JP5064841B2 - Semiconductor device and manufacturing method of semiconductor device - Google Patents

Semiconductor device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5064841B2
JP5064841B2 JP2007055648A JP2007055648A JP5064841B2 JP 5064841 B2 JP5064841 B2 JP 5064841B2 JP 2007055648 A JP2007055648 A JP 2007055648A JP 2007055648 A JP2007055648 A JP 2007055648A JP 5064841 B2 JP5064841 B2 JP 5064841B2
Authority
JP
Japan
Prior art keywords
plane
substrate
channel
crystal orientation
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007055648A
Other languages
Japanese (ja)
Other versions
JP2008218797A (en
Inventor
清志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2007055648A priority Critical patent/JP5064841B2/en
Publication of JP2008218797A publication Critical patent/JP2008218797A/en
Application granted granted Critical
Publication of JP5064841B2 publication Critical patent/JP5064841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、(100)面基板上に(110)面結晶層が部分的に形成された半導体装置および半導体装置の製造方法に関するものである。   The present invention relates to a semiconductor device in which a (110) plane crystal layer is partially formed on a (100) plane substrate, and a method for manufacturing the semiconductor device.

従来より同一基板上にCMOSを形成する場合は、(100)面基板を用いてPチャネルMOSFET(以下PMOSと略記),NチャネルMOSFET(以下NMOSと略記)を形成するのが一般的であった。しかし、トランジスタの特性向上の要求がある中、(100)面基板にPMOS,NMOSを形成する半導体装置では特にPMOSの特性向上に限界があった。電子移動度は(100)面基板の方が(110)面基板よりも大きいことから、NMOSは(100)面基板上に形成すると動作が最大になるが、正孔移動度は(110)面基板の方が(100)面基板よりも大きいことから、PMOSは(110)面基板上に形成した方が動作が最大になるためである。   Conventionally, when a CMOS is formed on the same substrate, it is common to form a P-channel MOSFET (hereinafter abbreviated as PMOS) and an N-channel MOSFET (hereinafter abbreviated as NMOS) using a (100) plane substrate. . However, while there is a demand for improving the characteristics of transistors, there is a limit to improving the characteristics of PMOS in particular in a semiconductor device in which PMOS and NMOS are formed on a (100) plane substrate. Since the (100) plane substrate has a higher electron mobility than the (110) plane substrate, the NMOS has maximum operation when formed on the (100) plane substrate, but the hole mobility has a (110) plane. This is because, since the substrate is larger than the (100) plane substrate, the operation of the PMOS is maximized when it is formed on the (110) plane substrate.

そこで、(100)面基板上に、結晶方位<110>方向を同一方向に揃えた(110)面結晶層を部分的に形成するHOT(Hybrid Orientation Technology)基板を用いて、(100)面基板上にNMOSを形成し、(110)面結晶層上にPMOSを形成する半導体装置が提案されている(下記非特許文献参照)。   Therefore, a (100) plane substrate is formed using a HOT (Hybrid Orientation Technology) substrate that partially forms a (110) plane crystal layer in which the crystal orientation <110> direction is aligned in the same direction on the (100) plane substrate. A semiconductor device has been proposed in which an NMOS is formed thereon and a PMOS is formed on a (110) plane crystal layer (see the following non-patent document).

M.Yang et al.,IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.53,NO.5,2006年5月,p965M. Yang et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.53, NO. 5, May 2006, p965 C.Y.Sung et al.,IEDM,2005年,p235C.Y.Sung et al., IEDM, 2005, p235

半導体装置の効率的なレイアウトは一般的にNMOS,PMOSともチャネル方向が直交するような2種類の方向を混在して省スペース化を実現している。上記非特許文献に記載されているHOT基板を用いた半導体装置において、(100)面基板ではチャネル方向が直交する場合、それぞれの結晶方位は同等であるため直交するNMOSのドレイン電流(Id)は同一である。また、チャネルの移動度が最大の結晶方位<110>方向が使えるためIdが最大になる。   An efficient layout of a semiconductor device generally achieves space saving by mixing two types of directions in which the channel directions are orthogonal to each other in both NMOS and PMOS. In the semiconductor device using the HOT substrate described in the above non-patent document, when the channel directions are orthogonal to each other on the (100) plane substrate, the respective NMOSs have the same crystal orientation, so the drain current (Id) of the orthogonal NMOS is Are the same. Also, since the crystal orientation <110> direction with the maximum channel mobility can be used, Id is maximized.

しかしながら、(110)面結晶上にチャネル方向が直交するようにPMOSを形成する場合、最大の移動度を示す結晶方位<110>方向に対して直交する結晶方位は最小の移動度を示す<100>方向に相当する。従って、(110)面結晶層上にPMOSを形成する場合、チャネルが直交するレイアウトでは、それぞれのIdが同一にならないためデバイスの特性が変わるという問題があった。   However, when the PMOS is formed on the (110) plane crystal so that the channel directions are orthogonal, the crystal orientation perpendicular to the crystal orientation <110> showing the maximum mobility shows the minimum mobility <100. > Corresponds to the direction. Therefore, when a PMOS is formed on a (110) plane crystal layer, there is a problem that the characteristics of the device change because the respective Ids are not the same in a layout in which the channels are orthogonal.

また、上記問題を解消するために、チャネル方向を直交二方向でなく結晶方位<110>方向の一方向にそろえることによりPMOSの特性は向上しIdのバラツキも解消するが、レイアウトの自由度がなくなり、チップサイズが大きくなるという問題があった。   In addition, in order to solve the above problem, by aligning the channel direction to one direction of the crystal orientation <110> instead of the two orthogonal directions, the characteristics of the PMOS are improved and the variation in Id is also eliminated. There was a problem that the chip size was increased.

そこで本発明はかかる問題を解決するためになされたものであり、チャネル方向が直交する効率的なレイアウト構成をとり、(100)結晶面上に形成したPMOSよりも特性が向上し、IdのバラツキのないCMOS領域を備えた半導体装置を得ることを目的としている。   Accordingly, the present invention has been made to solve such a problem, and has an efficient layout configuration in which the channel directions are orthogonal to each other, has improved characteristics as compared with a PMOS formed on a (100) crystal plane, and has a variation in Id. An object of the present invention is to obtain a semiconductor device having a CMOS region without any defects.

本発明の一実施形態における半導体装置は、(100)面基板と、前記(100)面基板上に部分的に形成された(110)面結晶層と、前記(100)面基板上にチャネルが直交する方向に配置された複数のNチャネルMOSFETと、前記(110)面結晶層上にチャネルが直交する方向に配置された複数のPチャネルMOSFETとを備える。前記(110)面結晶層は、その結晶方位<110>方向が、前記(100)面基板の結晶方位<110>方向と同一方向であり、前記複数のNチャネルMOSFETは、チャネルの方向が前記(100)面基板の結晶方位<110>方向とその直交方向とに配置され、前記複数のPチャネルMOSFETは、チャネルの方向が前記(110)面結晶層の結晶方位<110>方向に対し45°回転した方向に配置される。 A semiconductor device according to an embodiment of the present invention includes a (100) plane substrate, a (110) plane crystal layer partially formed on the (100) plane substrate, and a channel on the (100) plane substrate. A plurality of N-channel MOSFETs arranged in a direction orthogonal to each other and a plurality of P-channel MOSFETs arranged in a direction perpendicular to the channel on the (110) plane crystal layer . The (110) plane crystal layer has a crystal orientation <110> direction is a crystal orientation <110> in the same direction of the (100) plane substrate, said plurality of N-channel a MOSFET T, the direction of Ji Yaneru Are arranged in the crystal orientation <110> direction of the (100) plane substrate and the orthogonal direction thereof, and the plurality of P-channel MOSFETs have a channel direction in the crystal orientation <110> direction of the (110) plane crystal layer. Ru is located 45 ° rotated direction against.

本発明の一実施形態によれば、PMOSを形成する(110)面結晶の結晶方位<110>方向を、NMOSを形成する(100)面基板の結晶方位<10>方向と揃うように張り合わせてHOT基板を形成する。NMOSはチャネルの方向が(100)面基板の結晶方位<110>方向とその直交方向とに配置され、PMOSチャネル方向が(110)面結晶層および(100)面基板の結晶方位<110>方向から45°回転した結晶方向に配される。この構成により、PMOSのチャネル方向は(110)面結晶の結晶方位<110>方向から45°回転した方向となり、直交して配置されたチャネル方向の結晶方位は同等になる。よって、チャネル方向が直交する効率的なレイアウト構成をとることができ、かつ、それぞれのPMOSのIdは同一になり、さらに(100)結晶面上に形成したPMOSよりも特性が向上した半導体装置を得ることができる。 According to an embodiment of the present invention, to form a PMOS (110) plane crystal orientation <110> direction of the crystal layer, to form the NMOS (100) plane crystal orientation <1 1 0> of the substrate so as to align with the direction The HOT substrate is formed by bonding to The NMOS has a channel direction arranged in the <100> plane crystal orientation <110> direction and a direction orthogonal thereto, and the PMOS has a (110) plane crystal layer and a (100) plane crystal orientation <110> in the channel direction. to 45 ° rotated crystal direction from the direction Ru is placed. With this configuration, the channel direction of the PMOS is a direction rotated by 45 ° from the crystal orientation <110> direction of the (110) plane crystal layer , and the crystal orientations of the channel directions arranged orthogonally are equal. Therefore, an efficient layout configuration in which the channel directions are orthogonal to each other, the Id of each PMOS is the same, and a semiconductor device with improved characteristics as compared to a PMOS formed on a (100) crystal plane Obtainable.

参考形態1]
図1はCMOS領域4を形成するSPE(Solid Phase Epitaxy)技術を示した図である。図1(a)の(100)面基板1上に図1(a)の(110)面基板2を張り合わせたHOT(Hybrid Orientation Technology)基板3(図1(b))のうち、CMOSを形成する領域の一部(図1(c))を抜き出して説明する。
[ Reference Form 1]
FIG. 1 is a diagram showing an SPE (Solid Phase Epitaxy) technique for forming a CMOS region 4. Of the HOT (Hybrid Orientation Technology) substrate 3 (FIG. 1 (b)) in which the (110) surface substrate 2 of FIG. 1 (a) is bonded to the (100) surface substrate 1 of FIG. 1 (a), a CMOS is formed. A part of the area to be processed (FIG. 1C) will be extracted and described.

CMOS領域4のうちのPMOS領域にレジスト5を生成し、CMOS領域4上からSiを注入してNMOS領域のみ(110)面基板2をアモルファス化する(図1(d))。次にアニール処理を行いアモルファス化された部分が基板を種結晶として固層エピ成長し、(110)面基板2の結晶状態が(100)面基板1と同じ結晶状態に変換される(図1(e))。次に素子分離(STI)を行い、PMOS,NMOS領域にそれぞれPMOS22,NMOS21(図2参照)を形成することにより、HOT基板3上にCMOS領域4が形成される(図1(f))。   A resist 5 is formed in the PMOS region of the CMOS region 4 and Si is implanted from above the CMOS region 4 to amorphize the (110) plane substrate 2 only in the NMOS region (FIG. 1 (d)). Next, the annealed portion is subjected to solid-phase epi growth using the substrate as a seed crystal, and the crystal state of the (110) plane substrate 2 is converted to the same crystal state as that of the (100) plane substrate 1 (FIG. 1). (E)). Next, element isolation (STI) is performed, and PMOS 22 and NMOS 21 (see FIG. 2) are formed in the PMOS and NMOS regions, respectively, thereby forming the CMOS region 4 on the HOT substrate 3 (FIG. 1 (f)).

図2は本発明の参考形態1における半導体装置のCMOS領域4の一部を示した図である。本発明の参考形態1の特徴は、図1の工程を行い、(100)面基板1上に部分的に(110)面結晶層10(図1の(110)面基板2よりなる)を形成する際に、(110)面結晶層10の結晶方位<110>方向が、ベース基板の(100)面基板1の結晶方位<110>方向に対し、45°回転して張り合わせて図1(a),(b)の工程を行うことによりHOT基板3を形成する点である。このHOT基板3を用いて、NMOS21は(100)面基板1上にチャネルが直交する方向に複数配置され、PMOS22は(110)面結晶層10上にチャネルが直交する方向に複数配置され、CMOS領域4を形成する。 Figure 2 is a diagram showing a part of the CMOS region 4 of the semiconductor device in Reference Embodiment 1 of the present invention. Features of Reference Embodiment 1 of the present invention performs the steps of FIG. 1, forming in part on (100) plane on the substrate 1 (110) plane crystal layer 10 (made of (110) plane substrate 2 in FIG. 1) In this case, the crystal orientation <110> direction of the (110) plane crystal layer 10 is rotated by 45 ° with respect to the crystal orientation <110> direction of the (100) plane substrate 1 of the base substrate and bonded together as shown in FIG. ), (B) is the point at which the HOT substrate 3 is formed. Using this HOT substrate 3, a plurality of NMOSs 21 are arranged on the (100) plane substrate 1 in the direction in which the channels are orthogonal, and a plurality of PMOSs 22 are arranged on the (110) plane crystal layer 10 in the direction in which the channels are orthogonal to each other. Region 4 is formed.

ここで、NMOS21およびPMOS22は、ともにチャネルの方向が同一であり、(100)面基板1の結晶方位<110>方向とその直交方向とに配置される。すなわち、PMOS22のチャネル方向は(110)面結晶層10の結晶方位<110>方向から45°回転した結晶方向になる。   Here, both the NMOS 21 and the PMOS 22 have the same channel direction, and are arranged in the crystal orientation <110> direction of the (100) plane substrate 1 and the orthogonal direction thereof. That is, the channel direction of the PMOS 22 is a crystal direction rotated by 45 ° from the crystal orientation <110> direction of the (110) plane crystal layer 10.

以上のレイアウト構成から、PMOS22は(110)面結晶層10の結晶方位<110>方向から45°回転した方向がチャネルとなり、直交して配置されたチャネル方向の結晶方位は同等になるため、それぞれのPMOS22のIdは同等になる。また、PMOS22の配置とNMOS21の配置が同一方向に設定できるので、CMOSとして効率良くレイアウトができる。また、この時のNMOS21のチャネル方向は、(100)面基板1の結晶方位<110>方向が使えるためチャネルの移動度が最大になる。   From the above layout configuration, the PMOS 22 has a channel rotated by 45 ° from the crystal orientation <110> direction of the (110) plane crystal layer 10, and the crystal orientation in the channel direction arranged orthogonally becomes equal. The Id of the PMOS 22 is equal. Further, since the arrangement of the PMOS 22 and the arrangement of the NMOS 21 can be set in the same direction, the layout can be efficiently performed as a CMOS. Further, since the channel direction of the NMOS 21 at this time can use the crystal orientation <110> direction of the (100) plane substrate 1, the channel mobility is maximized.

[実施の形態
図3は本発明の実施の形態における半導体装置のCMOS領域4の一部を示した図である。図1の工程を行い、(100)面基板1上に部分的に(110)面結晶層10(図1の(110)面基板2よりなる)を形成する際に、(110)面結晶層10の結晶方位<110>方向が、ベース基板の(100)面基板1の結晶方位<110>方向と揃うように張り合わせて図1(a),(b)の工程を行うことによりHOT基板3を形成する。このHOT基板3を用いて、NMOS21は(100)面基板1上にチャネルが直交する方向に複数配置され、PMOS22は(110)面結晶層10上にチャネルが直交する方向に複数配置され、CMOS領域4を形成する。
[Embodiment 1 ]
FIG. 3 is a diagram showing a part of CMOS region 4 of the semiconductor device according to the first embodiment of the present invention. When the step of FIG. 1 is performed to partially form the (110) plane crystal layer 10 (consisting of the (110) plane substrate 2 of FIG. 1) on the (100) plane substrate 1, the (110) plane crystal layer is formed. The HOT substrate 3 is obtained by performing the steps of FIGS. 1A and 1B by bonding the 10 crystal orientation <110> directions to the crystal orientation <110> direction of the (100) plane substrate 1 of the base substrate. Form. Using this HOT substrate 3, a plurality of NMOSs 21 are arranged on the (100) plane substrate 1 in the direction in which the channels are orthogonal, and a plurality of PMOSs 22 are arranged on the (110) plane crystal layer 10 in the direction in which the channels are orthogonal to each other. Region 4 is formed.

ここで本発明の実施の形態の特徴は、NMOS21はチャネルの方向が(100)面基板1の結晶方位<110>方向とその直交方向とに配置され、PMOS22はチャネル方向が(110)面結晶層10および(100)面基板1の結晶方位<110>方向から45°回転した結晶方向に配置される点である。 Here, the first embodiment of the present invention is characterized in that the NMOS 21 has a channel direction arranged in the (100) plane substrate 1 in the crystal orientation <110> direction and a direction perpendicular thereto, and the PMOS 22 has a channel direction (110) plane. The crystal layer 10 and the (100) plane substrate 1 are arranged in a crystal direction rotated by 45 ° from the crystal orientation <110> direction.

以上のレイアウト構成から、PMOS22は(110)面結晶層10の結晶方位<110>方向から45°回転した方向がチャネルとなり、直交して配置されたチャネル方向の結晶方位は同等になるため、それぞれのPMOS22のIdは同等になる。また、この時のNMOS21のチャネル方向は、(100)面基板1の結晶方位<110>方向が使えるためチャネルの移動度が最大になる。   From the above layout configuration, the PMOS 22 has a channel rotated by 45 ° from the crystal orientation <110> direction of the (110) plane crystal layer 10, and the crystal orientation in the channel direction arranged orthogonally becomes equal. The Id of the PMOS 22 is equal. Further, since the channel direction of the NMOS 21 at this time can use the crystal orientation <110> direction of the (100) plane substrate 1, the channel mobility is maximized.

参考形態
図4は本発明の参考形態における半導体装置のCMOS領域4の一部を示した図である。図1の工程を行い、(100)面基板1上に部分的に(110)面結晶層10(図1の(110)面基板2よりなる)を形成する際に、(110)面結晶層10の結晶方位<110>方向が、ベース基板の(100)面基板1の結晶方位<110>方向と揃うように張り合わせて図1(a),(b)の工程を行うことによりHOT基板3を形成する。このHOT基板3を用いて、NMOS21は(100)面基板1上にチャネルが直交する方向に複数配置され、PMOS22は(110)面結晶層10上にチャネルが直交する方向に複数配置され、CMOS領域4を形成する。
[ Reference form 2 ]
Figure 4 is a diagram showing a part of the CMOS region 4 of the semiconductor device in Reference Embodiment 2 of the present invention. When the step of FIG. 1 is performed to partially form the (110) plane crystal layer 10 (consisting of the (110) plane substrate 2 of FIG. 1) on the (100) plane substrate 1, the (110) plane crystal layer is formed. The HOT substrate 3 is obtained by performing the steps of FIGS. 1A and 1B by bonding the 10 crystal orientation <110> directions to the crystal orientation <110> direction of the (100) plane substrate 1 of the base substrate. Form. Using this HOT substrate 3, a plurality of NMOSs 21 are arranged on the (100) plane substrate 1 in the direction in which the channels are orthogonal, and a plurality of PMOSs 22 are arranged on the (110) plane crystal layer 10 in the direction in which the channels are orthogonal to each other. Region 4 is formed.

NMOS21およびPMOS22は、ともにチャネルの方向が同一であり、(100)面基板1および(110)面結晶層10の結晶方位<110>方向とその直交方向とに配置される。   Both the NMOS 21 and the PMOS 22 have the same channel direction and are arranged in the crystal orientation <110> direction of the (100) plane substrate 1 and the (110) plane crystal layer 10 and the orthogonal direction thereof.

ここで、チャネル移動度はチャネル方向が結晶方位<100>方向が最小であり、結晶方位<110>方向が最大であることから、直交して配置されたPMOS22のうち、チャネル方向が結晶方位<100>方向のPMOS22のIdは結晶方位<110>方向に対し約30%劣化する。そこで、本発明の参考形態の特徴は、以下のブースト手段を付加して結晶方位<100>方向のチャネルの移動度を大きくする点である。 Here, the channel mobility is such that the channel direction has the minimum crystal orientation <100> direction and the crystal orientation <110> direction has the maximum. Therefore, among the PMOSs 22 arranged orthogonally, the channel direction is the crystal orientation < The Id of the PMOS 22 in the 100> direction deteriorates by about 30% with respect to the crystal orientation <110> direction. Therefore, a feature of Reference Embodiment 2 of the present invention is that the following boost means is added to increase the mobility of the channel in the crystal orientation <100> direction.

図6は第1のブースト手段を示す図である。チャネル方向が<100>方向のPMOS領域(図4の圧縮歪み領域23)のみ、ソース・ドレイン領域のSiをリセスエッチングして、エッチングしたソース・ドレイン領域にSiGe等のSiより格子定数の大きい材料を選択エピタキシャル成長させる。例えば、ボロン(B)をドーピングしたGe濃度20%のSiGeが用いられる。これによりSiの結晶格子中のGeにより、リセス・ソース・ドレイン間チャネルが一軸圧縮応力で歪むため、正孔の移動度が大きくなり駆動電流Idが大きくなる。   FIG. 6 is a diagram showing the first boost means. Only in the PMOS region (compressive strain region 23 in FIG. 4) whose channel direction is the <100> direction, Si in the source / drain region is recess-etched, and the etched source / drain region has a larger lattice constant than Si, such as SiGe. Is selectively epitaxially grown. For example, SiGe doped with boron (B) and having a Ge concentration of 20% is used. As a result, the recess-source-drain channel is distorted by uniaxial compressive stress due to Ge in the Si crystal lattice, so that the hole mobility increases and the drive current Id increases.

図7は第2のブースト手段を示す図である。チャネル方向が<100>方向のPMOS領域(図4の圧縮歪み領域23)のみ、PMOS22上にSiN等のストレス膜(圧縮膜)36を導入する。これにより<100>方向のチャネル部には一軸圧縮歪みが働き、正孔の移動度が大きくなり駆動電流Idが大きくなる。   FIG. 7 is a diagram showing the second boost means. A stress film (compressed film) 36 such as SiN is introduced on the PMOS 22 only in the PMOS region (compression strain region 23 in FIG. 4) whose channel direction is the <100> direction. As a result, uniaxial compression strain acts on the channel portion in the <100> direction, the hole mobility increases, and the drive current Id increases.

図8は第3のブースト手段を示す図である。チャネル方向が<100>方向のPMOS領域(図4の圧縮歪み領域23)のSi層上の表面にSiGe等のSiより格子定数の大きい半導体材料を選択エピタキシャル成長させ、このエピ層上にPMOS22を形成する。これにより<100>方向のチャネル部には二軸圧縮歪みが働き、正孔の移動度が大きくなり駆動電流Idが大きくなる。   FIG. 8 is a diagram showing third boost means. A semiconductor material having a lattice constant larger than that of Si, such as SiGe, is selectively epitaxially grown on the surface of the Si layer in the PMOS region (compressive strain region 23 in FIG. 4) whose channel direction is the <100> direction, and the PMOS 22 is formed on this epitaxial layer. To do. As a result, biaxial compression strain acts on the channel portion in the <100> direction, the hole mobility increases, and the drive current Id increases.

以上の構成から、<100>方向のPMOS22のIdが増加し、<110>方向のIdと同等にすることが出来る。また、この時のNMOS21のチャネル方向は、(100)面基板1の結晶方位<110>方向が使えるためチャネルの移動度が最大になる。   From the above configuration, the Id of the PMOS 22 in the <100> direction is increased and can be made equal to the Id in the <110> direction. Further, since the channel direction of the NMOS 21 at this time can use the crystal orientation <110> direction of the (100) plane substrate 1, the channel mobility is maximized.

参考形態
図5は本発明の参考形態における半導体装置のCMOS領域4の一部を示した図である。図1の工程を行い、(100)面基板1上に部分的に(110)面結晶層10(図1の(110)面基板2よりなる)を形成する際に、(110)面結晶層10の結晶方位<110>方向が、ベース基板の(100)面基板1の結晶方位<110>方向と揃うように張り合わせて図1(a),(b)の工程を行うことによりHOT基板3を形成する。このHOT基板3を用いて、NMOS21は(100)面基板1上にチャネルが直交する方向に複数配置され、PMOS22は(110)面結晶層10上にチャネルが直交する方向に複数配置され、CMOS領域4を形成する。
[ Reference form 3 ]
Figure 5 is a diagram showing a part of the CMOS region 4 of the semiconductor device in Reference Embodiment 3 of the present invention. When the step of FIG. 1 is performed to partially form the (110) plane crystal layer 10 (consisting of the (110) plane substrate 2 of FIG. 1) on the (100) plane substrate 1, the (110) plane crystal layer is formed. The HOT substrate 3 is obtained by performing the steps of FIGS. 1A and 1B by bonding the 10 crystal orientation <110> directions to the crystal orientation <110> direction of the (100) plane substrate 1 of the base substrate. Form. Using this HOT substrate 3, a plurality of NMOSs 21 are arranged on the (100) plane substrate 1 in the direction in which the channels are orthogonal, and a plurality of PMOSs 22 are arranged on the (110) plane crystal layer 10 in the direction in which the channels are orthogonal to each other. Region 4 is formed.

NMOS21およびPMOS22は、ともにチャネルの方向が同一であり、(100)面基板1および(110)面結晶層10の結晶方位<110>方向とその直交方向とに配置される。   Both the NMOS 21 and the PMOS 22 have the same channel direction and are arranged in the crystal orientation <110> direction of the (100) plane substrate 1 and the (110) plane crystal layer 10 and the orthogonal direction thereof.

ここで、参考形態と同様に、直交して配置されたPMOS22のうち、チャネル方向が<100>方向のPMOS22のIdは<110>方向に対し約30%劣化する。そこで、本発明の参考形態の特徴は、チャネル方向が<100>方向のPMOS22のW(チャネル幅)を<110>方向のPMOS22のWより大きくする点である。 Here, similarly to Reference Embodiment 2, among the PMOS22 which are arranged orthogonally, the channel direction Id of PMOS22 the <100> direction is deteriorated by about 30% to <110> direction. Therefore, characteristics of the reference embodiment 3 of the present invention is that the channel direction is larger than W of the <100> direction of the PMOS 22 of the W (channel width) of the <110> direction PMOS 22.

以上の構成から、<100>方向のPMOS22のIdが増加し、<110>方向のIdと同等にすることが出来る。また、この時のNMOS21のチャネル方向は、(100)面基板1の結晶方位<110>方向が使えるためチャネルの移動度が最大になる。   From the above configuration, the Id of the PMOS 22 in the <100> direction is increased and can be made equal to the Id in the <110> direction. Further, since the channel direction of the NMOS 21 at this time can use the crystal orientation <110> direction of the (100) plane substrate 1, the channel mobility is maximized.

HOT基板にCMOS領域を形成する工程を示した図である。It is the figure which showed the process of forming a CMOS area | region in a HOT substrate. 本発明の参考形態1における半導体装置のCMOS領域の一部を示した図である。It is the figure which showed a part of CMOS area | region of the semiconductor device in the reference form 1 of this invention. 本発明の実施の形態における半導体装置のCMOS領域の一部を示した図である。It is the figure which showed a part of CMOS area | region of the semiconductor device in Embodiment 1 of this invention. 本発明の参考形態における半導体装置のCMOS領域の一部を示した図である。It is the figure which showed a part of CMOS area | region of the semiconductor device in the reference form 2 of this invention. 本発明の参考形態における半導体装置のCMOS領域の一部を示した図である。It is the figure which showed a part of CMOS area | region of the semiconductor device in the reference form 3 of this invention. 本発明の参考形態における半導体装置の圧縮歪みを示した図である。It is the figure which showed the compressive distortion of the semiconductor device in the reference form 2 of this invention. 本発明の参考形態における半導体装置の圧縮歪みを示した図である。It is the figure which showed the compressive distortion of the semiconductor device in the reference form 2 of this invention. 本発明の参考形態における半導体装置の圧縮歪みを示した図である。It is the figure which showed the compressive distortion of the semiconductor device in the reference form 2 of this invention.

符号の説明Explanation of symbols

1 (100)面基板、2 (110)面基板、3 HOT基板、4 CMOS領域、5 レジスト、10 (110)面結晶層、21 NMOS、22 PMOS、23 圧縮歪み領域、31 ゲート絶縁膜、32 ゲート、33 サイドウォール、34 チャネル部、35 エクステンション、36 ストレス膜。   1 (100) plane substrate, 2 (110) plane substrate, 3 HOT substrate, 4 CMOS region, 5 resist, 10 (110) plane crystal layer, 21 NMOS, 22 PMOS, 23 compressive strain region, 31 gate insulating film, 32 Gate, 33 sidewall, 34 channel part, 35 extension, 36 stress film.

Claims (2)

(100)面基板と、
前記(100)面基板上に部分的に形成された(110)面結晶層と、
前記(100)面基板上にチャネルが直交する方向に配置された複数のNチャネルMOSFETと、
前記(110)面結晶層上にチャネルが直交する方向に配置された複数のPチャネルMOSFETと、を備え、
前記(110)面結晶層は、その結晶方位<110>方向が、前記(100)面基板の結晶方位<110>方向と同一方向であり、
前記複数のNチャネルMOSFETは、チャネルの方向が前記(100)面基板の結晶方位<110>方向とその直交方向とに配置され
前記複数のPチャネルMOSFETは、チャネルの方向が前記(110)面結晶層の結晶方位<110>方向に対し45°回転した方向に配置される半導体装置。
A (100) surface substrate;
A (110) plane crystal layer partially formed on the (100) plane substrate;
A plurality of N-channel MOSFETs arranged on the (100) plane substrate in a direction in which the channels are orthogonal;
A plurality of P-channel MOSFETs arranged in a direction perpendicular to the channel on the (110) plane crystal layer,
The (110) plane crystal layer has a crystal orientation <110> direction, the (100) plane is a crystal orientation <110> in the same direction as the direction of the substrate,
Wherein the plurality of N-channel a MOSFET T may be disposed on the the direction of the switch Yaneru (100) plane crystal orientation of the substrate <110> direction and its perpendicular direction,
Wherein the plurality of P-channel MOSFET, the direction of the channel is the (110) plane crystal layer crystal orientation <110> semiconductor device that will be placed in the 45 ° rotated to the direction of.
請求項1に記載の半導体装置を製造する方法であって、
前記(100)面基板を準備する工程と、
前記(100)面基板上に(110)面基板を張り合わせる工程とを備え、
前記(110)面基板は、その結晶方位<110>方向が、前記(100)面基板の結晶方位<110>方向と同一方向に、前記(100)面基板に張り合わされ、
前記(110)面基板の結晶状態を部分的に、前記(100)面基板と同じ結晶状態に変換する工程と、を備える半導体装置の製造方法。
A method of manufacturing the semiconductor device according to claim 1,
Preparing the (100) plane substrate;
Bonding the (110) plane substrate onto the (100) plane substrate,
The (110) plane substrate is bonded to the (100) plane substrate so that the crystal orientation <110> direction is the same as the crystal orientation <110> direction of the (100) plane substrate.
A step of partially converting the crystal state of the (110) plane substrate to the same crystal state as that of the (100) plane substrate.
JP2007055648A 2007-03-06 2007-03-06 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP5064841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055648A JP5064841B2 (en) 2007-03-06 2007-03-06 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055648A JP5064841B2 (en) 2007-03-06 2007-03-06 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008218797A JP2008218797A (en) 2008-09-18
JP5064841B2 true JP5064841B2 (en) 2012-10-31

Family

ID=39838467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055648A Expired - Fee Related JP5064841B2 (en) 2007-03-06 2007-03-06 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5064841B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141263A (en) * 2008-12-15 2010-06-24 Toshiba Corp Semiconductor device
JP5537102B2 (en) * 2009-09-11 2014-07-02 株式会社東芝 Manufacturing method of semiconductor device
JP2012089784A (en) * 2010-10-22 2012-05-10 Renesas Electronics Corp Semiconductor device and method for manufacturing the same
JP6110686B2 (en) * 2013-02-26 2017-04-05 旭化成エレクトロニクス株式会社 Manufacturing method of semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372166A (en) * 1991-06-21 1992-12-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US7160769B2 (en) * 2004-10-20 2007-01-09 Freescale Semiconductor, Inc. Channel orientation to enhance transistor performance
TWI263328B (en) * 2005-01-04 2006-10-01 Samsung Electronics Co Ltd Semiconductor devices having faceted channels and methods of fabricating such devices
US7285473B2 (en) * 2005-01-07 2007-10-23 International Business Machines Corporation Method for fabricating low-defect-density changed orientation Si

Also Published As

Publication number Publication date
JP2008218797A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
KR100676385B1 (en) Semiconductor device including field-effect transistor
US7682932B2 (en) Method for fabricating a hybrid orientation substrate
US20080224216A1 (en) STRAINED HOT (HYBRID OREINTATION TECHNOLOGY) MOSFETs
JP4474479B2 (en) Field effect transistor and CMOS circuit
JP2007533119A (en) Silicon devices on Si: C-OI and SGOI and manufacturing methods
CN103199064B (en) Method of forming a semiconductor device
US20070170507A1 (en) STRUCTURE AND METHOD FOR MANUFACTURING PLANAR STRAINED Si/SiGe SUBSTRATE WITH MULTIPLE ORIENTATIONS AND DIFFERENT STRESS LEVELS
JP2009152394A (en) Semiconductor device and method of manufacturing the same
JP2010171337A (en) Field effect transistor
JP5064841B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2007103654A (en) Semiconductor device and its manufacturing method
TWI566378B (en) Method for improved mobility using hybrid orientation technology (hot) in conjunction with selective epitaxy and related apparatus
US9508799B2 (en) Substrate of semiconductor device including epitaxial layer and silicon layer having same crystalline orientation
JP2009094300A (en) Semiconductor device and method of manufacturing the same
US9263582B2 (en) Strain engineering in semiconductor devices by using a piezoelectric material
US7573123B2 (en) Semiconductor device and method for forming the same
JP2007329379A (en) Semiconductor device, and manufacturing method thereof
US8329531B2 (en) Strain memorization in strained SOI substrates of semiconductor devices
CN103325787A (en) Cmos device and manufacturing method thereof
JP2009529247A (en) Integrated circuit and formation method thereof (hybrid orientation structure for standard orthogonal circuit)
EP2521168B1 (en) Method for manufacturing a hybrid MOSFET device
US7642197B2 (en) Method to improve performance of secondary active components in an esige CMOS technology
US7541629B1 (en) Embedded insulating band for controlling short-channel effect and leakage reduction for DSB process
WO2011077608A1 (en) Semiconductor device, high-frequency integrated circuit, high-frequency wireless communication system, and process for production of semiconductor device
JP2007227421A (en) Semiconductor device and its fabrication process

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees