JP5067102B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP5067102B2
JP5067102B2 JP2007259611A JP2007259611A JP5067102B2 JP 5067102 B2 JP5067102 B2 JP 5067102B2 JP 2007259611 A JP2007259611 A JP 2007259611A JP 2007259611 A JP2007259611 A JP 2007259611A JP 5067102 B2 JP5067102 B2 JP 5067102B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
alumina
gas purification
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007259611A
Other languages
Japanese (ja)
Other versions
JP2009082887A (en
JP2009082887A5 (en
Inventor
達郎 宮川
雅大 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007259611A priority Critical patent/JP5067102B2/en
Publication of JP2009082887A publication Critical patent/JP2009082887A/en
Publication of JP2009082887A5 publication Critical patent/JP2009082887A5/ja
Application granted granted Critical
Publication of JP5067102B2 publication Critical patent/JP5067102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、ディーゼルエンジンなどの排ガスに含まれるPM(ParticulateMatter)を燃焼して、排ガスを浄化する排ガス浄化触媒に関するものである。   The present invention relates to an exhaust gas purification catalyst that purifies exhaust gas by burning PM (Particulate Matter) contained in exhaust gas such as a diesel engine.

ディーゼルエンジンなどの排ガスに含まれるPMは、その粒子径がほぼ1μm以下で、大気中に浮遊しやすく、呼吸時に人体に取り込まれやすい。また、PMは発癌性物質を含んでおり、ディーゼルエンジンからのPMの排出には、厳しい規制が実施されている。   PM contained in exhaust gas from a diesel engine or the like has a particle size of approximately 1 μm or less, tends to float in the atmosphere, and is easily taken into the human body during breathing. Further, PM contains a carcinogenic substance, and strict regulations are imposed on the emission of PM from a diesel engine.

排ガスからPMを除去する方法には、耐熱性のセラミックスなどからなる排ガス浄化フィルタでPMを捕集し、ヒーターなどでフィルタを加熱してPMを燃焼させ、ガスに変えて放出する方法がある。また、排ガス浄化フィルタに金属酸化物などを含む排ガス浄化触媒を担持することで、通常のPM燃焼温度より低温で燃焼させることができる。   As a method for removing PM from exhaust gas, there is a method in which PM is collected by an exhaust gas purification filter made of heat-resistant ceramics, the filter is heated by a heater or the like, PM is burned, and is converted into gas and released. Further, by supporting an exhaust gas purification catalyst containing a metal oxide or the like on the exhaust gas purification filter, combustion can be performed at a temperature lower than the normal PM combustion temperature.

排ガス浄化触媒としては、銅やバナジウムなどの金属の酸化物を含むものが、高い活性を持つことが知られている。例えば、特許文献1には、銅やバナジウムを含む金属酸化物の排ガス浄化触媒が開示されている。また、特許文献2には、銅やモリブデンなどの酸化物にハロゲン化アルカリなどの金属塩を添加した排ガス浄化触媒が開示されている。また、特許文献3には、銅、マンガン、モリブデンなどの酸化物に、アルカリ金属の酸化物と貴金属とを添加した排ガス浄化触媒およびこれを担持した排ガス浄化フィルタが開示されている。
特開昭58−143840号公報 特開昭58−174236号公報 特公平4−42063号公報
As an exhaust gas purification catalyst, a catalyst containing a metal oxide such as copper or vanadium is known to have high activity. For example, Patent Document 1 discloses an exhaust gas purification catalyst of a metal oxide containing copper or vanadium. Patent Document 2 discloses an exhaust gas purification catalyst in which a metal salt such as an alkali halide is added to an oxide such as copper or molybdenum. Patent Document 3 discloses an exhaust gas purification catalyst in which an alkali metal oxide and a noble metal are added to an oxide such as copper, manganese, and molybdenum, and an exhaust gas purification filter that supports the exhaust gas purification catalyst.
JP 58-143840 A JP 58-174236 A Japanese Examined Patent Publication No. 4-42063

しかし、従来の排ガス浄化触媒には、以下の課題があった。   However, the conventional exhaust gas purification catalyst has the following problems.

特許文献1に記載の排ガス浄化触媒は、排ガス温度程度の低温でPMを十分燃焼できるほど、触媒活性が高くなかった。   The exhaust gas purifying catalyst described in Patent Document 1 has a catalyst activity that is not so high that PM can be sufficiently combusted at a temperature as low as the exhaust gas temperature.

特許文献2および3に記載の排ガス浄化触媒は、ハロゲン化アルカリなどのアルカリ金属塩の耐熱性が低いため、長時間の使用により触媒活性が低下するおそれがあった。   Since the exhaust gas purification catalysts described in Patent Documents 2 and 3 have low heat resistance of alkali metal salts such as alkali halides, there is a risk that the catalytic activity may be reduced by long-term use.

本発明は、上記従来の課題を解決するものであり、排ガス温度程度の低温でPMに対して高い触媒活性を有し、かつ優れた耐熱性を有し長時間の使用でも触媒活性が低下せず耐久性の有る排ガス浄化触媒の提供を目的とする。   The present invention solves the above-mentioned conventional problems, has a high catalytic activity against PM at a temperature as low as the exhaust gas temperature, and has excellent heat resistance, and the catalytic activity is lowered even after long-term use. The object is to provide a durable exhaust gas purification catalyst.

上記目的を達成するために、本発明の排ガス浄化触媒は、金属として、銅と、バナジウムと、アルカリ金属と、アルミニウムのみを含み、硫酸銅と、酸化硫酸バナジウムと、硫酸セシウムとが溶解した水溶液に、アルミナを含浸し、余剰な水溶液を除去し乾燥後、大気中で800℃で加熱処理されたことを特徴としている。
To achieve the above object, an exhaust gas purifying catalyst of the present invention, as the metal, copper, vanadium, and alkali metals include aluminum alone, and copper sulfate, and oxide vanadium sulfate was dissolved and cesium sulfate The aqueous solution is impregnated with alumina, excess aqueous solution is removed and dried, followed by heat treatment at 800 ° C. in the atmosphere.

この構成により、PMに対して高い触媒活性を有し、かつ優れた耐熱性と耐久性を有する排ガス浄化触媒を提供することができる。   With this configuration, it is possible to provide an exhaust gas purification catalyst having high catalytic activity for PM and having excellent heat resistance and durability.

本発明によれば、排ガス温度程度の低温でPMに対して高い触媒活性を有し、かつ優れた耐熱性を有し長時間の使用でも触媒活性が低下せず耐久性の有る排ガス浄化触媒を提供することができる。 According to the present invention, it has a high catalytic activity for PM at a low temperature of about the exhaust gas temperature, and an excellent long-term exhaust gas purifying catalyst having the durability does not decrease catalytic activity in use has heat resistance Can be provided.

本発明の請求項1記載の発明は、金属として、銅と、バナジウムと、アルカリ金属と、アルミニウムのみを含み、硫酸銅と、酸化硫酸バナジウムと、硫酸セシウムとが溶解した水溶液に、アルミナを含浸し、余剰な水溶液を除去し乾燥後、大気中で800℃で加熱処理されたことを特徴とする排ガス浄化触媒である。
The invention of claim 1, wherein the present invention, as the metal, copper, vanadium, and alkali metals include aluminum alone, and copper sulfate, and oxide vanadium sulfate, an aqueous solution obtained by dissolving and the cesium sulfate, alumina An exhaust gas purifying catalyst characterized by being impregnated, removing excess aqueous solution and drying, and then heat-treated at 800 ° C. in the atmosphere.

この構成により、排ガス温度程度の低温でPMに対して高い触媒活性を有し、かつ優れた耐熱性と耐久性を有する排ガス浄化触媒を提供することができる。また、銅と、バナジウムと、アルカリ金属および/またはアルカリ土類金属と、アルミナとの共存下において、加熱処理することで、排ガス温度程度の低温でもPMに対して高い触媒活性を有し、かつ優れた耐熱性と耐久性を有する排ガス浄化触媒が製造できる。この詳細なメカニズムは不明だが、熱的に非常に安定なアルミナに、他の触媒成分が固溶するなどして安定化したことで、高い活性を維持したまま耐熱性が向上したものと考えられる。なお、ここに記載の銅、バナジウム、アルカリ金属、アルカリ土類金属は元素としての表記であり、実際にアルミナと共存させる際は、これら元素を含む化合物であれば特に制限はない。例えば、銅は金属としての銅、酸化銅などの酸化物、硫酸銅などの金属塩などを用いることができる。同様に、バナジウムは金属としてのバナジウム、酸化バナジウムなどの酸化物、酸化硫酸バナジウムなどの金属塩などを用いることができる。同様に、アルカリ金属は金属としてのアルカリ金属、その酸化物やその金属塩などを用いることができる。同様に、アルカリ土類金属は金属としてのアルカリ土類金属、その酸化物やその金属塩などを用いることができる。また、本発明の排ガス浄化触媒の活性や耐熱性は、製造時の加熱処理温度に強く依存しており、排ガス温度程度の低温での高い触媒活性と耐熱性と耐久性を発揮させるためには、700〜900℃で処理することが好ましい。また、ディーゼル排ガス浄化触媒は、実際の使用条件ではその近傍温度がまれに600℃程度に達することがあり、700℃以下の加熱処理では、使用中に触媒組成などが変化し、活性が低下するおそれがある。逆に、900℃以上の高温で処理する場合、製造時の取り扱いが困難になるほか、触媒自体の活性が低下したり、触媒を担持するセラミックスなどに損傷を与えたりするおそれがある。また、本発明の排ガス浄化触媒の活性や耐熱性は、製造時の加熱処理温度に強く依存しており、排ガス温度程度の低温での高い触媒活性と耐熱性と耐久性を発揮させるためには、700〜900℃で処理することが好ましく、800℃で処理することが特に好ましい。 With this configuration, it is possible to provide an exhaust gas purifying catalyst having high catalytic activity for PM at a low temperature of about the exhaust gas temperature and having excellent heat resistance and durability. In addition, by heat treatment in the presence of copper, vanadium, alkali metal and / or alkaline earth metal, and alumina, the catalyst has high catalytic activity for PM even at a low temperature of about the exhaust gas temperature, and An exhaust gas purification catalyst having excellent heat resistance and durability can be produced. Although this detailed mechanism is unknown, it is thought that the heat resistance has been improved while maintaining high activity by stabilizing the thermal stability of alumina by dissolving other catalyst components. . Note that copper, vanadium, alkali metal, and alkaline earth metal described herein are expressed as elements, and when actually coexisting with alumina, any compound containing these elements is not particularly limited. For example, copper may be copper, an oxide such as copper oxide, or a metal salt such as copper sulfate. Similarly, as the vanadium, vanadium as a metal, an oxide such as vanadium oxide, a metal salt such as vanadium oxide sulfate, or the like can be used. Similarly, an alkali metal, an oxide thereof, a metal salt thereof, or the like can be used as the alkali metal. Similarly, an alkaline earth metal, an oxide thereof, a metal salt thereof, or the like can be used as the alkaline earth metal. In addition, the activity and heat resistance of the exhaust gas purification catalyst of the present invention strongly depend on the heat treatment temperature at the time of production, and in order to exert high catalyst activity, heat resistance and durability at a low temperature about the exhaust gas temperature. It is preferable to process at 700-900 degreeC. In addition, the diesel exhaust gas purification catalyst may rarely reach a temperature around 600 ° C. under actual use conditions, and the heat treatment at 700 ° C. or less causes the catalyst composition to change during use, resulting in a decrease in activity. There is a fear. On the other hand, when processing at a high temperature of 900 ° C. or higher, handling during production becomes difficult, and the activity of the catalyst itself may be reduced, or the ceramic supporting the catalyst may be damaged. In addition, the activity and heat resistance of the exhaust gas purification catalyst of the present invention strongly depend on the heat treatment temperature at the time of production, and in order to exert high catalyst activity, heat resistance and durability at a low temperature about the exhaust gas temperature. It is preferable to process at 700-900 degreeC, and it is especially preferable to process at 800 degreeC.

また、乾燥が凍結乾燥であることを特徴とする、請求項に記載の排ガス浄化触媒である。 Further, wherein the drying is freeze-dried, a exhaust gas purifying catalyst according to claim 1.

凍結乾燥することで、アルミナ上での銅、バナジウム、セシウムの乾燥に伴う移動が抑制され、加熱乾燥などに比べて、より均一で高分散に担持することができる。   By freeze-drying, movement accompanying drying of copper, vanadium, and cesium on alumina is suppressed, and it can be supported more uniformly and highly dispersed than heat drying.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

(実施の形態1)
本発明の実施の形態1の排ガス浄化触媒を以下説明する。硫酸銅と酸化硫酸バナジウムと硫酸セシウムとが溶解した水溶液に、γ−アルミナ粉末を含浸し、余剰な水溶液を除去した後、乾燥する。次に大気中、800℃で加熱処理を行い、銅とバナジウムとの複合金属酸化物と、硫酸セシウムとが、アルミナに担持された排ガス浄化触媒が製造される。
(Embodiment 1)
The exhaust gas purification catalyst according to Embodiment 1 of the present invention will be described below. An aqueous solution in which copper sulfate, vanadium oxide sulfate, and cesium sulfate are dissolved is impregnated with γ-alumina powder, and the excess aqueous solution is removed, followed by drying. Next, heat treatment is performed at 800 ° C. in the atmosphere to produce an exhaust gas purification catalyst in which a composite metal oxide of copper and vanadium and cesium sulfate are supported on alumina.

硫酸セシウムと、銅とバナジウムとの複合金属酸化物とが共存することで、複合金属酸化物の触媒活性を高めることができる。また、硝酸塩、酢酸塩、炭酸塩、塩化物などに比べて熱的に安定な硫酸塩を使用することで、耐熱性と耐久性が向上し、排ガス温度程度の低温でも高い触媒活性を維持することができる。また、硫酸銅と、酸化硫酸バナジウムと、硫酸セシウムと、アルミナとの共存下において、加熱処理することで、排ガス温度程度の低温での高い触媒活性を有し、かつ優れた耐熱性と耐久性を有する触媒が製造できる。この詳細なメカニズムは不明だが、熱的に非常に安定なアルミナに、他の触媒成分が固溶するなどして安定化したことで、高い活性を維持したまま耐熱性が向上したものと考えられる。また、より高い触媒活性を発揮するためには、アルミナ以外の触媒成分が、アルミナと単に混合されているだけではなく、アルミナ表面に分散、担持されていることが好ましく、ここに記載した製造工程を経ることによって、触媒成分がアルミナに均一に担持された排ガス浄化触媒が得られる。   The catalytic activity of the composite metal oxide can be enhanced by the coexistence of cesium sulfate and the composite metal oxide of copper and vanadium. In addition, heat resistance and durability are improved by using a thermally stable sulfate compared with nitrate, acetate, carbonate, chloride, etc., and high catalytic activity is maintained even at low temperatures such as exhaust gas temperature. be able to. In addition, heat treatment in the presence of copper sulfate, vanadium oxide sulfate, cesium sulfate, and alumina provides high catalytic activity at low temperatures such as the exhaust gas temperature, and excellent heat resistance and durability. Can be produced. Although this detailed mechanism is unknown, it is thought that the heat resistance has been improved while maintaining high activity by stabilizing the thermal stability of alumina by dissolving other catalyst components. . In order to exhibit higher catalytic activity, it is preferable that catalyst components other than alumina are not only simply mixed with alumina but also dispersed and supported on the surface of the alumina. Through this process, an exhaust gas purification catalyst in which the catalyst component is uniformly supported on alumina is obtained.

ここでは、銅とバナジウムとの複合金属酸化物の他に、酸化銅や酸化バナジウムなど複数の酸化物が生成すると考えられるが、これらも硫酸塩と共存することで高い触媒活性を発揮する。   Here, in addition to the composite metal oxide of copper and vanadium, it is considered that a plurality of oxides such as copper oxide and vanadium oxide are generated, and these also exhibit high catalytic activity by coexisting with sulfate.

また、ここではアルカリ金属の硫酸塩として硫酸セシウムを用いたが、これ以外にも、Li、Na、K、Rbから選ばれるアルカリ金属の硫酸塩や、Be、Mg、Ca、Sr、Baから選ばれるアルカリ土類金属の硫酸塩を用いてもよい。   In addition, although cesium sulfate is used here as the alkali metal sulfate, other than this, an alkali metal sulfate selected from Li, Na, K, and Rb, and Be, Mg, Ca, Sr, and Ba are selected. Alkaline earth metal sulfates may also be used.

また、アルミナは、少なすぎると触媒活性および耐熱性を向上させる効果が得られず、また触媒担体としても機能しない。逆に多すぎると、金属酸化物、複合金属酸化物、硫酸塩による触媒作用を阻害すると考えられる。従って、アルミナの含有量が、排ガス浄化触媒の重量の10〜50%となるように調製することが好ましい。   On the other hand, if the amount of alumina is too small, the effect of improving the catalyst activity and heat resistance cannot be obtained, and it does not function as a catalyst carrier. On the other hand, when the amount is too large, it is considered that the catalytic action by the metal oxide, the composite metal oxide, and the sulfate is inhibited. Therefore, it is preferable to prepare such that the alumina content is 10 to 50% of the weight of the exhaust gas purification catalyst.

また、より高い触媒活性を発揮するためには、複合金属酸化物における銅:バナジウムのモル比が1:1〜4:1であることが好ましく、また複合金属酸化物の組成としてはCuVO3、Cu328、Cu5210の1つ以上からなることが好ましい。従って、銅とバナジウムの比がこの範囲となるように水溶液を調製するとよい。 In order to exhibit higher catalytic activity, the molar ratio of copper: vanadium in the composite metal oxide is preferably 1: 1 to 4: 1. The composition of the composite metal oxide is CuVO 3 , It is preferable to consist of one or more of Cu 3 V 2 O 8 and Cu 5 V 2 O 10 . Therefore, it is preferable to prepare an aqueous solution so that the ratio of copper and vanadium falls within this range.

水溶液にγ−アルミナを含浸した後、乾燥する際は、加熱乾燥などでもよいが、凍結乾燥すると、アルミナ上での銅、バナジウム、セシウムの乾燥に伴う移動が抑制され、加熱乾燥などに比べて、より均一で高分散に担持することができる。   When the aqueous solution is impregnated with γ-alumina and dried, it may be heated and dried. However, when freeze-dried, the movement of copper, vanadium, and cesium on the alumina is suppressed, and compared with heat-dried. It can be supported more uniformly and with high dispersion.

水溶液にγ−アルミナを含浸した後、加熱処理する際は、銅とバナジウムとが複合金属酸化物を形成する雰囲気および温度で処理してやればよいが、本発明の排ガス浄化触媒の活性や耐熱性は、製造時の加熱処理温度に強く依存しており、高い触媒活性と耐熱性を発揮させるためには、700〜900℃で処理することが好ましく、800℃で処理することが特に好ましい。また、ディーゼル排ガス浄化触媒は、実際の使用条件ではその近傍温度がまれに600℃程度に達することがあり、700℃以下の加熱処理では、使用中に触媒組成などが変化し、活性が低下するおそれがある。逆に、900℃以上の高温で処理する場合、製造時の取り扱いが困難になるほか、触媒自体の活性が低下したり、触媒を担持するセラミックスなどに損傷を与えたりするおそれがあるので好ましくない。   When the heat treatment is performed after impregnating the aqueous solution with γ-alumina, copper and vanadium may be treated in an atmosphere and temperature at which a composite metal oxide forms, but the activity and heat resistance of the exhaust gas purification catalyst of the present invention are In order to exhibit high catalytic activity and heat resistance, the treatment is preferably performed at 700 to 900 ° C., and particularly preferably at 800 ° C. In addition, the diesel exhaust gas purification catalyst may rarely reach a temperature around 600 ° C. under actual use conditions, and the heat treatment at 700 ° C. or less causes the catalyst composition to change during use, resulting in a decrease in activity. There is a fear. Conversely, when processing at a high temperature of 900 ° C. or higher, handling during production becomes difficult, and the activity of the catalyst itself may decrease, or the ceramic supporting the catalyst may be damaged, which is not preferable. .

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

参考例1)
コージェライト片をアルミナゾル(アルミナの重量濃度10%)に含浸し、余剰なゾルをエアブローで除去した。これを液体窒素に浸して凍結させ、真空乾燥機で乾燥させた。次に電気炉で、大気雰囲気下、700℃、5時間の加熱処理を行い、アルミナ被覆コージェライト片を作製した。被覆されたアルミナはコージェライト片の重量に対して6.6%だった。
( Reference Example 1)
The cordierite pieces were impregnated with alumina sol (alumina weight concentration 10%), and excess sol was removed by air blow. This was immersed in liquid nitrogen, frozen, and dried with a vacuum dryer. Next, heat treatment was performed in an electric furnace at 700 ° C. for 5 hours in an air atmosphere to prepare an alumina-coated cordierite piece. The coated alumina was 6.6% based on the weight of the cordierite piece.

一方で、硫酸銅と、酸化硫酸バナジウムと、硫酸セシウムとをイオン交換水に溶解させ、触媒水溶液を調製した。このとき各成分の重量濃度は、硫酸銅が7.0%、酸化硫酸バナジウムが11.7%、硫酸セシウムが20.5%である。   On the other hand, copper sulfate, vanadium oxide sulfate, and cesium sulfate were dissolved in ion exchange water to prepare an aqueous catalyst solution. At this time, the weight concentration of each component is 7.0% for copper sulfate, 11.7% for vanadium oxide sulfate, and 20.5% for cesium sulfate.

上記で作製したアルミナ被覆コージェライト片を、触媒水溶液に含浸し、余剰な水溶液を軽く振って除去した。これを液体窒素に浸して凍結させ、真空乾燥機で乾燥させた。次に電気炉で、大気雰囲気下、700℃、5時間の加熱処理を行い、触媒担持アルミナ被覆コージェライト片を作製した。担持された触媒はコージェライト片の重量に対して18.5%だった。   The alumina-coated cordierite pieces prepared above were impregnated with an aqueous catalyst solution, and the excess aqueous solution was gently shaken to remove. This was immersed in liquid nitrogen, frozen, and dried with a vacuum dryer. Next, heat treatment was performed in an electric furnace at 700 ° C. for 5 hours in an air atmosphere to produce a catalyst-supported alumina-coated cordierite piece. The supported catalyst was 18.5% based on the weight of the cordierite piece.

(実施例
アルミナゾル含浸後および触媒液含浸後にそれぞれ行う加熱処理の温度を800℃としたこと以外は、参考例1と同様にして、触媒担持アルミナ被覆コージェライト片を作製した。被覆されたアルミナと担持された触媒は、コージェライト片の重量に対してそれぞれ6.6%と17.0%だった。
(Example 1 )
A catalyst-supported alumina-coated cordierite piece was produced in the same manner as in Reference Example 1 except that the temperature of the heat treatment performed after impregnation with the alumina sol and after impregnation with the catalyst solution was 800 ° C. The coated alumina and supported catalyst were 6.6% and 17.0%, respectively, based on the weight of the cordierite pieces.

参考
アルミナゾル含浸後および触媒液含浸後にそれぞれ行う加熱処理の温度を900℃としたこと以外は、参考例1と同様にして、触媒担持アルミナ被覆コージェライト片を作製した。被覆されたアルミナと担持された触媒は、コージェライト片の重量に対してそれぞれ6.5%と17.1%だった。
( Reference Example 2 )
A catalyst-supported alumina-coated cordierite piece was produced in the same manner as in Reference Example 1, except that the temperature of the heat treatment performed after impregnation with the alumina sol and after impregnation with the catalyst solution was 900 ° C. The coated alumina and the supported catalyst were 6.5% and 17.1%, respectively, based on the weight of the cordierite pieces.

(比較例1)
アルミナを被覆する工程を省いたこと以外は、参考例1と同様にして、触媒担持コージェライト片を作製した。担持された触媒はコージェライト片の重量に対して18.7%だった。
(Comparative Example 1)
A catalyst-carrying cordierite piece was produced in the same manner as in Reference Example 1 except that the step of coating with alumina was omitted. The supported catalyst was 18.7% based on the weight of the cordierite piece.

(比較例2)
アルミナゾルをチタニアゾル(チタニアの重量濃度20%)としたこと以外は、参考例1と同様にして、触媒担持チタニア被覆コージェライト片を作製した。被覆されたチタニアと担持された触媒は、コージェライト片の重量に対してそれぞれ19.7%と17.3%だった。
(Comparative Example 2)
A catalyst-supporting titania-coated cordierite piece was prepared in the same manner as in Reference Example 1 except that the alumina sol was titania sol (weight concentration of titania 20%). The coated titania and supported catalyst were 19.7% and 17.3%, respectively, based on the weight of the cordierite pieces.

(比較例3)
アルミナを被覆する工程を省き、加熱処理を800℃で行ったこと以外は、参考例1と同様にして、触媒担持コージェライト片を作製した。担持された触媒はコージェライト片の重量に対して15.8%だった。
(Comparative Example 3)
A catalyst-carrying cordierite piece was produced in the same manner as in Reference Example 1 except that the step of coating with alumina was omitted and the heat treatment was performed at 800 ° C. The supported catalyst was 15.8% based on the weight of the cordierite piece.

(評価例1)
実施例1、参考例1〜2、比較例1〜3に関して、熱重量分析装置を用いて、次のような性能評価
試験を行った。
(Evaluation example 1)
With respect to Example 1 , Reference Examples 1 and 2 , and Comparative Examples 1 to 3, the following performance evaluation tests were performed using a thermogravimetric analyzer.

実施例1、参考例1〜2、比較例1〜3をそれぞれメノウ乳鉢で粉砕した。得られた粉砕粉末と、模擬PMとして市販のカーボン粉末とを、重量比4:1となるよう混合し、さらにメノウ乳鉢で粉砕、混合して、評価試料とした。この試料約10mgを白金製の試料容器に入れ、加熱時の重量変化を観察した。試験条件としては、試料室内に大気を流量100ml/分で流通させ、昇温速度5℃/分で室温から700℃まで昇温した。200℃における重量を初期重量とし、600℃における重量をカーボンが完全燃焼したときの重量として、カーボン残存率を定義した。 Example 1 , Reference Examples 1 to 2 and Comparative Examples 1 to 3 were each pulverized in an agate mortar. The obtained pulverized powder and a commercially available carbon powder as simulated PM were mixed at a weight ratio of 4: 1, and further pulverized and mixed in an agate mortar to obtain an evaluation sample. About 10 mg of this sample was placed in a platinum sample container, and the change in weight during heating was observed. As test conditions, air was circulated in the sample chamber at a flow rate of 100 ml / min, and the temperature was raised from room temperature to 700 ° C. at a heating rate of 5 ° C./min. The carbon residual ratio was defined by defining the weight at 200 ° C. as the initial weight and the weight at 600 ° C. as the weight when the carbon was completely burned.

例として、参考例1の結果を図1に示す。横軸を温度、縦軸をカーボン残存率として、プロットした。図1より、参考例1の触媒では、約350℃から急激にカーボンが燃焼し始め、約460℃で完全燃焼している様子が分かる。図より、カーボンの10%が燃焼した温度(カーボン残存率が90%のときの温度)をT10と定義し、比較の基準とした。T10の温度が低いほど触媒の性能が良いことを示す。 As an example, the result of Reference Example 1 is shown in FIG. Plotting was performed with the horizontal axis representing temperature and the vertical axis representing carbon residual ratio. From FIG. 1, it can be seen that in the catalyst of Reference Example 1, carbon begins to burn suddenly from about 350 ° C. and is completely burned at about 460 ° C. From the figure, the temperature at which 10% of the carbon burned (temperature when the carbon residual ratio is 90%) was defined as T10, which was used as a reference for comparison. A lower T10 temperature indicates better catalyst performance.

参考例1、比較例1、2のT10の比較を図2に示す。コージェライト片に直接触媒を担持した比較例1ではT10が397℃、チタニア層を設けた比較例2では365℃であるのに対し、アルミナ層を設けた参考例1では344℃と非常に優れた燃焼性能を発揮した。 A comparison of T10 between Reference Example 1 and Comparative Examples 1 and 2 is shown in FIG. In Comparative Example 1 in which the catalyst is directly supported on the cordierite piece, T10 is 397 ° C., and in Comparative Example 2 in which the titania layer is provided, 365 ° C., whereas in Reference Example 1 in which the alumina layer is provided, 344 ° C. is very excellent. Exhibit good combustion performance.

このような結果となる詳細なメカニズムは不明だが、次のように推測される。まず、担体層がある場合、その微構造によって触媒とカーボンとの接触効率が向上し、燃焼性能が良化すると思われる。また、銅などの触媒成分と基材のコージェライトとが反応して、意図としない不活性な化合物が生成するのを抑制する効果が考えられる。次に、チタニアに比べてアルミナを用いた方が性能が良好であるのは、その材料特性によると考えられる。   Although the detailed mechanism for this result is unknown, it is presumed as follows. First, when there is a carrier layer, the contact efficiency between the catalyst and carbon is improved by the microstructure, and the combustion performance seems to be improved. Moreover, the effect which suppresses catalyst components, such as copper, and the cordierite of a base material, and producing | generating the unintended inactive compound is considered. Next, it is considered that the performance is better in the case of using alumina than in titania because of its material characteristics.

同様に、実施例参考例2、比較例3のT10を求めた。さらに、実施例1、参考例1〜2と比較例3を電気炉で、大気雰囲気下、600℃、100時間の加熱負荷を与え、加熱負荷後についても同様の性能評価試験を行って、T10を求めた。その結果を図3に示す。 Similarly, T10 of Example 1 , Reference Example 2 , and Comparative Example 3 was obtained. Further, Example 1 , Reference Examples 1 and 2 and Comparative Example 3 were applied with an electric furnace in an air atmosphere at 600 ° C. for 100 hours, and a similar performance evaluation test was conducted after the heating load. Asked. The result is shown in FIG.

加熱処理温度を700℃(参考例1)、800℃(実施例1)、900℃(参考例2
と変えると、加熱負荷を与える前の初期性能は加熱処理温度が高くなるにつれて悪化している。一方、100時間の加熱負荷後の性能は、実施例1が最も優れており、次いで参考例2、参考例1の順となった。また各々の加熱負荷前後を比較すると、実施例1、参考例2は、参考例1に比べて性能の低下がずっと小さかった。
The heat treatment temperature is 700 ° C. (Reference Example 1), 800 ° C. (Example 1), 900 ° C. ( Reference Example 2 ).
In other words, the initial performance before applying the heating load deteriorates as the heat treatment temperature increases. On the other hand, the performance after 100 hours of heating load was the best in Example 1, followed by Reference Example 2 and Reference Example 1. Further, when comparing before and after each heating load, the performance degradation of Example 1 and Reference Example 2 was much smaller than that of Reference Example 1 .

ディーゼル車などに備えられるディーゼル排ガス浄化触媒は、長期間にわたってその性能が維持されることが期待されており、初期および加熱負荷後のいずれにおいても高性能である実施例の触媒が、特に優秀だと言える。 The diesel exhaust gas purification catalyst provided in a diesel vehicle or the like is expected to maintain its performance over a long period of time, and the catalyst of Example 1 that has high performance both in the initial stage and after the heating load is particularly excellent. I can say that.

以上より、本発明の排ガス浄化触媒においては、製造時の加熱処理温度は700〜900℃の間で行うことが好ましく、特に800℃程度で加熱処理を行うことで、最大の性能を発揮することが分かった。また、実施例と、800℃で加熱処理したがアルミナ層のない比較例3とを比較すると、初期および加熱負荷後のいずれも実施例の方が高性能であり、また加熱負荷前後の性能低下もずっと小さい。従って、アルミナ層の存在が触媒の耐熱性を向上させたことが分かった。耐熱性を向上させることで耐久性も向上する。 From the above, in the exhaust gas purification catalyst of the present invention, the heat treatment temperature during production is preferably performed between 700 and 900 ° C., and the maximum performance is exhibited especially by performing the heat treatment at about 800 ° C. I understood. Also, as in Example 1, when it was heated at 800 ° C. is compared with Comparative Example 3 having no alumina layer, both initially and after heating load is high is more embodiments 1, also before and after the heating load The performance degradation is much smaller. Therefore, it was found that the presence of the alumina layer improved the heat resistance of the catalyst. Durability is also improved by improving heat resistance.

本発明の排ガス浄化触媒は、PMに対して高い触媒活性を有し、かつ優れた耐熱性を有するので、有用である。排ガス浄化の対象は、自動車だけでなく、建設機械、発電機、フォークリフト、耕運機、船舶など幅広く存在し、適用が可能である。   The exhaust gas purification catalyst of the present invention is useful because it has high catalytic activity for PM and excellent heat resistance. Exhaust gas purification is applicable not only to automobiles but also to construction machines, generators, forklifts, cultivators, ships, etc. and can be applied.

本発明の参考例1の性能評価試験におけるカーボン残存率を示す図The figure which shows the carbon residual rate in the performance evaluation test of the reference example 1 of this invention 本発明の参考例1の性能評価試験の結果を示す図The figure which shows the result of the performance evaluation test of the reference example 1 of this invention 本発明の参考例1〜2、実施例1の性能評価試験の結果を示す図The figure which shows the result of the performance evaluation test of Reference Examples 1-2 of this invention, and Example 1

Claims (2)

金属として、銅と、バナジウムと、アルカリ金属と、アルミニウムのみを含み、
硫酸銅と、酸化硫酸バナジウムと、硫酸セシウムとが溶解した水溶液に、アルミナを含浸し、余剰な水溶液を除去し乾燥後、大気中で800℃で加熱処理されたことを特徴とする排ガス浄化触媒。
The metal includes copper, vanadium, and alkali metals, only aluminum,
An exhaust gas purifying catalyst characterized in that an aqueous solution in which copper sulfate, vanadium oxide sulfate, and cesium sulfate are dissolved is impregnated with alumina, an excess aqueous solution is removed and dried, followed by heat treatment at 800 ° C. in the atmosphere. .
乾燥が凍結乾燥であることを特徴とする、請求項に記載の排ガス浄化触媒。 The exhaust gas purification catalyst according to claim 1 , wherein the drying is freeze-drying.
JP2007259611A 2007-10-03 2007-10-03 Exhaust gas purification catalyst Expired - Fee Related JP5067102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259611A JP5067102B2 (en) 2007-10-03 2007-10-03 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259611A JP5067102B2 (en) 2007-10-03 2007-10-03 Exhaust gas purification catalyst

Publications (3)

Publication Number Publication Date
JP2009082887A JP2009082887A (en) 2009-04-23
JP2009082887A5 JP2009082887A5 (en) 2010-11-18
JP5067102B2 true JP5067102B2 (en) 2012-11-07

Family

ID=40657056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259611A Expired - Fee Related JP5067102B2 (en) 2007-10-03 2007-10-03 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5067102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147333A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Molten salt-type off gas purification catalyst and off gas purification filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143840A (en) * 1982-02-22 1983-08-26 Bridgestone Corp Catalyst for purifying particulate
JPS58174236A (en) * 1982-04-05 1983-10-13 Bridgestone Corp Catalyst for removing particulate matter in waste gas
JP4852805B2 (en) * 2001-07-23 2012-01-11 パナソニック株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst filter using the same
JP4776869B2 (en) * 2003-01-16 2011-09-21 パナソニック株式会社 Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same

Also Published As

Publication number Publication date
JP2009082887A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4501012B2 (en) Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JP5030818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2011140011A (en) Method for producing co oxidation catalyst and co oxidation catalyst obtained thereby
JP2009247968A (en) Manufacturing method of catalyst material, catalyst material manufactured by the method, and catalyst body
JP4776869B2 (en) Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same
JP5541874B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2007090331A (en) Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas
JP5598859B2 (en) Porous alumina and catalyst using the same
JP5067102B2 (en) Exhaust gas purification catalyst
JP4324018B2 (en) Combustion catalyst for diesel exhaust gas treatment and diesel exhaust gas treatment method
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
JP5211671B2 (en) Exhaust gas purification filter
JP5031642B2 (en) Catalyst production method
JP6167834B2 (en) Exhaust gas purification catalyst
JP2010221091A (en) Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter
JPS6164331A (en) Catalyst for purifying exhaust gas
JP2008229578A (en) Oil decomposing catalyst and method for manufacturing the same
WO2012017718A1 (en) Method for producing catalyst composition, catalyst composition, diesel particulate filter using same, and exhaust gas purification system
JP2001170483A (en) Combustion catalyst for treating diesel exhaust gas
JP4319938B2 (en) Combustion catalyst for diesel exhaust gas treatment
JP5412104B2 (en) Exhaust gas purification catalyst
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
JP3861823B2 (en) Exhaust gas purification catalyst
JP5541873B2 (en) Exhaust gas purification catalyst and exhaust gas purification method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5067102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees