JP5067755B2 - Steel pipe repair method - Google Patents

Steel pipe repair method Download PDF

Info

Publication number
JP5067755B2
JP5067755B2 JP2007240313A JP2007240313A JP5067755B2 JP 5067755 B2 JP5067755 B2 JP 5067755B2 JP 2007240313 A JP2007240313 A JP 2007240313A JP 2007240313 A JP2007240313 A JP 2007240313A JP 5067755 B2 JP5067755 B2 JP 5067755B2
Authority
JP
Japan
Prior art keywords
steel pipe
casing
damaged
repairing
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007240313A
Other languages
Japanese (ja)
Other versions
JP2009068661A (en
Inventor
憲武 小口
順平 河野
秀登志 松浦
昌隆 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2007240313A priority Critical patent/JP5067755B2/en
Publication of JP2009068661A publication Critical patent/JP2009068661A/en
Application granted granted Critical
Publication of JP5067755B2 publication Critical patent/JP5067755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、傷ついて部分的に肉厚が薄くなった鋼管を補修する際に、鋼管の補修と共に鋼管の座屈をコントロールして耐震補強を可能にする技術に関する。   The present invention relates to a technique that enables seismic reinforcement by repairing a steel pipe and controlling buckling of the steel pipe when repairing a steel pipe that is damaged and partially thinned.

ガス管や水道管などを地下に埋設する際には、鋼管の外周に腐食を防止するための塗覆膜が設けられている塗覆鋼管を用いることがある。例えばポリプロピレンやポリエチレンなどの樹脂系の材料で鋼管の周囲を塗覆することで、外部からの湿気によって鋼管が腐食することを防止している。
このような塗覆鋼管が地下に埋設されている場合、当該埋設された塗覆鋼管(埋設配管)を管理維持している者が工事する場合は、埋設場所が明らかであるため問題となりにくいが、他の者が工事するいわゆる他工事によって埋設配管が損傷される恐れがある。
When a gas pipe or a water pipe is buried underground, a coated steel pipe having a coating film for preventing corrosion on the outer periphery of the steel pipe may be used. For example, by coating the periphery of the steel pipe with a resin-based material such as polypropylene or polyethylene, the steel pipe is prevented from being corroded by moisture from the outside.
When such a coated steel pipe is buried underground, when a person who manages and maintains the buried coated steel pipe (buried pipe) is working, it is less likely to be a problem because the buried place is clear. The buried piping may be damaged by so-called other construction that other people construct.

これは、埋設配管の埋設場所が道路に沿った位置であることが多く、比較的近くに複数の埋設配管が並列に埋設されるケースが多いからである。
このような埋設配管を工事する際には、事前に配管埋設位置の確認を行い、工事によって埋設配管を損傷しないように十分留意するのが通例である。しかしながら、埋設配管を損傷しないように注意をするのは、実際には工事車両を運転するオペレータに委ねられることとなり、操作を誤って目的以外の部分を掘削した結果、既設埋設配管を損傷してしまう心配がある。
This is because the buried place of the buried pipe is often located along the road, and there are many cases where a plurality of buried pipes are buried in parallel relatively close to each other.
When constructing such buried piping, it is customary to confirm the location of the buried piping in advance and pay sufficient attention not to damage the buried piping. However, care should be taken not to damage the buried piping. In practice, it will be left to the operator who operates the construction vehicle. There is a worry.

このような埋設配管が損傷した場合の補修方法については、例えば非特許文献1に開示されている補修方法がある。
非特許文献1に記載の配管補修方法には、図8(A)に示すような肉盛溶接工法及び同じく(B)に示すような溶接スリーブ工法と呼ばれる方法がある。
すなわち、肉盛溶接工法は、図8(A)に示すように、鋼管11が損傷を受けて肉厚が一部薄くなった損傷部分14に肉盛溶接をして肉盛溶接部70を設けることで、この肉盛溶接部70により肉厚を回復するものである。
As a repair method when such buried piping is damaged, there is a repair method disclosed in Non-Patent Document 1, for example.
The piping repair method described in Non-Patent Document 1 includes a method called a build-up welding method as shown in FIG. 8 (A) and a welding sleeve method as shown in FIG. 8 (B).
That is, in the build-up welding method, as shown in FIG. 8 (A), build-up welding 70 is provided by performing build-up welding on the damaged portion 14 in which the steel pipe 11 is damaged and the thickness is partially reduced. Thus, the wall thickness is recovered by the build-up welded portion 70.

また、溶接スリーブ工法は、図8(B)に示すように、鋼管11の損傷部分14に、鋼管11の外半径と同一の半径を有する半円形のスリーブ80を鋼管11に被せて、スリーブ80の軸方向の端部と鋼管11の外周面、及びスリーブ80の継ぎ合わせ部を溶接してすみ肉溶接部71、72を設けて損傷部分14を補修するものである。   Further, as shown in FIG. 8B, the welding sleeve construction method is such that a semicircular sleeve 80 having the same radius as the outer radius of the steel pipe 11 is placed on the damaged portion 14 of the steel pipe 11 and the sleeve 80 is covered. The end portion in the axial direction, the outer peripheral surface of the steel pipe 11 and the joint portion of the sleeve 80 are welded to provide fillet weld portions 71 and 72 to repair the damaged portion 14.

また、非特許文献1には記載されていないが、図8(C)に示すように、損傷部分14(図略)にパッチ81を当ててその周囲を溶接してすみ肉溶接部71、72を設けて補修する方法も行われている。
これらの補修方法は軽微な腐食、損傷等により、埋設配管に深い減肉が生じた場合に、当該部の埋設配管を取り替えることなく恒久修理を行うものである。このような方法によって塗覆鋼管も修理可能である。
Although not described in Non-Patent Document 1, as shown in FIG. 8C, a patch 81 is applied to the damaged portion 14 (not shown) and the periphery thereof is welded to fillet welds 71 and 72. There is also a method of repairing by installing.
These repair methods are used to perform permanent repairs without replacing the buried pipes when the buried pipes are deeply thinned due to minor corrosion or damage. The coated steel pipe can also be repaired by such a method.

また、配管のピンホールや腐食割れした部分の漏水補修に用いるためのクランプ(例えば、ショーボンドカップリング株式会社製のストラブ・クランプ)が市販されている。このクランプは配管の直径に合うようにプレス成型により半円形に複雑に成形したベルトの一端をヒンジ結合し、他端同士をネジ部材で結合して配管に被せるようにしたものである。   In addition, clamps for use in repairing water leakage in pipe pinholes and corrosion cracked parts (for example, Straub clamps manufactured by Showbond Coupling Co., Ltd.) are commercially available. This clamp is configured such that one end of a belt that is complicatedly formed into a semicircular shape by press molding so as to match the diameter of the pipe is hinged and the other end is coupled with a screw member to cover the pipe.

社団法人日本ガス協会 ガス工作物等技術基準調査委員会、「高圧導管指針 JGA指-204-06」、375p〜379pJapan Gas Association Gas Works Technical Standards Investigation Committee, “High Pressure Pipeline Guide JGA Finger-204-06”, 375p-379p

しかし、上記のような従来技術には以下に記載するような問題点があった。
すなわち、従来行われてきた肉盛溶接工法や溶接スリーブ工法は、埋設配管を補修するにあたり溶接を行うため、溶接火花のガスへの引火を防止する必要から、可能な限り埋設配管内のガス圧を減圧する、あるいはガスの供給を遮断して行う必要がある。
特に高圧ガスを流す基幹埋設配管に用いられる塗覆鋼管の補修においては、ガス漏れが発生すると大きな事故を引き起こすおそれがあるため、慎重に補修が行われる必要がある。(上記非特許文献1ではガス供給を継続しながら上記工法を行うとしているが、実際には安全上、ガスを減圧あるいは遮断して行われる。)
また、溶接によって埋設鋼管を補修する場合には、溶接に必要な熱を確保する必要があるが、ガス配管内に高圧ガスが流れている影響で、入力した熱が急速に奪われてしまい、溶接不良がおこりやすいという問題もある。
However, the prior art as described above has the following problems.
That is, the conventional overlay welding method and welding sleeve method perform welding when repairing the buried piping, and therefore it is necessary to prevent the ignition of the welding spark to the gas. It is necessary to depressurize or cut off the gas supply.
In particular, in the repair of coated steel pipes used for trunk buried pipes through which high-pressure gas flows, there is a risk of causing major accidents when gas leaks occur, so repairs must be carefully performed. (In the above Non-Patent Document 1, the above-mentioned construction method is carried out while continuing the gas supply, but in practice, the gas is decompressed or shut off for safety reasons.)
In addition, when repairing buried steel pipes by welding, it is necessary to secure the heat necessary for welding, but due to the effect of high-pressure gas flowing in the gas piping, the input heat is rapidly deprived, There is also a problem that poor welding is likely to occur.

さらに、肉盛溶接工法や溶接スリーブ工法で配管を補修した場合、溶接部分の強度が低下するおそれがある。出願人が行った配管に荷重を加えての高圧ガス導管耐震設計指針に基づく実験によれば、補修部分の前後で座屈が生じることが判明している。
基幹である高圧ガス配管に用いられる鋼管に、このような座屈が生じてガス漏れが発生した場合には大きな事故を引き起こすおそれがあり、ライフラインを遮断することにもなりかねないので、耐震性を考慮したる鋼管の補修方法が求められている。
Furthermore, when piping is repaired by the overlay welding method or the welding sleeve method, the strength of the welded portion may be reduced. According to an experiment based on the high-pressure gas pipe seismic design guideline that applies a load to the pipe performed by the applicant, it has been found that buckling occurs before and after the repaired portion.
If such a buckling occurs in the steel pipe used for the high-pressure gas pipe, which is the backbone, and a gas leak occurs, there is a risk of causing a serious accident, which may interrupt the lifeline. There is a need for a method of repairing steel pipes that takes into account the properties of steel pipes.

本発明は、上記課題を解決するためになされたものであり、溶接によらず補修後に耐震性を低下させない鋼管の補修方法を提供することを目的としたものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method of repairing a steel pipe that does not lower the earthquake resistance after repairing regardless of welding.

上記の問題を解決するために請求項1に記載の鋼管の補修方法は、鋼管が損傷して減肉部が形成された際に、前記減肉部が形成された前記鋼管の損傷部分を補修する鋼管の補修方法において、前記減肉部に弾性充填材を充填し、前記損傷部分に熱収縮チューブを被せて加熱することで、前記損傷部分に前記熱収縮チューブが密着して前記鋼管の外周を被覆し、前記熱収縮チューブの外周を、金属製のケーシングと、該ケーシングの内周に設けられた弾性体スリーブとを備えたクランプで覆い、前記クランプを前記損傷部分に固定することで、前記鋼管の前記損傷部分を補修し、前記弾性充填材、前記熱収縮チューブ、及び前記弾性体スリーブによって前記減肉部に生じる変形を吸収して前記ケーシングの変形を抑え、前記鋼管の耐震性を損なわないこと、を特徴とする。 In order to solve the above problem, the steel pipe repair method according to claim 1 repairs a damaged portion of the steel pipe in which the reduced thickness portion is formed when the reduced thickness portion is formed by damaging the steel pipe. In the method of repairing a steel pipe, the heat-shrinkable tube is in close contact with the damaged portion by filling the thinned portion with an elastic filler and heating the damaged portion with a heat-shrinkable tube. And covering the outer periphery of the heat-shrinkable tube with a clamp having a metal casing and an elastic sleeve provided on the inner periphery of the casing, and fixing the clamp to the damaged portion, The damaged portion of the steel pipe is repaired , the deformation generated in the thinned portion is absorbed by the elastic filler, the heat-shrinkable tube, and the elastic sleeve to suppress the deformation of the casing, and the earthquake resistance of the steel pipe is improved. Spoiled Never, and it said.

よって、減肉部の外周部を弾性充填材と熱収縮チューブ及び弾性体スリーブの三重の弾性体で被覆し、その外周をクランプの金属製のケーシングで補強しながら覆うので、溶接を一切使わずに補修するため安全であり、ガスの減圧や遮断をする必要がない。
また、地震等で鋼管に外力が作用して減肉部に変形が生じた場合でも、その変形を前記弾性体で吸収し、ケーシングの変形を極力抑えて、鋼管の座屈をコントロール可能にした補修をすることができ、補修後に耐震性を低下させない。
Therefore, the outer periphery of the thinned portion is covered with a triple elastic body of an elastic filler, a heat shrinkable tube and an elastic sleeve, and the outer periphery is covered while being reinforced with a metal casing of the clamp, so no welding is used. It is safe to repair, and there is no need to depressurize or shut off the gas.
In addition, even when an external force acts on the steel pipe due to an earthquake or the like and the thinned portion is deformed, the elastic body absorbs the deformation, and the buckling of the steel pipe can be controlled by suppressing the deformation of the casing as much as possible. Can be repaired, and does not reduce earthquake resistance after repair.

また、請求項2に記載の鋼管の補修方法は、請求項1に記載された鋼管の補修方法において、前記クランプの前記ケーシングが、平板から円筒状に形成されたものであり、その円周方向の両端部に各々鍔部を有し、両鍔部を軸方向に並べた複数のネジ部材により締め付けることにより、前記損傷部分の外周を補強しつつ覆うことを特徴とする。
よって、ケーシングを複雑にプレス成型する必要がなく、安価に製造できるとともに、大径の埋設配管の補修に容易に適用できる。
The steel pipe repair method according to claim 2 is the steel pipe repair method according to claim 1, wherein the casing of the clamp is formed in a cylindrical shape from a flat plate. Each of the two ends has a flange portion, and is tightened with a plurality of screw members arranged in the axial direction so as to reinforce and cover the outer periphery of the damaged portion.
Therefore, it is not necessary to press-mold the casing in a complicated manner, it can be manufactured at a low cost, and can be easily applied to repair of a large-diameter buried pipe.

また、請求項3に記載の鋼管の補修方法は、請求項1に記載された鋼管の補修方法において、前記ケーシングの厚みが10mmで、前記弾性体スリーブの厚みが5mmであることを特徴とする。
よって、ケーシングの厚みが10mmより薄いと前記減肉部の変形により、ケーシングが押圧されてケーシングが外側に膨らむ変形を起こし、その結果、減肉部が外側に座屈する。また、ケーシングの厚みが10mmより厚いとケーシングの剛性が高すぎて、前記減肉部の変形が内側に座屈して、大きく変形する。ケーシングの厚みが10mmの場合は、減肉部が適度に波打つように鋼管の座屈をコントロールし、かつケーシングも変形させずに補修し、かつ耐震補強することができる。
The steel pipe repair method according to claim 3 is the steel pipe repair method according to claim 1, wherein the casing has a thickness of 10 mm and the elastic sleeve has a thickness of 5 mm. .
Therefore, if the thickness of the casing is less than 10 mm, the casing is pressed by the deformation of the thinned portion, causing the casing to bulge outward. As a result, the thinned portion buckles outward. Further, if the thickness of the casing is thicker than 10 mm, the rigidity of the casing is too high, and the deformation of the thinned portion buckles inward and greatly deforms. When the thickness of the casing is 10 mm, it is possible to control the buckling of the steel pipe so that the thinned portion undulates moderately, repair the casing without deforming it, and perform seismic reinforcement.

上記構成を備える鋼管の補修方法の作用効果について説明する。
(1)本発明の鋼管の補修方法は、溶接を一切使用しないので、ガスを通常の圧力で供給しながら補修が可能であり、地域住民へ不便を掛けることなく補修及び耐震補強が可能となる。
(2)減肉部分の大きさに応じたケーシングを容易に調達できるので、補修期間の短縮を図ることができ、工事期間を短縮して安価に補修することができる。
(3)減肉部の変形を前記三重の弾性体で適度に抑えるので、減肉部の座屈をコントロールしながら補修及び耐震補強が可能となる。
The effect of the steel pipe repair method provided with the said structure is demonstrated.
(1) Since the steel pipe repair method of the present invention does not use welding at all, repair is possible while supplying gas at normal pressure, and repair and seismic reinforcement are possible without causing inconvenience to local residents. .
(2) Since the casing corresponding to the size of the thinned portion can be easily procured, the repair period can be shortened, and the construction period can be shortened and repaired at low cost.
(3) Since the deformation of the thinned portion is moderately suppressed by the triple elastic body, repair and seismic reinforcement can be performed while controlling the buckling of the thinned portion.

次に、本発明に係る鋼管の補修方法の一の実施の形態について図面を参照して説明する。本実施の形態の鋼管の補修方法は、ガス管の直径600mmの基幹導管に適用されたものである。
ここで、図1は、基幹導管の補修部分を示した側面図である。図2は、そのII−II線に沿う断面図であり、図3は、そのIII−III線に沿う断面図である。
Next, an embodiment of a steel pipe repair method according to the present invention will be described with reference to the drawings. The steel pipe repair method of the present embodiment is applied to a main pipe having a diameter of 600 mm in a gas pipe.
Here, FIG. 1 is a side view showing a repaired portion of the main conduit. FIG. 2 is a sectional view taken along the line II-II, and FIG. 3 is a sectional view taken along the line III-III.

鋼管の補修方法の補修部分の構成について説明する。本実施の形態の塗覆鋼管10は、図1、図2に示すように、鋼管11とその外表面に塗覆された塗覆膜12とを備えている。 鋼管11は、直径600mm、管厚10.3mmの基幹導管に用いられるものであり、塗覆膜12は、例えばポリプロピレンやポリエチレン等の合成樹脂を鋼管に塗布して膜状にしたもので、前述したように地下に埋設された鋼管11が腐食しないように加工されたものである。
そして、損傷部分14の減肉部13や補修部分1の実施例として、図4に示すように、本発明の鋼管の補修方法を確認するための実験に使用したもので説明する。
The structure of the repair portion of the steel pipe repair method will be described. The coated steel pipe 10 of this Embodiment is provided with the steel pipe 11 and the coating film 12 coated by the outer surface, as shown in FIG. 1, FIG. The steel pipe 11 is used for a main conduit having a diameter of 600 mm and a pipe thickness of 10.3 mm. The coating film 12 is a film formed by applying a synthetic resin such as polypropylene or polyethylene to a steel pipe. Thus, the steel pipe 11 buried underground is processed so as not to corrode.
Then, as an example of the thinned portion 13 and the repaired portion 1 of the damaged portion 14, as shown in FIG. 4, the description will be made using what is used in an experiment for confirming the steel pipe repairing method of the present invention.

損傷部分14は、他工事による重機がぶつかって塗覆膜12が部分的に破れ、鋼管11がえぐられて管厚が薄くなって減肉部13が発生したことを想定したものである。減肉部13の大きさは、周方向長×軸方向長が300mm×300mm、深さ約4mm(減肉率40%)に設定されている。この減肉部13にシリコン系の弾性充填材20が充填されて、その外周表面が鋼管11の外周表面と略同一面となっている。   The damaged portion 14 assumes that the heavy machinery by other construction collided and the coating film 12 was partially broken, the steel pipe 11 was removed, the pipe thickness was reduced, and the reduced thickness portion 13 was generated. The size of the thinned portion 13 is set such that the circumferential length × the axial length is 300 mm × 300 mm and the depth is about 4 mm (thickness reduction rate 40%). The thinned portion 13 is filled with a silicon-based elastic filler 20, and the outer peripheral surface thereof is substantially flush with the outer peripheral surface of the steel pipe 11.

この損傷部分14を補修する補修部分1は、図2の断面図に示すように、塗覆膜12が一部剥離されて、損傷部分14を覆う熱収縮チューブ30と、この熱収縮チューブ30の外周を覆うクランプ50とを備えている。
熱収縮チューブ30は、損傷部分14の軸方向両側の塗覆膜12に重合する軸方向の長さを有するもので、損傷部分14に被せ、外側から加熱することで、一旦軟化しその後、自然冷却により収縮しながら硬化し、損傷部分14に密着して鋼管11の外周を被覆するものである。
したがって、塗覆膜12が剥離された部分は凹部となり、塗覆膜12と重合する部分はこの塗覆膜12の厚さ分だけ外側に突出する。
As shown in the cross-sectional view of FIG. 2, the repaired portion 1 that repairs the damaged portion 14 includes a heat shrinkable tube 30 that covers the damaged portion 14 by partially peeling the coating film 12, and the heat shrinkable tube 30. And a clamp 50 covering the outer periphery.
The heat-shrinkable tube 30 has a length in the axial direction that overlaps with the coating film 12 on both sides in the axial direction of the damaged portion 14. The heat-shrinkable tube 30 is covered with the damaged portion 14 and heated from the outside. It hardens while shrinking by cooling, and adheres to the damaged portion 14 to cover the outer periphery of the steel pipe 11.
Accordingly, the portion where the coating film 12 is peeled becomes a concave portion, and the portion overlapping with the coating film 12 protrudes outward by the thickness of the coating film 12.

クランプ50は、金属製のケーシング51と、該ケーシング51の内周に設けられた弾性体スリーブ40とを備えている。
ケーシング51は、軸方向の長さが熱収縮チューブ30より短く、塗覆膜12に重合する長さを有するステンレス鋼板(SUS304)製で、図3に示すように、この第1実施例では板厚10mmの平板を損傷部分14に巻き付けるもので、その周方向の両端部に設けたフランジ部52、52を対向させてボルト、ナット等のネジ部材53により締め付けることにより、損傷部分14に固定されるものである。
弾性体スリーブ40は、ケーシング51と略同一の軸方向の長さを有し、その外周がケーシング51により抑えられているため、塗覆膜12が剥離された凹部に入り込んで厚くなり、塗覆膜12と重合する部分で薄くなるような柔らかな(硬度90)ゴム(NBR)製で、自由時の厚さが5mmのもので構成されている。
The clamp 50 includes a metal casing 51 and an elastic sleeve 40 provided on the inner periphery of the casing 51.
The casing 51 is made of a stainless steel plate (SUS304) having an axial length shorter than that of the heat shrinkable tube 30 and superposed on the coating film 12. As shown in FIG. A flat plate having a thickness of 10 mm is wound around the damaged portion 14. The flange portions 52, 52 provided at both ends in the circumferential direction are opposed to each other and are fastened with screw members 53 such as bolts and nuts, thereby being fixed to the damaged portion 14. Is.
The elastic sleeve 40 has substantially the same axial length as that of the casing 51 and the outer periphery thereof is restrained by the casing 51. Therefore, the elastic sleeve 40 enters the recessed portion where the coating film 12 is peeled off and becomes thick. It is made of a soft (hardness 90) rubber (NBR) that is thinned at the portion where it is superposed on the film 12, and has a thickness of 5 mm when free.

以上のように構成された第1の実施の形態の補修部分1の作用を、上記の試験結果を用いて説明する。高圧ガス導管耐震設計指針に基づき、図4に示すように、損傷部分14を補修部分1で補修した塗覆鋼管10を上部より圧縮荷重を付加できる試験装置に立設し、塗覆鋼管10内部に2MPaの水圧を加えるとともに、上方より±0.50%歪み×5サイクルの負荷をかける。   The operation of the repair portion 1 of the first embodiment configured as described above will be described using the above test results. As shown in FIG. 4, based on the high-pressure gas pipe seismic design guideline, the coated steel pipe 10 in which the damaged portion 14 is repaired by the repaired portion 1 is erected on a test apparatus capable of applying a compressive load from above, A water pressure of 2 MPa is applied, and a load of ± 0.50% strain × 5 cycles is applied from above.

その結果、図5(A)に示す負荷前の補修部分1の断面に対して、図5(B)に示すように、減肉部13が外側に適度に変形し、その後、減肉部13の中央部だけ内側に変形し、結果として外側にも内側にも座屈せずに波形に変形して、その変形を前記三層の弾性体が吸収して厚さ10mmのケーシング51も変形せずに補修されていることが判る。したがって、塗覆鋼管10に座屈は発生していない。すなわち、この補修が耐震補強となる。
そして、このときの最大圧縮荷重は、1サイクル目が8753kNで、5サイクル目が8020kNであり、その低下率が8.4%であった。
As a result, with respect to the cross section of the repaired portion 1 before loading shown in FIG. 5 (A), the thinned portion 13 is appropriately deformed outward as shown in FIG. 5 (B). Only the central part of the casing is deformed inward, and as a result, it is deformed into a waveform without buckling outward or inward, and the deformation is absorbed by the three-layered elastic body, and the casing 51 having a thickness of 10 mm is not deformed. It can be seen that it has been repaired. Therefore, no buckling has occurred in the coated steel pipe 10. In other words, this repair becomes seismic reinforcement.
The maximum compression load at this time was 8753 kN in the first cycle and 8020 kN in the fifth cycle, and the reduction rate was 8.4%.

比較試験として、第2の実施の形態として、ケーシング51の板厚を5mmにしたもので他は同一条件として試験した結果、図6(A)に示す負荷前の補修部分1の断面に対して、図6(B)に示すように、内圧に押されて減肉部13が外側に膨出し、それを押さえきれずにケーシング51が外側に膨らみ変形して座屈した。このときの最大圧縮荷重は1サイクル目が7666kNで、5サイクル目が6868kNであり、低下率が10.4%となり、実施例1より低下率が増加した。これはケーシング51の板厚が薄くて内圧に耐えきれずに変形したため、耐震補強としては実施例1より不十分となった。   As a comparative test, as a second embodiment, the thickness of the casing 51 is 5 mm, and the others are tested under the same conditions. As a result, the cross section of the repaired part 1 before loading shown in FIG. As shown in FIG. 6 (B), the thinned portion 13 bulges outward by being pressed by the internal pressure, and the casing 51 bulges outward and deforms and buckles without being able to hold it down. The maximum compression load at this time was 7666 kN in the first cycle and 6868 kN in the fifth cycle, and the reduction rate was 10.4%, which was higher than that in Example 1. Since the casing 51 was thin and could not withstand the internal pressure, the casing 51 was deformed, so that the seismic reinforcement was insufficient as compared with the first embodiment.

つぎに、第3の実施の形態として、ケーシング51の板厚を20mmにしたものをシミュレーションしてみると、図7(A)に示す負荷前の補修部分1の断面に対して、図7(B)に示すように、ケーシング51の板厚が厚いため剛性が高すぎて、鋼管11が外側に変形できないため減肉部13が管内部に折れ曲がって座屈することが予想される。従ってこの場合も当然低下率が増加することが想定され、耐震補強にはふさわしくない。   Next, as a third embodiment, a simulation of the casing 51 having a plate thickness of 20 mm is performed. As shown in FIG. 7 (A), the cross section of the repaired portion 1 before loading shown in FIG. As shown in B), since the thickness of the casing 51 is thick, the rigidity is too high, and the steel pipe 11 cannot be deformed to the outside, so that the thinned portion 13 is expected to bend and buckle inside the pipe. Therefore, it is assumed that the rate of decline will increase in this case as well, and is not suitable for seismic reinforcement.

以上説明したように、本発明の鋼管の補修方法によれば、鋼管が損傷して減肉部が形成された際に、減肉部が形成された鋼管の損傷部分を補修する鋼管の補修方法において、減肉部に弾性充填材を充填し、損傷部分に熱収縮チューブを被せて加熱することで、損傷部分に熱収縮チューブが密着して鋼管の外周を被覆し、熱収縮チューブの外周を、金属製のケーシングと、該ケーシングの内周に設けられた弾性体スリーブとを備えたクランプで覆い、クランプを損傷部分に固定することで、鋼管の損傷部分を補修することを特徴とするので、減肉部の外周部を弾性充填材と熱収縮チューブ及び弾性体スリーブの三重の弾性体で被覆し、その外周をクランプの金属製のケーシングで補強しながら覆うので、溶接を一切使わずに補修するため安全であり、ガスの減圧や遮断をする必要がない。また、地震等で鋼管に外力が作用して減肉部に変形が生じた場合でも、その変形を前記弾性体で吸収し、ケーシングの変形を極力抑えて、鋼管の座屈をコントロール可能にした補修をすることができる。   As described above, according to the steel pipe repair method of the present invention, when a steel pipe is damaged and a thinned portion is formed, the repaired method of the steel pipe repairs a damaged portion of the steel pipe in which the thinned portion is formed. In this case, the thinned part is filled with an elastic filler, and the damaged part is covered with a heat shrinkable tube and heated, so that the damaged part is covered with the heat shrinkable tube to cover the outer periphery of the steel pipe. The steel pipe is covered with a clamp provided with a metal casing and an elastic sleeve provided on the inner periphery of the casing, and the clamp is fixed to the damaged part, thereby repairing the damaged part of the steel pipe. The outer periphery of the thinned part is covered with a triple elastic body of elastic filler, heat-shrinkable tube and elastic sleeve, and the outer periphery is covered while being reinforced with a metal casing of the clamp, so no welding is used Safe to repair Ri, it is not necessary to vacuum or blocking of the gas. In addition, even when an external force acts on the steel pipe due to an earthquake or the like and the thinned portion is deformed, the elastic body absorbs the deformation, and the buckling of the steel pipe can be controlled by suppressing the deformation of the casing as much as possible. Can be repaired.

また、クランプのケーシングが、平板から円筒状に形成されたものであり、その円周方向の両端部に各々鍔部を有し、両鍔部を軸方向に並べた複数のネジ部材により締め付けることにより、損傷部分の外周を補強しつつ覆うことを特徴とするので、ケーシングを複雑にプレス成型する必要がなく、安価に製造できるとともに、大径の埋設配管の補修に容易に適用できる。
さらに、ケーシングの厚みが10mmで、弾性体スリーブの厚みが5mmであることを特徴とするため、減肉部が適度に波打つように鋼管の座屈をコントロールし、かつケーシングも変形させずに補修でき、かつ耐震補強することができる。
すなわち、上記試験でも明らかなように、ケーシングの厚みが5mmの場合の1サイクル目の最大圧縮荷重が7666kNであるのに対して、ケーシングの厚みが10mmの場合の1サイクル目の最大圧縮荷重は8753kNであり、強度が約14%も増加し、5サイクル目でも16.8%増加し、十分耐震補強となることができる。
Further, the casing of the clamp is formed in a cylindrical shape from a flat plate, and has clamp portions at both ends in the circumferential direction thereof, and is tightened by a plurality of screw members arranged in the axial direction. Thus, the outer periphery of the damaged portion is covered while being reinforced, so that it is not necessary to press-mold the casing in a complicated manner, it can be manufactured at low cost, and can be easily applied to repair of a large-diameter buried pipe.
Furthermore, because the thickness of the casing is 10 mm and the thickness of the elastic sleeve is 5 mm, the buckling of the steel pipe is controlled so that the thinned portion undulates appropriately, and the casing is also repaired without deformation. Can be seismically reinforced.
That is, as apparent from the above test, the maximum compressive load in the first cycle when the casing thickness is 5 mm is 7666 kN, whereas the maximum compressive load in the first cycle when the casing thickness is 10 mm is It is 8753 kN, the strength increases by about 14%, increases by 16.8% even at the fifth cycle, and can be sufficiently seismic strengthened.

なお、本発明は前記実施の形態のものに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、前記実施の形態では、鋼管11に塗覆膜12を施した塗覆鋼管10で説明したが、これに限られず、単なる鋼管に適用することも可能である。
In addition, this invention is not limited to the thing of the said embodiment, A various change is possible in the range which does not deviate from the meaning.
For example, in the said embodiment, although the coated steel pipe 10 which gave the coating film 12 to the steel pipe 11 was demonstrated, it is not restricted to this, It is also possible to apply to a mere steel pipe.

本発明の第一の実施の形態に係る基幹導管の補修部分を示した側面図である。It is the side view which showed the repair part of the trunk conduit | pipe which concerns on 1st embodiment of this invention. 図1のII−II線に沿う断面図である。It is sectional drawing which follows the II-II line of FIG. 図1のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. 本発明の第一の実施の形態に係る基幹導管の試験状況を示す側面図である。It is a side view which shows the test condition of the trunk conduit | pipe which concerns on 1st embodiment of this invention. 本発明の第一の実施の形態に係る基幹導管の試験状況を示す断面図で、(A)は試験前、(B)は試験後の状況を示す。It is sectional drawing which shows the test condition of the trunk conduit | pipe which concerns on 1st embodiment of this invention, (A) shows the condition before a test, (B) shows the condition after a test. 本発明の第二の実施の形態に係る基幹導管の試験状況を示す断面図で、(A)は試験前、(B)は試験後の状況を示す。It is sectional drawing which shows the test condition of the trunk conduit | pipe which concerns on 2nd embodiment of this invention, (A) shows the condition before a test, (B) shows the condition after a test. 本発明の第三の実施の形態に係る基幹導管の試験状況を示す断面図で、(A)は試験前、(B)は試験後の状況を示す。It is sectional drawing which shows the test condition of the trunk conduit | pipe which concerns on 3rd embodiment of this invention, (A) shows the condition before a test, (B) shows after a test. 従来の補修方法を示す概略図で、(A)は非特許文献1の高圧導管指針に掲載された肉盛溶接工法を示し、(B)は溶接スリーブ工法を示し、(C)は非掲載のパッチ当て溶接工法を示す。It is the schematic which shows the conventional repair method, (A) shows the build-up welding method published in the high voltage | pressure conduit | pipe guide of a nonpatent literature 1, (B) shows a welding sleeve construction method, (C) is unpublished. The patch application welding method is shown.

符号の説明Explanation of symbols

1 補修部分
10 塗覆鋼管
11 鋼管
12 塗覆膜
13 減肉部
14 損傷部分
20 弾性充填材
30 熱収縮チューブ
40 弾性体スリーブ
50 クランプ
51 ケーシング
52 フランジ部
53 ネジ部材
70 肉盛溶接部
71、72 すみ肉溶接部
80 スリーブ

DESCRIPTION OF SYMBOLS 1 Repair part 10 Coated steel pipe 11 Steel pipe 12 Coated film 13 Thinning part 14 Damaged part 20 Elastic filler 30 Heat shrinkable tube 40 Elastic body sleeve 50 Clamp 51 Casing 52 Flange part 53 Screw member 70 Overlay welding part 71, 72 Fillet weld 80 sleeve

Claims (3)

鋼管が損傷して減肉部が形成された際に、前記減肉部が形成された前記鋼管の損傷部分を補修する鋼管の補修方法において、
前記減肉部に弾性充填材を充填し、
前記損傷部分に熱収縮チューブを被せて加熱することで、前記損傷部分に前記熱収縮チューブが密着して前記鋼管の外周を被覆し、
前記熱収縮チューブの外周を、金属製のケーシングと、該ケーシングの内周に設けられた弾性体スリーブとを備えたクランプで覆い、
前記クランプを前記損傷部分に固定することで、
前記鋼管の前記損傷部分を補修し、前記弾性充填材、前記熱収縮チューブ、及び前記弾性体スリーブによって前記減肉部に生じる変形を吸収して前記ケーシングの変形を抑え、前記鋼管の耐震性を損なわないこと、を特徴とする鋼管の補修方法。
In a steel pipe repairing method for repairing a damaged portion of the steel pipe in which the reduced thickness portion is formed when the reduced thickness portion is formed due to damage to the steel pipe,
Filling the thinned portion with an elastic filler,
By covering the damaged part with a heat-shrinkable tube and heating, the heat-shrinkable tube is in close contact with the damaged part and covers the outer periphery of the steel pipe,
The outer periphery of the heat shrinkable tube is covered with a clamp having a metal casing and an elastic sleeve provided on the inner periphery of the casing,
By fixing the clamp to the damaged part,
The damaged portion of the steel pipe is repaired , the deformation generated in the thinned portion is absorbed by the elastic filler, the heat-shrinkable tube, and the elastic sleeve to suppress the deformation of the casing, and the earthquake resistance of the steel pipe is improved. A method of repairing a steel pipe, characterized by not being damaged .
請求項1に記載された鋼管の補修方法において、
前記クランプの前記ケーシングが、平板から円筒状に形成されたものであり、その円周方向の両端部に各々鍔部を有し、両鍔部を軸方向に並べた複数のネジ部材により締め付けることにより、前記損傷部分の外周を補強しつつ覆うことを特徴とする鋼管の補修方法。
In the repair method of the steel pipe described in Claim 1,
The casing of the clamp is formed in a cylindrical shape from a flat plate, and has clamp portions at both ends in the circumferential direction, and is tightened by a plurality of screw members arranged in the axial direction. The steel pipe repair method characterized by covering the outer periphery of the damaged part while reinforcing.
請求項1に記載された鋼管の補修方法において、
前記ケーシングの厚みが10mmで、前記弾性体スリーブの厚みが5mmであることを特徴とする鋼管の補修方法。
In the repair method of the steel pipe described in Claim 1,
The method of repairing a steel pipe, wherein the casing has a thickness of 10 mm and the elastic sleeve has a thickness of 5 mm.
JP2007240313A 2007-09-17 2007-09-17 Steel pipe repair method Active JP5067755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240313A JP5067755B2 (en) 2007-09-17 2007-09-17 Steel pipe repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240313A JP5067755B2 (en) 2007-09-17 2007-09-17 Steel pipe repair method

Publications (2)

Publication Number Publication Date
JP2009068661A JP2009068661A (en) 2009-04-02
JP5067755B2 true JP5067755B2 (en) 2012-11-07

Family

ID=40605134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240313A Active JP5067755B2 (en) 2007-09-17 2007-09-17 Steel pipe repair method

Country Status (1)

Country Link
JP (1) JP5067755B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858473A (en) * 2010-02-11 2010-10-13 广东联塑科技实业有限公司 Rapid connection method for repairing damaged pipe
JP6848515B2 (en) * 2017-02-22 2021-03-24 住友金属鉱山株式会社 Water-stop structure for sealed water piping

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326387Y2 (en) * 1985-07-25 1991-06-07
JPS6440788A (en) * 1987-08-03 1989-02-13 Sumitomo Metal Ind Corrosionproof repair method of line pipe welded joint section
JP2000179781A (en) * 1998-12-14 2000-06-27 Nkk Corp Repairing structure and method for outside of existing pipe
JP2003004195A (en) * 2001-06-25 2003-01-08 Mitsubishi Heavy Ind Ltd Leakage emergency repairing method and leakage emergency repairing appatratus

Also Published As

Publication number Publication date
JP2009068661A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
AU666589B2 (en) Methods for repairing pipe
JP5876245B2 (en) Repair method of flange joint and jig for repair
KR101219197B1 (en) Structure and Method of pipe connection for water piping
US20130112310A1 (en) Pipeline reinforcement assembly and method
JP5067755B2 (en) Steel pipe repair method
JP2005147243A (en) Flange joint body for valve pit
CA2774655C (en) Methods and apparatuses for repairing a conduit
US9285065B2 (en) Pipeline reinforcement assembly and method
US9636787B2 (en) Non-welding apparatus for repair of an enclosure wall and methods for use thereof
JP3171067U (en) Stainless steel pipe joints for underground use
KR101281507B1 (en) Tube for inhibiting corrosion of pipe connecting portion
JP2019120379A (en) Leakage repairing structure and leakage repairing tool
JPH0989188A (en) Repairing method for flange connection part of existing line
US20120211916A1 (en) Method of strengthening the connection between pipe sections in high pressure pipelines
JP2014020522A (en) Lining structure of pipe conduit
JP6497929B2 (en) Piping connection method and piping joint device
JP7143725B2 (en) Pipe repair method and pipe repair member
JP6747872B2 (en) Water shutoff method for existing pipes and water shutoff structure for existing pipes
JP2018028341A (en) Water cutoff material holder and water cutoff method of underground pipe joint box
JP4301420B2 (en) Pipe repair method
JP7360612B2 (en) How to repair a nozzle or pipe
JP2011007306A (en) Repairing method for piping
JP6445773B2 (en) Pipe connection method
US20220034441A1 (en) Pipe repair and the methods for operational fixing and definitive welding thereof
JPH10238676A (en) Flange joint structure of existing pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250