JP5068500B2 - Millimeter wave RF probe pad - Google Patents

Millimeter wave RF probe pad Download PDF

Info

Publication number
JP5068500B2
JP5068500B2 JP2006252593A JP2006252593A JP5068500B2 JP 5068500 B2 JP5068500 B2 JP 5068500B2 JP 2006252593 A JP2006252593 A JP 2006252593A JP 2006252593 A JP2006252593 A JP 2006252593A JP 5068500 B2 JP5068500 B2 JP 5068500B2
Authority
JP
Japan
Prior art keywords
pad
probe pad
millimeter wave
millimeter
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006252593A
Other languages
Japanese (ja)
Other versions
JP2008078187A (en
Inventor
伸 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006252593A priority Critical patent/JP5068500B2/en
Publication of JP2008078187A publication Critical patent/JP2008078187A/en
Application granted granted Critical
Publication of JP5068500B2 publication Critical patent/JP5068500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Description

ミリ波RFプローブパッドに関し、特に、オンウェハ測定の精度向上を実現するGNDパッド構造を備えたミリ波RFプローブパッドに関する。   The present invention relates to a millimeter-wave RF probe pad, and more particularly, to a millimeter-wave RF probe pad having a GND pad structure that realizes an improvement in on-wafer measurement accuracy.

従来のMMIC(Monolithic Microwave Integrated Circuit:モノリシックマイクロ波集積回路)におけるミリ波RF(Radio Frequency)プローブパッドのGNDパッドは、ヴィアホールによって、裏面のグランドと接続されていた。このようなヴィアホールを用いることにより、AC成分ばかりでなくDC成分も含めたショート端として機能できる(例えば、特許文献1参照)。   A GND pad of a millimeter wave RF (Radio Frequency) probe pad in a conventional MMIC (Monolithic Microwave Integrated Circuit) is connected to the ground on the back surface by a via hole. By using such a via hole, it can function as a short end including not only the AC component but also the DC component (see, for example, Patent Document 1).

特開平9−36601号公報JP 9-36601 A

しかしながら、従来技術には次のような課題がある。ヴィアホールには、数10pHのインダクタンスが寄生成分として存在するため、ミリ波帯では、その影響でプローブ部分の損失が増大し、特性が劣化するという問題がある。   However, the prior art has the following problems. In the via hole, an inductance of several tens of pH is present as a parasitic component. Therefore, in the millimeter wave band, there is a problem that the loss of the probe portion increases due to the influence and the characteristics deteriorate.

図8は、従来のミリ波RFプローブパッドの構成図である。上下に3つ並んだパッドのうち、両端のパッドは、GDNパッド10であり、中央のパッドは、信号用パッド20である。両端のGNDパッド10は、それぞれヴィアホールによって裏面のグランドと接続されている。   FIG. 8 is a configuration diagram of a conventional millimeter wave RF probe pad. Of the three pads arranged vertically, the pads at both ends are GDN pads 10, and the center pad is a signal pad 20. The GND pads 10 at both ends are connected to the ground on the back surface by via holes, respectively.

図9は、従来のヴィアホールを備えたGNDパッド10の1ポートのSパラメータ計算結果を示したスミスチャートである。計算端面は、図8中に示した「計算エリア」に相当する。反射移相が周波数とともにスミスチャート上で時計回りに変化し、約90GHzにおいて、オープン状態になっていることがわかる。これによって、ミリ波帯におけるRFプローブのロスは増加し、MMIC全体の特性を劣化させてしまう。   FIG. 9 is a Smith chart showing the S-parameter calculation result for one port of the GND pad 10 having a conventional via hole. The calculation end face corresponds to the “calculation area” shown in FIG. It can be seen that the reflection phase shift changes clockwise on the Smith chart along with the frequency, and is in an open state at about 90 GHz. This increases the loss of the RF probe in the millimeter wave band and degrades the overall characteristics of the MMIC.

本発明は、上記のような課題を解決するためになされたもので、ミリ波帯におけるRFプローブのロスの増加を低減することのできるミリ波RFプローブパッドを得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a millimeter-wave RF probe pad that can reduce an increase in RF probe loss in the millimeter-wave band.

本発明に係るミリ波RFプローブパッドは、60GHz以上のオンウェハ測定に用いるミリ波RFプローブパッドにおいて、グランドパッドを、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造にするとともに、ヴィアホールを介して裏面グランドパターンと接続されたパッド構造を前記オープンスタブ構造に併設したものである。

The millimeter-wave RF probe pad according to the present invention is a millimeter-wave RF probe pad used for on-wafer measurement of 60 GHz or more, and the ground pad has an open stub structure having an electrical length of λ / 4 with respect to a desired frequency . A pad structure connected to the back surface ground pattern through a via hole is provided alongside the open stub structure .

本発明によれば、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造のGNDパッドを備えたプローブパッドを採用することにより、60GHz以上のオンウェハ測定において、ミリ波帯におけるRFプローブのロスの増加を低減することのできるミリ波RFプローブパッドを得ることができる。   According to the present invention, an RF probe in the millimeter wave band is used for on-wafer measurement of 60 GHz or more by adopting a probe pad having an open stub structure GND pad having an electrical length of λ / 4 with respect to a desired frequency Thus, it is possible to obtain a millimeter-wave RF probe pad that can reduce an increase in loss.

以下、本発明のミリ波RFプローブパッドの好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of the millimeter-wave RF probe pad of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1におけるミリ波RFプローブパッドの構成図である。この図1に示したミリ波RFプローブパッドにおいて、GNDパッド10は、信号用パッド20の両端に設けられており、所望の周波数に対してλ/4の電気長を有するオープンスタブ11を備えた構造となっている。これにより、所望の周波数に対しては、従来のような寄生のインダクタンスの影響はなく、GNDパッド10の部分でショート端が得られる構造となる。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a millimeter-wave RF probe pad according to Embodiment 1 of the present invention. In the millimeter wave RF probe pad shown in FIG. 1, the GND pad 10 is provided at both ends of the signal pad 20 and includes an open stub 11 having an electrical length of λ / 4 with respect to a desired frequency. It has a structure. As a result, the desired frequency is not affected by the parasitic inductance as in the prior art, and a short end can be obtained at the GND pad 10 portion.

図2は、本発明の実施の形態1におけるオープンスタブ構造を備えたGNDパッドの1ポートのSパラメータ計算結果を示したスミスチャートである。計算端面は、図1中に示した「計算エリア」に相当する。反射移相が周波数とともに、スミスチャート上で時計回りに変化し、約90GHzにおいてショート状態になっていることがわかる。このように、オープンスタブ構造を備えたGNDパッドを用いることにより、所望帯域においてショート状態を得ることができ、ミリ波帯におけるRFプローブによるロスは低減される。   FIG. 2 is a Smith chart showing the S-parameter calculation result of one port of the GND pad having the open stub structure in the first embodiment of the present invention. The calculation end face corresponds to the “calculation area” shown in FIG. It can be seen that the reflection phase shift changes with the frequency in the clockwise direction on the Smith chart and is in a short state at about 90 GHz. As described above, by using the GND pad having the open stub structure, a short state can be obtained in a desired band, and the loss due to the RF probe in the millimeter wave band is reduced.

図3は、従来の図9および本発明の図2に示したそれぞれの反射特性の振幅の周波数特性を示した図である。従来のヴィアホールを備えたGNDパッドの場合は、約60GHzから反射特性が周波数とともに劣化している。これに対して、本実施の形態1のオープンスタブを備えたGNDパッドの場合は、従来と比較して、より高周波まで良好な反射特性を示していることがわかる。   FIG. 3 is a diagram showing the frequency characteristics of the amplitudes of the respective reflection characteristics shown in FIG. 9 of the prior art and FIG. 2 of the present invention. In the case of a GND pad having a conventional via hole, the reflection characteristics deteriorate with frequency from about 60 GHz. On the other hand, it can be seen that the GND pad provided with the open stub of the first embodiment shows better reflection characteristics up to a higher frequency than in the past.

以上のように、実施の形態1によれば、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造を備えたGNDパッドを用いることにより、プロービングによる損失の低減を実現し、かつ、より高性能なミリ波MMICを実現するミリ波RFプローブパッドを得ることができる。さらに、測定精度の向上が期待できる。   As described above, according to the first embodiment, by using a GND pad having an open stub structure having an electrical length of λ / 4 with respect to a desired frequency, a reduction in loss due to probing is realized, and Therefore, it is possible to obtain a millimeter wave RF probe pad that realizes a higher performance millimeter wave MMIC. Furthermore, improvement in measurement accuracy can be expected.

実施の形態2.
図4は、本発明の実施の形態2におけるミリ波RFプローブパッドの構成図である。先の実施の形態1のミリ波RFプローブパッドのGNDパッド10において、コプレーナ線路を形成するように、オープンスタブ11を、信号用パッド20に接続された信号線路21の両端に配置した構造としている。さらに、図4に示したように、信号線路21の信号線路幅、および信号線路21の端部からオープンスタブ11までの距離を、所望の特性インピーダンスになるように配置した構造となっている。
Embodiment 2. FIG.
FIG. 4 is a configuration diagram of the millimeter wave RF probe pad according to the second embodiment of the present invention. In the GND pad 10 of the millimeter wave RF probe pad of the first embodiment, the open stub 11 is arranged at both ends of the signal line 21 connected to the signal pad 20 so as to form a coplanar line. . Further, as shown in FIG. 4, the signal line width of the signal line 21 and the distance from the end of the signal line 21 to the open stub 11 are arranged to have a desired characteristic impedance.

これによって、ミリ波RFプローブパッドによる損失の増加を低減するとともに、コプレーナ線路−マイクロストリップ線路変換部の電磁波の不連続を緩和する効果を得ることができる。   As a result, an increase in loss due to the millimeter wave RF probe pad can be reduced, and an effect of alleviating the discontinuity of electromagnetic waves in the coplanar line-microstrip line conversion unit can be obtained.

以上のように、実施の形態2によれば、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造を備えたGNDパッドを用いることにより、プロービングによる損失の低減を実現するミリ波RFプローブパッドを得ることができる。さらに、所望の特性インピーダンスを有するコプレーナ構造からなるGNDパッドを用いることにより、コプレーナ線路−マイクロストリップ線路変換部の電磁波の不連続を緩和することができ、より高性能なミリ波MMICを実現するミリ波RFプローブパッドを得ることができる。   As described above, according to the second embodiment, a millimeter wave that realizes reduction of loss due to probing by using a GND pad having an open stub structure having an electrical length of λ / 4 with respect to a desired frequency. An RF probe pad can be obtained. Further, by using a GND pad having a coplanar structure having a desired characteristic impedance, it is possible to alleviate the discontinuity of electromagnetic waves in the coplanar line-microstrip line conversion unit, and to realize a millimeter wave MMIC with higher performance. A wave RF probe pad can be obtained.

実施の形態3.
図5は、本発明の実施の形態3におけるミリ波RFプローブパッドの構成図である。図5に示す構成において、GNDパッド10は、本発明によるオープンスタブ11と、従来技術によるヴィアホール12の両方を兼ね備えた構造を有している。このような構造を有することにより、低周波から高周波までのより広い周波数範囲で良好な特性が実現できる。
Embodiment 3 FIG.
FIG. 5 is a configuration diagram of the millimeter wave RF probe pad according to the third embodiment of the present invention. In the configuration shown in FIG. 5, the GND pad 10 has a structure having both an open stub 11 according to the present invention and a via hole 12 according to the prior art. By having such a structure, good characteristics can be realized in a wider frequency range from low frequency to high frequency.

以上のように、実施の形態3によれば、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造と、ヴィアホールを介して裏面グランドパターンと接続された構造とを兼ね備えたGNDパッドを用いることにより、先の実施の形態1、2の効果に加えて、低周波から高周波までのより広い周波数範囲で良好な特性を実現するミリ波RFプローブパッドを得ることができる。   As described above, according to the third embodiment, the GND having both the open stub structure having an electrical length of λ / 4 with respect to a desired frequency and the structure connected to the back surface ground pattern through the via hole. By using the pad, in addition to the effects of the first and second embodiments, it is possible to obtain a millimeter wave RF probe pad that realizes good characteristics in a wider frequency range from low frequency to high frequency.

なお、実施の形態3の構成においても、先の実施の形態2で示したようなコプレーナ構造を採用することも可能であり、実施の形態2と同様の効果を得ることが可能となる。   In the configuration of the third embodiment, a coplanar structure as shown in the second embodiment can also be adopted, and the same effect as in the second embodiment can be obtained.

実施の形態4.
図6は、本発明の実施の形態4におけるミリ波RFプローブパッドの構成図である。図6に示す構成においては、先の図1に示した本願発明によるオープンスタブ構造を備えたGNDパッド10と信号用パッド20との間に、さらにヴィアホール12に接続されたパッド13を追加して併設配置した構造を示している。
Embodiment 4 FIG.
FIG. 6 is a configuration diagram of the millimeter-wave RF probe pad in the fourth embodiment of the present invention. In the configuration shown in FIG. 6, a pad 13 connected to the via hole 12 is further added between the GND pad 10 having the open stub structure according to the present invention shown in FIG. 1 and the signal pad 20. It shows the structure that is arranged side by side.

本構造では、オンウェハ測定時には、ヴィアホール12がGNDパッド10に接続されていないため、図1と同等の特性を示す。また、図7は、本発明の実施の形態4におけるミリ波RFプローブパッドをパッケージ等に実装した場合の接続例を示した図である。図7に示すように、オープンスタブ11を有するGNDパッド10とヴィアホール12に接続されたパッド13が、ワイヤ14の根本によって一体化されることで、ワイヤ14のインダクタを低減することが可能となる。   In this structure, since the via hole 12 is not connected to the GND pad 10 during on-wafer measurement, the same characteristics as those in FIG. 1 are exhibited. FIG. 7 is a diagram showing a connection example when the millimeter wave RF probe pad according to the fourth embodiment of the present invention is mounted on a package or the like. As shown in FIG. 7, the GND pad 10 having the open stub 11 and the pad 13 connected to the via hole 12 are integrated by the base of the wire 14, so that the inductor of the wire 14 can be reduced. Become.

以上のように、実施の形態4によれば、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造と、ヴィアホールを介して裏面グランドパターンと接続された構造とを併設した構成のGNDパッドを用いることにより、オンウェハでの測定時およびパッケージ等に実装後の測定時の両方において、測定精度の向上を実現するミリ波RFプローブパッドを得ることができる。   As described above, according to the fourth embodiment, an open stub structure having an electrical length of λ / 4 with respect to a desired frequency and a structure connected to the back surface ground pattern via a via hole are provided. By using this GND pad, it is possible to obtain a millimeter-wave RF probe pad that realizes improvement in measurement accuracy both in on-wafer measurement and in measurement after being mounted on a package or the like.

なお、実施の形態4の構成においても、先の実施の形態2で示したようなコプレーナ構造を採用することも可能であり、実施の形態2と同様の効果を得ることが可能となる。   In the configuration of the fourth embodiment, it is also possible to employ a coplanar structure as shown in the previous second embodiment, and the same effect as in the second embodiment can be obtained.

本発明の実施の形態1におけるミリ波RFプローブパッドの構成図である。It is a block diagram of the millimeter wave RF probe pad in Embodiment 1 of this invention. 本発明の実施の形態1におけるオープンスタブ構造を備えたGNDパッドの1ポートのSパラメータ計算結果を示したスミスチャートである。It is a Smith chart which showed the S parameter calculation result of 1 port of the GND pad provided with the open stub structure in Embodiment 1 of this invention. 従来の図9および本発明の図2に示したそれぞれの反射特性の振幅の周波数特性を示した図である。It is the figure which showed the frequency characteristic of the amplitude of each reflection characteristic shown in conventional FIG. 9 and FIG. 2 of this invention. 本発明の実施の形態2におけるミリ波RFプローブパッドの構成図である。It is a block diagram of the millimeter wave RF probe pad in Embodiment 2 of this invention. 本発明の実施の形態3におけるミリ波RFプローブパッドの構成図である。It is a block diagram of the millimeter wave RF probe pad in Embodiment 3 of this invention. 本発明の実施の形態4におけるミリ波RFプローブパッドの構成図である。It is a block diagram of the millimeter wave RF probe pad in Embodiment 4 of this invention. 本発明の実施の形態4におけるミリ波RFプローブパッドをパッケージ等に実装した場合の接続例を示した図である。It is the figure which showed the example of a connection at the time of mounting the millimeter wave RF probe pad in Embodiment 4 of this invention in a package. 従来のミリ波RFプローブパッドの構成図である。It is a block diagram of the conventional millimeter wave RF probe pad. 従来のヴィアホールを備えたGNDパッドの1ポートのSパラメータ計算結果を示したスミスチャートである。It is a Smith chart which showed the S parameter calculation result of 1 port of the GND pad provided with the conventional via hole.

符号の説明Explanation of symbols

10 GNDパッド、11 オープンスタブ、12 ヴィアホール、13 パッド、14 ワイヤ、20 信号用パッド、21 信号線路。   10 GND pads, 11 open stubs, 12 via holes, 13 pads, 14 wires, 20 signal pads, 21 signal lines.

Claims (2)

60GHz以上のオンウェハ測定に用いるミリ波RFプローブパッドにおいて、
グランドパッドを、所望の周波数に対してλ/4の電気長を有するオープンスタブ構造にするとともに、ヴィアホールを介して裏面グランドパターンと接続されたパッド構造を前記オープンスタブ構造に併設したことを特徴とするミリ波RFプローブパッド。
In the millimeter wave RF probe pad used for on-wafer measurement of 60 GHz or more,
The ground pad has an open stub structure having an electrical length of λ / 4 with respect to a desired frequency, and a pad structure connected to the back surface ground pattern through a via hole is provided in the open stub structure. A millimeter-wave RF probe pad.
請求項に記載のミリ波RFプローブパッドにおいて、
前記オープンスタブ構造は、コプレーナ線路を形成するように信号線路の両端にオープンスタブが配置され、前記信号線路の幅と、前記信号線路の端部から前記オープンスタブまでの距離とを所望の特性インピーダンスになるように配置したことを特徴とするミリ波RFプローブパッド。
The millimeter wave RF probe pad according to claim 1 ,
In the open stub structure, open stubs are arranged at both ends of a signal line so as to form a coplanar line, and the width of the signal line and the distance from the end of the signal line to the open stub are set to a desired characteristic impedance. A millimeter-wave RF probe pad characterized by being arranged so that
JP2006252593A 2006-09-19 2006-09-19 Millimeter wave RF probe pad Active JP5068500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252593A JP5068500B2 (en) 2006-09-19 2006-09-19 Millimeter wave RF probe pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252593A JP5068500B2 (en) 2006-09-19 2006-09-19 Millimeter wave RF probe pad

Publications (2)

Publication Number Publication Date
JP2008078187A JP2008078187A (en) 2008-04-03
JP5068500B2 true JP5068500B2 (en) 2012-11-07

Family

ID=39349989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252593A Active JP5068500B2 (en) 2006-09-19 2006-09-19 Millimeter wave RF probe pad

Country Status (1)

Country Link
JP (1) JP5068500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622355A (en) * 2018-04-09 2018-10-09 西北工业大学 One kind being based on the bionical underwater flapping wing propulsion device of devil ray

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172093A1 (en) * 2012-05-17 2013-11-21 株式会社村田製作所 High-frequency module
JP5960622B2 (en) * 2013-02-20 2016-08-02 日本電信電話株式会社 RF circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101309A (en) * 1998-09-22 2000-04-07 Nec Eng Ltd Ground circuit and printed circuit board including the same
JP3852589B2 (en) * 2002-07-29 2006-11-29 三菱電機株式会社 Microwave integrated circuit, dielectric substrate
JP2005331298A (en) * 2004-05-18 2005-12-02 Mitsubishi Electric Corp Method for measuring characteristics of high-frequency circuit, pattern for calibration, and fixture for calibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622355A (en) * 2018-04-09 2018-10-09 西北工业大学 One kind being based on the bionical underwater flapping wing propulsion device of devil ray

Also Published As

Publication number Publication date
JP2008078187A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US8933765B2 (en) Filter, transmitter-receiver, and amplifying circuit
TW200810236A (en) Antenna device
JP5068500B2 (en) Millimeter wave RF probe pad
JPWO2004075336A1 (en) High frequency circuit
JP4221884B2 (en) Millimeter-wave high-frequency equipment
JP6687303B2 (en) Transducer and antenna device
US7688164B2 (en) High frequency circuit board converting a transmission mode of high frequency signals
JP3850325B2 (en) Microwave integrated circuit
RU2046469C1 (en) Strip stub directional coupler
JP2004253947A (en) Impedance conversion circuit
JP3619396B2 (en) High frequency wiring board and connection structure
JP5203775B2 (en) Double harmonic suppression circuit
JP6351450B2 (en) Wireless module, electronic module, and measuring method
JP3916072B2 (en) AC coupling circuit
JP2002185201A (en) Wiring board for high frequency
JP2008263360A (en) High-frequency substrate device
JPS6346801A (en) Ultrahigh frequency signal distribution circuit
JP5173918B2 (en) Frequency conversion circuit
CN217789977U (en) Radio frequency interface circuit
JP5142844B2 (en) Stabilization circuit and amplifier
JP3833426B2 (en) High frequency wiring board
JPH018002Y2 (en)
JP3852589B2 (en) Microwave integrated circuit, dielectric substrate
KR101938227B1 (en) Waveguide package
KR100816355B1 (en) MMIC bonding Method on Non-Radiative MicrostripLine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250