JP5066938B2 - Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol - Google Patents

Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol Download PDF

Info

Publication number
JP5066938B2
JP5066938B2 JP2007045780A JP2007045780A JP5066938B2 JP 5066938 B2 JP5066938 B2 JP 5066938B2 JP 2007045780 A JP2007045780 A JP 2007045780A JP 2007045780 A JP2007045780 A JP 2007045780A JP 5066938 B2 JP5066938 B2 JP 5066938B2
Authority
JP
Japan
Prior art keywords
reaction
dec
acid catalyst
tricyclo
solid acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007045780A
Other languages
Japanese (ja)
Other versions
JP2008208062A (en
Inventor
克則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007045780A priority Critical patent/JP5066938B2/en
Publication of JP2008208062A publication Critical patent/JP2008208062A/en
Application granted granted Critical
Publication of JP5066938B2 publication Critical patent/JP5066938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの製造方法に関する。 The present invention relates to a method for producing tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol.

紫外線硬化型、あるいは電子線硬化型樹脂には、硬化性成分として種々の(メタ)アクリル酸エステルが使用されている。例えば、ポリエチレングリコ−ルジ(メタ)アクリレ−ト、ポリプロピレングリコ−ルジ(メタ)アクリレ−ト、ポリオキシエチルトリメチロ−ルプロパントリ(メタ)アクリレ−ト、ポリオキシエチレン化ビスフェノ−ルAジ(メタ)アクリレ−ト、シクロヘキシルアルコ−ルの(メタ)アクリル酸エステル、トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オール等の(メタ)アクリル酸エステルなどの様々な(メタ)アクリル酸エステルが使用されている。これら(メタ)アクリル酸エステルのなかでも、脂環式アルコ−ル特にトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの(メタ)アクリル酸エステルは、その構造より耐熱性や密着性等の向上が特に期待出来る化合物である。 Various (meth) acrylic acid esters are used as a curable component in ultraviolet curable or electron beam curable resins. For example, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyoxyethyltrimethylolpropane tri (meth) acrylate, polyoxyethylenated bisphenol A di (meth) (Meth) acrylic acid ester of acrylate, cyclohexyl alcohol, (meth) acrylic acid ester such as tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol, etc. Various (meth) acrylic acid esters are used. Among these (meth) acrylic acid esters, alicyclic alcohols, especially tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol (meth) acrylic acid esters. Is a compound that can be particularly expected to improve heat resistance, adhesion and the like due to its structure.

トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを製造する方法としては、従来より知られている液相でオレフィンを水和してアルコ−ルを製造する方法、即ち鉱酸、芳香族スルホン酸、ヘテロポリ酸等の均一系の酸触媒を使用する方法、あるいは強酸性イオン交換樹脂、結晶性アミノシリケ−ト等のゼオライト類等の固体酸触媒を使用する方法が適用出来る(例えば、特公昭47−45323号公報、特公昭53−15485号公報、特開昭57−70828号公報、特開昭58−124728号公報、特開昭58−194828号公報、特開昭60−104028号公報、特開昭61−180735号公報、特公昭63−47695号公報、特開平7−165646号公報、特開平10−273457号公報、特開2006−232749号公報等)。これら方法の内、液相反応系は粗生成物から酸触媒を除くために中和水洗工程が必要であること、廃水が発生すること、シクロペンタジエンのポリマ−等の副生成物が多量生成し目的物の収率が低下すること等の問題点があった。これら問題点を解決する方法として、固体酸触媒を使用する方法が提案されているが、固体酸触媒重量/水重量の比率が3未満と少なく、この条件でジシクロペンタジエンを水和反応させると反応の進行が遅く工業的にトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを製造するには不適当であった。
特公昭47−45323号公報 特公昭53−15485号公報 特開昭57−70828号公報 特開昭58−124728号公報 特開昭58−194828号公報 特開昭60−104028号公報 特開昭61−180735号公報 特公昭63−47695号公報 特開平7−165646号公報 特開平10−273457号公報 特開2006−232749号公報
As a method for producing tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol, an olefin is hydrated in a conventionally known liquid phase to obtain an alcohol. A method using a homogeneous acid catalyst such as mineral acid, aromatic sulfonic acid and heteropoly acid, or a solid acid catalyst such as zeolites such as strongly acidic ion exchange resin and crystalline aminosilicate The method used can be applied (for example, Japanese Patent Publication No. 47-45323, Japanese Patent Publication No. 53-15485, Japanese Patent Laid-Open Publication No. 57-70828, Japanese Patent Publication No. 58-124728, Japanese Patent Publication No. 58-194828). Japanese Patent Laid-Open Nos. 60-104028, 61-180735, 63-47695, 7-165646, and 10-273457. JP 2006-232749 Patent Publication). Among these methods, the liquid phase reaction system requires a neutralization washing step to remove the acid catalyst from the crude product, the generation of waste water, and a large amount of by-products such as a polymer of cyclopentadiene are generated. There were problems such as a decrease in the yield of the target product. As a method for solving these problems, a method using a solid acid catalyst has been proposed, but the ratio of solid acid catalyst weight / water weight is less than 3, and dicyclopentadiene is hydrated under these conditions. The progress of the reaction was slow and industrially unsuitable for producing tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol.
Japanese Examined Patent Publication No. 47-45323 Japanese Patent Publication No.53-15485 JP-A-57-70828 JP 58-124728 A JP 58-194828 A JP 60-104028 A JP-A-61-180735 Japanese Examined Patent Publication No. 63-47695 JP 7-165646 A JP-A-10-273457 Japanese Patent Laid-Open No. 2006-232749

本発明の目的は、固体酸触媒を使用してトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを効率よく合成できる方法を提供することである。 An object of the present invention is to provide a method capable of efficiently synthesizing tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol using a solid acid catalyst. .

本発明は、(1)ジシクロペンタジエンを固体酸触媒の存在下に水和反応させてトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを製造する方法において、固体酸触媒を水に対して3.0〜10重量用い、50〜150℃で水和反応させることを特徴とする、トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの製造方法に関する。 In the present invention, (1) dicyclopentadiene is hydrated in the presence of a solid acid catalyst to produce tricyclo [5.2.1.0 2,6 ] dec-3-ene-8 (or 9) ol. In this method, a tricyclo [5.2.1.0 2,6 ] deca-character is characterized in that the solid acid catalyst is used in an amount of 3.0 to 10 wt. The present invention relates to a method for producing 3-ene-8 (or 9) ol.

また、本発明は、(2)80〜110℃で水和反応させることを特徴とするトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの前記(1)記載の方法に関する。 The present invention also relates to (2) the above-mentioned tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol, characterized in that the hydration reaction is carried out at 80 to 110 ° C. (1) The method described above.

本発明の製造によれば、固体酸触媒を使用してトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを効率よく製造することができる。 According to the production of the present invention, tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol can be efficiently produced using a solid acid catalyst.

本発明の製造方法は、ジシクロペンタジエンを固体酸触媒の存在下に水和反応させてトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを製造する方法において、固体酸触媒を水に対して3.0〜10倍重量用い、50〜150℃で水和反応させることを特徴とする。 In the production method of the present invention, dicyclopentadiene is hydrated in the presence of a solid acid catalyst to produce tricyclo [5.2.1.0 2,6 ] dec-3-ene-8 (or 9) ol. In this method, the solid acid catalyst is used in a weight of 3.0 to 10 times with respect to water and hydrated at 50 to 150 ° C.

本発明において、トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールは、トリシクロ〔5.2.1.02,6〕デカ−3−エン−8−オールとトリシクロ〔5.2.1.02,6〕デカ−3−エン−9−オールの混合物を示す。
本発明では水和反応を行う際の水に対する固体酸触媒の使用量が重要であり、固体酸触媒を水に対して3.0〜10倍重量、好ましくは4.0〜10.0倍重量用いる。水に対する固体酸触媒の使用量が3.0倍重量未満である場合は、水分で固体酸触媒の表面が覆われてしまいジシクロペンタジエンの水和反応が著しく遅くなってしまう。一方、水に対する固体酸触媒の使用量が10倍重量を超える場合は、副生成物であるトリシクロペンタジエン(以下、TCPDと記す。)やビスジシクロペンタジエニルエ−テル(以下、DODと記す。)が生成し、目的物である2−(トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの収率が低下してしまう。
In the present invention, tricyclo [5.2.1.0 2,6 ] dec-3-ene-8 (or 9) ol is tricyclo [5.2.1.0 2,6 ] dec-3-ene- A mixture of 8-ol and tricyclo [5.2.1.0 2,6 ] dec-3-en-9-ol is shown.
In the present invention, the amount of the solid acid catalyst used for water during the hydration reaction is important, and the solid acid catalyst is 3.0 to 10 times by weight, preferably 4.0 to 10.0 times by weight with respect to water. Use. When the amount of the solid acid catalyst used relative to water is less than 3.0 times the weight, the surface of the solid acid catalyst is covered with moisture, and the hydration reaction of dicyclopentadiene is remarkably slowed. On the other hand, when the amount of the solid acid catalyst used with respect to water exceeds 10 times the weight, by-products such as tricyclopentadiene (hereinafter referred to as TCPD) and bisdicyclopentadienyl ether (hereinafter referred to as DOD). The yield of 2- (tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol, which is the target product, is reduced.

水和に使用される固体酸触媒は酸性の固体物質であり、酸性イオン交換樹脂、ゼオライト、二酸化チタン、酸化アルミニウム、二酸化ケイ素等の無機酸化物あるいはこれらの複合酸化物、さらにスクメタイト、カオリタイト等の層状化合物をアルミニウム、ケイ素、チタン、ジルコニウムの中から選ばれる1種以上の金属酸化物で処理したイオン交換型層状化合物などが例示されるが、本発明における固体酸触媒としては酸性イオン交換樹脂が好ましい。酸性イオン交換樹脂の例として、イオン交換体としてスルホン基またはカルボン酸基を有し、高分子基体としてフェノ−ルとホルムアルデヒドを重縮合して得られる高分子基体や、スチレンまたはハロゲン化スチレンとジビニルベンゼンとの共重合体を高分子基体として有するものがあげられる。これらの中でも、スルホン基を有する強酸性イオン交換樹脂が入手性、取り扱い性等の面で特に好ましい。   The solid acid catalyst used for hydration is an acidic solid substance, such as an acidic ion exchange resin, an inorganic oxide such as zeolite, titanium dioxide, aluminum oxide, and silicon dioxide, or a composite oxide thereof, and also scumite, kaolitite, etc. Examples of the solid acid catalyst in the present invention include an ion exchange layered compound obtained by treating the layered compound of 1 with one or more metal oxides selected from aluminum, silicon, titanium, and zirconium. Is preferred. Examples of acidic ion exchange resins include polymer substrates obtained by polycondensation of phenol and formaldehyde, styrene or halogenated styrene and divinyl. Examples include those having a copolymer with benzene as a polymer substrate. Among these, a strongly acidic ion exchange resin having a sulfone group is particularly preferable in terms of availability, handleability, and the like.

酸性イオン交換樹脂の好ましい具体例としては、オルガノ(株)製のアンバ−リスト15DRY、アンバ−リスト16DRY、アンバ−リスト31DRY(商品名)、三菱化学(株)製のダイヤイオンPK208LH,PK216LH,PK228LH(商品名)等が挙げられる。   Preferable specific examples of the acidic ion exchange resin include Amber List 15DRY, Amber List 16DRY, Amber List 31DRY (trade name) manufactured by Organo Corporation, Diaion PK208LH, PK216LH, PK228LH manufactured by Mitsubishi Chemical Corporation. (Brand name) etc. are mentioned.

固定酸触媒としては水を殆ど含有しないもの(ドライタイプ)であっても、水を含有するもの(ウエットタイプ)であってもよいが、本明細書において固体酸触媒の重量とは、固体酸触媒の水以外の固形分の重量を意味する。
固体酸触媒の形状は特に限定されず、粉末状でも、粒状物でもよい。粒状物の外観形状としては、球状、円盤状、円柱状、円筒状などが例示される。
本発明における反応温度は50〜150℃であり、好ましくは80〜110℃である。反応温度が50℃未満では反応速度が遅く、効率よくトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを製造することができない。一方、反応温度が150℃を超える場合は、副生成物であるトリシクロペンタジエン(TCPD)やビスジシクロペンタジエニルエ−テル(DOD)が生成し、2−(トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの収率が低下してしまう。
The fixed acid catalyst may be one that contains almost no water (dry type) or one that contains water (wet type). In this specification, the weight of the solid acid catalyst refers to the solid acid catalyst. It means the weight of solids other than water in the catalyst.
The shape of the solid acid catalyst is not particularly limited, and may be powdery or granular. Examples of the external shape of the granular material include a spherical shape, a disk shape, a columnar shape, and a cylindrical shape.
The reaction temperature in this invention is 50-150 degreeC, Preferably it is 80-110 degreeC. If the reaction temperature is less than 50 ° C., the reaction rate is low, and tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol cannot be produced efficiently. On the other hand, when the reaction temperature exceeds 150 ° C., by-products such as tricyclopentadiene (TCPD) and bisdicyclopentadienyl ether (DOD) are produced and 2- (tricyclo [5.2.1]. 0.0 2,6 ] dec-3-en-8 (or 9) ol yield is reduced.

ジシクロペンタジエンの水和反応は、連続式、非連続式(バッチ式)どちらの形態も適用することが出来る。連続式の場合は、ジシクロペンタジエンと水の混合物、例えばジシクロペンタジエン中に水を連続的に混合した液を、固体酸触媒に連続的に供給して水和反応を行う。連続式の場合、本発明における水に対する固体酸触媒の使用量は、水に接する時の固体酸触媒の量を指す。
本発明における反応圧力は特に限定されるものではないが、原料のジシクロペンタジエンが常温で固体となるため、反応条件下で液状を維持することが出来る圧力であることが好ましい。
For the hydration reaction of dicyclopentadiene, both continuous and discontinuous (batch) forms can be applied. In the case of a continuous type, a mixture of dicyclopentadiene and water, for example, a liquid obtained by continuously mixing water in dicyclopentadiene is continuously supplied to a solid acid catalyst to carry out a hydration reaction. In the case of the continuous type, the amount of the solid acid catalyst used in the water in the present invention refers to the amount of the solid acid catalyst when in contact with water.
Although the reaction pressure in this invention is not specifically limited, Since the raw material dicyclopentadiene becomes solid at normal temperature, it is preferable that it is a pressure which can maintain a liquid state on reaction conditions.

反応後、反応生成物をろ過、抽出、蒸留などの通常の操作を行うことにより、2−(トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを得ることができる。 After the reaction, the reaction product is subjected to usual operations such as filtration, extraction, and distillation to give 2- (tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol. Can be obtained.

以下、実施例を挙げて説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example is given and explained, the present invention is not limited to these.

実施例1
攪拌機、温度計及び水滴下用ロ−トを備えているフラスコに、ジシクロペンタジエン 113.5g(0.86mol)、アンバ−リスト15DRY 34.1g(オルガノ製)を仕込み、オイルバスにより加温を開始した。また、水滴下用ロ−トにを準備した。フラスコ内の液温が100℃となったところで、オイルバスの高さ調整により液温を100±5℃に保つようにした。そこに固体酸触媒重量/水重量の比が4.0〜5.0となるように反応系の組成を常に分析しながら、水滴下用ロ−トより水を滴下した。滴下完了後も液温を100±5℃に保つようにし反応を行った。圧力は常圧で行った。反応開始から5時間経過時に、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、ジシクロペンタジエン(以下、DCPDと記す。)/2−(トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オール(以下、CDCと記す。)/トリシクロペンタジエン(以下、TCPDと記す。)/ビスジシクロペンタジエニルエ−テル(以下、DODと記す。)のそれぞれの面積百分率での比率は1.1/91.6/0.2/7.1であった。原料のDCPDがほぼ消失し、目的物のCDCが高選択的に生成していた。
Example 1
A flask equipped with a stirrer, a thermometer and a water dropping funnel is charged with 113.5 g (0.86 mol) of dicyclopentadiene and 34.1 g of Amberlist 15DRY (manufactured by Organo), and heated with an oil bath. Started. In addition, a water dropping funnel was prepared. When the liquid temperature in the flask reached 100 ° C., the liquid temperature was kept at 100 ± 5 ° C. by adjusting the height of the oil bath. While constantly analyzing the composition of the reaction system so that the ratio of solid acid catalyst weight / water weight was 4.0 to 5.0, water was dropped from a water dropping funnel. After completion of the dropwise addition, the reaction was carried out while maintaining the liquid temperature at 100 ± 5 ° C. The pressure was normal pressure. As a result of analyzing the reaction solution in the flask by gas chromatography after 5 hours from the start of the reaction, dicyclopentadiene (hereinafter referred to as DCPD) / 2- (tricyclo [5.2.1.0 2,6 ]. Dec-3-ene-8 (or 9) ol (hereinafter referred to as CDC) / tricyclopentadiene (hereinafter referred to as TCPD) / bisdicyclopentadienyl ether (hereinafter referred to as DOD) The ratio of each area percentage was 1.1 / 91.6 / 0.2 / 7.1, and the raw material DCPD almost disappeared and the target CDC was produced with high selectivity.

実施例2
フラスコ内の液温を70±5℃に保つようにすること以外は、実施例1と同様に操作を行った。反応開始から5時間経過時、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は30.2/65.6/0.1/4.2であった。引き続き反応を行い、反応10時間経過時に、再度フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は1.2/93.6/0.2/5.0であった。原料のDCPDがほぼ消失し、目的物のCDCが高選択的に生成していた。
Example 2
The same operation as in Example 1 was performed except that the liquid temperature in the flask was maintained at 70 ± 5 ° C. When the reaction liquid in the flask was analyzed by gas chromatography after 5 hours from the start of the reaction, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 30.2 / 65.6 / 0.1 / 4.2. The reaction was continued, and the reaction liquid in the flask was analyzed again by gas chromatography after 10 hours of reaction. As a result, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 1.2 / 93.6 / It was 0.2 / 5.0. The raw material DCPD almost disappeared, and the target CDC was generated with high selectivity.

実施例3
固体酸触媒重量/水重量の比を9.0〜10.0とすること以外は実施例1と同様に操作を行った。反応開始から5時間経過時に、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は1.2/89.6/0.3/8.9であった。原料のDCPDがほぼ消失、目的物のCDCが高選択的に生成していた。
Example 3
The operation was performed in the same manner as in Example 1 except that the ratio of the weight of the solid acid catalyst / water was 9.0 to 10.0. As a result of analyzing the reaction liquid in the flask by gas chromatography after 5 hours from the start of the reaction, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 1.2 / 89.6 / 0.3 / It was 8.9. The raw material DCPD almost disappeared and the target CDC was generated with high selectivity.

比較例1
フラスコ内の液温を40±5℃に保つようにすること以外は、実施例1と同様に操作を行った。反応開始から5時間経過時に、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は95.5/3.1/0.1/1.3であった。引き続き反応を行い、反応開始から10時間経過時に、再度フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は93.1/5.0/0.1/1.8であり、原料のDCPDは大量に残存しており反応が進行していなかった。
比較例2
フラスコ内の液温を160±5℃に保つようにすること以外は、実施例1と同様に操作を行った。反応開始から5時間経過時に、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は1.1/55.2/4.5/39.2であった。原料のDCPDはほぼ消失しており反応は完了していたが、副生成物のTCPD及びDODが多量に生成していた。
Comparative Example 1
The same operation as in Example 1 was carried out except that the liquid temperature in the flask was kept at 40 ± 5 ° C. As a result of analyzing the reaction liquid in the flask by gas chromatography after 5 hours from the start of the reaction, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 95.5 / 3.1 / 0.1 / 1.3. The reaction was continued, and the reaction liquid in the flask was analyzed again by gas chromatography after 10 hours from the start of the reaction. As a result, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 93.1 / 5. The raw material DCPD remained in a large amount and the reaction did not proceed.
Comparative Example 2
The same operation as in Example 1 was carried out except that the liquid temperature in the flask was kept at 160 ± 5 ° C. As a result of analyzing the reaction liquid in the flask by gas chromatography after 5 hours from the start of the reaction, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 1.1 / 55.2 / 4.5 / 39.2. The raw material DCPD almost disappeared and the reaction was completed, but a large amount of by-products TCPD and DOD were produced.

比較例3
固体酸触媒重量/水重量の比を1.0〜2.0とすること以外は実施例1と同様に操作を行った。反応開始から5時間経過時に、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は90.2/8.1/0.2/1.5であった。引き続き反応を行い、反応10時間経過時に、再度フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は82.4/15.9/0.2/1.5であり、原料のDCPDは大量に残存しており反応が進行していなかった。
比較例4
固体酸触媒重量/水重量の比を11.0〜12.0とすること以外は実施例1と同様に操作を行った。反応開始から5時間経過時に、フラスコ内の反応液をガスクロマトグラフィ−により分析した結果、DCPD/CDC/TCPD/DODのそれぞれの面積百分率での比率は0.8/80.9/3.2/15.1であった。原料のDCPDはほぼ消失しており反応は完了していたが、副生成物のTCPD及びDODが多量に生成していた。
Comparative Example 3
The same operation as in Example 1 was performed except that the ratio of the weight of the solid acid catalyst / water was 1.0 to 2.0. As a result of analyzing the reaction liquid in the flask by gas chromatography after 5 hours from the start of the reaction, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 90.2 / 8.1 / 0.2 / 1.5. The reaction was continued, and when the reaction was continued for 10 hours, the reaction liquid in the flask was analyzed again by gas chromatography. As a result, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 82.4 / 15.9 /. The raw material DCPD remained in a large amount and the reaction did not proceed.
Comparative Example 4
The operation was performed in the same manner as in Example 1 except that the ratio of the weight of the solid acid catalyst / water was 11.0 to 12.0. As a result of analyzing the reaction solution in the flask by gas chromatography after 5 hours from the start of the reaction, the ratio of each area percentage of DCPD / CDC / TCPD / DOD was 0.8 / 80.9 / 3.2 / 15.1. The raw material DCPD almost disappeared and the reaction was completed, but a large amount of by-products TCPD and DOD were produced.

Claims (2)

ジシクロペンタジエンを固体酸触媒の存在下に水和反応させてトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールを製造する方法において、固体酸触媒を水に対して3.0〜10倍重量用い、50〜150℃で水和反応させることを特徴とする、トリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの製造方法。 In the method for producing tricyclo [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol by hydration of dicyclopentadiene in the presence of a solid acid catalyst, Tricyclo [5.2.1.0 2,6 ] dec-3-ene-8 (), characterized in that the hydration reaction is carried out at 50 to 150 ° C. using 3.0 to 10 times the weight of water. Or 9) A method for producing oars. 80〜110℃で水和反応させることを特徴とするトリシクロ〔5.2.1.02,6〕デカ−3−エン−8(又は9)オールの請求項1記載の方法。 The method according to claim 1, wherein trihydric [5.2.1.0 2,6 ] dec-3-en-8 (or 9) ol is hydrated at 80 to 110 ° C.
JP2007045780A 2007-02-26 2007-02-26 Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol Active JP5066938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045780A JP5066938B2 (en) 2007-02-26 2007-02-26 Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045780A JP5066938B2 (en) 2007-02-26 2007-02-26 Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol

Publications (2)

Publication Number Publication Date
JP2008208062A JP2008208062A (en) 2008-09-11
JP5066938B2 true JP5066938B2 (en) 2012-11-07

Family

ID=39784691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045780A Active JP5066938B2 (en) 2007-02-26 2007-02-26 Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol

Country Status (1)

Country Link
JP (1) JP5066938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742879B2 (en) 2011-06-30 2014-06-03 Samsung Electro-Mechanics Co., Ltd. Transformer and display device using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220664B2 (en) * 2009-03-17 2013-06-26 富士フイルム株式会社 Ink composition and inkjet recording method
CN102351652B (en) * 2011-08-05 2013-07-03 聊城大学 Method for preparing dihydrodicyclopentadiene through continuous reaction
CN109912410B (en) * 2019-03-28 2022-02-15 浙江师范大学 Method for preparing tricyclodecenyl alcohol, reaction intermediate and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345419A (en) * 1963-09-25 1967-10-03 Union Carbide Corp Hydration of bicyclo-(2.2.1) heptenes and related nortricyclenes
JPS5659723A (en) * 1979-10-18 1981-05-23 Hitachi Chem Co Ltd Preparation of tricyclo 5.2.1.02,6 -3-decen-8- or 9 -ol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742879B2 (en) 2011-06-30 2014-06-03 Samsung Electro-Mechanics Co., Ltd. Transformer and display device using the same

Also Published As

Publication number Publication date
JP2008208062A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
KR101157813B1 (en) Process for preparing tert-butanol from isobutene-containing hydrocarbon mixtures
Hara et al. Highly efficient C− C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework
Zielinska-Nadolska et al. Zeolite and other heterogeneous catalysts for the transesterification reaction of dimethyl carbonate with ethanol
CA2083346A1 (en) A catalyzed esterification process
JP5066938B2 (en) Process for producing tricyclo [5.2.1.02,6] dec-3-en-8 (or 9) ol
JP4902988B2 (en) Method for producing vicinal alkanediol and alkanetriol and use thereof
CN109715596A (en) The method for producing hydroxyacetic acid
JP5049073B2 (en) Method for producing alcohol having fluorene skeleton
JP5890849B2 (en) Method for producing high-purity isobutene using glycol ether
WO2011087600A2 (en) Process for the conversion of alcohols to olefins
WO2010071011A1 (en) Method for producing acetic acid ester
JP5608403B2 (en) Method for producing n-propyl acetate
WO2012114875A1 (en) Method for producing bicyclomonoterpene (meth)acrylate
JP5662835B2 (en) Method for producing glycerin mono (meth) acrylate
RU2339609C2 (en) Combined method of obtaining diphenol a from cumene hydroperoxide
CN112441866A (en) Method for producing n-butene from isobutene
JP4609642B2 (en) Method for producing cycloalkyl alkyl ether
RU2339608C2 (en) Combined method of obtaining diphenol a from cumane hydroperoxide
JP2005082510A (en) Method for producing cycloalkyl alkyl ether
JPS58194840A (en) Liquid phase manufacture of delta-ketocarboxylic acid ester with liquid phase-insoluble catalyst
JP2002226433A (en) Method for producing cyclohexyl (meth)acrylate
JP4586504B2 (en) Method for producing aromatic ester compound
JP3360759B2 (en) Olefin catalytic hydration method
JP5056313B2 (en) Continuous production method of 2-alkyl-2-cycloalkenone
JP2005097274A (en) Method for producing high purity olefinic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5066938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350