JP5069044B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP5069044B2
JP5069044B2 JP2007142809A JP2007142809A JP5069044B2 JP 5069044 B2 JP5069044 B2 JP 5069044B2 JP 2007142809 A JP2007142809 A JP 2007142809A JP 2007142809 A JP2007142809 A JP 2007142809A JP 5069044 B2 JP5069044 B2 JP 5069044B2
Authority
JP
Japan
Prior art keywords
cement
aggregate
alkali
mass
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007142809A
Other languages
Japanese (ja)
Other versions
JP2008297137A (en
Inventor
昭俊 荒木
実 盛岡
隆典 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007142809A priority Critical patent/JP5069044B2/en
Publication of JP2008297137A publication Critical patent/JP2008297137A/en
Application granted granted Critical
Publication of JP5069044B2 publication Critical patent/JP5069044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/02Preserving by means of inorganic salts
    • A23B4/023Preserving by means of inorganic salts by kitchen salt or mixtures thereof with inorganic or organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates
    • C01B25/41Polyphosphates of alkali metals
    • C01B25/418After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/42Pyrophosphates
    • C01B25/425Pyrophosphates of alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)

Description

本発明は、主に、土木及び建築分野において使用する、セメント混和材及びセメント組成物に関する。   The present invention mainly relates to a cement admixture and a cement composition for use in the civil engineering and construction fields.

ゼオライトは、一般に、ケイ酸塩やアルミノケイ酸塩の縮合酸で骨格構造が形成されており、種々の三次元的な骨格を形成することから、骨格内部の空洞に種々の陽イオンを取り込むことができることにより、種々の機能を持たせることが可能であるため、幅広い分野で利用されている。代表的な用途として、陽イオン交換能を利用した廃水中のアンモニア性窒素の除去、硬水の軟水化、吸着能を利用した水分除去、触媒能を利用した各種有機化合物の合成等が挙げられる(非特許文献1)。
原伸宜、高橋浩編:ゼオライト−基礎と応用、pp.113−218、講談社、1995年
Zeolite generally has a skeletal structure formed of condensed acid of silicate or aluminosilicate, and forms various three-dimensional skeletons. Therefore, various cations can be taken into cavities inside the skeleton. Since it is possible to provide various functions, it is used in a wide range of fields. Typical applications include removal of ammonia nitrogen from wastewater using cation exchange capacity, softening of hard water, water removal using adsorption capacity, synthesis of various organic compounds using catalytic capacity, etc. ( Non-patent document 1).
Nobuyoshi Hara, Hiroshi Takahashi: Zeolite-Fundamentals and Applications, pp. 113-218, Kodansha, 1995

土木・建築分野においては、六価クロム等の重金属類の除去技術(特許文献1、2)、塩素イオンを吸着し低減する技術(特許文献3)、水や空気を浄化する技術(特許文献4)、高性能減水剤と組み合わせることでコンクリートの粘性を低下させ、仕上げ性やハンドリングを向上させる技術(特許文献5)、アルカリ骨材反応に起因するナトリウムやカリウムを除去する技術(特許文献6、7、8)等が知られている。
特開2005−112706号公報 特開2005−232341号公報 特開2005−225706号公報 特開2004−337822号公報 特開平07−277795号公報 特開平02−208250号公報 特開平04−92844号公報 特開2003−306372号公報
In the civil engineering / architecture field, technologies for removing heavy metals such as hexavalent chromium (Patent Documents 1 and 2), technologies for adsorbing and reducing chlorine ions (Patent Document 3), and technologies for purifying water and air (Patent Document 4) ), Technology that lowers the viscosity of concrete by combining with a high-performance water reducing agent and improves finishability and handling (Patent Document 5), technology that removes sodium and potassium caused by alkali-aggregate reaction (Patent Document 6, 7, 8) etc. are known.
JP-A-2005-112706 JP-A-2005-232341 JP 2005-225706 A JP 2004-337822 A Japanese Patent Application Laid-Open No. 07-277795 Japanese Patent Laid-Open No. 02-208250 Japanese Patent Laid-Open No. 04-92844 JP 2003-306372 A

一方、土木・建築分野では、近年、劣化したコンクリート構造物の各種補修・補強材料や工法に対して注目度が高くなっている。その1つとして、アルカリ骨材反応による劣化に対する補修工法がある。アルカリ骨材反応は、コンクリート中に含まれるアルカリ分と骨材が反応し膨張性のあるゲル状物質を生成させコンクリートにひび割れを発生させる劣化現象である。対策としては、アルカリ分(ナトリウムやカリウム)を除去する必要があるが、既存の構造物において悪影響が無くなるまで除去することは非常に難しく、充分な対策工は未だにないのが現状である。
また、アルカリ骨材反応性の無い骨材の使用は、骨材資源が限られている状況で、アルカリ反応性骨材を使用してもその反応を抑制できる技術開発も望まれている。
現段階では、コンクリート中にポゾラン物質を混和する方法(非特許文献2)、コンクリート中に亜硝酸リチウムや水酸化リチウムを混和する方法あるいはそれらを表面から含浸させる方法(特許文献9)、コンクリート表面に撥水剤や表面被覆材で防水層を形成させる方法(特許文献10)等が知られている。また、同じアルカリ金属でもリチウムが存在すると膨張を抑制しアルカリ骨材反応による劣化を抑制できることが知られている(非特許文献3)。
川村満紀、竹本邦夫、枷場重正:フライアッシュ及び高炉スラグの外部アルカリの侵入によるアルカリ・シリカ膨張に対する抑制効果、土木学会第42回年次学術講演会、V−206、pp.450−451、昭和62年9月 特開昭61−256951号公報 特開昭63−50380号公報 斉藤満、北川明雄、枷場重正:亜硝酸リチウムによるアルカリ骨材膨張の抑制効果、材料、Vol.41、No.486、pp.1375−1381、1992
On the other hand, in the civil engineering / architecture field, attention has recently been paid to various repair / reinforcing materials and construction methods for deteriorated concrete structures. One of them is a repair method for deterioration caused by alkali aggregate reaction. Alkali-aggregate reaction is a deterioration phenomenon in which an alkali component contained in concrete reacts with aggregate to generate an expansive gel substance and cracks are generated in the concrete. As a countermeasure, it is necessary to remove alkali components (sodium and potassium), but it is very difficult to remove until there is no adverse effect in the existing structure, and there is still no sufficient countermeasure work.
In addition, the use of aggregates having no alkali aggregate reactivity is demanded to develop technology capable of suppressing the reaction even when alkali reactive aggregates are used in a situation where aggregate resources are limited.
At present, the method of mixing pozzolanic material in concrete (Non-patent Document 2), the method of mixing lithium nitrite and lithium hydroxide in concrete, or the method of impregnating them from the surface (Patent Document 9), the concrete surface A method of forming a waterproof layer with a water repellent or a surface coating material is known (Patent Document 10). Further, it is known that even when the same alkali metal is present, if lithium is present, expansion can be suppressed and deterioration due to an alkali aggregate reaction can be suppressed (Non-patent Document 3).
Miki Kawamura, Kunio Takemoto, Shigemasa Kayaba: Suppressive effect on expansion of alkali and silica caused by external alkali infiltration of fly ash and blast furnace slag, 42nd Annual Conference of Japan Society of Civil Engineers, V-206, pp. 450-451, September 1987 JP-A 61-256951 JP-A-63-50380 Mitsuru Saito, Akio Kitagawa, Shigemasa Kiba: Suppression of alkaline aggregate expansion by lithium nitrite, materials, Vol. 41, no. 486, pp. 1375-1381, 1992

本発明のセメント混和材は、セメント組成物中のアルカリ骨材反応の原因物質となるナトリウムやカリウムとイオン交換し、リチウムを放出するアロフェンから合成したゼオライトを含有するものである。従来のアルカリ骨材反応を抑制するゼオライトは、いずれもアルカリ土類金属(カルシウム)を交換性カチオンとして持つゼオライトであり、セメント組成物中のナトリウムやカリウムを取り込み、カルシウムを放出するため抑制効果は不十分であった。   The cement admixture of the present invention contains a zeolite synthesized from allophane that ion-exchanges with sodium or potassium, which are causative substances of alkali aggregate reaction in the cement composition, and releases lithium. All conventional zeolites that suppress alkali-aggregate reaction are zeolites that have alkaline earth metal (calcium) as an exchangeable cation. They take up sodium and potassium in the cement composition and release calcium, so the suppression effect is It was insufficient.

本発明は、ナトリウムやカリウムを取り込むだけでなく、アルカリ骨材反応を抑制する効果のあるリチウムを放出するセメント混和材及びセメント組成物を提供する。   The present invention provides a cement admixture and a cement composition that not only take in sodium and potassium, but also release lithium which has an effect of suppressing the alkali-aggregate reaction.

すなわち、本発明は、(1)アロフェンから合成したEDI型及び/又はABW型のリチウムゼオライトを含有するアルカリ骨材反応を抑制するセメント混和材、(2)(1)のセメント混和材とセメントとを含有してなり、セメント混和材をセメント100質量部に対して0.2〜100質量部配合するセメント組成物、(3)アロフェンから合成したEDI型及び/又はABW型のリチウムゼオライトとセメントとを含有してなり、リチウムゼオライトをセメント100質量部に対して0.2〜100質量部配合するアルカリ骨材反応を抑制するセメント組成物、(4)(2)又は(3)のセメント組成物を用いて作製したペースト、モルタル又はコンクリート、である。 That is, the present invention provides (1) a cement admixture that suppresses an alkaline aggregate reaction containing EDI type and / or ABW type lithium zeolite synthesized from allophane, and (2) the cement admixture and cement of (1) A cement composition containing 0.2 to 100 parts by mass of cement admixture with respect to 100 parts by mass of cement, (3) EDI type and / or ABW type lithium zeolite synthesized from allophane and cement A cement composition containing lithium and containing 0.2 to 100 parts by mass of lithium zeolite with respect to 100 parts by mass of cement to suppress an alkali aggregate reaction , (4) (2) or (3) A paste, mortar or concrete produced using

本発明のセメント混和材は、ナトリウムやカリウムと速やかにイオン交換し、リチウムがセメント組成物中に放出するので、アルカリ骨材反応による膨張を抑制する効果が従来のゼオライトよりも著しく大きく、アルカリ骨材反応で劣化したモルタル又はコンクリートの補修や反応性骨材を利用することが可能となる。   The cement admixture of the present invention quickly ion-exchanges with sodium and potassium, and lithium is released into the cement composition, so that the effect of suppressing expansion due to the alkali-aggregate reaction is significantly greater than that of conventional zeolites. Repair of mortar or concrete deteriorated by the material reaction or reactive aggregate can be used.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のアロフェンから合成したリチウムゼオライトは、例えば、アロフェンを鉱物成分とする天然土から合成することができる。アロフェンは、一般的には火山灰由来土壌に産出するアルミノケイ酸塩(非晶質性シリカ・アルミナゲル(Al・mSi0・nH0+Al(0H))である。
本発明のアロフェンから合成したリチウムゼオライトは、骨格構造の分類としては、三次元構造の種類によって分類があり、A型、EDI型、ABW型、BIK等の多数の構造が存在する。EDI型及び/又はABW型がアルカリ骨材反応の膨張抑制効果の点で好ましい。
The lithium zeolite synthesized from the allophane of the present invention can be synthesized, for example, from natural soil containing allophane as a mineral component. Allophane is typically an aluminosilicate to produce the volcanic ash soil (amorphous silica-alumina gel (Al 2 0 3 · mSi0 2 · nH 2 0 + Al (0H) 3).
Lithium zeolite synthesized from the allophane of the present invention is classified according to the type of three-dimensional structure as a skeleton structure, and there are many structures such as A-type, EDI-type, ABW-type, and BIK. The EDI type and / or the ABW type are preferred from the viewpoint of the effect of suppressing the expansion of the alkali aggregate reaction.

本発明のEDI型及びABW型リチウムゼオライトの合成方法の一例を以下に示す。
(EDI型)粉末状にしたアロフェンを10gビーカーに入れ、1mol/lの水酸化リチウム水溶液100mlを50ml毎2回に分けて加え混合する。次に、時々混ぜながら60℃で24時間放置する。上澄みを除去後、沈殿物をビーカーに移し蒸留水を加えてけん濁させる。さらに、酢酸を加えて中和し、ブフナー漏斗でろ過し蒸留水で洗浄後、90℃で24時間以上乾燥させて合成する。
(ABW型)粉末状にしたアロフェンを10gビーカーに入れ、1mol/lの水酸化リチウム水溶液100mlを50ml毎2回に分けて加え混合する。次に、時々混ぜながら90℃で48時間放置する。上澄みを除去後、沈殿物をビーカーに移し蒸留水を加えてけん濁させる。さらに、酢酸を加えて中和し、ブフナー漏斗でろ過し蒸留水で洗浄後、90℃で24時間以上乾燥させて合成する。
An example of the synthesis method of EDI type and ABW type lithium zeolite of the present invention is shown below.
(EDI type) Powdered allophane is placed in a 10 g beaker, and 100 ml of a 1 mol / l aqueous lithium hydroxide solution is added in portions of 50 ml in two portions and mixed. Next, leave at 60 ° C. for 24 hours with occasional mixing. After removing the supernatant, the precipitate is transferred to a beaker and suspended in distilled water. Further, the mixture is neutralized by adding acetic acid, filtered through a Buchner funnel, washed with distilled water, and then dried at 90 ° C. for 24 hours or longer for synthesis.
(ABW type) Powdered allophane is put in a 10 g beaker, and 100 ml of a 1 mol / l lithium hydroxide aqueous solution is added and mixed in 50 ml portions. Then leave it at 90 ° C. for 48 hours with occasional mixing. After removing the supernatant, the precipitate is transferred to a beaker and suspended in distilled water. Further, the mixture is neutralized by adding acetic acid, filtered through a Buchner funnel, washed with distilled water, and then dried at 90 ° C. for 24 hours or longer for synthesis.

粉末アロフェンの製法は、天然に産出するアロフェン含有土を利用でき、原土中の不純物の除去と粗大粒子の分級を行うため水ひ精製する。精製したアロフェンは100℃で48時間乾燥させた後、振動ミルで1分間粉砕したものを使用する。   Powdered allophane can be produced by using naturally-occurring allophane-containing soil, which is purified by water to remove impurities in the soil and classify coarse particles. The purified allophane is used after drying at 100 ° C. for 48 hours and then pulverizing with a vibration mill for 1 minute.

本発明のセメント組成物に使用するセメントは、特に限定されるものではないが、JIS R 5210に規定されている各種ポルトランドセメント、JIS R 5211、JIS R 5212、及びJIS R 5213に規定された各種混合セメント、JISに規定された以上の混和材混入率で製造した高炉セメント、フライアッシュセメント、及びシリカセメント、石灰石粉末等を混合したフィラーセメント、アルミナセメント等から選ばれる1種又は2種以上を使用することができる。   The cement used in the cement composition of the present invention is not particularly limited, but various portland cements defined in JIS R 5210, JIS R 5211, JIS R 5212, and various types defined in JIS R 5213. One or more types selected from mixed cement, blast furnace cement manufactured with an admixture more than specified in JIS, fly ash cement, filler cement mixed with silica cement, limestone powder, alumina cement, etc. Can be used.

本発明のセメント混和材の使用量は、セメント100質量部に対して0.2〜100質量部が好ましい。0.2質量部未満ではアルカリ骨材反応による膨張抑制効果が少なく、100質量部を超えても膨張抑制効果はそれ程向上しない。また、EDI型リチウムゼオライトとABW型リチウムゼオライトを混合して使用してもよい。   The amount of the cement admixture of the present invention is preferably 0.2 to 100 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 0.2 parts by mass, the effect of suppressing the expansion due to the alkali aggregate reaction is small, and if the amount exceeds 100 parts by mass, the effect of suppressing the expansion is not so much improved. Further, EDI type lithium zeolite and ABW type lithium zeolite may be mixed and used.

本発明のセメント混和材は、セメントに使用される混和材(剤)のあらゆるものとの併用が可能である。
例えば、AE剤、減水剤、高性能減水剤、高性能AE減水剤、発泡剤、起泡剤、分離低減剤、凝結調整剤、急結材(剤)、防錆剤、防水剤、収縮低減剤、膨張材(剤)、高強度混和材(剤)、防凍剤、ポリマーディスパージョン、消泡剤、水和熱低減剤、本発明以外のアルカリ骨材反応抑制材(剤)、エフロレッセンス防止剤、急硬材(剤)、繊維、粘土鉱物、セッコウ類等が挙げられる。
The cement admixture of the present invention can be used in combination with any admixture (agent) used in cement.
For example, AE agent, water reducing agent, high performance water reducing agent, high performance AE water reducing agent, foaming agent, foaming agent, separation reducing agent, setting agent, quick setting material (agent), rust inhibitor, waterproofing agent, shrinkage reduction Agent, expansion agent (agent), high-strength admixture (agent), antifreeze agent, polymer dispersion, antifoaming agent, heat of hydration reducing agent, alkali aggregate reaction inhibitor (agent) other than the present invention, prevention of efflorescence Agents, rapid hardeners (agents), fibers, clay minerals, gypsums and the like.

本発明のセメント組成物は、骨材を加えず水を加えたペーストや、骨材と水を含んだモルタル又はコンクリートのいずれの形態でも使用することができる。
骨材としては、特に限定されるものではなく、アルカリ骨材反応に対し無害と判定される骨材だけでなく、アルカリ骨材反応を示す恐れのある骨材を使用してもよい。例えば、川、山、海から産出する天然骨材、軽量骨材、及びこれらの2種以上を併用した混合骨材等が使用できる。通常の砂、砂利の他に、例えば、ケイ砂系や石灰石系等の天然骨材、高炉水砕スラグ系、高炉徐冷スラグ系、再生骨材系等の人工骨材が挙げられる。耐酸性等の観点からは、ケイ砂系を選定することが好ましい。また、比重3.0g/cm以上の重量骨材を使用することもでき、その具体例としては、例えば、人工骨材として、電気炉酸化期スラグ系骨材や、フェロニッケルスラグ、フェロクロムスラグ、銅スラグ、亜鉛スラグ及び鉛スラグ等を総称する非鉄精錬スラグ骨材等が、また、天然骨材としては、橄欖岩(かんらん岩)系骨材、いわゆるオリビンサンドや、エメリー鉱等が挙げられる。
骨材は施工する現場で混合してもよいが、予めセメントと混合しておく場合は、骨材を乾燥させた乾燥骨材を使用すればよい。
The cement composition of the present invention can be used in any form of paste without adding aggregate and water, or mortar or concrete containing aggregate and water.
The aggregate is not particularly limited, and an aggregate that may show an alkali aggregate reaction may be used as well as an aggregate that is determined to be harmless to the alkali aggregate reaction. For example, natural aggregates produced from rivers, mountains, and seas, lightweight aggregates, and mixed aggregates using a combination of two or more of these can be used. In addition to ordinary sand and gravel, for example, natural aggregates such as silica sand and limestone, artificial aggregates such as blast furnace granulated slag system, blast furnace slow-cooled slag system, and recycled aggregate system can be used. From the viewpoint of acid resistance and the like, it is preferable to select a silica sand system. In addition, a heavy aggregate having a specific gravity of 3.0 g / cm 3 or more can be used, and specific examples thereof include, for example, an electric furnace oxidation period slag-based aggregate, ferronickel slag, ferrochrome slag as an artificial aggregate. Non-ferrous smelted aggregate slag, such as copper slag, zinc slag and lead slag, and natural aggregates include peridotite aggregates, so-called olivine sand, emery ore, etc. It is done.
The aggregate may be mixed at the construction site, but when it is mixed with cement in advance, a dry aggregate obtained by drying the aggregate may be used.

本発明のセメント組成物を用いたペースト、モルタル又はコンクリートは、土木・建築分野で通常使用されるような施工方法を行うことが可能である。
例えば、本発明のセメント組成物に水を加えたペーストは、液状であるため狭い隙間への充填性に優れることからアルカリ骨材反応による膨張で発生したクラックへの注入に利用できる。また、モルタルやコンクリートは、既設のモルタル又はコンクリート構造物において、アルカリ骨材反応で劣化した箇所の修復等に利用できる。
The paste, mortar, or concrete using the cement composition of the present invention can be subjected to a construction method that is usually used in the civil engineering / architectural field.
For example, since a paste obtained by adding water to the cement composition of the present invention is liquid, it has excellent filling properties in narrow gaps and can be used for injection into cracks generated by expansion due to alkali aggregate reaction. In addition, mortar and concrete can be used for restoration of a portion deteriorated by an alkali aggregate reaction in an existing mortar or concrete structure.

以下、実施例に基づき詳細に説明するがこれに限定されるものではない。   Hereinafter, although it demonstrates in detail based on an Example, it is not limited to this.

ナトリウムとカリウムが200mg/lになるように調整した水酸化ナトリウムと水酸化カリウム水溶液各50mlに、本発明のセメント混和材であるアロフェンから合成したEDI型リチウムゼオライトとABW型リチウムゼオライトそれぞれを1g加え攪拌し、表1に示す各時間における溶液中のナトリウム、カリウム、リチウム濃度を原子吸光光度計で求めた。なお、比較のために、骨格構造が異なるA型リチウムゼオライトと交換性カチオンとしてカルシウムを持つA型カルシウムゼオライトについても同様に行った。なお、ゼオライトの骨格構造は、粉末X線回折測定の回折パターンにより同定した(例えば、R.von Ballmoos、Collection of simulatedXRD patterns for zeolites、Butter worth Scientific Limited、1984)。結果を表1に示す。   1 g each of EDI type lithium zeolite and ABW type lithium zeolite synthesized from allophane, which is the cement admixture of the present invention, is added to 50 ml each of sodium hydroxide and potassium hydroxide aqueous solution adjusted so that sodium and potassium become 200 mg / l. The mixture was stirred, and the sodium, potassium and lithium concentrations in the solution at each time shown in Table 1 were determined with an atomic absorption photometer. For comparison, an A-type lithium zeolite having a different skeleton structure and an A-type calcium zeolite having calcium as an exchangeable cation were also used. The framework structure of zeolite was identified by a diffraction pattern of powder X-ray diffraction measurement (for example, R. von Ballmoos, Collection of simulated XRD patterns for zeolites, Butter worth Scientific Limited, 1984). The results are shown in Table 1.

(使用材料)
EDI型リチウムゼオライト:段落番号[0011]で示した合成方法と同様に行った。先ず、粉末状にしたアロフェン(SiO:33.6質量%、Al:33.1質量%、Fe:2.3質量%、CaO0.4質量%、MgO0.13質量%、Ig.loss30.2質量%)を10gビーカーに入れ、1mol/lの水酸化リチウム水溶液100mlを50ml毎2回に分けて加え混合する。次に、時々混ぜながら60℃で24時間放置する。上澄みを除去後、沈殿物をビーカーに移し蒸留水を加えてけん濁させる。さらに、酢酸を加えて中和し、ブフナー漏斗でろ過し蒸留水で洗浄後、90℃で24時間以上乾燥させて合成したものを使用(リチウム含有量3.3質量%)。
ABW型リチウムゼオライト:EDI型リチウムゼオライトよりも空洞内のリチウムと骨格を形成する酸素の結合力が強いタイプと考えられる。合成方法は、粉末状にしたアロフェンを10gビーカーに入れ、1mol/lの水酸化リチウム水溶液100mlを50ml毎2回に分けて加え混合する。次に、時々混ぜながら90℃で48時間放置する。上澄みを除去後、沈殿物をビーカーに移し蒸留水を加えてけん濁させる。さらに、酢酸を加えて中和し、ブフナー漏斗でろ過し蒸留水で洗浄後、90℃で24時間以上乾燥させて合成したものを使用(リチウム含有量4.0質量%)。
A型リチウムゼオライト:市販のA型合成ナトリウムゼオライト10gを90℃の7.5質量%塩化リチウム溶液100ml中で3時間攪拌後、ブフナー漏斗でろ過し蒸留水で洗浄後、90℃で24時間以上乾燥させて合成したものを使用(リチウム含有量3.5質量%)。
A型カルシウムゼオライト:市販品、日本化学工業社製、商品名「アルカットS」
(Materials used)
EDI type lithium zeolite: It was carried out in the same manner as the synthesis method shown in paragraph [0011]. First, powdered allophane (SiO 2 : 33.6% by mass, Al 2 O 3 : 33.1% by mass, Fe 2 O 3 : 2.3% by mass, CaO 0.4% by mass, MgO 0.13% by mass) In a 10 g beaker, 100 ml of a 1 mol / l lithium hydroxide aqueous solution is added in portions of 50 ml in two portions and mixed. Next, leave at 60 ° C. for 24 hours with occasional mixing. After removing the supernatant, the precipitate is transferred to a beaker and suspended in distilled water. Further, the mixture was neutralized by adding acetic acid, filtered through a Buchner funnel, washed with distilled water, dried at 90 ° C. for 24 hours or more and synthesized (lithium content: 3.3 mass%).
ABW type lithium zeolite: It is considered to be a type in which the bonding force between lithium in the cavity and oxygen forming a skeleton is stronger than that of EDI type lithium zeolite. In the synthesis method, powdered allophane is put into a 10 g beaker, and 100 ml of a 1 mol / l lithium hydroxide aqueous solution is added and mixed in 50 ml portions. Then leave it at 90 ° C. for 48 hours with occasional mixing. After removing the supernatant, the precipitate is transferred to a beaker and suspended in distilled water. Further, the mixture was neutralized by adding acetic acid, filtered through a Buchner funnel, washed with distilled water, dried at 90 ° C. for 24 hours or more, and synthesized (lithium content: 4.0 mass%).
A-type lithium zeolite: 10 g of commercially available A-type synthetic sodium zeolite in 100 ml of a 7.5 mass% lithium chloride solution at 90 ° C. for 3 hours, filtered through a Buchner funnel, washed with distilled water, and then at 90 ° C. for at least 24 hours What was synthesize | combined after drying was used (lithium content 3.5 mass%).
Type A calcium zeolite: commercial product, manufactured by Nippon Chemical Industry Co., Ltd., trade name “ARCAT S”

Figure 0005069044
Figure 0005069044

表1から、本発明のセメント混和材は、ナトリウムやカリウムとのイオン交換能がA型リチウムゼオライトやA型カルシウムゼオライトに比べ大きいことが分かる。   From Table 1, it can be seen that the cement admixture of the present invention has higher ion exchange capacity with sodium or potassium than A type lithium zeolite or A type calcium zeolite.

実施例1で使用したセメント混和材をセメント100質量部に対して表2に示す量を加えセメント組成物を調製した。さらに、所定の水を加え混練りしモルタルを作製し、所定の養生を行った硬化体について、アルカリシリカ反応によって現れる膨張量の測定を行った。なお、比較のために、実施例1で使用したA型リチウムゼオライト及びA型カルシウムゼオライトについても同様に行った。結果を表2に示す。   The cement admixture used in Example 1 was added in the amount shown in Table 2 with respect to 100 parts by mass of cement to prepare a cement composition. Furthermore, a predetermined amount of water was added and kneaded to prepare a mortar, and the amount of expansion appearing due to the alkali silica reaction was measured for the cured body subjected to the predetermined curing. For comparison, the same procedure was performed for the A-type lithium zeolite and the A-type calcium zeolite used in Example 1. The results are shown in Table 2.

(モルタル配合)
セメント組成物:水:骨材(質量比)=1:0.5:2.5
(Contains mortar)
Cement composition: water: aggregate (mass ratio) = 1: 0.5: 2.5

(使用材料)
セメント:普通ポルトランドセメント、全アルカリ量0.52質量%
細骨材:アルカリ骨材反応性を有する骨材(輝石安山岩)、比重2.61、最大粒径5mm、JIS A 1145の骨材のアルカリシリカ反応性試験(化学法)にて溶融シリカ量が520mmol/l、アルカリ濃度減少量が211mmol/lで無害でないと判定された骨材。
水:蒸留水
(Materials used)
Cement: Ordinary Portland cement, total alkali amount 0.52% by mass
Fine Aggregate: Aggregate having alkali aggregate reactivity (Pyroxene andesite), specific gravity 2.61, maximum particle size 5 mm, the amount of fused silica in the alkali silica reactivity test (chemical method) of aggregate of JIS A 1145 Aggregate determined to be harmless at 520 mmol / l with a decrease in alkali concentration of 211 mmol / l.
Water: distilled water

(試験方法)
長さ変化:JIS A 1146のアルカリシリカ反応性試験(モルタルバー法)に準拠。試験体サイズは両端に測定用プラグを埋め込んだ4×4×16cm、測定期間中の環境温度は40℃、湿度は90%とし、6ヶ月間測定した。
(Test method)
Length change: Conforms to JIS A 1146 alkali silica reactivity test (mortar bar method). The test body size was 4 × 4 × 16 cm with measurement plugs embedded at both ends, the environmental temperature during the measurement period was 40 ° C., and the humidity was 90%.

Figure 0005069044
Figure 0005069044

表2から、本発明のセメント混和材を使用することで、アルカリシリカ反応性の有る骨材を使用しても膨張量を抑制しているのが分かる。また、抑制効果としてはA型リチウムゼオライトやA型カルシウムゼオライトよりも大きいことが分かる。   From Table 2, it can be seen that by using the cement admixture of the present invention, the amount of expansion is suppressed even when an aggregate having alkali silica reactivity is used. Moreover, it turns out that it is larger than an A type lithium zeolite or an A type calcium zeolite as an inhibitory effect.

本発明のセメント混和材は、ナトリウムやカリウムと速やかにイオン交換するだけでなく、リチウムがセメント組成物中に放出するので、アルカリ骨材反応による膨張を抑制する効果が従来のゼオライトよりも著しく大きく、アルカリ骨材反応で劣化したモルタル又はコンクリート構造物の補修や反応性骨材を利用することが可能となるので、土木、建築分野で広範に使用することができる。   The cement admixture of the present invention not only rapidly ion-exchanges with sodium or potassium, but also releases lithium into the cement composition, so the effect of suppressing expansion due to alkali aggregate reaction is significantly greater than conventional zeolites. Since it becomes possible to repair mortar or concrete structures deteriorated by alkali aggregate reaction or to use reactive aggregate, it can be widely used in the civil engineering and construction fields.

Claims (4)

EDI型及び/又はABW型のリチウムゼオライトを含有するアルカリ骨材反応を抑制するセメント混和材。 A cement admixture containing an EDI-type and / or ABW-type lithium zeolite for suppressing an alkali aggregate reaction . 請求項1記載のセメント混和材とセメントとを含有してなり、セメント混和材をセメント100質量部に対して0.2〜100質量部配合することを特徴とするセメント組成物。 A cement composition comprising the cement admixture according to claim 1 and cement , wherein the cement admixture is blended in an amount of 0.2 to 100 parts by mass with respect to 100 parts by mass of cement. アロフェンから合成したEDI型及び/又はABW型のリチウムゼオライトとセメントとを含有してなり、リチウムゼオライトをセメント100質量部に対して0.2〜100質量部配合することを特徴とするアルカリ骨材反応を抑制するセメント組成物。 Alkaline aggregate characterized by containing EDI type and / or ABW type lithium zeolite synthesized from allophane and cement, and containing 0.2 to 100 parts by mass of lithium zeolite with respect to 100 parts by mass of cement. Cement composition that suppresses reaction . 請求項2又は3記載のセメント組成物を用いて作製したペースト、モルタル又はコンクリート。 A paste, mortar, or concrete produced using the cement composition according to claim 2 or 3.
JP2007142809A 2007-05-30 2007-05-30 Cement admixture and cement composition Active JP5069044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142809A JP5069044B2 (en) 2007-05-30 2007-05-30 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142809A JP5069044B2 (en) 2007-05-30 2007-05-30 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2008297137A JP2008297137A (en) 2008-12-11
JP5069044B2 true JP5069044B2 (en) 2012-11-07

Family

ID=40171007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142809A Active JP5069044B2 (en) 2007-05-30 2007-05-30 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP5069044B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855350B2 (en) * 2007-07-02 2012-01-18 電気化学工業株式会社 Cement admixture and cement composition
JP4878014B2 (en) * 2007-09-26 2012-02-15 電気化学工業株式会社 Cement admixture and cement composition
NL1036458C2 (en) * 2009-01-25 2010-07-27 Jakob Gerrit Hendrik Pannekoek OLIVINE-ZEOLITE CONCRETE PRODUCTS.
JP5463508B2 (en) * 2009-09-02 2014-04-09 学校法人 中央大学 Method to improve resistance to cracking due to shrinkage of hardened cement concrete.
JP6180171B2 (en) * 2013-04-25 2017-08-16 デンカ株式会社 Concrete composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712962B2 (en) * 1987-04-28 1995-02-15 サンド アクチェンゲゼルシャフト Method of suppressing alkali-silica reaction in concrete
JP2006256876A (en) * 2005-03-15 2006-09-28 Tochigi Prefecture Molded product of zeolite and its manufacturing method

Also Published As

Publication number Publication date
JP2008297137A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
Muhammad et al. Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6+, Pb2+ and Cd2+ in composite based geopolymer
Ahmari et al. Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks
Lin et al. Waste brick’s potential for use as a pozzolan in blended Portland cement
CA2180483C (en) Zeolite-based lightweight concrete products
EP2504296B1 (en) Inorganic binder system for the production of chemically resistant construction chemistry products
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
JP5069044B2 (en) Cement admixture and cement composition
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
JP5963177B2 (en) Method for treating solid heavy metal contaminated material and method for producing cement solidified material
Wang et al. Preparation of backfill materials by solidifying municipal solid waste incineration fly ash with slag-based cementitious materials
Rakhimova et al. Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements
Millán-Corrales et al. Synthesis of an alternative hydraulic binder by alkali activation of a slag from lead and zinc processing
Tammam et al. Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers
KR20000049749A (en) A solidifying agent composition of which chief ingredient is low exothermic cement and a preparing method thereof
JP4878014B2 (en) Cement admixture and cement composition
JP5068906B2 (en) Cement admixture, cement composition, and cement concrete using the same
JP5132508B2 (en) Cement admixture and cement composition
KR100375407B1 (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
JP3818802B2 (en) Cement admixture and cement composition
He et al. Upcycling textile sludge into magnesium oxychloride cement: Physical properties, microstructure, and leaching behavior
KR100724340B1 (en) Low price special cement for solidofication of wastes
Siddique et al. Cement kiln dust
JP4744678B2 (en) Cement admixture and cement composition
DUST Valorization of Metal Milling Waste in Cement Based Mortars Modified by Replacement of Cement Kiln Dust
KR100375408B1 (en) Solidity material for reapplication of waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5069044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250