JP5064198B2 - Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance - Google Patents

Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance Download PDF

Info

Publication number
JP5064198B2
JP5064198B2 JP2007320797A JP2007320797A JP5064198B2 JP 5064198 B2 JP5064198 B2 JP 5064198B2 JP 2007320797 A JP2007320797 A JP 2007320797A JP 2007320797 A JP2007320797 A JP 2007320797A JP 5064198 B2 JP5064198 B2 JP 5064198B2
Authority
JP
Japan
Prior art keywords
coal
coal sample
layer
measuring
sample chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007320797A
Other languages
Japanese (ja)
Other versions
JP2009144001A (en
Inventor
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007320797A priority Critical patent/JP5064198B2/en
Publication of JP2009144001A publication Critical patent/JP2009144001A/en
Application granted granted Critical
Publication of JP5064198B2 publication Critical patent/JP5064198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークス製造用原料炭の評価試験装置に関し、詳しくは、コークス炉操業において発生する膨張圧を推定するために用いられる、石炭軟化溶融層の通気抵抗の測定装置及びその測定方法に関するものである。   TECHNICAL FIELD The present invention relates to an evaluation test apparatus for coking coal for coke production, and more particularly to an apparatus and a method for measuring the ventilation resistance of a coal softening melt layer used for estimating an expansion pressure generated in coke oven operation. It is.

コークス炉は、複数の炭化室と燃焼室が交互に配置されることで構成され、コークス炉操業は、各炭化室に所定の順番で原料炭を装入し、石炭を所定時間乾留し、その後、得られたコークスケーキを押し出し、所定粒度に粉砕することにより行われる。   The coke oven is configured by alternately arranging a plurality of carbonization chambers and combustion chambers, and the coke oven operation is performed by charging raw coal into each carbonization chamber in a predetermined order, carbonizing the coal for a predetermined time, The obtained coke cake is extruded and pulverized to a predetermined particle size.

炭化室内の石炭は、炉壁を隔てて隣接する燃焼室からの熱伝達により、先ず、炉壁近傍の石炭が加熱されて、石炭軟化溶融層が形成され、熱伝達により、軟化溶融層が炭化室中心部に徐々に移行することで、石炭の乾留が進行する。石炭の軟化溶融層は、流動性を有するとともに、石炭中の揮発成分や軽質成分の一部のガス化による内圧で膨張状態となる。   The coal in the carbonization chamber is first heated by heat transfer from the adjacent combustion chamber across the furnace wall to form a coal softened molten layer, and the softened molten layer is carbonized by heat transfer. By gradually shifting to the center of the chamber, the carbonization of coal proceeds. The softened and melted layer of coal has fluidity and is in an expanded state due to internal pressure due to gasification of a part of volatile components and light components in coal.

さらに加熱すると、石炭の軟化溶融層から発生ガスが抜け出るともに、石炭が再固化し、コークス層が形成される。この石炭の再固化後、コークスの押し出しを開始するまでの間、コークス層は収縮する。   When heated further, the generated gas escapes from the softened and melted layer of coal, and the coal resolidifies to form a coke layer. After the resolidification of the coal, the coke layer shrinks until the start of coke extrusion.

石炭の乾留過程にある炭化室においては、石炭軟化溶融層の膨張により、炭化室の炉壁面に垂直な方向に圧力(以下、この圧力を膨張圧という。)が負荷される。この膨張圧は、燃焼室を介して周辺の炭化室の炉壁に伝達し、周辺の炭化室の炉壁を変形させ、コークスの押出性を悪化させるという問題を引き起こす。   In the carbonization chamber in the coal carbonization process, pressure (hereinafter referred to as expansion pressure) is applied in a direction perpendicular to the furnace wall of the carbonization chamber due to expansion of the coal softening and melting layer. This expansion pressure is transmitted to the furnace wall of the surrounding carbonization chamber via the combustion chamber, causing a problem that the furnace wall of the surrounding carbonization chamber is deformed and the extrudability of coke is deteriorated.

炭化室内の膨張圧の増加、及び、それにともなうコークス押出負荷の増大は、コークス炉の炉壁煉瓦の損傷、脱落などを引き起こし、最悪時には、コークス炉の操業が不能になる。したがって、コークス炉操業における膨張圧を許容限界値以下に制御することは、コークスの安定炉操業及び炉体の健全性維持の観点から、重要な課題である。   An increase in the expansion pressure in the carbonization chamber and a corresponding increase in the coke extrusion load cause damage to or loss of the coke oven wall bricks. In the worst case, the coke oven cannot be operated. Therefore, controlling the expansion pressure in the coke oven operation below the allowable limit value is an important issue from the viewpoint of stable coke oven operation and maintaining the integrity of the furnace body.

特に、近年、老朽化したコークス炉が多くなり、炉体の強度が低下して、膨張圧の許容限界値が低下するとともに、調湿炭法などの石炭事前処理技術の導入により、炭化室内の石炭の装入嵩密度が上昇し、コークス炉操業時の発生膨張圧は増加する傾向にある。それ故、コークス炉操業における膨張圧の管理・制御は、近年、ますます重要な課題となっている。   In particular, in recent years, the number of aging coke ovens has increased, the strength of the furnace body has decreased, and the allowable limit value of expansion pressure has decreased. Coal charging bulk density rises and the generated expansion pressure during coke oven operation tends to increase. Therefore, management and control of expansion pressure in coke oven operation has become an increasingly important issue in recent years.

コークス炉操業において発生する膨張圧は、主として、石炭の軟化溶融過程で発生するガスの内圧に起因して生じ、その膨張圧の大きさは、原料炭の性状、粒度、水分量、予熱温度、さらには、装入密度や、乾留速度などの操業条件で決まるものと考えられている(例えば、非特許文献1、参照)。   The expansion pressure generated in the coke oven operation is mainly caused by the internal pressure of the gas generated during the softening and melting process of coal, and the magnitude of the expansion pressure is the properties of the raw coal, particle size, water content, preheating temperature, Furthermore, it is considered to be determined by operating conditions such as charging density and carbonization rate (see Non-Patent Document 1, for example).

従来の実炉操業における膨張圧を評価する方法としては、(i)実炉操業において、石炭装入口又は炉蓋から、先端にスリットを設けた内径数mmの金属管を挿入して、石炭軟化溶融層内のガス圧を測定する方法(例えば、非特許文献2、特許文献1及び2、参照)や、(ii)実炉に近い大きさの大型可動壁型乾留炉(炭化室内容積が0.1〜0.5m3)を用いて、石炭乾留過程で炉壁面に負荷される膨張圧を測定し、評価する方法(例えば、非特許文献3、特許文献3、参照)がある。 As a method for evaluating the expansion pressure in the conventional actual furnace operation, (i) In the actual furnace operation, a metal pipe having an inner diameter of several mm provided with a slit at the tip is inserted from the coal charging inlet or the furnace lid to soften the coal. A method for measuring the gas pressure in the molten layer (for example, see Non-Patent Document 2, Patent Documents 1 and 2), or (ii) a large movable wall type dry distillation furnace having a size close to that of an actual furnace (the volume of the carbonization chamber is 0 0.1 to 0.5 m 3 ), and a method for measuring and evaluating the expansion pressure applied to the furnace wall surface during the coal carbonization process (for example, see Non-Patent Document 3 and Patent Document 3).

しかし、実コークス炉操業において、石炭軟化溶融層内に金属管を挿入する方法は、(a)金属管を、目的とする挿入位置に固定することができない、(b)挿入過程で、金属管内に、軟化溶融状態の石炭が詰まる、(c)ガス圧が測定可能な軟化溶融層の厚み領域は、金属管の外径により制限される等の欠点があり、再現性のある石炭軟化溶融層内のガス圧測定値を得ることは難しく、精度の高い膨張圧の推定はできないのが実情である。   However, in the actual coke oven operation, the method of inserting the metal tube into the coal softening and melting layer is as follows: (a) the metal tube cannot be fixed at the intended insertion position; (b) In addition, the softened and melted coal is clogged, and (c) the thickness region of the softened molten layer in which the gas pressure can be measured is limited by the outer diameter of the metal tube. In fact, it is difficult to obtain the measured value of gas pressure, and it is impossible to estimate the expansion pressure with high accuracy.

また、大型可動壁型乾留炉は、各条件での石炭乾留過程において発生する膨張圧を直接測定することが可能なものであるが、実コークス炉並みの大きな内容積を有するため、石炭装入から、乾留を経てコークス排出までに要する時間は、実コークス炉と同じ程度(18〜24時間)であり、各条件での石炭乾留過程の膨張圧を、迅速に測定・評価できないという欠点がある。   In addition, the large movable wall type carbonization furnace can directly measure the expansion pressure generated in the coal carbonization process under each condition, but it has a large internal volume similar to that of an actual coke oven. , The time required for coke discharge after carbonization is about the same as that of an actual coke oven (18 to 24 hours), and the expansion pressure during the coal carbonization process under each condition cannot be measured and evaluated quickly. .

また、実コークス炉や大型可動壁型乾留炉に比べて簡易な方法及び装置を用いて石炭乾留過程の膨張圧を測定・評価する方法も提案されている(例えば、特許文献4及び5、及び、非特許文献4、5、6及び7、参照)。   In addition, a method for measuring and evaluating the expansion pressure in the coal carbonization process using a simple method and apparatus compared to an actual coke oven or a large movable wall type carbonization furnace has also been proposed (for example, Patent Documents 4 and 5, and Non-Patent Documents 4, 5, 6 and 7).

例えば、簡便な膨張圧測定装置として、Nedelmann式底面加熱型膨張圧測定装置がある(例えば、非特許文献6、特許文献4、参照)が、この膨張圧測定装置により求めた膨張圧は、上記大型可動壁型乾留炉で直接測定した膨張圧と相関がないことが知られている(例えば、非特許文献7、参照)。   For example, as a simple expansion pressure measuring device, there is a Nedelmann type bottom surface heating type expansion pressure measuring device (see, for example, Non-Patent Document 6 and Patent Document 4). It is known that there is no correlation with the expansion pressure measured directly in a large movable wall type distillation furnace (for example, see Non-Patent Document 7).

また、簡易型乾留炉を用いて、圧力測定用の金属管により、石炭軟化溶融層内の圧力、又は、石炭軟化溶融層内の圧力及び層厚を測定し、この圧力測定値から、石炭の軟化溶融層内の通気抵抗を推算し、膨張圧を評価する方法が知られている(例えば、特許文献5及び6、参照)。   Moreover, the pressure in the coal softening / melting layer or the pressure and the layer thickness in the coal softening / melting layer is measured with a metal tube for pressure measurement using a simple type carbonization furnace. There is known a method for estimating the expansion resistance by estimating the airflow resistance in the softened and melted layer (for example, see Patent Documents 5 and 6).

これらの装置及び方法は、外部から石炭軟化溶融層内にイナートガスを流通させて、その圧力損失を測定し、これを基に、直接的に通気抵抗を求めるものではなく、圧力測定用の金属管により、石炭の軟化溶融層で発生したガスの圧力を測定し、これから、間接的に通気抵抗を推算する方法である。   In these apparatuses and methods, an inert gas is circulated into the coal softening / melting layer from the outside, the pressure loss is measured, and based on this, the ventilation resistance is not directly obtained, but a metal tube for pressure measurement is used. Thus, the pressure of the gas generated in the softened and melted coal layer is measured, and the airflow resistance is indirectly estimated from this.

本発明者らの検討によると、この方法及び装置で測定した圧力に基づいて推算した通気抵抗は、ばらつきが大きく、大型可動壁型乾留炉で直接測定した膨張圧に比べて、膨張圧に、石炭種などの操業条件による差が大きくあらわれないという問題点があることが判明した。   According to the study by the present inventors, the ventilation resistance estimated based on the pressure measured by this method and apparatus has a large variation, compared with the expansion pressure directly measured by a large movable wall type distillation furnace, It became clear that there was a problem that the difference depending on the operating conditions such as coal type did not appear greatly.

また、これらの方法は、圧力測定用の金属管をセットする準備に時間がかかるため、より簡便で迅速に石炭軟化溶融層の通気抵抗を測定し、膨張圧を評価できる方法が期待されている。   In addition, since these methods take time to set up a metal tube for pressure measurement, a method that can more easily and quickly measure the airflow resistance of the coal softening and melting layer and evaluate the expansion pressure is expected. .

一方、外部から、石炭軟化溶融層内に、任意のガスを所定の流速で流通させた時の圧力損失ΔPを測定し、これに基づき通気抵抗を求め、この通気抵抗を基に、膨張圧を評価する方法及び装置も知られている(例えば、非特許文献7及び8、参照)。   On the other hand, the pressure loss ΔP when an arbitrary gas is circulated in the coal softening melt layer from the outside at a predetermined flow rate is measured, and the ventilation resistance is obtained based on this, and the expansion pressure is determined based on this ventilation resistance. Methods and devices for evaluation are also known (see, for example, Non-Patent Documents 7 and 8).

しかし、本発明者らの検討によれば、この装置では、石炭試料の厚み方向と垂直な断面における温度分布に起因する石炭軟化溶融層の圧力損失ΔPの測定値が大きくばらつき、精度の高い通気抵抗の測定は難しく、大型可動壁型乾留炉で直接測定された膨張圧に比べて、膨張圧に、石炭種などの操業条件による差が大きくあらわれないことが判明した。   However, according to the study by the present inventors, in this apparatus, the measured value of the pressure loss ΔP of the coal softening / melting layer caused by the temperature distribution in the cross section perpendicular to the thickness direction of the coal sample varies greatly, and the ventilation with high accuracy is performed. The resistance was difficult to measure, and it was found that the expansion pressure did not show much difference depending on the operating conditions such as coal type compared to the expansion pressure measured directly in the large movable wall type distillation furnace.

この簡易型乾留炉により、外部から、石炭軟化溶融層内に、任意のガスを所定の流速で流通させた時の圧力損失ΔPを測定し、この測定値から通気抵抗を求め、膨張圧を評価する装置は、大型可動壁型乾留炉に比べて、短時間で、各操業条件に応じた膨張圧を推定できる。それ故、高精度で通気抵抗を測定できる簡易型乾留炉及び測定方法の開発が望まれている。   This simple carbonization furnace is used to measure the pressure loss ΔP when an arbitrary gas is circulated from the outside into the coal softening and melting layer at a predetermined flow rate. From this measured value, the ventilation resistance is obtained, and the expansion pressure is evaluated. Compared with a large-sized movable wall type carbonization furnace, the apparatus which can estimate the expansion pressure according to each operation condition in a short time. Therefore, it is desired to develop a simple dry distillation furnace and a measuring method that can measure the ventilation resistance with high accuracy.

特開平6−264068号公報JP-A-6-264068 特開平7−207271号公報JP-A-7-207271 特開平5−255670号公報JP-A-5-255670 特開平6−74659号公報JP-A-6-74659 特開平5−43880号公報JP-A-5-43880 特開平5−180748号公報JP-A-5-180748 C.C.Russell et al., Pro. Blast Furnace Coke Oven and Raw Materials, AIME12(1935),197}C.C.Russell et al., Pro. Blast Furnace Coke Oven and Raw Materials, AIME12 (1935), 197} Latshawら(G.M.Latshaw et al.,Ironmaking Conference Proceedings,AIME,43(1984),p.373)Latshaw et al. (G.M.Latshaw et al., Ironmaking Conference Proceedings, AIME, 43 (1984), p.373) JohnTucker and Geoffrey Everitt : British Coal Corporation Cool Research Establishment, AIME 48th Ironmaking Conference 1989,4.2 ~5 Chicago,U.S.A.)(JohnTucker and Geoffrey Everitt: British Coal Corporation Cool Research Establishment, AIME 48th Ironmaking Conference 1989, 4.2 ~ 5 Chicago, U.S.A.) 西岡ら:燃料協会誌、68.3(1989)Nishioka et al .: Fuel Association, 68.3 (1989) 馬伏ら:燃料協会第78回コークス特別会、P3(1985)Mabushi et al .: Fuel Association 78th Coke Special Meeting, P3 (1985) 燃料分析試験法、p.105Fuel Analysis Test Method, p.105 COKE Quality and Production, R.Loison et al., Butterworths (1989), p.1356COKE Quality and Production, R.Loison et al., Butterworths (1989), p.1356 三浦ら:コークス・サーキュラー、第40巻2号(1991), p.103Miura et al .: Coke Circular, Vol. 40 No. 2 (1991), p.103 M.D.Casalら:Fuel, 85(2006), p.281M.D.Casal et al .: Fuel, 85 (2006), p.281

本発明は、コークス炉操業の条件に応じた炭化室の膨張圧を推定評価する際に、大型可動壁型乾留炉に比べて測定時間が短く、かつ、大型可動壁型乾留炉と同等以上の精度で膨張圧を推定・評価することが可能な、石炭軟化溶融層の通気抵抗測定装置及びその測定方法を提供することを目的とする。   When estimating and evaluating the expansion pressure of the carbonization chamber according to the conditions of coke oven operation, the present invention has a measurement time shorter than that of a large movable wall type dry distillation furnace and is equivalent to or larger than that of a large movable wall type dry distillation furnace. An object of the present invention is to provide an apparatus for measuring the airflow resistance of a coal softened molten layer and a method for measuring the same, which can estimate and evaluate the expansion pressure with high accuracy.

本発明は、上記課題を解決するものであり、その発明の要旨は以下のとおりである。
(1)装置本体、加熱炉、温度計、圧力計、及び、マスフローコントローラーを主要な構成とする石炭軟化溶融層の通気抵抗測定装置において、該装置本体は、長手方向の中央内部に石炭試料室を設けた外管と、該外管内の石炭試料室の上下に配置された上下一対のメッシュ板と、該一対のメッシュ板を外管内の上下から押さえて固定するための上下一対のメッシュ板固定管と、上記石炭試料室にガスを流通するためのガス導入口及びガス排出口を備えるとともに、上下の外管及びメッシュ板固定管の端部をパッキンを介して密封しつつ外管外周から固定するための上下一対のキャップとで構成され、上記石炭試料室の直径が13mm以下であり、上記メッシュ板の孔径が0.3mm以下であることを特徴とする石炭軟化溶融層の通気抵抗測定装置。
This invention solves the said subject, and the summary of the invention is as follows.
(1) In the apparatus for measuring the air resistance of a coal softening / melting layer mainly comprising an apparatus main body, a heating furnace, a thermometer, a pressure gauge, and a mass flow controller, the apparatus main body has a coal sample chamber in the center in the longitudinal direction. A pair of upper and lower mesh plates disposed above and below the coal sample chamber in the outer tube, and a pair of upper and lower mesh plates for fixing the pair of mesh plates by pressing from above and below in the outer tube It is fixed from the outer periphery of the outer tube while sealing the ends of the upper and lower outer tubes and the mesh plate fixing tube through packing, with a gas inlet and gas outlet for circulating gas to the coal sample chamber And a pair of upper and lower caps, the diameter of the coal sample chamber is 13 mm or less, and the pore diameter of the mesh plate is 0.3 mm or less. Apparatus.

(2)前記石炭試料室の高さが13mm以下であることを特徴とする前記(1)に記載の石炭軟化溶融層の通気抵抗測定装置。   (2) The coal softening melt layer ventilation resistance measuring apparatus according to (1), wherein the height of the coal sample chamber is 13 mm or less.

(3)前記石炭試料室の半径方向中央部と外周部との温度差が±2℃以内であることを特徴とする前記(1)又は(2)に記載の石炭軟化溶融層の通気抵抗測定装置。   (3) Ventilation resistance measurement of coal softening / melting layer according to (1) or (2) above, wherein the temperature difference between the central portion and the outer peripheral portion in the radial direction of the coal sample chamber is within ± 2 ° C. apparatus.

(4)前記(1)〜(3)のいずれかに記載の石炭軟化溶融層の通気抵抗測定装置を用いて、石炭試料室に石炭試料を装入し、該石炭試料にマスフローコントローラーを用いて不活性ガスを流通させるとともに、加熱炉により石炭試料を加熱しながら、温度計と圧力計を用いて石炭試料層の温度と圧力損失を測定し、石炭軟化溶融温度における圧力損失の測定値に基づいて石炭軟化溶融層の通気抵抗を求める方法であって、上記石炭試料層に流通させる不活性ガスの流量を25cc/min以下とすることを特徴とする石炭軟化溶融層の通気抵抗測定方法。   (4) Using the coal softening melt layer ventilation resistance measuring device according to any one of (1) to (3), a coal sample is charged into a coal sample chamber, and a mass flow controller is used for the coal sample. While circulating the inert gas and heating the coal sample in a heating furnace, measure the temperature and pressure loss of the coal sample layer using a thermometer and pressure gauge, and based on the measured pressure loss at the coal softening and melting temperature A method for determining a ventilation resistance of a coal softened molten layer, wherein the flow rate of an inert gas flowing through the coal sample layer is 25 cc / min or less.

(5)前記石炭試料は、石炭を粉砕した後、該石炭の粒度分布を測定し、その後、粉砕後の石炭の粒度分布となるように、各粒度区分毎の存在割合を調整したものであることを特徴とする前記(4)に記載の石炭軟化溶融層の通気抵抗測定方法。   (5) The coal sample is obtained by measuring the particle size distribution of the coal after pulverizing the coal, and then adjusting the abundance ratio for each particle size classification so that the particle size distribution of the coal after pulverization is obtained. The method for measuring the airflow resistance of the coal softening / melting layer as described in (4) above.

本発明によれば、通気抵抗を測定する装置において、従来に比べて、石炭試料の厚み方向と垂直な断面における温度分布に応じた溶融状態の違いに起因する圧力損失ΔPのばらつきを抑制することができるので、コークス炉操業の条件に応じた炭化室の膨張圧を推定評価する際、圧力損失ΔP及びこれから求められる通気抵抗を基に、大型可動壁型乾留炉によりも短い測定時間で、かつ、型可動壁型乾留炉と同等以上の高精度で、膨張圧を推定・評価することができる。   According to the present invention, in a device for measuring ventilation resistance, it is possible to suppress variation in pressure loss ΔP due to a difference in a molten state according to a temperature distribution in a cross section perpendicular to the thickness direction of a coal sample, as compared with the conventional case. Therefore, when estimating and evaluating the expansion pressure of the carbonization chamber according to the conditions of coke oven operation, based on the pressure loss ΔP and the ventilation resistance required in the future, in a shorter measurement time than a large movable wall type distillation furnace, and The expansion pressure can be estimated and evaluated with high accuracy equal to or better than that of the movable wall type carbonization furnace.

先ず、石炭軟化溶融層の通気抵抗測定方法の原理について説明する。   First, the principle of the method for measuring the airflow resistance of the coal softened molten layer will be described.

一般に、炭化室の膨張圧は、石炭軟化溶融層内における(a)通気抵抗、(b)ガス発生量、及び、(c)層厚みで決まる層内のガス圧が、発生原因とされているが、通常のコークス炉操業において、(b)及び(c)は大きく変化しないので、膨張圧は、(a)の通気抵抗により支配されていると考えられる。したがって、石炭軟化溶融層の通気抵抗を高精度で測定することができれば、この測定値から、コークス炉操業時の条件での炭化室の膨張圧を推定評価することが可能となる。   In general, the expansion pressure of the carbonization chamber is caused by the gas pressure in the layer determined by (a) ventilation resistance, (b) gas generation amount, and (c) layer thickness in the coal softening / melting layer. However, in normal coke oven operation, (b) and (c) do not change greatly, so the expansion pressure is considered to be governed by the ventilation resistance of (a). Therefore, if the ventilation resistance of the coal softened molten layer can be measured with high accuracy, it becomes possible to estimate and evaluate the expansion pressure of the carbonization chamber under the conditions at the time of coke oven operation from this measured value.

石炭の軟化溶融層の通気抵抗は、ガス透過係数K(m2)の逆数として定義され、石炭軟化溶融層をガスが通過する際の、石炭軟化溶融層の層厚L(m)、ガス粘度μ(Pa・s)、ガス流速u(m/s)、及び、圧力損失ΔP(Pa)から、下記(1)式で求められる。
通気抵抗=1/K=ΔP/(μ・L・u) ・・・(1)
The airflow resistance of the softened molten layer of coal is defined as the reciprocal of the gas permeability coefficient K (m 2 ), and the layer thickness L (m) and gas viscosity of the coal softened molten layer when gas passes through the coal softened molten layer. From μ (Pa · s), gas flow velocity u (m / s), and pressure loss ΔP (Pa), the following equation (1) is obtained.
Ventilation resistance = 1 / K = ΔP / (μ · L · u) (1)

通気抵抗は、上記(1)式によれば、所定の層厚Lの石炭試料層を加熱し、かつ、外部から所定のガス流速uでガス粘度μのガスを流通させ、この際に生じる圧力損失ΔPを測定することにより求められる。   According to the above equation (1), the airflow resistance is a pressure generated by heating a coal sample layer having a predetermined layer thickness L and circulating a gas having a gas viscosity μ from the outside at a predetermined gas flow rate u. It is obtained by measuring the loss ΔP.

なお、層厚L、ガス流速u、及び、ガス粘度μを一定と仮定すると、通気抵抗は、圧力損失ΔPとほぼ同等に扱うことができるので、以下の説明では、通気抵抗を、実際に測定する圧力損失ΔPと同じ意味で用いることとする。   Assuming that the layer thickness L, the gas flow rate u, and the gas viscosity μ are constant, the ventilation resistance can be handled almost equal to the pressure loss ΔP. Therefore, in the following description, the ventilation resistance is actually measured. It is used in the same meaning as the pressure loss ΔP.

従来から、上記の原理に従い石炭軟化溶融層の通気抵抗を測定するための装置及びその測定方法が提案されている(例えば、非特許文献7及び8、参照)。   Conventionally, an apparatus and a measuring method for measuring the airflow resistance of the coal softening / melting layer according to the above principle have been proposed (for example, see Non-Patent Documents 7 and 8).

しかし、本発明者らの検討によれば、従来の通気抵抗測定装置及びその測定方法は、下記(t)〜(w)の事項が原因で、圧力損失ΔPの測定値のばらつきが大きくなり、大型可動壁型乾留炉で直接測定された膨張圧に比べて、膨張圧に、石炭種などの操業条件による差が大きくあらわれないことが判明した。   However, according to the study by the present inventors, the conventional ventilation resistance measuring device and the measuring method thereof have a large variation in the measured value of the pressure loss ΔP due to the following items (t) to (w): It was found that the expansion pressure does not show much difference depending on the operating conditions such as coal type compared to the expansion pressure measured directly in the large movable wall type distillation furnace.

(t)加熱過程で、石炭層の層厚に垂直な方向の温度分布が大きく、石炭の溶融状態に差異が生じる。   (T) During the heating process, the temperature distribution in the direction perpendicular to the thickness of the coal layer is large, and a difference occurs in the molten state of the coal.

(u)膨張状態の石炭軟化溶融層を、所定の容積内に拘束することが困難であり、石炭軟化溶融層の嵩密度が変化する。   (U) It is difficult to constrain the expanded coal softened molten layer within a predetermined volume, and the bulk density of the coal softened molten layer changes.

(v)石炭試料層厚が厚い場合には、石炭層の層厚に垂直な断面におけるガス流速のばらつきが大きくなる。   (V) When the coal sample layer thickness is thick, the variation in the gas flow velocity in the cross section perpendicular to the coal layer thickness increases.

(w)ガス流量が大きい場合には、石炭層の層厚に垂直な断面におけるガス流速のばらつきが大きくなる。   (W) When the gas flow rate is large, the variation in the gas flow velocity in the cross section perpendicular to the coal layer thickness increases.

本発明は、従来の石炭軟化溶融層の通気抵抗測定装置及び測定方法の問題点を踏まえて、
(x)石炭試料の層厚に垂直な断面における温度差を可能な限り小さくし、それに起因する石炭の溶融状態を均一にすること、
(y)膨張状態の石炭軟化溶融層を所定の容積内に拘束し、石炭軟化溶融層の嵩密度の変化を抑制すること、及び、
(z)石炭軟化溶融層の層厚に垂直な断面におけるガス流速を均一に維持すること、
を実現する石炭軟化溶融層の通気抵抗測定装置及び測定方法を提供するものである。
The present invention is based on the problems of the conventional ventilation resistance measuring device and measuring method for coal softening and melting layer,
(X) making the temperature difference in the cross section perpendicular to the layer thickness of the coal sample as small as possible and making the molten state of the coal resulting therefrom uniform;
(Y) constraining the expanded coal softened molten layer within a predetermined volume, suppressing changes in the bulk density of the coal softened molten layer; and
(Z) maintaining a uniform gas flow rate in a cross section perpendicular to the thickness of the coal softening melt layer;
An apparatus and a method for measuring the airflow resistance of a coal softened and melted layer that realizes the above are provided.

以下に、本発明の実施形態について、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明の石炭軟化溶融層の通気抵抗測定装置(以下、本発明装置という場合もある)の一態様を示す。なお、(A)は、測定装置の全体を示し、(B)は、装置本体部分の詳細を示す。   FIG. 1 shows an embodiment of the apparatus for measuring the airflow resistance of a coal softened / melted layer according to the present invention (hereinafter sometimes referred to as the present apparatus). In addition, (A) shows the whole measuring apparatus, (B) shows the detail of an apparatus main-body part.

本発明装置は、装置本体15、加熱炉1、温度計16、圧力計2、及び、マスフローコントローラー3を主要な構成とする。   The apparatus according to the present invention mainly includes an apparatus main body 15, a heating furnace 1, a thermometer 16, a pressure gauge 2, and a mass flow controller 3.

装置本体は、長手方向の中央内部に石炭試料室12を設けた外管4と、この外管4内の石炭試料室12の上下に配置された上下一対のメッシュ板5と、この一対のメッシュ板5を外管4内の上下から押さえて固定するための上下一対のメッシュ板固定管6と、石炭試料室12にガスを流通するためのガス導入口13a及びガス排出口13bを備えるとともに、上下の外管4及びメッシュ板固定管6の端部をパッキン9を介して密封しつつ外管4外周から固定するための上下一対のキャップ8とで構成される。   The apparatus main body includes an outer pipe 4 provided with a coal sample chamber 12 in the center in the longitudinal direction, a pair of upper and lower mesh plates 5 disposed above and below the coal sample chamber 12 in the outer pipe 4, and the pair of meshes. While having a pair of upper and lower mesh plate fixing pipes 6 for pressing and fixing the plate 5 from the upper and lower sides in the outer pipe 4, a gas inlet 13a and a gas outlet 13b for circulating gas to the coal sample chamber 12, The upper and lower outer tubes 4 and the mesh plate fixing tube 6 are composed of a pair of upper and lower caps 8 for fixing the outer ends of the outer tube 4 while sealing the end portions of the mesh plate fixing tubes 6 with packings 9.

上下一対のキャップ8を用いて、外管4及びメッシュ板固定管6の端部を、パッキン9を介して密封しつつ外管4の外周から固定するための手段として、キャップ8の内周に雌ネジ10aを形成するとともに、外管4の上下の外周に雄ネジ10bを形成し、これらの雌ネジ10aと雄ネジ10bを螺合して固定することができる。   As a means for fixing the ends of the outer tube 4 and the mesh plate fixing tube 6 from the outer periphery of the outer tube 4 while sealing them with the packing 9 using a pair of upper and lower caps 8, In addition to forming the female screw 10a, male screws 10b can be formed on the upper and lower outer circumferences of the outer tube 4, and the female screw 10a and the male screw 10b can be screwed together and fixed.

通気抵抗測定の試験終了後に、メッシュ板固定管6を外管4内から引き抜くための手段として、メッシュ板固定管6の内面に雌ネジ11を形成し、先端に雄ネジ加工した引出用丸棒(図示せず)をメッシュ板固定管6の雌ネジ11に取り付け、この引出用丸棒を用いてメッシュ板固定管6を引き抜くことができる。   As a means for pulling out the mesh plate fixing tube 6 from the outer tube 4 after the end of the test for measuring the ventilation resistance, a pulling round bar formed with a female screw 11 on the inner surface of the mesh plate fixing tube 6 and processed with a male screw at the tip. (Not shown) can be attached to the internal thread 11 of the mesh plate fixing tube 6, and the mesh plate fixing tube 6 can be pulled out by using this drawing round bar.

この引き抜き法により、石炭の乾留で生成したタール等によりメッシュ板固定管6が外管4が固着した場合でも、メッシュ板固定管6を引き出し、石炭試料室12内の石炭試料7を排出することが容易になる。   By this drawing method, even when the outer plate 4 is fixed to the mesh plate fixing tube 6 by tar or the like generated by dry distillation of coal, the mesh plate fixing tube 6 is pulled out and the coal sample 7 in the coal sample chamber 12 is discharged. Becomes easier.

加熱炉1は、上記装置本体の少なくとも長手方向の石炭試料室12の範囲を含み、外管4の外周を包囲するように配置され、石炭試料室12内の少なくとも半径方向の中心と外周を含む複数個所に配置した熱電対などの温度計により測定された平均温度が温度設定値になるように制御される。   The heating furnace 1 includes at least the range of the coal sample chamber 12 in the longitudinal direction of the apparatus main body, is disposed so as to surround the outer periphery of the outer tube 4, and includes at least the radial center and outer periphery of the coal sample chamber 12. Control is performed so that the average temperature measured by thermometers such as thermocouples arranged at a plurality of locations becomes the temperature set value.

圧力計2及びマスフローコントローラー3は、上記装置本体のガス導入口13aに接続されたガス配管14に設けられる。圧力計2は、ガス導入口13a側の圧力を測定し、この圧力測定値P1から、排出口13b側の圧力を大気圧P0とした時の圧力損失ΔP(=P1−P0)が求められる。マスフローコントローラー3は、ガスボンベ(図示せず)から供給される不活性ガスの流量を、設定流量に基づき制御する。   The pressure gauge 2 and the mass flow controller 3 are provided in a gas pipe 14 connected to the gas inlet 13a of the apparatus main body. The pressure gauge 2 measures the pressure on the gas inlet 13a side, and the pressure loss ΔP (= P1-P0) when the pressure on the outlet 13b side is the atmospheric pressure P0 is obtained from the pressure measurement value P1. The mass flow controller 3 controls the flow rate of the inert gas supplied from a gas cylinder (not shown) based on the set flow rate.

本発明装置を用いた石炭軟化溶融層の通気抵抗の測定は、以下のように行われる。   The measurement of the airflow resistance of the coal softening melt layer using the apparatus of the present invention is performed as follows.

先ず、装置本体における外管4内の石炭試料室12の下部に、メッシュ板5を、メッシュ板固定管6で仮固定した後、外管4及びメッシュ板固定管6の端面を、パッキン9を介して、外管4の外周の雄ネジ10bとキャップ8の内周の雌ネジ10aを用いて固定する。   First, after temporarily fixing the mesh plate 5 with the mesh plate fixing tube 6 to the lower part of the coal sample chamber 12 in the outer tube 4 in the apparatus main body, the end surfaces of the outer tube 4 and the mesh plate fixing tube 6 are attached to the packing 9. Then, it is fixed using the external thread 10 b on the outer periphery of the outer tube 4 and the internal thread 10 a on the inner periphery of the cap 8.

次に、石炭を所定粒度に粉砕し、この所定粒度の石炭から石炭試料を所定量採取して、石炭試料室12内に装入する。その後、石炭試料室12の上部に、メッシュ板5を、メッシュ板固定管6で仮固定した後、外管4及びメッシュ板固定管6の端面を、パッキン9を介して、外管4の外周の雄ネジ10bとキャップ8の内周の雌ネジ10aを用いて固定する。   Next, the coal is pulverized to a predetermined particle size, a predetermined amount of coal sample is collected from the predetermined particle size coal, and charged into the coal sample chamber 12. Then, after temporarily fixing the mesh plate 5 to the upper part of the coal sample chamber 12 with the mesh plate fixing tube 6, the outer pipe 4 and the end surface of the mesh plate fixing tube 6 are connected to the outer periphery of the outer tube 4 via the packing 9. The male screw 10b and the female screw 10a on the inner periphery of the cap 8 are used for fixing.

最後に、石炭試料室12内に石炭試料7を装入した外管4のガス導入口13aの、キャップ8とガス配管14をワンタッチジョイントで接続し、その後、装置本体を、加熱炉1内の所定位置に固定する。   Finally, the cap 8 and the gas pipe 14 of the gas inlet 13a of the outer pipe 4 in which the coal sample 7 is charged in the coal sample chamber 12 are connected by a one-touch joint, and then the apparatus main body is connected to the heating furnace 1 Fix in place.

石炭試料室12内の石炭試料7に、ガスボンベ(図示せず)から、マスフローコントローラー3を用いて、一定流量の窒素ガスなどの不活性ガスを流通させるとともに、加熱炉1を用いて設定温度まで加熱し、石炭試料室12内の少なくとも半径方向の中心と外周を含む複数個所に配置した熱電対などの温度計により温度を測定する。   An inert gas such as nitrogen gas at a constant flow rate is circulated from a gas cylinder (not shown) to a coal sample 7 in the coal sample chamber 12 using a mass flow controller 3 and up to a set temperature using a heating furnace 1. The temperature is measured by a thermometer such as a thermocouple disposed at a plurality of locations including at least the center and the outer periphery in the radial direction in the coal sample chamber 12.

なお、温度計の設置による石炭試料室12内の通気抵抗への影響を考慮し、加熱炉内に、装置本体を、2台、並列に配置して、一方に温度計を設け、他方に圧力計を設け、それぞれが、石炭試料の温度と圧力損失を測定することが好ましい。   In consideration of the influence on the ventilation resistance in the coal sample chamber 12 due to the installation of the thermometer, two apparatus main bodies are arranged in parallel in the heating furnace, the thermometer is provided on one side, and the pressure is provided on the other side. A meter is preferably provided, each measuring the temperature and pressure loss of the coal sample.

石炭試料7が加熱される過程における各温度の通気抵抗(1/K)は、ガス導入口13a側に設けられた圧力計2により、ガス導入口13a側の圧力を測定し、この圧力測定値P1から、排出口13b側の圧力を大気圧P0とした時の圧力損失ΔP(=P1−P0)を求め、このΔPを、基に上記(1)式から求められる。   The ventilation resistance (1 / K) at each temperature in the process of heating the coal sample 7 is measured by measuring the pressure on the gas inlet 13a side with the pressure gauge 2 provided on the gas inlet 13a side. From P1, the pressure loss ΔP (= P1−P0) when the pressure on the discharge port 13b side is set to the atmospheric pressure P0 is obtained, and this ΔP is obtained from the above equation (1).

一般に、石炭は、およそ400〜500℃の温度で軟化溶融し、450〜550℃の温度で再固化する。この石炭の軟化溶融温度及び再固化温度は、石炭銘柄及び性状によって異なるため、JISで規定された方法により、予め、石炭試料の軟化溶融温度を測定することが好ましい。   In general, coal softens and melts at a temperature of approximately 400 to 500 ° C and resolidifies at a temperature of 450 to 550 ° C. Since the softening and melting temperature and resolidification temperature of the coal vary depending on the coal brand and properties, it is preferable to measure the softening and melting temperature of the coal sample in advance by the method defined by JIS.

以上のように、本発明装置を用いることにより、軟化溶融温度における石炭試料層(石炭軟化溶融層)の通気抵抗を測定することができる。   As described above, by using the apparatus of the present invention, the ventilation resistance of the coal sample layer (coal softening melt layer) at the softening melting temperature can be measured.

前述したように、実コークス炉操業時においては、炭化室内の石炭は、炉壁を隔てて隣接する燃焼室からの熱伝達により、先ず、炉壁近傍の石炭が加熱されて、石炭軟化溶融層が形成され、熱伝達により、軟化溶融層が、炭化室中心部に徐々に移行することで、石炭の乾留が進行する。   As described above, during the operation of the actual coke oven, the coal in the carbonization chamber is first heated by the heat transfer from the adjacent combustion chamber across the furnace wall, so that the coal in the vicinity of the furnace wall is heated and the coal softening and melting layer is heated. Is formed, and the softening and melting layer gradually moves to the center of the carbonization chamber by heat transfer, so that the dry distillation of coal proceeds.

このため、実コークス炉操業時の石炭の乾留途中での炭化室内には、炉壁から中心部までの炉幅方向範囲で、コークス層(再固化層)、軟化溶融層、石炭層(未乾留層)が共存する状態が生じる。この際、石炭の軟化溶融層は、流動性を有するとともに、石炭中の揮発成分や軽質成分の一部のガス化による内圧で膨張状態となる。   For this reason, in the carbonization chamber in the middle of the carbonization of coal during the actual coke oven operation, the coke layer (resolidified layer), softened molten layer, coal layer (non-distilled) within the range of the furnace width direction from the furnace wall to the center. Layer) coexist. At this time, the softened and melted layer of coal has fluidity and expands due to internal pressure due to gasification of a part of volatile components and light components in the coal.

また、石炭軟化溶融層の周囲には、コークス層(再固化層)と石炭層(未乾留層)が存在するが、コークス層は、加熱により層内のガスが抜け出ることで、収縮状態となり、石炭層は、石炭軟化溶融層の膨張により圧密化されるため、石炭軟化溶融層は、周囲からの拘束が緩和される。   In addition, there are a coke layer (re-solidified layer) and a coal layer (non-distilled layer) around the coal softening and melting layer, but the coke layer is in a contracted state due to escape of gas in the layer by heating, Since the coal layer is consolidated by the expansion of the coal softened melt layer, the coal softened melt layer is relaxed from the surroundings.

このため、石炭軟化溶融層の嵩密度BD[kg/m3]は、コークス層の収縮と未乾留石炭層の圧密によって生じた空隙分だけ、石炭装入時の充填嵩密度BD0[kg/m3]に比べて、低くなる。 For this reason, the bulk density BD [kg / m 3 ] of the coal softening and melting layer is equal to the filling bulk density BD 0 [kg / m 3 ].

一方、本発明装置を用いて測定される石炭軟化溶融層の通気抵抗は、石炭試料室12に装入された石炭試料7の半径方向の温度差を小さくし、石炭試料7の周囲が壁で拘束された状態で測定されたものであるから、実コークス炉操業時のような石炭軟化溶融層の嵩密度の低下の影響はない。   On the other hand, the airflow resistance of the coal softened melt layer measured using the apparatus of the present invention reduces the temperature difference in the radial direction of the coal sample 7 charged in the coal sample chamber 12, and the periphery of the coal sample 7 is a wall. Since it is measured in a restrained state, there is no influence of a decrease in the bulk density of the coal softening and melting layer as in the actual coke oven operation.

石炭軟化溶融層の通気抵抗は、嵩密度により当然影響を受けるものであるから、実コークス炉操業における石炭軟化溶融層の通気抵抗を評価するためには、本発明装置を用いて測定される石炭軟化溶融層の通気抵抗を、実コークス炉における石炭軟化溶融層の密度(BD)との関係で補正する必要がある。   Since the airflow resistance of the coal softening / melting layer is naturally affected by the bulk density, in order to evaluate the airflow resistance of the coal softening / melting layer in actual coke oven operation, the coal measured using the apparatus of the present invention is used. It is necessary to correct the ventilation resistance of the softened molten layer in relation to the density (BD) of the coal softened molten layer in the actual coke oven.

本発明測定装置で測定した石炭軟化溶融層の通気抵抗から、実コークス炉における石炭軟化溶融層の通気抵抗を推算する方法について、以下に説明する。   A method for estimating the airflow resistance of the coal softening / melting layer in the actual coke oven from the airflow resistance of the coal softening / melting layer measured by the measuring apparatus of the present invention will be described below.

実コークス炉における石炭軟化溶融層の嵩密度BD[kg/m3]は、石炭装入時の充填嵩密度BD0[kg/m3]、コークス層の収縮度合い(体積変化)、及び、石炭層の圧密度合いから求められるが、これらのうち、石炭層の圧密度合いは、通常のコークス炉操業での石炭充填嵩密度条件では、大きな差異がないため、実質は、石炭装入時の充填嵩密度(BD0)とコークス層の収縮度合い(体積変化)によって決められる。 The bulk density BD [kg / m 3 ] of the coal softening and melting layer in the actual coke oven is the filling bulk density BD 0 [kg / m 3 ] when charging the coal, the degree of contraction (volume change) of the coke layer, and the coal Of these, the density of the coal bed is not significantly different under the condition of the bulk density of coal in normal coke oven operation. It is determined by the density (BD 0 ) and the degree of shrinkage (volume change) of the coke layer.

コークス層の収縮度合い(体積変化)は、例えば、以下のような石炭乾留試験における石炭の再固化温度以上の温度におけるコークス収縮率を測定することにより求められる。   The degree of shrinkage (volume change) of the coke layer can be determined, for example, by measuring the coke shrinkage at a temperature equal to or higher than the coal resolidification temperature in the following coal dry distillation test.

石炭の再固化温度以上の温度とコークス収縮率の関係は、例えば、粉砕した石炭を管状容器内に充填し、この石炭を、再固化温度TR(℃)以上の炉温T(℃)まで加熱した場合において、再固化温度TR(℃)での石炭の長さLTRと、再固化温度TR以上、炉温T以下の範囲内での温度T1(℃)での石炭の長さLT1を測定し、これらから、下記(2)式により、再固化温度以上の温度T1(℃)でのコークス収縮率RT1(%)を求めることにより、得ることができる。
T1(%)=(LTR−LT1)/LTR×100 ・・・(2)
The relationship between the temperature above the resolidification temperature of coal and the coke shrinkage ratio is, for example, that pulverized coal is filled in a tubular container, and this coal is heated to a furnace temperature T (° C) that is equal to or higher than the resolidification temperature T R (° C). When heated, the coal length L TR at the resolidification temperature T R (° C.) and the coal length at the temperature T 1 (° C.) within the range of the re-solidification temperature T R and the furnace temperature T or less. The length L T1 is measured, and from this, the coke shrinkage ratio R T1 (%) at a temperature T 1 (° C.) equal to or higher than the resolidification temperature can be obtained by the following equation (2).
R T1 (%) = (L TR −L T1 ) / L TR × 100 (2)

なお、複数銘柄の石炭が、所定の配合割合で配合された配合炭の収縮率は、上記の方法により直接測定することもできるが、各銘柄の石炭それぞれのコークス収縮率を測定し、各銘柄の石炭の配合率を考慮した荷重平均を計算することにより求めることができる。   The shrinkage rate of blended coal in which multiple brands of coal are blended at a prescribed blending ratio can be directly measured by the above method, but the coke shrinkage rate of each brand of coal is measured, It can be obtained by calculating the load average considering the blending ratio of coal.

実コークス炉における石炭軟化溶融層の嵩密度BD[kg/m3]は、配合炭Iの石炭装入時の充填嵩密度BD0[kg/m3]と、上記のように測定された配合炭Iのコークス収縮率CIとから下記(3)式により求めることができる。
BD=k・BD0・(100/CI) ・・・(3)
The bulk density BD [kg / m 3 ] of the coal softening melt layer in the actual coke oven is the filling bulk density BD 0 [kg / m 3 ] at the time of charging coal blend I and the blending measured as described above. can be obtained from coke shrinkage C I charcoal I by the following equation (3).
BD = k · BD 0 · (100 / C I ) (3)

なお、上記kは、コークス炉のサイズ及び加熱条件により、0.05〜0.15の範囲から選択される定数であり、本発明実施形態では、k=0.1が用いられる。   Note that k is a constant selected from the range of 0.05 to 0.15 depending on the size of the coke oven and heating conditions. In the embodiment of the present invention, k = 0.1 is used.

また、上記コークスの収縮率の測定方法より簡便な方法として、JIS M8801で規定する方法により、石炭中のVMを測定し、石炭中のVMからコークス収縮率を推定することもできる。   Further, as a simpler method than the method for measuring the shrinkage rate of coke, VM in coal can be measured by a method defined in JIS M8801, and the coke shrinkage rate can be estimated from the VM in coal.

コークス収縮率は、石炭中のVM(揮発成分量)と相関関係があり、石炭中のVMが高いほど、コークス収縮率は大きくなる。   The coke shrinkage is correlated with the VM (volatile component amount) in the coal, and the higher the VM in the coal, the greater the coke shrinkage.

したがって、予め2種類以上の異なる配合炭Iiの揮発分VMIi[%]とコークス収縮率CIi[%]を測定し、下記(4)式に示すような配合炭Iiの揮発分VMIi[%]とコークス収縮率CIi[%]の関係式を求めることにより、石炭中のVM測定値から、下記(4)式により、コークス収縮率を推定することが可能となる。
I=L1・VMI+L2 ・・・(4)
Therefore, the volatile matter VM Ii [%] and the coke shrinkage C Ii [%] of two or more different blended coals Ii are measured in advance, and the volatile matter VM Ii [ %] And the coke shrinkage C Ii [%], the coke shrinkage can be estimated from the VM measurement value in coal by the following equation (4).
C I = L 1 · VM I + L 2 (4)

なお、本実施形態では、2種類の配合炭から求めた一次関数を用いたが、配合炭Iiの揮発分VMIi[%]とコークス収縮率CIi[%]の関係式は、これに限られず、3種類以上の配合炭を用いて、単調増加関数となるような二次又は三次関数としてもよい。 In this embodiment, a linear function obtained from two types of blended coal is used. However, the relational expression between the volatile matter VM Ii [%] and the coke shrinkage C Ii [%] of the blended coal Ii is not limited to this. It is good also as a quadratic or cubic function which becomes a monotonously increasing function using three or more kinds of blended charcoal.

以上から、実コークス炉における石炭軟化溶融層の嵩密度BD[kg/m3]は、石炭装入時の充填嵩密度BD0[kg/m3]と、コークス収縮率[%]又は石炭中のVM[%]によって求めることができる。 From the above, the bulk density BD [kg / m 3 ] of the coal softening and melting layer in the actual coke oven is equal to the filling bulk density BD 0 [kg / m 3 ] at the time of charging the coal and the coke shrinkage [%] or in the coal The VM [%] can be obtained.

したがって、実コークス炉における石炭装入時の充填嵩密度BD0[kg/m3]の条件での石炭軟化溶融層の通気抵抗値を評価する場合は、石炭試料装入時の充填嵩密度が、上記(3)式により求められた石炭軟化溶融層の嵩密度BDとなるように石炭試料を調整して、本発明測定装置により、圧力損失ΔP[kPa]を測定し、通気抵抗値1/Kを求める必要がある。 Therefore, when evaluating the air flow resistance value of the coal softening / melting layer under the condition of filling bulk density BD 0 [kg / m 3 ] at the time of charging coal in an actual coke oven, the packing bulk density at charging of the coal sample is The coal sample was adjusted so as to have the bulk density BD of the coal softened and melted layer obtained by the above formula (3), the pressure loss ΔP [kPa] was measured by the measuring device of the present invention, and the airflow resistance value 1 / It is necessary to find K.

通気抵抗値は、本発明測定装置により測定された圧力損失ΔPから、上記(1)式により求められるが、上記(1)式において、層厚L、ガス流速u、ガス粘度μを一定と仮定すると、通気抵抗は、圧力損失ΔPとほぼ同等に扱うことができる。   The ventilation resistance value is obtained from the pressure loss ΔP measured by the measuring apparatus of the present invention by the above equation (1). In the above equation (1), it is assumed that the layer thickness L, the gas flow rate u, and the gas viscosity μ are constant. Then, the ventilation resistance can be handled almost equal to the pressure loss ΔP.

したがって、石炭軟化溶融層の膨張圧の評価は、例えば、本発明測定装置により測定された圧力損失ΔP[kPa]を基準圧力P0[kPa]で除した相対値P[−]を、膨張圧指数として用いることができる。 Therefore, the evaluation of the expansion pressure of the coal softening melt layer is performed, for example, by using a relative value P [−] obtained by dividing the pressure loss ΔP [kPa] measured by the measuring apparatus of the present invention by the reference pressure P 0 [kPa] as an expansion pressure. It can be used as an index.

本発明の石炭軟化溶融層の通気抵抗測定装置は、装置本体における石炭試料室12の直径が13mm以下、メッシュ板5の孔径が0.3mm以下とし、好ましくは、石炭試料室12の高さが13mm以下とする点に特徴がある。   The coal softening melt layer ventilation resistance measuring device of the present invention has a coal sample chamber 12 with a diameter of 13 mm or less and a mesh plate 5 with a hole diameter of 0.3 mm or less in the device body, and preferably the height of the coal sample chamber 12 is It is characterized in that it is 13 mm or less.

この構成により、石炭試料室12内の石炭試料層の半径方向中心部から外周部までの温度差を±2℃以下に小さくすることができ、石炭試料層の層厚と垂直な断面における溶融状態の違い、及び、これに起因する圧力損失ΔPのばらつきを抑制することができる。   With this configuration, the temperature difference from the central portion in the radial direction of the coal sample layer in the coal sample chamber 12 to the outer peripheral portion can be reduced to ± 2 ° C. or less, and the molten state in a cross section perpendicular to the layer thickness of the coal sample layer And variations in pressure loss ΔP due to this difference can be suppressed.

以下に、本発明装置及び方法の特徴とする石炭試料室12の直径及び高さ、さらに、メッシュ板5の孔径、ガス流量、試料粒度分布の限定理由について説明する。   Below, the diameter and height of the coal sample chamber 12 which are the characteristics of the apparatus and method of the present invention, and further the reasons for limiting the pore diameter of the mesh plate 5, the gas flow rate, and the sample particle size distribution will be described.

(石炭試料室の直径:13mm以下)
本発明者らの検討によれば、例えば、非特許文献7及び8に記載の従来の装置本体における石炭試料室の大きさは、直径20mm、高さ10mm程度であり、表1に示すように、石炭試料の半径方向での温度差は8〜10℃程度と大きいことを確認した。
(Coal sample chamber diameter: 13 mm or less)
According to the study by the present inventors, for example, the size of the coal sample chamber in the conventional apparatus main body described in Non-Patent Documents 7 and 8 is about 20 mm in diameter and about 10 mm in height, as shown in Table 1. The temperature difference in the radial direction of the coal sample was confirmed to be as large as about 8 to 10 ° C.

Figure 0005064198
Figure 0005064198

石炭試料層の半径方向に大きな温度差が生じる場合には、各部位での溶融状態の違いが大きくなり、軟化溶融部に比べて通気抵抗が小さく、温度上昇が遅い未溶融部や、温度上昇が早い再固化部に集中して通気がなされるため、見掛け上、通気抵抗が、真値(前記温度分布が小さい場合の測定値)より低く測定されることが予想される。   When a large temperature difference occurs in the radial direction of the coal sample layer, the difference in the melting state at each part becomes large, and the resistance to ventilation is smaller than that of the softened and melted part. Therefore, it is expected that the ventilation resistance is apparently measured to be lower than the true value (measured value when the temperature distribution is small).

本発明者らは、従来の測定装置を用いて測定された石炭軟化溶融層の通気抵抗がばらつく主な原因が、石炭試料層の半径方向に生じる温度差によるものと考え、装置本体の石炭試料室の半径と、石炭試料層の半径方向に生じる温度差の関係について検討した。   The present inventors consider that the main cause of the variation in the airflow resistance of the coal softened and melted layer measured using a conventional measuring apparatus is due to the temperature difference that occurs in the radial direction of the coal sample layer, and the coal sample of the apparatus main body. The relationship between the chamber radius and the temperature difference in the radial direction of the coal sample layer was investigated.

図2に、石炭試料室の高さは10mm一定で、直径が異なる装置本体を用いて石炭軟化溶融層の温度を測定した場合における、石炭試料室の直径と、石炭試料室内の石炭試料層の半径方向中央部の温度が450℃に到達した時点での、この中央部と外周部の温度差との関係を示す。   In FIG. 2, the diameter of the coal sample chamber and the coal sample layer in the coal sample chamber when the temperature of the coal softened melt layer is measured using an apparatus main body having a constant diameter of 10 mm and a diameter different from that of the coal sample chamber. The relationship between the temperature difference between the central portion and the outer peripheral portion when the temperature in the central portion in the radial direction reaches 450 ° C. is shown.

図2から、石炭試料室12の直径を13mm以下にすることにより、石炭試料層の半径方向の温度差を2℃以下にできることが解る。   2 that the temperature difference in the radial direction of the coal sample layer can be reduced to 2 ° C. or less by setting the diameter of the coal sample chamber 12 to 13 mm or less.

以上の知見を基に、本発明では、石炭試料層の半径方向中心部から外周部までの温度差を±2℃以下に小さくし、石炭試料層の層厚と垂直な断面における溶融状態の違いに起因する圧力損失ΔPのばらつきを抑制するために、装置本体における外管4内の石炭試料室12の直径を13mm以下とする。   Based on the above knowledge, in the present invention, the temperature difference from the central portion in the radial direction of the coal sample layer to the outer peripheral portion is reduced to ± 2 ° C. or less, and the difference in the molten state in the cross section perpendicular to the layer thickness of the coal sample layer. In order to suppress variations in pressure loss ΔP due to the above, the diameter of the coal sample chamber 12 in the outer tube 4 in the apparatus main body is set to 13 mm or less.

(メッシュ板の孔径:0.3mm以下)
表2に、ガス流量は10cc/min一定とし、メッシュ板の孔径が異なる装置本体を用いて、石炭軟化溶融層の圧力損失ΔPを測定した場合における、メッシュ板の孔径と、圧力損失ΔPのばらつきとの関係を示す。圧力損失ΔPのばらつきは、相対標準偏差、つまり、圧力損失ΔPの平均値に対する圧力損失ΔPの標準偏差値で示した。
(Pore diameter of mesh plate: 0.3 mm or less)
Table 2 shows the variation in mesh plate hole diameter and pressure loss ΔP when the gas flow rate is constant at 10 cc / min and the pressure loss ΔP of the coal softening / melting layer is measured using an apparatus body with different mesh plate hole diameters. Shows the relationship. The variation of the pressure loss ΔP is represented by the relative standard deviation, that is, the standard deviation value of the pressure loss ΔP with respect to the average value of the pressure loss ΔP.

Figure 0005064198
Figure 0005064198

表2から、メッシュ板の孔径を0.30mm以下にすることにより、圧力損失ΔPのばらつきを、相対標準偏差で0.30に低減できることが解る。   From Table 2, it can be seen that the dispersion of the pressure loss ΔP can be reduced to 0.30 in terms of relative standard deviation by setting the mesh plate to have a hole diameter of 0.30 mm or less.

上記知見によれば、メッシュ板5の孔径が大きくなると、石炭試料室12に装入された石炭試料7が軟化溶融し、膨張する際に、メッシュ板5の孔から軟化溶融状態の石炭が流出し、一定容積に拘束することができなくなり、見かけ上通気抵抗が、真値(前記温度分布が小さい場合の測定値)より低く測定されるので、本発明では、メッシュ板5の孔径を0.3mm以下とする。   According to the above knowledge, when the hole diameter of the mesh plate 5 is increased, the coal sample 7 charged in the coal sample chamber 12 is softened and melted, and when expanded, the soft and molten coal flows out from the holes of the mesh plate 5. In addition, since the air flow resistance is apparently lower than the true value (measured value when the temperature distribution is small), the mesh plate 5 has a pore diameter of 0. 3 mm or less.

なお、メッシュ板5の孔径の下限は、特に限定する必要はなく、従来の装置で用いられているメッシュ板と同様に、流通するガスの通気に対して抵抗とならない孔径以上に設定されるものである。   In addition, the lower limit of the hole diameter of the mesh plate 5 is not particularly limited, and is set to be equal to or larger than the hole diameter that does not resist the ventilation of the circulating gas as in the mesh plate used in the conventional apparatus. It is.

(石炭試料室の高さ:13mm以下)
表3に、石炭試料室の直径は10mm一定で、高さが異なる装置本体を用いて石炭軟化溶融層の圧力損失ΔPを測定した場合における、石炭試料室の高さと、圧力損失ΔPのばらつきとの関係を示す。圧力損失ΔPのばらつきは、相対標準偏差、つまり、圧力損失ΔPの平均値に対する圧力損失ΔPの標準偏差値で示した。
(Coal sample chamber height: 13 mm or less)
Table 3 shows the height of the coal sample chamber and the variation in the pressure loss ΔP when the pressure loss ΔP of the coal softening / melting layer is measured using an apparatus body having a constant diameter of 10 mm and a different height. The relationship is shown. The variation of the pressure loss ΔP is represented by the relative standard deviation, that is, the standard deviation value of the pressure loss ΔP with respect to the average value of the pressure loss ΔP.

Figure 0005064198
Figure 0005064198

表3から、石炭試料室の高さを13mm以下にすることにより、圧力損失ΔPのばらつきは相対標準偏差で0.3に低減できることが解る。   From Table 3, it can be seen that the variation of the pressure loss ΔP can be reduced to 0.3 in terms of relative standard deviation by setting the height of the coal sample chamber to 13 mm or less.

以上の知見によれば、外管4内の石炭試料室12の高さが高くなると、上記の溶融状態の違いに起因した石炭軟化溶融層の通気抵抗のばらつきが顕著になる傾向になり、見かけ上通気抵抗が、真値(前記温度分布が小さい場合の測定値)より低く測定されるので、本発明では、外管4内の石炭試料室12の高さを13mm以下とするのが好ましい。   According to the above knowledge, when the height of the coal sample chamber 12 in the outer pipe 4 is increased, the variation in the air flow resistance of the coal softened and melted layer due to the difference in the molten state tends to become remarkable. Since the upper ventilation resistance is measured lower than the true value (measured value when the temperature distribution is small), in the present invention, the height of the coal sample chamber 12 in the outer pipe 4 is preferably 13 mm or less.

(ガス流量:25cc/min以下)
表4に、メッシュ板の孔径が0.15mmの装置本体を用いて、ガス流量を変えて、石炭軟化溶融層の圧力損失ΔPを測定した場合における、ガス流量と、圧力損失ΔPのばらつきとの関係を示す。圧力損失ΔPのばらつきは、相対標準偏差、つまり、圧力損失ΔPの平均値に対する圧力損失ΔPの標準偏差値で示した。
(Gas flow rate: 25cc / min or less)
Table 4 shows the difference between the gas flow rate and the variation in the pressure loss ΔP when the pressure loss ΔP of the coal softening / melting layer is measured by changing the gas flow rate using an apparatus body having a mesh plate hole diameter of 0.15 mm. Show the relationship. The variation of the pressure loss ΔP is represented by the relative standard deviation, that is, the standard deviation value of the pressure loss ΔP with respect to the average value of the pressure loss ΔP.

Figure 0005064198
Figure 0005064198

表4から、ガス流量を25cc/min以下にすることにより、圧力損失ΔPのばらつきは相対標準偏差で0.3に低減できることが解る。これは、本発明装置は、従来に比べて、石炭試料室12の直径及び高さが小さいため、ガス流量が25cc/minより大きいと、石炭軟化溶融層を大きく乱し、弱い部分で吹き抜けをおこし易くなるためと考えられる。   From Table 4, it can be seen that by setting the gas flow rate to 25 cc / min or less, the variation in pressure loss ΔP can be reduced to 0.3 in terms of relative standard deviation. This is because the apparatus of the present invention has a smaller diameter and height of the coal sample chamber 12 than in the prior art, so if the gas flow rate is greater than 25 cc / min, the coal softening / melting layer will be greatly disturbed, and air will blow through at the weak part. This is thought to be easier to do.

以上の知見を基に、本発明では、石炭軟化溶融層の通気抵抗のばらつきを抑制するために、ガス流量は、25cc/min以下とするのが好ましい。   Based on the above knowledge, in this invention, in order to suppress the dispersion | variation in the ventilation resistance of a coal softening melt layer, it is preferable that a gas flow rate shall be 25 cc / min or less.

(石炭試料の粒度分布)
本発明装置においては、石炭試料室の直径及び高さが小さく、石炭試料の装入量も少なくなるので、石炭を所定粒度に粉砕した後における、所定量の石炭試料の採取の仕方によっては、石炭試料の粒度が、粉砕時の粒度と異なり、これが、石炭軟化溶融層の通気抵抗の測定値のばらつきの原因となることが解った。
(Particle size distribution of coal sample)
In the apparatus of the present invention, the diameter and height of the coal sample chamber are small, and the amount of coal sample charged is also small, so depending on how to collect a predetermined amount of coal sample after pulverizing coal to a predetermined particle size, It was found that the particle size of the coal sample is different from the particle size at the time of pulverization, and this causes a variation in measured values of the airflow resistance of the coal softened and melted layer.

表5に、石炭を、3mm以下が100%の粒度に粉砕した後、そのまま、所定量を採取した場合(条件1)と、3mm以下が100%の粒度の石炭中の3〜1mm、1〜0.6mm、0.6〜0.3mm、及び、0.3mm以下の各粒度区分の存在割合を維持するように所定量の石炭試料を採取した場合(条件2)において、石炭軟化溶融層の通気抵抗を測定し、この測定値のばらつきを求めた結果を示す。圧力損失ΔPのばらつきは、相対標準偏差、つまり、圧力損失ΔPの平均値に対する圧力損失ΔPの標準偏差値で示した。   In Table 5, when coal is pulverized to a particle size of 3% below 3 mm, a predetermined amount is collected as it is (Condition 1), 3 to 1 mm in coal of 100% particle size below 3 mm, 1 When a predetermined amount of coal sample is taken so as to maintain the existence ratio of each particle size division of 0.6 mm, 0.6 to 0.3 mm, and 0.3 mm or less (condition 2), The results of measuring the ventilation resistance and determining the variation of the measured values are shown. The variation of the pressure loss ΔP is represented by the relative standard deviation, that is, the standard deviation value of the pressure loss ΔP with respect to the average value of the pressure loss ΔP.

Figure 0005064198
Figure 0005064198

条件2の石炭試料は、前記の3mm以下が100%の粒度の石炭を、1mm、0.6mm、及び、0.3mmの篩目の篩を用いて、3−1mm、1−0.6mm、0.6−0.3mm、及び、−0.3mmの各粒度区分に篩い分けて、各粒度区分の存在割合(粒度分布)を測定し、所定装入量になるように、各粒度区分毎に、その存在割合の石炭を採取して作製したものである。   The coal sample of condition 2 is a 3-1 mm, 1-0.6 mm, and 1 mm, 0.6 mm, and 0.3 mm sieve meshes of 100% granularity of 3 mm or less. Sieve into each particle size division of 0.6-0.3mm and -0.3mm, measure the existence ratio (particle size distribution) of each particle size division, and for each particle size division so that it becomes a predetermined charging amount In addition, it is produced by collecting coal in that proportion.

なお、ガス流量は10cc/min、メッシュ板の孔径は0.15mmとした。   The gas flow rate was 10 cc / min, and the mesh plate hole diameter was 0.15 mm.

表5から、石炭を所定粒度に粉砕した後、各粒度区分の存在割合を維持するように所定量の石炭試料を採取することにより、試験2の方が、ばらつきは低減し、結局、ばらつき低減のためには、粉砕後石炭試料を所定の粒度区分に篩い分けた後、目標の粒度分布になるように、各粒度区分毎の試料を組み合わせることが、より好ましいことが解る。   From Table 5, after pulverizing coal to a predetermined particle size, by taking a predetermined amount of coal sample so as to maintain the proportion of each particle size classification, the variation in test 2 is reduced, and eventually the variation is reduced For this purpose, it is understood that it is more preferable to combine the samples for each particle size division so that the target particle size distribution is obtained after pulverizing the coal sample into a predetermined particle size division.

したがって、本発明装置を用いて石炭軟化溶融層の通気抵抗を測定する場合には、粉砕後石炭試料を、所定の粒度区分に篩い分けた後、目標の粒度分布になるように、各粒度区分毎の試料を組み合わせることがより好ましい。   Therefore, when measuring the airflow resistance of the coal softened melt layer using the apparatus of the present invention, after pulverizing the coal sample into a predetermined particle size classification, each particle size classification is set so that the target particle size distribution is obtained. More preferably, each sample is combined.

本発明の石炭軟化溶融層の通気抵抗測定装置によれば、圧力損失ΔP及び通気抵抗の測定値から、膨張圧指数(圧力損失ΔPを基準圧力P0で除した相対値P)を、0.5〜2時間程度で測定できるので、大型可動壁型乾留炉で直接膨張圧を測定する場合に比べて、迅速に、膨張圧を評価することができる。 According to the apparatus for measuring the ventilation resistance of the softened coal layer of the present invention, the expansion pressure index (relative value P obtained by dividing the pressure loss ΔP by the reference pressure P 0 ) from the measured values of the pressure loss ΔP and the ventilation resistance is set to 0. Since the measurement can be performed in about 5 to 2 hours, the expansion pressure can be evaluated more rapidly than in the case where the expansion pressure is directly measured in a large movable wall type distillation furnace.

したがって、実コークス炉の操業において、配合前の石炭、又は、配合後の石炭をサンプリングし、本発明装置により、石炭軟化溶融層の圧力損失ΔP及び通気抵抗を測定し、膨張圧指数を求めることにより、膨張圧指数を基に、コークス押出負荷を許容限界値以下に管理する操業が可能となる。   Therefore, in the operation of the actual coke oven, the coal before blending or the coal after blending is sampled, and the pressure loss ΔP and the ventilation resistance of the coal softened molten layer are measured by the apparatus of the present invention to obtain the expansion pressure index. Thus, an operation for managing the coke extrusion load to be equal to or less than the allowable limit value based on the expansion pressure index becomes possible.

具体的には、予め、本発明装置により求められた膨張圧指数と、実コークス炉でのコークス押出負荷との関係を求めておき、例えば、膨張圧指数が高い場合には、(a)石炭をより細かく粉砕する、(b)膨張圧が高い石炭の配合比率を下げる、(c)膨張圧抑制効果がある石炭の配合比率を増加する等の手段により、膨張圧指数を基に、コークス押出負荷を許容限界値以下にするように、石炭の粉砕条件、配合条件、装入条件、及び、乾留条件を調整する。   Specifically, the relationship between the expansion pressure index obtained by the apparatus of the present invention and the coke extrusion load in the actual coke oven is determined in advance. For example, when the expansion pressure index is high, (a) coal Coke extrusion based on the expansion pressure index by means such as (b) reducing the blending ratio of coal with a high expansion pressure, (c) increasing the blending ratio of coal having an expansion pressure suppressing effect, etc. The coal pulverization conditions, blending conditions, charging conditions, and dry distillation conditions are adjusted so that the load is less than the allowable limit value.

以下に、実施例を用いて本発明の効果を実証するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Hereinafter, the effects of the present invention will be demonstrated using examples, but the conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention. It is not limited to the example conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表6に、発明例として、数種類の配合炭(配合炭1〜配合炭5)を用いて、本発明装置により、石炭軟化溶融層の圧力損失ΔPを測定し、膨張圧指数Pを求めた結果を示す。なお、膨張圧指数P[−]は、圧力損失の測定値ΔP[kPa]を基準圧力P0[kPa]で除して求められる相対値である。
Example 1
Table 6 shows the results of measuring the expansion pressure index P by measuring the pressure loss ΔP of the coal softening melt layer using the apparatus of the present invention using several types of blended coal (blended coal 1 to blended coal 5) as examples of the invention. Indicates. The expansion pressure index P [−] is a relative value obtained by dividing the pressure loss measurement value ΔP [kPa] by the reference pressure P 0 [kPa].

Figure 0005064198
Figure 0005064198

また、比較例として、石炭試料室の半径及びメッシュ板の孔径が本発明の規定範囲から外れた、非特許文献9に記載の従来装置及び測定方法を用いて、同様に、圧力損失よりΔPを測定し、膨張圧指数Pを求め、発明例と比較した。   Further, as a comparative example, using the conventional apparatus and measurement method described in Non-Patent Document 9 in which the radius of the coal sample chamber and the hole diameter of the mesh plate are out of the specified range of the present invention, ΔP is similarly calculated from the pressure loss. The expansion pressure index P was measured and compared with the inventive examples.

なお、膨張圧指数Pの測定精度は、大型可動壁型乾留炉を用いて直接測定した膨張圧との相関係数を求め、相関係数により評価した。   In addition, the measurement accuracy of the expansion pressure index P was evaluated by obtaining a correlation coefficient with the expansion pressure directly measured using a large movable wall-type dry distillation furnace.

表6から、石炭試料室の半径及びメッシュ板の孔径が本発明の規定範囲内を満足した本発明装置を用いて求めた発明例1〜3の膨張圧指数Pは、いずれも、石炭試料室の半径及びメッシュ板の孔径が本発明の規定範囲から外れた比較例1及び2の膨張圧指数Pに比べて、大型可動壁型乾留炉を用いて直接測定した膨張圧と非常に高い相関性を有し、膨張圧の推定精度が高い(測定ばらつきが小さい)ことが解る。   From Table 6, the expansion pressure index P of Invention Examples 1 to 3 obtained by using the device of the present invention in which the radius of the coal sample chamber and the pore size of the mesh plate satisfied the specified range of the present invention are all in the coal sample chamber. Compared with the expansion pressure index P of Comparative Examples 1 and 2 in which the radius of the plate and the hole diameter of the mesh plate deviated from the specified range of the present invention, the correlation was very high with the expansion pressure directly measured using a large movable wall type distillation furnace. It can be seen that the estimation accuracy of the expansion pressure is high (measurement variation is small).

図3(B)及び表7に、本発明例1の測定における圧力損失ΔP測定時の石炭試料室の半径方向の中心部温度、外周部温度、これらの平均温度、中心部と外周部との温度差、平均温度と設定温度との温度差を示す。図3及び表7から、石炭試料室の半径方向中心部と外周部温度の差は±2℃以下と極めて小さいことが解る。なお図3(A)に、石炭試料室における温度測定位置を示す。   3 (B) and Table 7, in the measurement of the pressure loss ΔP in the measurement of Example 1 of the present invention, the central temperature in the radial direction of the coal sample chamber, the outer peripheral temperature, the average temperature thereof, the central portion and the outer peripheral portion Temperature difference, temperature difference between average temperature and set temperature is shown. From FIG. 3 and Table 7, it can be seen that the difference between the temperature in the center of the coal sample chamber in the radial direction and the temperature at the outer periphery is as small as ± 2 ° C. or less. FIG. 3A shows a temperature measurement position in the coal sample chamber.

Figure 0005064198
Figure 0005064198

図4に、発明例1及び比較例1の測定における、石炭試料の平均温度とガス導入口側で測定した圧力の関係を示す。なお、圧力損失ΔPは、ガス排出側の圧力を大気圧とした時にこのガス導入口側の圧力測定値を基に求められるため、ガス導入口側の圧力の温度依存性は圧力損失ΔPの温度依存性に対応して評価できる。   FIG. 4 shows the relationship between the average temperature of the coal sample and the pressure measured on the gas inlet side in the measurements of Invention Example 1 and Comparative Example 1. Since the pressure loss ΔP is obtained based on the pressure measurement value on the gas inlet side when the pressure on the gas discharge side is atmospheric pressure, the temperature dependence of the pressure on the gas inlet side is the temperature of the pressure loss ΔP. Can be evaluated in response to dependencies.

図4から、発明例1のガス導入口側の圧力は、石炭試料の温度が約400℃以上で、圧力が上昇し始め、軟化溶融温度に相当する約450℃で圧力の最大値(0.12MPa)を示すことが解る。一方、比較例1のガス導入口側の圧力は、発明例1に比較して低温側から上昇を開始し、圧力の最大値は本発明例1よりかなり低下していることが解る。   From FIG. 4, the pressure on the gas inlet side of Invention Example 1 is about 450 ° C. corresponding to the softening melting temperature when the temperature of the coal sample is about 400 ° C. or higher, and the maximum pressure value (0. 12 MPa). On the other hand, the pressure on the gas inlet side of Comparative Example 1 starts to rise from the low temperature side as compared with Invention Example 1, and it can be seen that the maximum value of the pressure is considerably lower than that of Invention Example 1.

両者の比較から、発明例1は、比較例1に比べて圧力損失ΔPの測定精度を向上できるとともに、軟化溶融温度:約450℃の石炭試料の石炭軟化溶融層における通気抵抗を高い再現性で測定できるものと考えられる。   From the comparison between the two, Invention Example 1 can improve the measurement accuracy of the pressure loss ΔP as compared with Comparative Example 1, and has a high reproducibility of the airflow resistance in the coal softening and melting layer of the softening and melting temperature: about 450 ° C. It can be measured.

(実施例2)
図5に、25日間の実炉操業において、期間1(1〜12日)は、通常の操業を行い、期間2(13日以降)から、発明例1の測定装置及び測定条件で石炭軟化溶融層の圧力損失ΔPを測定し、膨張圧指数Pを求め、この膨張圧指数Pに基づいて、石炭の粉砕条件、配合条件、及び、操業条件の諸条件を調整した場合における、コークス押出時の相対押出負荷の推移を示す。
(Example 2)
In FIG. 5, in the actual furnace operation for 25 days, in period 1 (1 to 12 days), normal operation is performed, and from the period 2 (after 13 days), the coal softening and melting is performed with the measuring apparatus and measurement conditions of Invention Example 1. The pressure loss ΔP of the layer is measured, the expansion pressure index P is obtained, and the coal pulverization conditions, the blending conditions, and the operating conditions are adjusted based on the expansion pressure index P. The transition of relative extrusion load is shown.

なお、相対押出負荷とは、コークス押出機の押出電流値の管理基準値に対する押出負荷電流測定の比を意味する。   The relative extrusion load means the ratio of the extrusion load current measurement to the control reference value of the extrusion current value of the coke extruder.

図5から、期間1においては、相対押出負荷が1を超える(管理基準値を超える)場合があり、そのばらつきも大きいが、本発明を適用した期間2においては、相対押出負荷は1以下(管理基準値以下)に維持され、膨張圧指数のばらつきも低減している。   From FIG. 5, in period 1, the relative extrusion load sometimes exceeds 1 (exceeds the control standard value), and the variation is large, but in period 2 to which the present invention is applied, the relative extrusion load is 1 or less ( It is maintained below the control standard value), and the variation of the expansion pressure index is also reduced.

例えば、期間1の13日目の膨張圧指数Pは9.4であり、相対押出負荷は1.04とコークス押出負荷は管理基準値を超えていた。このため、膨張圧指数Pが8になるように、石炭粉砕粒度及びコークス炉操業条件(炉温及び石炭嵩密度)は変えずに、石炭配合条件を変更し、配合炭中の膨張圧が高い石炭の配合比率を低下させたところ、14日目に、相対押出負荷は0.9(この時の膨張圧指数Pは8.6)に低下した。   For example, the expansion pressure index P on the 13th day of period 1 was 9.4, the relative extrusion load was 1.04, and the coke extrusion load exceeded the control standard value. For this reason, the coal blending conditions are changed without changing the coal pulverization particle size and coke oven operating conditions (furnace temperature and coal bulk density) so that the expansion pressure index P is 8, and the expansion pressure in the blended coal is high. When the blending ratio of coal was reduced, on the 14th day, the relative extrusion load was reduced to 0.9 (the expansion pressure index P at this time was 8.6).

さらに、石炭配合を変更し、配合炭中の膨張圧抑制効果がある石炭の配合比率を増加したところ、15日目には、相対押出負荷は、0.86(この時の膨張圧指数Pは7.9)まで低下した。   Furthermore, when the blending of coal was changed and the blending ratio of coal having the effect of suppressing the expansion pressure in the blended coal was increased, on the 15th day, the relative extrusion load was 0.86 (the expansion pressure index P at this time was 7.9).

図5に示す結果から、本発明の石炭軟化溶融層の通気抵抗測定装置及び測定方法をコークス炉の操業に適用することにより、炭化室内における配合炭の膨張圧を抑制し、コークス押出時の押出負荷を管理値以下に制御することができ、コークス押出トラブルのない、安定的なコークス炉操業とともに、コークス炉の寿命延長を実現することが可能であることが解る。   From the results shown in FIG. 5, by applying the apparatus and method for measuring the airflow resistance of the coal softened melt layer of the present invention to the operation of the coke oven, the expansion pressure of the blended coal in the carbonization chamber is suppressed, and the extrusion during coke extrusion is performed. It can be seen that the load can be controlled below the control value, and it is possible to realize the coke oven life extension with stable coke oven operation without coke extrusion trouble.

前述したように、本発明によれば、膨張圧を抑制して安定的なコークスの押出が可能となり、押し出しトラブルによる生産減を回避してコークス炉の生産効率を向上させることが可能となるとともに、押し出しトラブルにより誘発されるコークス炉炉壁損傷を回避して、コークス炉の炉寿命延長を実現することができる。   As described above, according to the present invention, it is possible to stably extrude coke by suppressing the expansion pressure, and it is possible to improve the production efficiency of the coke oven by avoiding the decrease in production due to the extrusion trouble. The coke oven furnace wall damage caused by the extrusion trouble can be avoided and the furnace life of the coke oven can be extended.

したがって、本発明は、コークス製造産業において利用可能性が大きいものである。   Therefore, the present invention has great applicability in the coke manufacturing industry.

本発明の石炭軟化溶融層の通気抵抗測定装置の構成図であり、(A)は、測定装置の全体を示し、(B)は、装置本体部分の詳細を示す。It is a block diagram of the ventilation resistance measuring apparatus of the coal softening melt layer of this invention, (A) shows the whole measuring apparatus, (B) shows the detail of an apparatus main-body part. 本発明装置本体における石炭試料室の直径と石炭試料室内の石炭試料層の半径方向中央部と外周部の温度差との関係を示す図である。It is a figure which shows the relationship between the diameter of the coal sample chamber in this invention main body, and the temperature difference of the radial direction center part and outer peripheral part of the coal sample layer in a coal sample chamber. 発明例1における石炭試料室の半径方向中心部温度、外周部温度、平均温度及び設定温度の温度曲線であり、(A)は、温度測定位置を示し、(B)は、温度曲線を示す。It is a temperature curve of the radial direction center part temperature of a coal sample chamber in invention example 1, peripheral part temperature, average temperature, and preset temperature, (A) shows a temperature measurement position and (B) shows a temperature curve. 発明例1及び比較例1における石炭試料の平均温度とガス導入口側で測定した圧力の関係を示す図である。It is a figure which shows the relationship between the average temperature of the coal sample in the invention example 1 and the comparative example 1, and the pressure measured by the gas inlet side. 本発明を実コークス炉操業に適用する前後におけるコークス押出時の相対押出負荷の推移を示す図である。It is a figure which shows transition of the relative extrusion load at the time of coke extrusion before and behind applying this invention to a real coke oven operation.

符号の説明Explanation of symbols

1 加熱炉
2 圧力計
3 マスフローコントローラー
4 外管
5 メッシュ板
6 メッシュ板固定管
7 石炭試料
8 キャップ
9 パッキン
10a 雌ネジ
10b 雄ネジ
11 メッシュ板固定管内面雌ネジ
12 石炭試料室
13a ガス導入口
13b ガス排出口
14 ガス配管
15 装置本体
16 温度計(熱電対)
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Pressure gauge 3 Mass flow controller 4 Outer pipe 5 Mesh board 6 Mesh board fixed pipe 7 Coal sample 8 Cap 9 Packing 10a Female screw 10b Male screw 11 Mesh board fixed pipe inner surface female screw 12 Coal sample chamber 13a Gas inlet 13b Gas outlet 14 Gas piping 15 Device body 16 Thermometer (thermocouple)

Claims (5)

装置本体、加熱炉、温度計、圧力計、及び、マスフローコントローラーを主要な構成とする石炭軟化溶融層の通気抵抗測定装置において、該装置本体は、長手方向の中央内部に石炭試料室を設けた外管と、該外管内の石炭試料室の上下に配置された上下一対のメッシュ板と、該一対のメッシュ板を外管内の上下から押さえて固定するための上下一対のメッシュ板固定管と、上記石炭試料室にガスを流通するためのガス導入口及びガス排出口を備えるとともに、上下の外管及びメッシュ板固定管の端部をパッキンを介して密封しつつ外管外周から固定するための上下一対のキャップとで構成され、上記石炭試料室の直径が13mm以下であり、上記メッシュ板の孔径が0.3mm以下であることを特徴とする石炭軟化溶融層の通気抵抗測定装置。   In the apparatus for measuring aeration resistance of a coal softening / melting layer mainly including an apparatus main body, a heating furnace, a thermometer, a pressure gauge, and a mass flow controller, the apparatus main body is provided with a coal sample chamber in the center in the longitudinal direction. An outer tube, a pair of upper and lower mesh plates disposed above and below the coal sample chamber in the outer tube, and a pair of upper and lower mesh plate fixing tubes for pressing and fixing the pair of mesh plates from above and below in the outer tube; A gas inlet and a gas outlet for distributing gas to the coal sample chamber are provided, and the ends of the upper and lower outer pipes and mesh plate fixing pipes are sealed from the outer pipe while being sealed through packing. An apparatus for measuring the air resistance of a coal softened melt layer, comprising a pair of upper and lower caps, wherein the coal sample chamber has a diameter of 13 mm or less, and the mesh plate has a hole diameter of 0.3 mm or less. 前記石炭試料室の高さが13mm以下であることを特徴とする請求項1に記載の石炭軟化溶融層の通気抵抗測定装置。   The apparatus for measuring a ventilation resistance of a coal softening / melting layer according to claim 1, wherein the height of the coal sample chamber is 13 mm or less. 前記石炭試料室の半径方向中央部と外周部との温度差が±2℃以内であることを特徴とする請求項1又は2に記載の石炭軟化溶融層の通気抵抗測定装置。   The apparatus for measuring the air resistance of a coal softened / melted layer according to claim 1 or 2, wherein a temperature difference between a central portion in the radial direction of the coal sample chamber and an outer peripheral portion is within ± 2 ° C. 請求項1〜3のいずれかに記載の石炭軟化溶融層の通気抵抗測定装置を用いて、石炭試料室に石炭試料を装入し、該石炭試料にマスフローコントローラーを用いて不活性ガスを流通させるとともに、加熱炉により石炭試料を加熱しながら、温度計と圧力計を用いて石炭試料層の温度と圧力損失を測定し、石炭軟化溶融温度における圧力損失の測定値に基づいて石炭軟化溶融層の通気抵抗を求める方法であって、上記石炭試料層に流通させる不活性ガスの流量を25cc/min以下とすることを特徴とする石炭軟化溶融層の通気抵抗測定方法。   A coal sample is charged into a coal sample chamber using the apparatus for measuring a gas flow resistance of a coal softened and melted layer according to any one of claims 1 to 3, and an inert gas is circulated through the coal sample using a mass flow controller. At the same time, while heating the coal sample in the heating furnace, measure the temperature and pressure loss of the coal sample layer using a thermometer and pressure gauge, and based on the measured value of the pressure loss at the coal softening and melting temperature, A method for determining a ventilation resistance, wherein the flow rate of an inert gas flowing through the coal sample layer is 25 cc / min or less. 前記石炭試料は、石炭を粉砕した後、該石炭の粒度分布を測定し、その後、粉砕後の石炭の粒度分布となるように、各粒度区分毎の存在割合を調整したものであることを特徴とする請求項4に記載の石炭軟化溶融層の通気抵抗測定方法。   The coal sample is obtained by pulverizing coal, measuring the particle size distribution of the coal, and then adjusting the abundance ratio for each particle size classification so as to be the particle size distribution of the coal after pulverization. The method for measuring the airflow resistance of the coal softening / melting layer according to claim 4.
JP2007320797A 2007-12-12 2007-12-12 Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance Active JP5064198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320797A JP5064198B2 (en) 2007-12-12 2007-12-12 Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320797A JP5064198B2 (en) 2007-12-12 2007-12-12 Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance

Publications (2)

Publication Number Publication Date
JP2009144001A JP2009144001A (en) 2009-07-02
JP5064198B2 true JP5064198B2 (en) 2012-10-31

Family

ID=40914996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320797A Active JP5064198B2 (en) 2007-12-12 2007-12-12 Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance

Country Status (1)

Country Link
JP (1) JP5064198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631937A (en) * 2019-09-02 2019-12-31 中国矿业大学 Testing arrangement that circulation absorption expansion deformation is anti-reflection to coal body fatigue damage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL221024B1 (en) * 2011-06-06 2016-02-29 Inst Chemicznej Przeróbki Węgla Method for determining the expansion pressure of carbon or carbonic mixtures and a device for this purpose
JP6565642B2 (en) * 2015-12-01 2019-08-28 日本製鉄株式会社 Coke shrinkage estimation method
JP6657867B2 (en) * 2015-12-01 2020-03-04 日本製鉄株式会社 Estimation method of coke shrinkage
JP6879020B2 (en) * 2017-04-06 2021-06-02 日本製鉄株式会社 How to estimate coke shrinkage
CN109609138B (en) * 2019-01-31 2024-01-26 陕西双翼煤化科技实业有限公司 Gas collecting, dust reducing and coal dredging device
CN110850053B (en) * 2019-05-16 2022-03-25 山东天勤矿山机械设备有限公司 Three-dimensional geomechanical model test system for intelligent coal mining

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543880A (en) * 1991-08-12 1993-02-23 Kawasaki Steel Corp Evaluation of expansion pressure and viscosity of coal
JP3100722B2 (en) * 1991-12-30 2000-10-23 新日本製鐵株式会社 Method and apparatus for measuring gas permeability coefficient of coal seam in softened and molten state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631937A (en) * 2019-09-02 2019-12-31 中国矿业大学 Testing arrangement that circulation absorption expansion deformation is anti-reflection to coal body fatigue damage

Also Published As

Publication number Publication date
JP2009144001A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5064198B2 (en) Ventilation resistance measuring device for coal softened and molten layer and method for measuring ventilation resistance
US10308513B2 (en) Method for producing graphite bodies
JP2008111068A (en) Manufacturing process of coke for blast furnace
EP2233548A1 (en) Method of producing ferro-coke
JP6680163B2 (en) Coke particle size estimation method
JP4299693B2 (en) Coke shrinkage measurement method and coke particle size estimation method using the same
JP5052944B2 (en) Coke oven operation method
JP6308157B2 (en) Method for preparing blended coal and method for producing coke
JP4879718B2 (en) Coal expansion pressure measuring device and measuring method, and coke oven operating method
JP6565642B2 (en) Coke shrinkage estimation method
JP4321369B2 (en) Coke oven operation method
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP6197568B2 (en) Estimation Method of Coke Pushing Force in Chamber Type Coke Oven
KR101466475B1 (en) Method for ash predicting of cokes
JP4259234B2 (en) Method for selecting raw materials for horizontal chamber type coke oven
JP5581630B2 (en) Coke cake extrudability estimation method
JP4167374B2 (en) Coke oven operation method
JP2020083897A (en) Method for operating coke oven
KR101197998B1 (en) Coke core temperature measuring method of coke oven
JP2006188609A (en) Method for producing cokes
JP4279973B2 (en) Coke oven operation method
JP6079142B2 (en) Coke production method
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
KR102528277B1 (en) Coke for melter-gasifier and method for manufacturing thereof
JP2007211166A (en) Method for operating coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R151 Written notification of patent or utility model registration

Ref document number: 5064198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350