動磁場の周波数(fm )を、定在波の周波数(f0 )よりも大きい側とすることによって、定在波の周波数(f0 )を回避するようにした。また、移動磁場の周波数(fm)を前述した(4)式により算出される周波数(f0 )の近傍とした場合には、定在波の防止は完全ではなく、従って、定在波を確実に防止するために、(4)式により算出される周波数(f0)に1Hzを加えた周波数(f0 +1)よりも高い周波数を、移動磁場の周波数(fm )とすることとした。 Therefore, in the present invention, the frequency of the moving magnetic field (f m), by a larger side than the standing wave of the frequency (f 0), and so as to avoid the frequency (f 0) of the standing wave. Further, when the frequency (f m ) of the moving magnetic field is set in the vicinity of the frequency (f 0 ) calculated by the above-described equation (4), the standing wave is not completely prevented. In order to prevent it reliably, a frequency higher than the frequency (f 0 +1) obtained by adding 1 Hz to the frequency (f 0 ) calculated by the equation (4) is set as the frequency (f m ) of the moving magnetic field. .

これらの観点にそって移動磁場の周波数(fm )を設定すると、移動磁場の周波数(fm )は、前述した(4)式にn=2を代入して算出される周波数(f0)に1Hzを加えた値よりも大きくすること、つまり下記の(1)式の範囲にする必要があることが分かる。即ち、移動磁場発生装置3から印加するリニア型移動磁場の周波数(fm)を下記の(1)式の範囲内にすることで、定在波の発生を抑制しつつ移動磁場による鋳型内溶鋼流動の制御を行うことができる。 Frequency of moving magnetic field along these viewpoints Setting (f m), the frequency of the moving magnetic field (f m) is the aforementioned (4) frequency that is calculated by substituting n = 2 in formula (f 0) It can be seen that it is necessary to make the value larger than the value obtained by adding 1 Hz to the above, that is, the range of the following expression (1). That is, by setting the frequency (f m ) of the linear type moving magnetic field applied from the moving magnetic field generator 3 within the range of the following formula (1), molten steel in the mold by the moving magnetic field while suppressing the generation of standing waves. Flow control can be performed.

Figure 0005070734
Figure 0005070734

この場合に、リニア型の移動磁場を印加して吐出流8を制動する或いは加速する際には、印加する移動磁場の強度の目安として、溶鋼湯面9の直下の溶鋼流速を、鋳型短辺5から浸漬ノズル2に向けた溶鋼流を正で表し、浸漬ノズル2から鋳型短辺5に向けた溶鋼流を負で表したときに、鋳型幅1/4の鋳型短辺寄りの位置における溶鋼湯面直下の溶鋼流速が−0.07m/秒から0.05m/秒の範囲内に維持されるように、移動磁場の強度を調整することが好ましい。溶鋼湯面直下の溶鋼流速をこのように制御することで、溶鋼湯面9の上に添加したモールドパウダー11の巻き込みが防止されると同時に、鋳型内の湯面変動が防止され、モールドパウダー11の巻き込みのない清浄な鋳片を製造することができる。   In this case, when the discharge flow 8 is braked or accelerated by applying a linear moving magnetic field, the molten steel flow velocity directly below the molten steel surface 9 is used as a guideline for the strength of the applied moving magnetic field. When the molten steel flow from 5 to the immersion nozzle 2 is represented by positive and the molten steel flow from the immersion nozzle 2 to the mold short side 5 is represented by negative, the molten steel at a position near the mold short side of the mold width 1/4. It is preferable to adjust the strength of the moving magnetic field so that the molten steel flow velocity just below the molten metal surface is maintained within the range of -0.07 m / sec to 0.05 m / sec. By controlling the flow rate of the molten steel just below the molten steel surface in this way, the entrainment of the mold powder 11 added on the molten steel surface 9 is prevented, and at the same time, the molten metal surface fluctuation in the mold is prevented, and the mold powder 11 It is possible to produce a clean slab without any entrainment.

また、リニア型の移動磁場を印加して鋳型内の溶鋼7を水平方向に旋回攪拌する場合には、凝固シェル10と溶鋼7との界面の溶鋼流速が0.1m/秒以上となるように、移動磁場の強度を調整することが好ましい。凝固シェル10と溶鋼7との界面の溶鋼流速を0.1m/秒以上とすることで、凝固シェル10へのガス気泡及び介在物の捕捉が抑制され、ガス気泡及び介在物の少ない清浄な鋳片を鋳造することができる。   Further, when the molten steel 7 in the mold is swirled in the horizontal direction by applying a linear moving magnetic field, the molten steel flow velocity at the interface between the solidified shell 10 and the molten steel 7 is 0.1 m / second or more. It is preferable to adjust the strength of the moving magnetic field. By setting the molten steel flow velocity at the interface between the solidified shell 10 and the molten steel 7 to 0.1 m / second or more, trapping of gas bubbles and inclusions in the solidified shell 10 is suppressed, and clean casting with less gas bubbles and inclusions is achieved. Pieces can be cast.

このように、本発明によれば、印加するリニア型移動磁場の周波数(fm )を、鋳型幅(L)に応じて(1)式を満足する範囲内とするので、定在波の発生を抑制しつつ移動磁場による鋳型内溶鋼流動の制御を行うことができる。その結果、定在波に起因する鋳型内湯面変動量を大幅に減少させることが可能となり、移動磁場印加による効果に加えて定在波に起因する鋳型内湯面変動の低減効果が重なり、脱酸生成物、Arガスなどの不活性ガスのガス気泡、及びモールドパウダーの巻き込みのない、清浄な鋳片を鋳造することができる。 As described above, according to the present invention, the frequency (f m ) of the applied linear type moving magnetic field is set within the range satisfying the expression (1) according to the mold width (L). It is possible to control the molten steel flow in the mold by the moving magnetic field while suppressing the above. As a result, the amount of fluctuation in the mold surface caused by the standing wave can be greatly reduced, and in addition to the effect of applying the moving magnetic field, the effect of reducing the fluctuation in the mold surface caused by the standing wave overlaps with the deoxidation. It is possible to cast a clean slab without the product, gas bubbles of an inert gas such as Ar gas, and mold powder.

本発明の効果を確認するために、図2に示すスラブ連続鋳造機を用いてアルミキルド鋼の鋳造試験を実施した。試験では、鋳片のサイズを、厚みが220mm、幅が1800mmとし、定常鋳造時の溶鋼の鋳造量を約5.7トン/分として鋳造した。用いた浸漬ノズルは、ノズル孔の底部が凹状形状である所謂「プール付き」の2孔ノズルで、吐出角度が下向き25度、ノズル内径が90mmの浸漬ノズルである。この浸漬ノズルにアルミナ付着防止のために9NL/分のArガスを吹き込んで鋳造した。移動磁場発生装置は、3相交流のリニア型移動磁場発生装置であり、電磁コイルのポールピッチ(τ)は0.72mであり、電磁コイルの中心位置が溶鋼湯面から380mm離れた位置になるように設置した。   In order to confirm the effect of the present invention, a cast test of aluminum killed steel was performed using a slab continuous casting machine shown in FIG. In the test, the slab was cast with a thickness of 220 mm, a width of 1800 mm, and a casting amount of molten steel during steady casting of about 5.7 tons / min. The immersion nozzle used is a so-called “with pool” two-hole nozzle in which the bottom of the nozzle hole has a concave shape. The immersion nozzle was cast by blowing Ar gas at 9 NL / min to prevent alumina adhesion. The moving magnetic field generator is a three-phase alternating current linear moving magnetic field generator. The pole pitch (τ) of the electromagnetic coil is 0.72 m, and the center position of the electromagnetic coil is 380 mm away from the molten steel surface. Was installed.

試験は、磁場の移動方向を鋳型短辺から浸漬ノズルに向かう方向とし、印加する移動磁場の周波数(fm )を1Hz及び2Hzの2水準で実施し、鋳型の1/4幅位置における表面流速がゼロ近傍(絶対値で0.05m/秒以下)になるように磁場強度を調整した。 In the test, the moving direction of the magnetic field is set to the direction from the short side of the mold to the immersion nozzle, the frequency (f m ) of the moving magnetic field to be applied is set at two levels of 1 Hz and 2 Hz, and the surface flow velocity at the 1/4 width position of the mold. Was adjusted to be near zero (0.05 m / second or less in absolute value).

この場合、鋳型の1/4幅位置における表面流速を測定する方法として、図5に示す方法を用いた。即ち、図5に示すように、鋳型短辺5から鋳型幅の1/4だけ離れた位置に、長さ410mm、直径20mmのモリブデン−ジルコニア系サーメット製の浸漬棒12を、その下端部が鋳型内の溶鋼中に浸漬され、その上端部付近が支点となって鋳型の幅方向に回転可能となるように取り付けた。浸漬棒12の溶鋼中における浸漬深さは約100mmとした。このようにして鋳型内の溶鋼7に浸漬棒12を浸漬すると、浸漬棒12の浸漬部分は、溶鋼湯面9の直下の溶鋼流により、その上端部付近の支点を中心として回転し、浸漬棒12に働く重力と溶鋼湯面直下の溶鋼流による力が釣合った位置で停止する。停止した位置における鉛直線となす角度(θ)から表面流速を求めることができる。本実施例では表面流速がゼロ近傍になるように調整するので、浸漬棒12がほぼ鉛直になるように磁場強度を調整した。尚、図5に示す連続鋳造機では浸漬棒以外の構成は図3に示す連続鋳造機と同一構造となっており、同一の部分は同一符号により示し、その説明は省略する。   In this case, the method shown in FIG. 5 was used as a method of measuring the surface flow velocity at the 1/4 width position of the mold. That is, as shown in FIG. 5, a dip rod 12 made of molybdenum-zirconia cermet having a length of 410 mm and a diameter of 20 mm is placed at a position apart from the mold short side 5 by ¼ of the mold width, and its lower end is a mold. It was immersed in the molten steel inside, and it attached so that the vicinity of the upper end part could be rotated in the width direction of a casting_mold | template with a fulcrum. The immersion depth of the immersion rod 12 in the molten steel was about 100 mm. When the immersion rod 12 is immersed in the molten steel 7 in the mold as described above, the immersion portion of the immersion rod 12 is rotated around the fulcrum near the upper end portion by the molten steel flow immediately below the molten steel surface 9, and the immersion rod 12 is stopped at a position where the gravity acting on 12 and the force of the molten steel flow just below the molten steel surface balance. The surface flow velocity can be obtained from the angle (θ) formed with the vertical line at the stopped position. In this embodiment, since the surface flow velocity is adjusted to be close to zero, the magnetic field strength is adjusted so that the dip rod 12 is substantially vertical. In addition, in the continuous casting machine shown in FIG. 5, the structure other than the dip rod has the same structure as that of the continuous casting machine shown in FIG.

移動磁場の周波数(fm )を1Hzとして鋳造した場合には、20mm程度の溶鋼湯面の変動があり、この湯面変動を周波数解析した結果、周波数1.01に大きなピークが観察された。一方、移動磁場の周波数(fm)を2Hzとして鋳造した場合には、湯面変動は5mm程度であり、周波数解析を行っても特別なピークは観察されなかった。 When casting was performed at a moving magnetic field frequency (f m ) of 1 Hz, there was a fluctuation of the molten steel surface of about 20 mm. As a result of frequency analysis of this molten metal surface fluctuation, a large peak was observed at a frequency of 1.01. On the other hand, when the frequency (f m ) of the moving magnetic field was cast at 2 Hz, the molten metal surface fluctuation was about 5 mm, and no special peak was observed even when frequency analysis was performed.

前述した(4)式を用いてこの鋳造条件におけるモード次数(n)が2の場合の定在波の周波数(f0 )を求めると、周波数(f0 )は0.93となる。これらから、移動磁場の周波数(fm)が、モード次数(n)が2の場合の定在波の周波数(f0 )と近接した場合には定在波による湯面変動が発生し、一方、移動磁場の周波数(fm)を前述した(1)式を満足する範囲とすることで、定在波に起因する湯面変動の発生しないことが確認できた。 When the frequency (f 0 ) of the standing wave when the mode order (n) under this casting condition is 2 using the above-described equation (4), the frequency (f 0 ) is 0.93. From these, when the frequency (f m ) of the moving magnetic field is close to the frequency (f 0 ) of the standing wave when the mode order (n) is 2, the molten metal surface fluctuation due to the standing wave occurs, It was confirmed that the molten metal surface fluctuation caused by the standing wave did not occur by setting the frequency (f m ) of the moving magnetic field within the range satisfying the above-described equation (1).

鋳型内溶鋼湯面における定在波の波形を模式的に示す図である。It is a figure which shows typically the waveform of the standing wave in the molten steel surface in a casting_mold | template. 本発明が適用される、リニア型移動磁場発生装置を備えたスラブ連続鋳造機の鋳型部の概略斜視図である。It is a schematic perspective view of the casting_mold | template part of the slab continuous casting machine provided with the linear type | mold moving magnetic field generator to which this invention is applied. 本発明が適用される、リニア型移動磁場発生装置を備えたスラブ連続鋳造機の鋳型部の概略正面図である。It is a schematic front view of the casting_mold | template part of the slab continuous casting machine provided with the linear type | mold moving magnetic field generator to which this invention is applied. 水モデル実験及び実機連続鋳造機において発生した定在波の周波数とそのときの鋳型幅との関係を示す図である。It is a figure which shows the relationship between the frequency of the standing wave which generate | occur | produced in the water model experiment and the real continuous casting machine, and the mold width at that time. 鋳型の1/4幅位置における表面流速を測定する方法を示す概略図である。It is the schematic which shows the method of measuring the surface flow velocity in the 1/4 width position of a casting_mold | template.

符号の説明Explanation of symbols

1 鋳型
2 浸漬ノズル
3 移動磁場発生装置
4 鋳型長辺
5 鋳型短辺
6 吐出孔
7 溶鋼
8 吐出流
9 溶鋼湯面
10 凝固シェル
11 モールドパウダー
12 浸漬棒
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Moving magnetic field generator 4 Mold long side 5 Mold short side 6 Discharge hole 7 Molten steel 8 Discharge flow 9 Molten steel surface 10 Solidified shell 11 Mold powder 12 Immersion rod

Claims (4)

磁場の移動方向が鋳型幅方向であるリニア型移動磁場発生装置を用い、長辺及び短辺を有する矩形状鋳型の中央部に設置された浸漬ノズルから鋳型内に供給された溶鋼にリニア型移動磁場を印加して鋳型内の溶鋼流動を制御しながら鋳造する鋼の連続鋳造方法であって、前記移動磁場の周波数を、スラブ鋳片を鋳造する鋳型の幅寸法に基づき、下記の(1)式を用いて求められる周波数の範囲内とし、鋳型幅によって定まる定在波を防止することを特徴とする、鋼の連続鋳造方法。
Figure 0005070734
但し、(1)式において、fm はリニア型移動磁場の周波数(Hz)、gは重力加速度(m/秒2 )、πは円周率(−)、Lは鋳型幅(m)である。
Using a linear type moving magnetic field generator whose magnetic field movement direction is the mold width direction, linear type movement to the molten steel supplied in the mold from the immersion nozzle installed at the center of the rectangular mold with long and short sides A continuous casting method of steel that casts while controlling the flow of molten steel in a mold by applying a magnetic field, wherein the frequency of the moving magnetic field is determined based on the width dimension of the mold for casting a slab slab (1) A continuous casting method for steel, characterized in that a standing wave determined by a mold width is prevented within a frequency range obtained using an equation.
Figure 0005070734
In Equation (1), f m is the frequency (Hz) of the linear moving magnetic field, g is the gravitational acceleration (m / sec 2 ), π is the circumference (−), and L is the mold width (m). .
前記リニア型移動磁場を印加して前記浸漬ノズルから吐出される溶鋼の吐出流を制動するまたは加速する際には、鋳型幅1/4の鋳型短辺寄りの位置における溶鋼湯面直下の溶鋼流速が、鋳型短辺から浸漬ノズルに向けた溶鋼流を正で表し、浸漬ノズルから鋳型短辺に向けた溶鋼流を負で表したときに、−0.07m/秒から0.05m/秒の範囲内に維持されるように、リニア型移動磁場の磁場強度を調整することを特徴とする、請求項1に記載の鋼の連続鋳造方法。   When braking or accelerating the discharge flow of the molten steel discharged from the immersion nozzle by applying the linear type moving magnetic field, the molten steel flow velocity immediately below the molten steel surface at the position near the mold short side of the mold width 1/4. However, when the molten steel flow from the short side of the mold toward the immersion nozzle is represented by positive and the molten steel flow from the immersion nozzle toward the short side of the mold is represented by negative, −0.07 m / second to 0.05 m / second The continuous casting method for steel according to claim 1, wherein the magnetic field strength of the linear moving magnetic field is adjusted so as to be maintained within the range. 前記リニア型移動磁場を印加して鋳型内の溶鋼を水平方向に旋回攪拌する際には、鋳型内の凝固シェルと溶鋼との界面における溶鋼流速が0.1m/秒以上に維持されるように、リニア型移動磁場の磁場強度を調整することを特徴とする、請求項1に記載の鋼の連続鋳造方法。   When the molten steel in the mold is swirled in the horizontal direction by applying the linear moving magnetic field, the molten steel flow velocity at the interface between the solidified shell and the molten steel in the mold is maintained at 0.1 m / second or more. The method for continuous casting of steel according to claim 1, wherein the magnetic field strength of the linear moving magnetic field is adjusted. 前記鋳型幅が1250mm以上であることを特徴とする、請求項1ないし請求項3の何れか1つに記載の鋼の連続鋳造方法。   The continuous casting method of steel according to any one of claims 1 to 3, wherein the mold width is 1250 mm or more.
JP2006138367A 2006-05-18 2006-05-18 Steel continuous casting method Active JP5070734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138367A JP5070734B2 (en) 2006-05-18 2006-05-18 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138367A JP5070734B2 (en) 2006-05-18 2006-05-18 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2007307577A JP2007307577A (en) 2007-11-29
JP5070734B2 true JP5070734B2 (en) 2012-11-14

Family

ID=38840894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138367A Active JP5070734B2 (en) 2006-05-18 2006-05-18 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5070734B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154623A (en) * 1991-12-04 1993-06-22 Nippon Steel Corp Method for controlling fluidity of molten steel in mold
JP2922363B2 (en) * 1992-06-18 1999-07-19 新日本製鐵 株式会社 Flow control device for molten steel in continuous casting mold
JP3099157B2 (en) * 1993-06-24 2000-10-16 新日本製鐵株式会社 Continuous casting method
JP3125664B2 (en) * 1996-01-19 2001-01-22 日本鋼管株式会社 Continuous casting method of ultra low carbon steel slab
JP4432263B2 (en) * 2001-01-17 2010-03-17 Jfeスチール株式会社 Steel continuous casting method
JP4380171B2 (en) * 2002-03-01 2009-12-09 Jfeスチール株式会社 Flow control method and flow control device for molten steel in mold and method for producing continuous cast slab

Also Published As

Publication number Publication date
JP2007307577A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4401777B2 (en) Apparatus and method for continuous casting
JP4380171B2 (en) Flow control method and flow control device for molten steel in mold and method for producing continuous cast slab
JP2013136101A (en) Method and apparatus for controlling flow of molten steel in mold
BR112012011137B1 (en) CONTINUOUS STEEL LANGUAGE METHOD
JP4794858B2 (en) Method and apparatus for controlling flow in ingot molds for continuous slab casting.
JPH03142049A (en) Method and apparatus for continuously casting steel using static magnetic field
JP5070734B2 (en) Steel continuous casting method
BR112018004704B1 (en) CONTINUOUS SHEET CASTING METHODS USING A SHEET CONTINUOUS CASTING MACHINE
EP3597328B1 (en) Continuous casting method for steel
JP2008055431A (en) Method of continuous casting for steel
JP7273303B2 (en) Continuous casting method and mold equipment
JP2003117636A (en) Method for controlling fluidity of molten steel in mold and device for forming electromagnetic field for this purpose
JP4910357B2 (en) Steel continuous casting method
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
TW201936292A (en) Molding facility
JP2023089832A (en) Casting condition setter, continuous caster, casting condition setting method, continuous casting method and high-tensile steel slab producing method
JP2006082092A (en) Method for continuous casting of steel
JP7273304B2 (en) Continuous casting method and mold equipment
JP2019214056A (en) Electromagnetic stirring method, electromagnetic stirring device, and mold facility
JP7211197B2 (en) Continuous casting method
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
JP4254576B2 (en) Steel continuous casting apparatus and continuous casting method
JP5018144B2 (en) Steel continuous casting method
JP4300955B2 (en) Steel continuous casting method
JP4595351B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250