JP5069545B2 - Process for producing heat-treated poly-p-phenylene sulfide film - Google Patents

Process for producing heat-treated poly-p-phenylene sulfide film Download PDF

Info

Publication number
JP5069545B2
JP5069545B2 JP2007315084A JP2007315084A JP5069545B2 JP 5069545 B2 JP5069545 B2 JP 5069545B2 JP 2007315084 A JP2007315084 A JP 2007315084A JP 2007315084 A JP2007315084 A JP 2007315084A JP 5069545 B2 JP5069545 B2 JP 5069545B2
Authority
JP
Japan
Prior art keywords
film
biaxially stretched
pps film
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007315084A
Other languages
Japanese (ja)
Other versions
JP2009138080A (en
Inventor
友則 細田
寿徳 飛田
正之 大倉
弘行 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2007315084A priority Critical patent/JP5069545B2/en
Publication of JP2009138080A publication Critical patent/JP2009138080A/en
Application granted granted Critical
Publication of JP5069545B2 publication Critical patent/JP5069545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、熱処理ポリ−p−フェニレンスルフィドフィルムの製造方法及びそれにより得ることのできる熱処理ポリ−p−フェニレンスルフィドフィルムに関する。なお、以下、ポリ−p−フェニレンスルフィドを「PPS」という。   The present invention relates to a method for producing a heat-treated poly-p-phenylene sulfide film and a heat-treated poly-p-phenylene sulfide film obtainable thereby. Hereinafter, poly-p-phenylene sulfide is referred to as “PPS”.

電気、電子部品分野において、機器の小型化や高機能化の観点から、電気特性や耐熱性に優れた絶縁基材の要求が増加している。
二軸延伸されたPPSフィルム(二軸延伸PPSフィルム)は優れた電気特性や機械的特性を有し、耐熱性に優れ、吸水率が低く、耐薬品性が高いという特性を有している。しかしながら、熱収縮による寸法変化を生じるため、例えば回路基板に使用された場合に熱が加わると回路のずれが生じやすいという問題があった。また、各種フレキシブル基板の製造時にスペーサーとして使用された場合には二軸延伸PPSフィルムの収縮により、基板の変形を生じさせやすいという問題があった。ここで、寸法安定性とは、温度などの周囲の条件に変動が生じてもその寸法を保持する性能をいう。
In the field of electrical and electronic parts, there is an increasing demand for an insulating base material having excellent electrical characteristics and heat resistance from the viewpoint of miniaturization and high functionality of equipment.
A biaxially stretched PPS film (biaxially stretched PPS film) has excellent electrical properties and mechanical properties, excellent heat resistance, low water absorption, and high chemical resistance. However, since a dimensional change due to thermal contraction occurs, for example, when used for a circuit board, there is a problem that the circuit is liable to be displaced when heat is applied. Moreover, when it was used as a spacer at the time of manufacture of various flexible substrates, there was a problem that the substrate was easily deformed due to the shrinkage of the biaxially stretched PPS film. Here, the dimensional stability refers to the ability to maintain the dimensions even when the ambient conditions such as temperature vary.

特許文献1には、二軸延伸PPSフィルムを150〜280℃にて緊張下に熱処理した後、縦横両方に各々20%以内の制限収縮もしくは伸長または定長下で、熱処理温度より低く50℃以上の温度で再度熱処理することにより、寸法安定性を向上させる方法が開示されている。   In Patent Document 1, a biaxially stretched PPS film is heat-treated at 150 to 280 ° C. under tension, and then is less than the heat treatment temperature at 50 ° C. or more, both within the longitudinal and lateral directions, under limited shrinkage or extension or constant length of 20% or less. A method for improving the dimensional stability by heat-treating again at the temperature is disclosed.

また、特許文献2には、アニール処理などで二軸延伸PPSフィルムの熱収縮率を小さくする加工を行うと、フィルムの平面性が著しく悪化してしまう場合があることが述べられている。
特公昭59−5099号公報 特開2004−96040号公報
Further, Patent Document 2 states that when the processing for reducing the thermal shrinkage rate of the biaxially stretched PPS film is performed by annealing or the like, the flatness of the film may be remarkably deteriorated.
Japanese Patent Publication No.59-5099 JP 2004-96040 A

PPSフィルムの適用分野の拡大にともなって、二軸延伸PPSフィルムの寸法安定性のさらなる向上が望まれている。そこで、本発明の目的は、高い平面性を有するのみならず、特に優れた寸法安定性を示す熱処理PPSフィルムを製造可能な製造方法、及びこの製造方法によって得ることのできる、平面性及び寸法安定性が高い熱処理PPSフィルムを提供することにある。   With the expansion of the application field of PPS films, further improvement in the dimensional stability of biaxially stretched PPS films is desired. Accordingly, an object of the present invention is to provide a production method capable of producing a heat-treated PPS film that not only has high flatness but also exhibits excellent dimensional stability, and flatness and dimensional stability that can be obtained by this production method. The object is to provide a heat-treated PPS film having high properties.

本発明は、二軸延伸PPSフィルムを加熱する加熱工程を含む、熱処理PPSフィルムの製造方法であって、加熱工程において、加熱を160℃超290℃未満の範囲から選ばれる加熱温度で行い、二軸延伸PPSフィルムの加熱温度における収縮応力よりも小さい引張応力を、二軸延伸PPSフィルムに対し一方向に付加する、製造方法を提供する。   The present invention is a method for producing a heat-treated PPS film including a heating step for heating a biaxially stretched PPS film, wherein the heating step is performed at a heating temperature selected from a range of more than 160 ° C. and less than 290 ° C. Provided is a production method in which a tensile stress smaller than a shrinkage stress at a heating temperature of an axially stretched PPS film is applied to the biaxially stretched PPS film in one direction.

本発明の製造方法は、二軸延伸PPSフィルムを160℃超290℃未満という所定の温度で加熱する点、また、その温度における二軸延伸PPSフィルムの収縮応力よりも小さい引張応力を一方向に付加する点、を主な特徴としており、このような条件で熱処理を行うことにより、高い平面性を有し寸法安定性にも非常に優れた熱処理PPSフィルムを製造可能となる。   In the production method of the present invention, the biaxially stretched PPS film is heated at a predetermined temperature of more than 160 ° C. and less than 290 ° C., and a tensile stress smaller than the shrinkage stress of the biaxially stretched PPS film at that temperature is applied in one direction. The main feature is that it is added, and by performing the heat treatment under such conditions, it becomes possible to produce a heat-treated PPS film having high flatness and excellent dimensional stability.

加熱工程において、二軸延伸PPSフィルムを巻き取りながら、加熱を連続的に行うことが好ましい。また、この時に、収縮応力よりも小さい引張応力を、二軸延伸PPSフィルムに対し、巻き取り方向に付加することが好ましい。二軸延伸PPSフィルムを巻き取りながら、加熱を連続的に行うことで、平面性及び寸法安定性が特に優れた熱処理PPSフィルムを連続的に得ることができ、工業的に有利となる。   In the heating step, it is preferable to perform heating continuously while winding the biaxially stretched PPS film. At this time, it is preferable to apply a tensile stress smaller than the shrinkage stress to the biaxially stretched PPS film in the winding direction. By continuously heating while winding the biaxially stretched PPS film, a heat-treated PPS film having particularly excellent flatness and dimensional stability can be obtained continuously, which is industrially advantageous.

この場合において、二軸延伸PPSフィルムに付加する、収縮応力よりも小さい引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で、0kgf超20kgf未満であることが好ましい。160℃超290℃未満の加熱温度において上記の範囲にある引張応力を与えると、平面性が高く寸法安定性がさらに向上した熱処理PPSフィルムを効率的に得ることができるようになる。上記引張応力の数値は、1m幅・40μm厚の断面積を有するフィルムの場合の数値であり、異なる断面形状のフィルムについては1m幅・40μm厚の断面積の時の強度に換算して引張応力を評価する。   In this case, the tensile stress smaller than the shrinkage stress applied to the biaxially stretched PPS film is equivalent to a film having a cross-sectional area of 1 m width and 40 μm thickness, and is preferably more than 0 kgf and less than 20 kgf. When a tensile stress in the above range is applied at a heating temperature of more than 160 ° C. and less than 290 ° C., a heat treated PPS film having high planarity and further improved dimensional stability can be obtained efficiently. The numerical values of the above tensile stress are values in the case of a film having a cross-sectional area of 1 m width and 40 μm thickness. For films having different cross-sectional shapes, the tensile stress is converted into strength at the time of a cross-sectional area of 1 m width and 40 μm thickness. To evaluate.

上記製造方法により熱処理PPSフィルムが得られるが、この熱処理PPSフィルムフィルムは、平面性が高く、寸法安定性に優れるため、例えば精密電子回路基板や基板製造時のスペーサー(剥離フィルム)などの、寸法のずれが許されない用途に好適に利用することが可能である。   A heat-treated PPS film can be obtained by the above-described production method. This heat-treated PPS film has high flatness and excellent dimensional stability. For example, dimensions such as a precision electronic circuit board and a spacer (peeling film) at the time of production of the board are available. It can be suitably used for applications in which a deviation is not allowed.

本発明により、高い平面性を有し、非常に優れた寸法安定性を示す熱処理PPSフィルムの製造方法が提供される。また、この製造方法によって得られる、平面性及び寸法安定性が高い熱処理PPSフィルムが提供される。   The present invention provides a method for producing a heat-treated PPS film having high flatness and exhibiting very excellent dimensional stability. Moreover, the heat processing PPS film obtained by this manufacturing method and having high flatness and dimensional stability is provided.

本発明の熱処理PPSフィルムの製造方法は、二軸延伸PPSフィルムを加熱する加熱工程を含む。この加熱工程においては、加熱を160℃超290℃未満の範囲から選ばれる加熱温度で行い、この温度における二軸延伸PPSフィルムの収縮応力よりも小さい引張応力を、二軸延伸PPSフィルムの巻き取り方向に付加する。   The method for producing a heat-treated PPS film of the present invention includes a heating step of heating the biaxially stretched PPS film. In this heating step, the heating is performed at a heating temperature selected from the range of more than 160 ° C. and less than 290 ° C., and a tensile stress smaller than the shrinkage stress of the biaxially stretched PPS film at this temperature is taken up of the biaxially stretched PPS film. Append to direction.

加熱工程は、例えば、160℃超290℃未満の範囲から選ばれる温度(T1)に設定された炉(乾燥炉など)の中で二軸延伸PPSフィルムを保持することで実施できる。この場合において、乾燥炉の温度が全体的にT1になるように均一化してもよく、上記範囲内ではあるがT1とは異なる、T2、T3、T4・・・と複数温度領域を設けて、これらの温度領域に二軸延伸PPSフィルムを晒すようにしてもよい。さらには、乾燥炉の温度をT1からT2まで徐々に変化するようにしてもよい。加熱温度が160℃以下では二軸延伸PPSフィルムの寸法安定性の向上が不十分になる場合があり、加熱温度が290℃以上では二軸延伸PPSフィルムが溶融しフィルム形状の保持が困難となる。加熱温度は、160℃超290℃未満が好ましく、160℃超285℃未満がより好ましく、160℃超260℃未満がさらにより好ましく、160℃超250℃未満がさらにより好ましく、180℃超250℃未満がさらにより好ましく、180℃超240℃未満が特に好ましい。   A heating process can be implemented by hold | maintaining a biaxially-stretched PPS film in furnaces (drying furnace etc.) set to the temperature (T1) chosen from the range over 160 degreeC and less than 290 degreeC, for example. In this case, the temperature of the drying furnace may be made uniform so as to be T1 as a whole, and within the above range, but different from T1, T2, T3, T4. The biaxially stretched PPS film may be exposed to these temperature ranges. Furthermore, you may make it change the temperature of a drying furnace gradually from T1 to T2. When the heating temperature is 160 ° C. or lower, the improvement in the dimensional stability of the biaxially stretched PPS film may be insufficient, and when the heating temperature is 290 ° C. or higher, the biaxially stretched PPS film melts and it is difficult to maintain the film shape. . The heating temperature is preferably more than 160 ° C and less than 290 ° C, more preferably more than 160 ° C and less than 285 ° C, even more preferably more than 160 ° C and less than 260 ° C, even more preferably more than 160 ° C and less than 250 ° C, more preferably more than 180 ° C and more than 250 ° C. Is even more preferable, and more than 180 ° C. and less than 240 ° C. is particularly preferable.

加熱工程においては、二軸延伸PPSフィルム全体が一様に加熱温度に到達するように加熱することが好ましい。したがって、二軸延伸PPSフィルムの厚さや幅等にしたがって、乾燥炉中の移動速度や加熱時間を制御するのが好適である。以下に述べるように、二軸延伸PPSフィルムを乾燥炉中で連続的に加熱する場合は、乾燥炉から引き出されるまでの間に厚さ方向が一様に加熱温度に到達するようにすればよい。加熱時間が短すぎると二軸延伸PPSフィルムの寸法安定性を充分に向上させることができず、長すぎると収縮量が増加し、また不均一となるため、平面性不良となる。
例えば、1m幅・40μm厚の二軸延伸PPSフィルムを、乾燥炉中で20m/分の速度で移動させて加熱する場合には、二軸延伸PPSフィルムの乾燥炉中の滞在時間は15秒〜2分とするとよい。また、例えば、1m幅・25μm厚の二軸延伸PPSフィルムを、乾燥炉中で40m/分の速度で移動させて加熱する場合には、二軸延伸PPSフィルムの乾燥炉中の滞在時間を15秒〜1分とするよい。
In the heating step, it is preferable to heat so that the entire biaxially stretched PPS film reaches the heating temperature uniformly. Therefore, it is preferable to control the moving speed and heating time in the drying furnace according to the thickness and width of the biaxially stretched PPS film. As described below, when the biaxially stretched PPS film is continuously heated in the drying furnace, the thickness direction may reach the heating temperature uniformly until it is pulled out from the drying furnace. . If the heating time is too short, the dimensional stability of the biaxially stretched PPS film cannot be sufficiently improved, and if it is too long, the amount of shrinkage increases and becomes non-uniform, resulting in poor flatness.
For example, when a biaxially stretched PPS film having a width of 1 m and a thickness of 40 μm is heated by moving at a speed of 20 m / min in a drying furnace, the residence time of the biaxially stretched PPS film in the drying furnace is 15 seconds to 2 minutes is recommended. For example, when a biaxially stretched PPS film having a width of 1 m and a thickness of 25 μm is heated by moving at a rate of 40 m / min in a drying furnace, the residence time of the biaxially stretched PPS film in the drying furnace is set to 15 It may be a second to 1 minute.

加熱工程においては、乾燥炉の出口側に巻き取り機を設置し、二軸延伸PPSフィルムを巻き取りながら連続的に加熱工程を行うことが好ましい。この過程において、二軸延伸PPSフィルムが巻き取り方向に受ける引張応力が、1m幅・40μm厚の断面積を有するフィルム相当で0kgfより大きく且つ加熱工程の温度における二軸延伸PPSフィルムの収縮応力より小さく保たれることが重要である。この引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で、0kgf超20kgf未満であることが好ましく、0kgf超5kgf未満であることがより好ましく、0kgf超2kgf未満であることがより好ましく、0kgf超1kgf未満であることが特に好ましい。この製造方法により、熱処理PPSフィルムの平面性を保ち、寸法安定性を劇的に向上させることが可能である。   In the heating process, it is preferable to install a winder on the outlet side of the drying furnace and continuously perform the heating process while winding the biaxially stretched PPS film. In this process, the tensile stress that the biaxially stretched PPS film is subjected to in the winding direction is equivalent to a film having a cross-sectional area of 1 m width and 40 μm thickness, which is greater than 0 kgf and from the shrinkage stress of the biaxially stretched PPS film at the temperature of the heating process It is important to keep it small. This tensile stress is equivalent to a film having a cross-sectional area of 1 m width and 40 μm thickness, preferably more than 0 kgf and less than 20 kgf, more preferably more than 0 kgf and less than 5 kgf, more preferably more than 0 kgf and less than 2 kgf. It is particularly preferable that it is more than 0 kgf and less than 1 kgf. By this manufacturing method, it is possible to maintain the flatness of the heat-treated PPS film and dramatically improve the dimensional stability.

なお、ある温度における二軸延伸PPSフィルムの収縮応力は例えば熱分析装置(TMA)(SII(株)製、型式TMA/SS6100、標準型)を用い、昇温速度10℃/分で30℃から345℃まで昇温させることにより測定することができる。表1に、上記方法により測定した、各温度における二軸延伸PPSフィルムの収縮応力の測定値を示す。サンプルには40μm厚の二軸延伸PPSフィルムを用い、サンプル長を15mmで一定に保ち、昇温過程における荷重の変化から、温度と収縮応力の関係を求めた。この測定に用いた二軸延伸PPSフィルムは、繰り返し単位であるポリ−p−フェニレンスルフィドが70モル%以上含まれる重合体であり、重量平均分子量(Mw)は約50,000であり、310℃での溶融粘度は、せん断速度1,200/秒の条件下で1580ポイズであった。測定に用いた二軸延伸PPSフィルムを得るためのモノマーとしては、水硫化ナトリウムと水酸化ナトリウムを使用した。表1の収縮応力は、40μm厚の二軸延伸PPSフィルムの、1m幅当たりの応力として示した。   The shrinkage stress of the biaxially stretched PPS film at a certain temperature is, for example, from 30 ° C. at a heating rate of 10 ° C./min using a thermal analyzer (TMA) (manufactured by SII, model TMA / SS6100, standard type). It can be measured by raising the temperature to 345 ° C. Table 1 shows the measured values of the shrinkage stress of the biaxially stretched PPS film at each temperature, measured by the above method. A 40 μm thick biaxially stretched PPS film was used as the sample, the sample length was kept constant at 15 mm, and the relationship between temperature and shrinkage stress was determined from the change in load during the temperature rising process. The biaxially stretched PPS film used for this measurement is a polymer containing 70 mol% or more of poly-p-phenylene sulfide which is a repeating unit, and has a weight average molecular weight (Mw) of about 50,000 and 310 ° C. The melt viscosity of was 1580 poise under conditions of a shear rate of 1,200 / sec. As a monomer for obtaining the biaxially stretched PPS film used for the measurement, sodium hydrosulfide and sodium hydroxide were used. The shrinkage stress in Table 1 is shown as the stress per 1 m width of a 40 μm thick biaxially stretched PPS film.

Figure 0005069545
Figure 0005069545

表1より、本発明の熱処理PPSフィルムの製造方法において、例えば200℃で加熱工程を実施する場合には、二軸延伸PPSフィルムが巻き取り方向に受ける引張応力が1m幅・40μm厚の断面積を有するフィルム相当で0kgfより大きく0.51kgf未満となるように調節すると良いことがわかる。   From Table 1, in the manufacturing method of the heat-treated PPS film of the present invention, for example, when the heating step is performed at 200 ° C., the tensile stress that the biaxially stretched PPS film receives in the winding direction is 1 m wide and 40 μm thick in cross-sectional area. It can be seen that the film should be adjusted to be larger than 0 kgf and smaller than 0.51 kgf.

以上の製造方法により、高い平面性を有し、非常に優れた寸法安定性を示す熱処理PPSフィルムを製造することが可能である。   By the above production method, it is possible to produce a heat-treated PPS film having high planarity and showing very excellent dimensional stability.

続いて、本発明の製造方法に用いることができる二軸延伸PPSフィルムについて説明する。
二軸延伸PPSフィルムの材料であるPPSポリマーは、ポリマー組成物中の70モル%以上、好ましくは90モル%以上が下記構造式(1)で示される構成単位からなる重合体である。この成分が70モル%未満ではポリマーの結晶性、熱転移温度等が低くなり、PPSを主成分とするフィルムの特長である、耐熱性や機械的特性等を充分発揮することができない場合がある。

Figure 0005069545
Subsequently, a biaxially stretched PPS film that can be used in the production method of the present invention will be described.
The PPS polymer that is a material of the biaxially stretched PPS film is a polymer in which 70 mol% or more, preferably 90 mol% or more in the polymer composition is composed of structural units represented by the following structural formula (1). If this component is less than 70 mol%, the crystallinity, thermal transition temperature, etc. of the polymer will be low, and it may not be possible to fully exhibit the heat resistance, mechanical properties, etc., which are the characteristics of films mainly composed of PPS. .
Figure 0005069545

ポリマーの構成単位のうち30モル%未満、好ましくは15モル%未満であれば、共重合可能なスルフィド結合を含有する上記構造式(1)以外の単位が含まれていても差し支えない。共重合可能なスルフィド結合を含有する単位としては、下記構造式(2)で示される構成単位からなるものが具体例として挙げられ、これらのうち1つ又は2つ以上を共存させてもよい。構造式(2)中、Qはハロゲン原子またはメチル基を示し、mは1〜4の整数を示す。

Figure 0005069545
As long as it is less than 30 mol%, preferably less than 15 mol% of the constituent units of the polymer, units other than the above structural formula (1) containing a copolymerizable sulfide bond may be contained. Specific examples of the unit containing a copolymerizable sulfide bond include those composed of a structural unit represented by the following structural formula (2), and one or more of them may coexist. In Structural Formula (2), Q represents a halogen atom or a methyl group, and m represents an integer of 1 to 4.
Figure 0005069545

PPSポリマーに、上記構造式(2)で示される構成単位を含ませる場合、ポリマーの構成単位は、ランダム共重合、ブロック共重合のいずれの形態で重合されたものであってもよい。また、ポリマーの末端または末端近くに上記構造式(1)以外の構成単位が存在してもよい。ポリマーの残りの30モル%未満はPPSポリマー以外のポリマー、着色剤、紫外線吸収剤などの添加物を含んでもよい。   When the PPS polymer contains the structural unit represented by the structural formula (2), the polymer structural unit may be polymerized in any form of random copolymerization and block copolymerization. Further, a structural unit other than the structural formula (1) may be present at or near the terminal of the polymer. The remaining less than 30 mol% of the polymer may contain additives other than the PPS polymer, such as a polymer, a colorant, and an ultraviolet absorber.

二軸延伸PPSフィルムは、例えば次のような方法で未延伸フィルムを得た後に、二軸延伸することにより製造可能である。
まず、PPSを主成分とする樹脂組成物を押出し機に供給し、ペレットの形態にする。本発明におけるPPSの溶融粘度は、310℃、せん断速度1200/秒の条件下で200ポイズ以上であることが好ましい。ここで、せん断速度とは、平行な板の間を粘性流体が通過する際の速度勾配として定義される値である。本発明において、この条件下におけるPPSの溶融粘度は200〜20,000ポイズの範囲であることが好ましく、300〜18,000ポイズの範囲であることがさらに好ましい。溶融粘度が200ポイズ未満では、フィルムの機械的特性、耐熱性に劣りPPSフィルムの特徴が発揮出来ない場合がある。また、溶融粘度が20,000ポイズ以上では、押出し機や瀘過装置などに高負荷がかかり問題となる場合がある。また、この過程でPPSを主成分とする樹脂組成物をペレットの形態にせず、押出し機の出口に直接成形用のダイを接続し、フィルム状にキャストすることも可能である。
A biaxially stretched PPS film can be produced by, for example, obtaining an unstretched film by the following method and then stretching it biaxially.
First, the resin composition which has PPS as a main component is supplied to an extruder, and is made into the form of a pellet. The melt viscosity of PPS in the present invention is preferably 200 poise or more under conditions of 310 ° C. and a shear rate of 1200 / sec. Here, the shear rate is a value defined as a velocity gradient when a viscous fluid passes between parallel plates. In the present invention, the melt viscosity of PPS under these conditions is preferably in the range of 200 to 20,000 poise, and more preferably in the range of 300 to 18,000 poise. When the melt viscosity is less than 200 poise, the mechanical properties and heat resistance of the film are inferior, and the characteristics of the PPS film may not be exhibited. On the other hand, when the melt viscosity is 20,000 poises or more, a high load may be applied to the extruder or the filtering device, which may be a problem. In this process, the resin composition containing PPS as a main component can be cast into a film by connecting a molding die directly to the outlet of the extruder without forming a pellet.

続いて、上記の工程で得られたPPSを主成分とする樹脂ペレットを、押出し機に供給する。供給した樹脂を熱溶融し、ダイにて目的のフィルム形状に成形し、吐出させる。この過程でフィルタ等を介して溶融した樹脂を瀘過し塵埃または添加物の凝集物など粗大異物を除去することが、良好なPPSフィルムを得るうえで好ましい。
ダイから吐出されたフィルムを、金属ドラム等の冷却体上に押し当て、冷却固化することにより未延伸フィルムが得られる。
Subsequently, the resin pellets mainly composed of PPS obtained in the above process are supplied to an extruder. The supplied resin is melted by heat, formed into a desired film shape with a die, and discharged. In this process, it is preferable to obtain a good PPS film by filtering molten resin through a filter or the like to remove coarse foreign matters such as dust or aggregates of additives.
An unstretched film is obtained by pressing the film discharged from the die onto a cooling body such as a metal drum and solidifying by cooling.

このようにして得られた未延伸フィルムを、二軸延伸することにより強度を付与する。二軸延伸とは、縦方向および横方向に分子配向を与えるために延伸することをいう。ここで、縦方向とは、フィルムの長手方向(巻き取り方向)を指し、横方向とは、フィルムの幅方向を指す。延伸は、逐次二軸延伸してもよいし、同時に二方向に延伸してもよい。また、さらに縦及び/又は横方向に再延伸を行ってもよい。   The unstretched film thus obtained is imparted with strength by biaxial stretching. Biaxial stretching refers to stretching in order to give molecular orientation in the longitudinal and transverse directions. Here, the longitudinal direction refers to the longitudinal direction (winding direction) of the film, and the lateral direction refers to the width direction of the film. Stretching may be sequentially biaxially stretched or simultaneously stretched in two directions. Further, re-stretching may be performed in the longitudinal and / or transverse direction.

ここでは逐次二軸延伸する場合について説明する。まず、ロール間延伸によって縦方向への延伸を行い、続いてテンター延伸機を用いて横方向への延伸を行う。   Here, the case of sequential biaxial stretching will be described. First, stretching in the machine direction is performed by stretching between rolls, and then stretching in the transverse direction is performed using a tenter stretching machine.

まず、縦方向への延伸について説明する。縦方向への延伸は、通常は、ロールの周速差により施される。この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階で行ってもよい。   First, stretching in the longitudinal direction will be described. Stretching in the longitudinal direction is usually performed by the difference in the peripheral speed of the roll. This stretching may be performed in one stage, or may be performed in multiple stages using a plurality of roll pairs.

縦方向への延伸時のPPSフィルムの表面温度は80〜110℃が好ましく、85〜105℃がさらに好ましい。延伸の温度が80℃以下では、延伸応力が高くなり、フィルムが白化してしまう場合がある。また、延伸の温度が105℃以上では延伸ロールにフィルムが断続的に密着するスティックスリップが生じ、均一延伸が困難となる。延伸温度の設定は、通常は、ロールの温度を調節することにより行う。   80-110 degreeC is preferable and, as for the surface temperature of the PPS film at the time of extending | stretching to a vertical direction, 85-105 degreeC is more preferable. When the stretching temperature is 80 ° C. or lower, the stretching stress becomes high and the film may be whitened. On the other hand, when the stretching temperature is 105 ° C. or higher, stick slip occurs where the film intermittently adheres to the stretching roll, and uniform stretching becomes difficult. The stretching temperature is usually set by adjusting the temperature of the roll.

また、縦方向への延伸の倍率は、2.6〜5.0倍が好ましく、3.0〜4.0倍がさらに好ましい。延伸の倍率が2.6倍以下では縦方向の十分な強度および耐熱性を得るのが困難となる。また、延伸の倍率が5.0倍以上では横方向へ延伸可能な倍率が低くなり、十分な倍率の横方向への延伸ができず、縦方向と横方向の物性のバランスをとることが困難となる。   The stretching ratio in the longitudinal direction is preferably 2.6 to 5.0 times, and more preferably 3.0 to 4.0 times. When the stretching ratio is 2.6 times or less, it is difficult to obtain sufficient strength and heat resistance in the longitudinal direction. In addition, when the draw ratio is 5.0 times or more, the drawable ratio in the transverse direction is low, and it is difficult to draw in the transverse direction at a sufficient magnification, making it difficult to balance the physical properties in the longitudinal and transverse directions. It becomes.

また、縦方向への延伸速度は100〜50,000%/分が好ましく、200〜40,000%/分がさらに好ましい。延伸速度が100%/分以下では生産性が悪くなる傾向がある。また、延伸速度が50,000%/分以上ではテンター延伸機における熱処理の時間が短くなり、寸法安定性に優れる二軸延伸PPSフィルムが得られない場合がある。   The stretching speed in the machine direction is preferably 100 to 50,000% / min, more preferably 200 to 40,000% / min. When the stretching speed is 100% / min or less, the productivity tends to deteriorate. When the stretching speed is 50,000% / min or more, the heat treatment time in the tenter stretching machine is shortened, and a biaxially stretched PPS film having excellent dimensional stability may not be obtained.

次に、横方向への延伸について説明する。縦方向に延伸されたPPSフィルムをテンター延伸機に導入し、テンター延伸機のクリップでPPSフィルムの両端をつかんで引っ張り、横方向の延伸を行う。   Next, the stretching in the lateral direction will be described. The PPS film stretched in the longitudinal direction is introduced into a tenter stretching machine, and both ends of the PPS film are gripped and pulled by clips of the tenter stretching machine to perform stretching in the lateral direction.

横方向への延伸時のPPSフィルムの温度は80〜110℃が好ましく、85〜105℃がさらに好ましい。延伸の温度が80℃以下では、延伸が均一に行われず、良好な表面性が得られない場合がある。また、延伸の温度が110℃以上では配向結晶化が十分に進まず、弾性率や耐熱物性が不十分となる傾向がある。   The temperature of the PPS film during stretching in the transverse direction is preferably 80 to 110 ° C, and more preferably 85 to 105 ° C. When the stretching temperature is 80 ° C. or less, stretching may not be performed uniformly and good surface properties may not be obtained. Further, when the stretching temperature is 110 ° C. or higher, oriented crystallization does not proceed sufficiently, and the elastic modulus and heat resistance properties tend to be insufficient.

また、横方向への延伸の倍率は、2.5〜5.0倍が好ましく、3.0〜4.5倍がさらに好ましい。延伸の倍率が2.5倍以下では横方向で均一な延伸倍率を得ることが難しく、平面性不良の要因となる場合がある。また、延伸の倍率が5.0倍以上では、破断が頻発し、生産性に欠ける傾向がある。   Further, the stretching ratio in the transverse direction is preferably 2.5 to 5.0 times, and more preferably 3.0 to 4.5 times. If the draw ratio is 2.5 times or less, it is difficult to obtain a uniform draw ratio in the transverse direction, which may cause poor flatness. Moreover, when the draw ratio is 5.0 times or more, breakage frequently occurs and the productivity tends to be lacking.

また、横方向への延伸速度は100〜5,000%/分が好ましく、150〜3,000%/分がさらに好ましい。延伸速度が100%/分以下では生産性が悪くなる傾向にある。また、延伸速度が5,000%/分以上ではテンター延伸機における熱処理の時間が短くなり、寸法安定性に優れる二軸延伸PPSフィルムが得られない場合がある。   Further, the stretching speed in the transverse direction is preferably 100 to 5,000% / min, and more preferably 150 to 3,000% / min. When the stretching speed is 100% / min or less, the productivity tends to deteriorate. On the other hand, when the stretching speed is 5,000% / min or more, the heat treatment time in the tenter stretching machine is shortened, and a biaxially stretched PPS film having excellent dimensional stability may not be obtained.

横方向への延伸後直ちにクリップ間の距離を0.1〜10%、より好ましくは0.5〜7%縮めることでPPSフィルムを緩和させ、テンター延伸機内で延伸温度以上、融点以下の熱固定処理を行うことが好ましい。この熱固定処理により、横方向の高温下における収縮率を低下させる効果が得られる。熱固定処理の温度は240℃超290℃未満が好ましく、250℃超285℃未満がさらに好ましい。熱固定処理の温度が240℃以下では、熱固定による横方向の緩和が効率よく行われず、高温下で寸法安定性に優れる二軸延伸PPSフィルムを得るのが困難になる。また、熱固定処理の温度が290℃以上ではPPSフィルムの融点を超えてしまうため、製膜が困難になる。   Immediately after stretching in the transverse direction, the PPS film is relaxed by reducing the distance between the clips by 0.1 to 10%, more preferably 0.5 to 7%, and heat setting at a temperature higher than the stretching temperature and lower than the melting point in the tenter stretching machine. It is preferable to carry out the treatment. By this heat setting treatment, an effect of reducing the shrinkage rate at a high temperature in the lateral direction can be obtained. The temperature of the heat setting treatment is preferably more than 240 ° C. and less than 290 ° C., more preferably more than 250 ° C. and less than 285 ° C. When the temperature of the heat setting treatment is 240 ° C. or less, the lateral relaxation due to heat setting is not efficiently performed, and it becomes difficult to obtain a biaxially stretched PPS film having excellent dimensional stability at high temperatures. Further, when the temperature of the heat setting treatment is 290 ° C. or higher, the melting point of the PPS film is exceeded, so that film formation becomes difficult.

熱固定処理後、テンター延伸機の出口部分で室温まで冷却されたPPSフィルムを、巻き取り機で巻き取り、二軸延伸PPSフィルムが得られる。この二軸延伸PPSフィルムの厚さは、3〜120μmの範囲が好ましく、5〜100μmの範囲がさらに好ましい。3μm以下では、延伸製膜時に異物の影響を受けやすく、製膜が困難になる。また、120μm以上では、縦延伸時におけるロール間にかかる負荷が高く、製膜が困難になる。   After the heat setting treatment, the PPS film cooled to room temperature at the exit of the tenter stretching machine is wound up by a winder to obtain a biaxially stretched PPS film. The thickness of the biaxially stretched PPS film is preferably in the range of 3 to 120 μm, and more preferably in the range of 5 to 100 μm. When the thickness is 3 μm or less, the film is easily affected by foreign substances during stretching and film formation becomes difficult. On the other hand, when the thickness is 120 μm or more, the load applied between the rolls during longitudinal stretching is high, and film formation becomes difficult.

続いて、上記方法により得られた二軸延伸PPSフィルムを加熱工程に供する。加熱工程に用いる設備としては、通常のロールサポート方式のコーターが使用できる。もしくは、フローティング方式の乾燥炉を有するコーティング設備も使用できる。また、塗工が必須でないため、コーティングヘッドを有さない乾燥炉であってもよい。フィルムが受ける引張応力を乾燥炉中で測定する測定手段を設けることにより、加熱工程において二軸延伸PPSフィルムが受ける引張応力を測定することができる。   Subsequently, the biaxially stretched PPS film obtained by the above method is subjected to a heating step. As equipment used for the heating process, a normal roll support type coater can be used. Alternatively, a coating facility having a floating drying furnace can also be used. Moreover, since coating is not essential, a drying furnace without a coating head may be used. By providing a measuring means for measuring the tensile stress received by the film in a drying furnace, the tensile stress received by the biaxially stretched PPS film in the heating step can be measured.

乾燥炉入り口に送り出し部、出口にニップロールがある場合は、送り出し部のブレーキ力と乾燥炉出口のニップロールの速度で二軸延伸PPSフィルムが受ける引張応力を調節する。送り出し部のブレーキが強い場合、乾燥炉出口のニップ速度にあまり依存せず、二軸延伸PPSフィルムが受ける引張応力は高くなる。一方で送り出し部のブレーキ力が弱い場合、ニップロール速度を遅くすることで、二軸延伸PPSフィルムが受ける引張応力を低くおさえることが可能となる。またニップロール速度を高速にした場合、二軸延伸PPSフィルムが受ける引張応力は増加するが、そのような場合には、ブレーキ力を下げることにより二軸延伸PPSフィルムが受ける引張応力を低く調節することができる。   When there is a delivery part at the entrance of the drying furnace and a nip roll at the exit, the tensile stress applied to the biaxially stretched PPS film is adjusted by the braking force of the delivery part and the speed of the nip roll at the exit of the drying furnace. When the brake of the delivery part is strong, the tensile stress received by the biaxially stretched PPS film is high without depending on the nip speed at the exit of the drying furnace. On the other hand, when the brake force of the delivery part is weak, it is possible to reduce the tensile stress received by the biaxially stretched PPS film by reducing the nip roll speed. In addition, when the nip roll speed is increased, the tensile stress received by the biaxially stretched PPS film increases. In such a case, the tensile stress received by the biaxially stretched PPS film should be adjusted low by reducing the braking force. Can do.

乾燥炉の入り口と出口の両方にニップロールが設置してある場合は、この両者の速度比を調節することで、容易に二軸延伸PPSフィルムが受ける引張応力を制御可能である。出口のロールが入り口よりも速ければ、二軸延伸PPSフィルムが受ける引張応力は増加し、逆であれば、非常に弱い引張応力を達成することができる。   When nip rolls are installed at both the inlet and outlet of the drying furnace, the tensile stress applied to the biaxially stretched PPS film can be easily controlled by adjusting the speed ratio between the two. If the exit roll is faster than the entrance roll, the tensile stress experienced by the biaxially stretched PPS film will increase, and if vice versa, very weak tensile stress can be achieved.

本発明の実施例ではロールサポート方式のコーターを用い、乾燥炉への送り出し部のブレーキ力と乾燥炉出口のニップロール速度で二軸延伸PPSフィルムが受ける引張応力を調節したが、乾燥炉の種類および二軸延伸PPSフィルムが受ける引張応力の制御方法はこれに制限されるものではない。   In the examples of the present invention, a roll support type coater was used, and the tensile stress applied to the biaxially stretched PPS film was adjusted by the brake force of the feeding section to the drying furnace and the nip roll speed at the outlet of the drying furnace. The method for controlling the tensile stress received by the biaxially stretched PPS film is not limited to this.

加熱時間は1〜60秒が好ましく、2〜30秒がさらに好ましい。時間が1秒以下では、二軸延伸PPSフィルムを縦および横方向に十分に緩和させることが困難であり、高温下における寸法安定性を改良することができない場合がある。また、加熱時間が60秒以上では生産性が悪くなる傾向にある。   The heating time is preferably 1 to 60 seconds, more preferably 2 to 30 seconds. When the time is 1 second or less, it is difficult to sufficiently relax the biaxially stretched PPS film in the longitudinal and transverse directions, and the dimensional stability at high temperatures may not be improved. Further, when the heating time is 60 seconds or more, the productivity tends to deteriorate.

加熱温度は、160℃超290℃未満が好ましく、160℃超285℃未満がより好ましく、160℃超260℃未満がさらにより好ましく、160℃超250℃未満がさらにより好ましく、180℃超250℃未満がさらにより好ましく、180℃超240℃未満が特に好ましい。160℃以下では、縦および横方向に十分に緩和させることが困難であり、高温下での寸法安定性を改良することができない傾向がある。
290℃以上では、二軸延伸PPSフィルムの溶融が起きる場合がある。また収縮量が多く、収縮が不均一に起こるため、平面性が著しく低下する傾向がある。
The heating temperature is preferably more than 160 ° C and less than 290 ° C, more preferably more than 160 ° C and less than 285 ° C, even more preferably more than 160 ° C and less than 260 ° C, even more preferably more than 160 ° C and less than 250 ° C, more preferably more than 180 ° C and more than 250 ° C. Is even more preferable, and more than 180 ° C. and less than 240 ° C. is particularly preferable. Below 160 ° C., it is difficult to sufficiently relax in the vertical and horizontal directions, and the dimensional stability at high temperatures tends not to be improved.
Above 290 ° C, the biaxially stretched PPS film may melt. Further, since the amount of shrinkage is large and the shrinkage occurs unevenly, the flatness tends to be remarkably lowered.

加熱工程において二軸延伸PPSフィルムが受ける引張応力は、加熱温度における二軸延伸PPSフィルムの収縮応力よりも低く抑える必要がある。フィルムの収縮応力は温度によって異なる。例えば加熱温度が160℃超250℃未満である場合においては、二軸延伸PPSフィルムが受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で、0kgf超5kgf未満であることが好ましく、0kgf超2kgf未満であることがより好ましく、0kgf超1kgf未満であることが特に好ましい。加熱温度が160℃超250℃未満である場合において、1m幅・40μm厚の断面積を有するフィルム相当で5kgf以上の引張応力を与えた場合には、寸法安定性に優れるフィルムを得ることが困難な場合がある。二軸延伸PPSフィルムに与える引張応力を決定するには、表1に示した温度と二軸延伸PPSフィルムの収縮応力の関係を表す数値を参考にすればよい。しかしながら、フィルムの収縮応力は二軸延伸PPSフィルムの延伸条件やテンター熱処理条件によって変化するため、表1に示した数値に制限されない。   The tensile stress received by the biaxially stretched PPS film in the heating step needs to be kept lower than the shrinkage stress of the biaxially stretched PPS film at the heating temperature. The shrinkage stress of the film varies with temperature. For example, when the heating temperature is more than 160 ° C. and less than 250 ° C., the tensile stress received by the biaxially stretched PPS film is equivalent to a film having a cross-sectional area of 1 m width and 40 μm thickness, preferably more than 0 kgf and less than 5 kgf. More preferably, it is more than 0 kgf and less than 2 kgf, particularly preferably more than 0 kgf and less than 1 kgf. When the heating temperature is higher than 160 ° C and lower than 250 ° C, it is difficult to obtain a film with excellent dimensional stability when a tensile stress of 5 kgf or more is applied to a film having a cross-sectional area of 1 m wide and 40 µm thick. There are cases. In order to determine the tensile stress applied to the biaxially stretched PPS film, a numerical value representing the relationship between the temperature shown in Table 1 and the shrinkage stress of the biaxially stretched PPS film may be referred to. However, the shrinkage stress of the film is not limited to the values shown in Table 1 because it varies depending on the stretching conditions of the biaxially stretched PPS film and the tenter heat treatment conditions.

以下、本発明の実施例を示して、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定される物ではなく、本発明の技術的思想を逸脱しない範囲での種々の変更が可能である。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples of the present invention. However, the present invention is not limited to these examples, and various modifications can be made without departing from the technical idea of the present invention. Can be changed.

(実施例1)
PPS(株式会社クレハ製、フォートロンKPS−W312;310℃、せん断速度1200/秒における溶融粘度1580ポイズ)の粉末を用意した。PPS粉末100重量部に平均粒径0.7μmのCaCO(日東粉化工業(株)製、商品名NITOREX#30PS)を0.3質量部とステアリン酸カルシウム0.2重量部とをブレンドし、ヘンシャルミキサーを用い、10分間混合し、PPSを主成分とする混合粉末を得た。この粉末を押出し機に供給し、310℃で溶融し、樹脂ペレットを得た。この樹脂ペレットを35mm径の押出し機を用いて300℃で溶融し、目開き40μmの焼結フィルタで濾過した。続いて、長さ270mm、間隙0.75mmの直線状リップを有するダイから押出し、表面を40℃に保った金属ドラム上にキャストして冷却させ、330μm厚の未延伸フィルムを得た。このフィルムを、ロール表面温度を約80℃に調節した金属ロールに接触させて予熱後、約90℃に調節した金属ロール上で延伸速度2500%/分で縦方向に3.5倍にロール間延伸を行った。
Example 1
A powder of PPS (manufactured by Kureha Co., Ltd., Fortron KPS-W312; melt viscosity of 1580 poise at 310 ° C. and shear rate of 1200 / sec) was prepared. Blending 100 parts by weight of PPS powder with 0.3 part by weight of CaCO 3 (manufactured by Nitto Flour & Chemical Co., Ltd., trade name NITOREX # 30PS) having an average particle size of 0.7 μm and 0.2 parts by weight of calcium stearate, Using a Hensial mixer, mixing was performed for 10 minutes to obtain a mixed powder containing PPS as a main component. This powder was supplied to an extruder and melted at 310 ° C. to obtain resin pellets. This resin pellet was melted at 300 ° C. using an extruder having a diameter of 35 mm, and filtered through a sintered filter having an opening of 40 μm. Subsequently, the film was extruded from a die having a linear lip having a length of 270 mm and a gap of 0.75 mm, and the surface was cast on a metal drum kept at 40 ° C. and cooled to obtain an unstretched film having a thickness of 330 μm. This film was brought into contact with a metal roll whose roll surface temperature was adjusted to about 80 ° C., preheated, and then stretched at a stretching rate of 2500% / min. Stretching was performed.

続いて縦方向に延伸したPPSフィルムをテンター延伸機に導入し、温度が92℃に調節された雰囲気中で延伸速度490%/分で横方向に3.6倍に延伸した。延伸後直ちに横方向の緩和率を2%にして、270℃で30秒間熱固定した。熱固定終了後、テンター出口において徐冷処理を行なった。こうして約40μm厚の二軸延伸PPSフィルムを得た。   Subsequently, the PPS film stretched in the longitudinal direction was introduced into a tenter stretching machine, and stretched 3.6 times in the transverse direction at a stretching rate of 490% / min in an atmosphere adjusted to a temperature of 92 ° C. Immediately after stretching, the transverse relaxation rate was set to 2%, and heat setting was performed at 270 ° C. for 30 seconds. After the heat setting, a slow cooling treatment was performed at the tenter outlet. Thus, a biaxially stretched PPS film having a thickness of about 40 μm was obtained.

この二軸延伸PPSフィルムをロールサポート方式のコーターの送り出し部に取り付け、フィルムを200℃に加熱された乾燥炉に通し、連続的に加熱工程を行ない、実施例1の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で0.1kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。   This biaxially stretched PPS film was attached to the delivery part of a roll support type coater, the film was passed through a drying furnace heated to 200 ° C., and the heating process was continuously performed to obtain the heat-treated PPS film of Example 1. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 0.1 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes.

この熱処理PPSフィルムから3cm×30cmの短冊を縦方向および横方向に切り出し、長寸法(短冊の長手側の寸法)を測った後、160℃に保ったオーブン中に24時間放置し、室温で冷やした後、寸法を測定した。元寸法に対する熱処理後の寸法変化の割合を求め、寸法変化率とした。負の数値は収縮を意味し、正の値は膨張を意味する。   A 3 cm × 30 cm strip is cut out from the heat-treated PPS film in the vertical and horizontal directions, and the long dimension (dimension on the long side of the strip) is measured, then left in an oven maintained at 160 ° C. for 24 hours, and cooled at room temperature. After that, the dimensions were measured. The ratio of the dimensional change after the heat treatment with respect to the original dimension was determined and used as the dimensional change rate. Negative numbers mean contraction and positive values mean expansion.

(実施例2)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを220℃に加熱された乾燥炉に通して加熱工程を行ない、実施例2の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で0.1kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Example 2)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 220 ° C. to perform the heating step, and the heat-treated PPS film of Example 2 was obtained. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 0.1 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(実施例3)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを235℃に加熱された乾燥炉に通して加熱工程を行ない、実施例3の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で0.1kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Example 3)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 235 ° C. to perform the heating step, and the heat-treated PPS film of Example 3 was obtained. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 0.1 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(実施例4)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを240℃に加熱された乾燥炉に通して加熱工程を行ない、実施例4の熱処理PPSフィルムを得た。加熱時間は30秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で3kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
Example 4
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 240 ° C. to perform the heating step, and the heat-treated PPS film of Example 4 was obtained. The heating time was 30 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 3 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(実施例5)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを260℃に加熱された乾燥炉に通して加熱工程を行ない、実施例5の熱処理PPSフィルムを得た。加熱時間は30秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で3kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Example 5)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 260 ° C. to perform the heating step, and the heat-treated PPS film of Example 5 was obtained. The heating time was 30 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 3 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(実施例6)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを200℃に加熱された乾燥炉に通して加熱工程を行ない、実施例6の熱処理PPSフィルムを得た。加熱時間は17秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で0.1kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Example 6)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 200 ° C. to perform the heating step, and the heat-treated PPS film of Example 6 was obtained. The heating time was 17 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 0.1 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(実施例7)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを200℃に加熱された乾燥炉に通して加熱工程を行ない、実施例7の熱処理PPSフィルムを得た。加熱時間は33秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で0.1kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Example 7)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 200 ° C. to perform the heating step, and the heat-treated PPS film of Example 7 was obtained. The heating time was 33 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 0.1 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例1)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムから3cm×30cmの短冊を縦方向および横方向に切り出し、比較例1のPPSフィルムとした。このフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 1)
A strip of 3 cm × 30 cm was cut out in the longitudinal direction and the transverse direction from the biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 to obtain a PPS film of Comparative Example 1. The rate of dimensional change after holding this film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例2)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを160℃に加熱された乾燥炉に通して加熱工程を行ない、比較例2の熱処理PPSフィルムを得た。加熱時間は30秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で0.1kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 2)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 160 ° C. to perform the heating step, and a heat-treated PPS film of Comparative Example 2 was obtained. The heating time was 30 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 0.1 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例3)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを290℃に加熱された乾燥炉に通して加熱工程を行ない、比較例3の熱処理PPSフィルムを得た。加熱時間は30秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で3kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 3)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 290 ° C. to perform the heating step, and a heat-treated PPS film of Comparative Example 3 was obtained. The heating time was 30 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 3 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例4)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを160℃に加熱された乾燥炉に通して加熱工程を行ない比較例4の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で10kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 4)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 160 ° C. to perform the heating step, and a heat-treated PPS film of Comparative Example 4 was obtained. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 10 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例5)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを200℃に加熱された乾燥炉に通して加熱工程を行ない、比較例5の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で10kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 5)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 200 ° C. to perform the heating step, and a heat-treated PPS film of Comparative Example 5 was obtained. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 10 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例6)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを220℃に加熱された乾燥炉に通して加熱工程を行ない、比較例6の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で10kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 6)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 220 ° C. to perform the heating step, and a heat-treated PPS film of Comparative Example 6 was obtained. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 10 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

(比較例7)
実施例1で示した方法で得た加熱工程前の二軸延伸PPSフィルムを235℃に加熱された乾燥炉に通して加熱工程を行ない、比較例7の熱処理PPSフィルムを得た。加熱時間は60秒であった。加熱を行う際、巻き取り機による巻き取りによって二軸延伸PPSフィルムが巻き取り方向に受ける引張応力は、1m幅・40μm厚の断面積を有するフィルム相当で10kgfであった。また横方向には特に力を与えずに加熱を行った。得られた熱処理PPSフィルムに顕著な色や平面性の変化は見られず、良好であった。この熱処理PPSフィルムを160℃で24時間保持した後の寸法変化率を、実施例1と同様な方法により算出した。
(Comparative Example 7)
The biaxially stretched PPS film before the heating step obtained by the method shown in Example 1 was passed through a drying furnace heated to 235 ° C. to perform the heating step, and a heat-treated PPS film of Comparative Example 7 was obtained. The heating time was 60 seconds. When heating, the tensile stress that the biaxially stretched PPS film receives in the winding direction by winding with a winder was 10 kgf corresponding to a film having a cross-sectional area of 1 m width and 40 μm thickness. Also, heating was performed without applying any force in the lateral direction. The heat-treated PPS film obtained was good with no noticeable color or flatness changes. The rate of dimensional change after holding this heat treated PPS film at 160 ° C. for 24 hours was calculated by the same method as in Example 1.

結果を表2にまとめた。表2中の収縮応力は、40μm厚の二軸延伸PPSフィルムの、各温度における1m幅当たりの収縮応力の測定値である。   The results are summarized in Table 2. The shrinkage stress in Table 2 is a measured value of the shrinkage stress per 1 m width of a 40 μm-thick biaxially stretched PPS film at each temperature.

Figure 0005069545
Figure 0005069545

Claims (4)

二軸延伸されたポリ−p−フェニレンスルフィドフィルムを緩和率0.1〜10%で熱固定処理する熱固定処理工程と、
前記熱固定処理後のポリ−p−フェニレンスルフィドフィルムを加熱する加熱工程を含む、熱処理ポリ−p−フェニレンスルフィドフィルムの製造方法であって、
前記加熱工程において、前記加熱を160℃超290℃未満の範囲から選ばれる加熱温度で行い、且つ前記二軸延伸されたポリ−p−フェニレンスルフィドフィルムの当該加熱温度における収縮応力よりも小さい引張応力を、前記二軸延伸されたポリ−p−フェニレンスルフィドフィルムに対し一方向に付加する、製造方法。
A heat setting treatment step of heat setting the biaxially stretched poly-p-phenylene sulfide film at a relaxation rate of 0.1 to 10%;
A method for producing a heat-treated poly-p-phenylene sulfide film, comprising a heating step of heating the poly-p-phenylene sulfide film after the heat setting treatment,
In the heating step, the heating is performed at a heating temperature selected from the range of more than 160 ° C. and less than 290 ° C., and the tensile stress smaller than the shrinkage stress at the heating temperature of the biaxially stretched poly-p-phenylene sulfide film Is added to the biaxially stretched poly-p-phenylene sulfide film in one direction.
前記加熱工程において、前記二軸延伸されたポリ−p−フェニレンスルフィドフィルムを巻き取りながら、前記加熱を連続的に行い、
前記収縮応力よりも小さい引張応力を、前記二軸延伸されたポリ−p−フェニレンスルフィドフィルムに対し巻き取り方向に付加する、請求項1記載の製造方法。
In the heating step, the winding is continuously performed while winding the biaxially stretched poly-p-phenylene sulfide film,
The manufacturing method according to claim 1, wherein a tensile stress smaller than the shrinkage stress is applied to the biaxially stretched poly-p-phenylene sulfide film in a winding direction.
前記引張応力が、1m幅・40μm厚の断面積を有するフィルム相当で、0kgf超20kgf未満である、請求項1又は2記載の製造方法。   The manufacturing method according to claim 1, wherein the tensile stress is equivalent to a film having a cross-sectional area of 1 m width and 40 μm thickness and is more than 0 kgf and less than 20 kgf. 請求項1〜3のいずれか一項記載の製造方法により得ることのできる、熱処理ポリ−p−フェニレンスルフィドフィルム。   A heat-treated poly-p-phenylene sulfide film obtainable by the production method according to claim 1.
JP2007315084A 2007-12-05 2007-12-05 Process for producing heat-treated poly-p-phenylene sulfide film Expired - Fee Related JP5069545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315084A JP5069545B2 (en) 2007-12-05 2007-12-05 Process for producing heat-treated poly-p-phenylene sulfide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315084A JP5069545B2 (en) 2007-12-05 2007-12-05 Process for producing heat-treated poly-p-phenylene sulfide film

Publications (2)

Publication Number Publication Date
JP2009138080A JP2009138080A (en) 2009-06-25
JP5069545B2 true JP5069545B2 (en) 2012-11-07

Family

ID=40869019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315084A Expired - Fee Related JP5069545B2 (en) 2007-12-05 2007-12-05 Process for producing heat-treated poly-p-phenylene sulfide film

Country Status (1)

Country Link
JP (1) JP5069545B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021045076A1 (en) * 2019-09-04 2021-03-11

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322151A (en) * 1993-05-10 1994-11-22 Toray Ind Inc Biaxially oriented polyphenylene sulfide film
JPH09278912A (en) * 1996-04-11 1997-10-28 Toray Ind Inc Polyphenylene sulfide film for mold-releasing and its production
JP2005139214A (en) * 2003-11-04 2005-06-02 Toray Ind Inc Biaxially oriented film
JP2006077203A (en) * 2004-09-13 2006-03-23 Toray Ind Inc Method for producing film

Also Published As

Publication number Publication date
JP2009138080A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5526886B2 (en) Biaxially oriented polyarylene sulfide film for mold release
JP6906034B2 (en) Release film with ultra-low release force and its manufacturing method
JP5069545B2 (en) Process for producing heat-treated poly-p-phenylene sulfide film
JPS63242522A (en) Formed object of high crystallized polyarylene thioether
JP4734930B2 (en) Polyarylene sulfide film
JP4946022B2 (en) Polyphenylene sulfide composite film
JP5587771B2 (en) Release film and laminate for circuit board made of polyphenylene sulfide resin
JPS62251121A (en) Manufacture of polyphenylene sulfide unoriented film
WO2013021816A1 (en) Mold release polyarylene sulfide film and manufacturing method for thermally hardened resin formed body using same
JP2522683B2 (en) Polyarylene sulfide resin sheet and method for producing the same
JPH01158049A (en) Heat-resistant film and production thereof
JP2010126709A (en) Heat-resistant film
KR20180036378A (en) Polyester film and manufacturing method thereof
JP3475442B2 (en) Biaxially oriented polyphenylene sulfide film
JPH06322151A (en) Biaxially oriented polyphenylene sulfide film
JP4442125B2 (en) Polyphenylene sulfide film for mold release
JPH04101827A (en) Manufacture of biaxially oriented polyether ether ketone film
JP2013067748A (en) Polyarylene sulfide film
TW201801935A (en) Polyester multilayer film and manufacturing method thereof
JPH09278912A (en) Polyphenylene sulfide film for mold-releasing and its production
JPH0218971B2 (en)
JP3029068B2 (en) Laminated film
JP4446212B2 (en) Embossed plastic film
KR20070040585A (en) Manufacturing method of uniaxially drawn porous polytetrafluoroethylene membrane
WO1992003495A1 (en) Method of producing biaxially oriented polyether ether ketone film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees