JP5063998B2 - Optical component and optical scanning unit - Google Patents

Optical component and optical scanning unit Download PDF

Info

Publication number
JP5063998B2
JP5063998B2 JP2006322447A JP2006322447A JP5063998B2 JP 5063998 B2 JP5063998 B2 JP 5063998B2 JP 2006322447 A JP2006322447 A JP 2006322447A JP 2006322447 A JP2006322447 A JP 2006322447A JP 5063998 B2 JP5063998 B2 JP 5063998B2
Authority
JP
Japan
Prior art keywords
optical
optical element
optical component
mold
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006322447A
Other languages
Japanese (ja)
Other versions
JP2008139330A (en
Inventor
隆道 大橋
正史 古澤
康生 山中
英一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006322447A priority Critical patent/JP5063998B2/en
Publication of JP2008139330A publication Critical patent/JP2008139330A/en
Application granted granted Critical
Publication of JP5063998B2 publication Critical patent/JP5063998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

本発明は光学部品及びそれを用いた光走査ユニットに関する。   The present invention relates to an optical component and an optical scanning unit using the same.

複数のレーザ素子から出射された各ビームを、偏向手段及び結像手段を介してそれぞれ感光体上に導き、感光体上にて画像情報に応じて画像形成する多色画像形成装置の光走査装置がある。また近年、多色画像形成装置の高速化、高画質化に対応するために、四つの感光体ドラムを出力紙の搬送方向へ配列させ、各感光体ドラムに対応したビームで同時露光し、各々異なる色(イエロー、マゼンタ、シアン及びブラック)の現像器で現像した画像を順次転写し、重ね合わせてカラー画像を形成するデジタル複写機やレーザプリンタが実用化されている。   An optical scanning device of a multicolor image forming apparatus that guides each beam emitted from a plurality of laser elements onto a photoconductor via a deflecting unit and an imaging unit, and forms an image on the photoconductor according to image information. There is. In recent years, in order to cope with higher speed and higher image quality of multicolor image forming apparatuses, four photosensitive drums are arranged in the direction of the output paper, and simultaneously exposed with beams corresponding to the respective photosensitive drums. Digital copying machines and laser printers have been put to practical use in which images developed by developing devices of different colors (yellow, magenta, cyan, and black) are sequentially transferred and superimposed to form a color image.

このような画像形成装置では、光走査する際に各色に対応した複数の走査手段が用いられるが、その走査手段を配置するためには大きなスペースが必要であり、装置全体が大型化する。   In such an image forming apparatus, a plurality of scanning means corresponding to each color is used when performing optical scanning. However, a large space is required to arrange the scanning means, and the entire apparatus becomes large.

このため、特許文献1に開示される発明のように、複数ビームを単一の偏向器に入射して走査し、光学素子(結像素子)を積み重ねて配置する方法が提案されている。   For this reason, as in the invention disclosed in Patent Document 1, a method is proposed in which a plurality of beams are incident on a single deflector and scanned, and optical elements (imaging elements) are stacked and arranged.

また、上記の欠点を補うものとして、複数ビームを単一の偏向器に入射して走査し、各々対応する感光体に結像させる結像手段をビームごとに設け、結像手段を構成する結像素子を副走査方向に層状に重ねて一体的に構成する方法が特許文献1や特許文献2に開示されている。結像素子を副走査方向に層状に重ねて一体的に構成することにより、偏光手段(ポリゴンミラー)を重ねる間隔を短縮でき、又は1枚のポリゴンミラーで兼ねることも可能となるため、ポリゴンミラーを回転させるためのモータの負荷を軽減でき、小型化も可能となる。   In order to compensate for the above-mentioned drawbacks, an image forming means for forming an image forming means is provided for each beam by allowing a plurality of beams to be incident on a single deflector and scanning, and forming an image on a corresponding photosensitive member for each beam. Patent Documents 1 and 2 disclose a method of integrally configuring image elements in a layered manner in the sub-scanning direction. By integrally forming the imaging elements in a layered manner in the sub-scanning direction, it is possible to shorten the interval of overlapping the polarizing means (polygon mirror), or it is possible to serve as a single polygon mirror. The load on the motor for rotating the motor can be reduced, and the size can be reduced.

なお、結像素子を副走査方向に層状に重ねて一体的に構成する手法として、各ビームに対応した結像素子を接合(接着)により一体化する手法や、層状に重ねた結像素子を樹脂によって一体成形で形成する手法がある。   In addition, as a method of integrally configuring the imaging elements in a layered manner in the sub-scanning direction, a method of integrating the imaging elements corresponding to each beam by bonding (adhesion), or a layered imaging element is used. There is a method of forming by integral molding with resin.

近年、これらの結像素子はコストダウンの要求と成形技術の進歩とによって、ガラス製からプラスチック製に置き換わってきている。
結像素子を一体成形で製造する場合、各結像素子の配置精度は金型精度できまるため高い精度が得られやすいものの、他方で、結像素子がさらに厚肉となる。このため、その光学面の形状を高精度に、又は、結像素子がレンズの場合にはレンズ内部が均質になる(内部歪みが少ない)ように成形するためには、かなり高度な成形技術が必要となる。さらに、成形時の樹脂冷却にかなり長い時間を要するため、コストアップになってしまうという問題がある。
In recent years, these imaging elements have been replaced from glass to plastic due to demands for cost reduction and advances in molding technology.
In the case where the imaging elements are manufactured by integral molding, the arrangement accuracy of each imaging element can be mold accuracy, so that high accuracy can be easily obtained, but on the other hand, the imaging element becomes thicker. For this reason, in order to form the optical surface with high accuracy, or when the imaging element is a lens, the inside of the lens is made uniform (with little internal distortion). Necessary. Furthermore, since a considerably long time is required for cooling the resin at the time of molding, there is a problem that the cost is increased.

また、結像素子を結合によって一体化する場合、各結像素子の配置精度を得るためには、結像素子の接合面に高い形状精度(平面度)が要求される。しかし、結像素子がレンズの場合には所望の結像性能を得るために、レンズ厚(光線通過方向の厚み)が厚く、また、レンズ厚が部分的に変化して偏肉形状になる。このため、レンズ面形状を高精度に、かつ内部が均質になるように加工するには、かなり高度な成形技術が必要となる。この厚肉/偏肉形状を成形する場合、従来の射出成形法では、樹脂の冷却過程で体積収縮が大きいためにヒケが発生しやすい。特に、偏肉形状である場合はその厚肉部にヒケという成形不良が発生してしまう。このヒケを防止するために金型内への樹脂充填量を多くすると、レンズ内部の歪みが大きくなり、光学性能に悪影響を及ぼしてしまう。   Further, when the imaging elements are integrated by coupling, high shape accuracy (flatness) is required for the joint surface of the imaging elements in order to obtain the placement accuracy of the imaging elements. However, when the imaging element is a lens, in order to obtain a desired imaging performance, the lens thickness (thickness in the direction of passage of light) is thick, and the lens thickness is partially changed to become an uneven thickness. For this reason, in order to process the lens surface shape with high accuracy and the inside to be uniform, a considerably advanced molding technique is required. In the case of molding this thick / uneven shape, sink marks are likely to occur in the conventional injection molding method due to large volume shrinkage during the resin cooling process. In particular, in the case of an uneven thickness shape, a molding failure called sink occurs in the thick portion. If the resin filling amount in the mold is increased in order to prevent this sink, the distortion inside the lens increases, which adversely affects the optical performance.

そこで、従来の射出成形法の欠点を改善して、厚肉/偏肉形状を成形する方法として、特許文献3に開示される発明のように、低圧低充填で成形を行い、非転写面(機能上の形状転写が不要な面)に未転写による凹部(ヒケ)を強制的に発生させて、内部歪みを低減させながら転写面の形状精度を確保する方法が提案されている。図8に、このような光学素子の一例を示す。   Therefore, as a method for improving the drawbacks of the conventional injection molding method and forming a thick / uneven shape, molding is performed with low pressure and low filling as in the invention disclosed in Patent Document 3, and a non-transfer surface ( A method has been proposed in which concave portions (sink marks) due to non-transfer are forcibly generated on a surface that does not require functional shape transfer) to ensure the shape accuracy of the transfer surface while reducing internal distortion. FIG. 8 shows an example of such an optical element.

しかしながら、図8に示すように、凹部(ヒケ)3の外周(輪郭)にバリ4が発生することがある。図9は、この成型品の金型内での状態を示している。成形の際には、凹部(ヒケ)を発生させるために金型部材11を摺動させる。よって、金型部材10と11との間には間隔が空くこととなるが、この間隔に侵入した樹脂が図8に示すバリ4となる。この光学素子同士を積層する場合や、取り付け面に接合する場合、バリ4が干渉して取り付け位置精度を低下させる、又は接着できないという不具合を生じさせる。   However, as shown in FIG. 8, burrs 4 may occur on the outer periphery (contour) of the recess (sink) 3. FIG. 9 shows the state of the molded product in the mold. At the time of molding, the mold member 11 is slid to generate a recess (sink). Therefore, there is a gap between the mold members 10 and 11, but the resin that has entered the gap becomes the burr 4 shown in FIG. When these optical elements are laminated or bonded to the mounting surface, the burr 4 interferes to cause a problem that the mounting position accuracy is lowered or cannot be bonded.

特許文献4には、その面を形成する金型壁面に対して未転写による凹面と、少なくとも一つの段差面(凸面)とを設けて、この面を接合時に受け面とすることで上記の問題を解決している。
特開平4−127115号公報 特開平10−148777号公報 特開平11−28745号公報 特開2003−177214号公報
In Patent Document 4, the above-mentioned problem is obtained by providing a concave surface not transferred to the mold wall surface forming the surface and at least one step surface (convex surface), and using this surface as a receiving surface at the time of joining. Has solved.
JP-A-4-127115 Japanese Patent Laid-Open No. 10-148777 JP-A-11-28745 JP 2003-177214 A

ところが、特許文献4に開示される発明では、光学素子に凸形状を設けることでその部分が厚肉となるため、凸部端面がヒケてしまい、十分な接合面(平面度)を得ることが困難である。また、肉厚のため光学素子の冷却時間が長くなってしまいコストアップに繋がる。さらに、凸形状であるために、光学素子の高さ寸法が大きくなってしまう。積層した光学素子の高さ寸法が大きくなると、光学素子同士の光軸間距離が広がり、1枚の偏光素子(ポリゴンミラー)を用いる場合においては、光学面を広くしなければならなくなり、結果的にコストアップになってしまうという問題がある。   However, in the invention disclosed in Patent Document 4, since the convex portion is provided on the optical element, the portion becomes thick, so that the end surface of the convex portion is sinked, and a sufficient joint surface (flatness) can be obtained. Have difficulty. In addition, the thickness of the optical element increases the cooling time of the optical element, leading to an increase in cost. Furthermore, because of the convex shape, the height dimension of the optical element is increased. If the height dimension of the stacked optical elements is increased, the distance between the optical axes of the optical elements is increased, and in the case of using one polarizing element (polygon mirror), the optical surface has to be widened. There is a problem that the cost increases.

本発明はかかる問題に鑑みてなされたものであり、高精度の結合可能で低コストで形成可能な光学部品及びそれを用いた光走査ユニットを提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide an optical component that can be combined with high accuracy and can be formed at low cost, and an optical scanning unit using the optical component.

上記目的を達成するため、本発明は、層状に重ねた複数の光学素子を接合によって一体化した光学部品であって、前記光学素子の少なくとも一方の接合面を含む面内に、当該面を形成する金型のキャビティ形状を不完全転写することによって形成した不完全転写部と、接合時に一の光学素子に隣接する他の光学素子の該不完全転写部と対向する面に設けられた凹部とを有し、前記複数の光学素子それぞれに、前記不完全転写部および前記凹部が形成され、前記凹部は、前記金型における凸形状部分により形成され、前記層状に重ねられた前記光学素子において前記不完全転写部の輪郭を包含する大きさに形成されたことを特徴とする。 In order to achieve the above object, the present invention provides an optical component in which a plurality of optical elements stacked in layers are integrated by bonding, and the surface is formed in a plane including at least one bonding surface of the optical elements. An incomplete transfer portion formed by incomplete transfer of the cavity shape of the mold to be formed, and a recess provided on a surface facing the incomplete transfer portion of another optical element adjacent to one optical element at the time of joining, Each of the plurality of optical elements is formed with the incomplete transfer portion and the concave portion, and the concave portion is formed by a convex-shaped portion in the mold, and it characterized in that it is formed to a size encompassing the contour of the incomplete transfer portion.

本発明によれば、高精度の結合可能で低コストで形成可能な光学部品及びそれを用いた光走査ユニットを提供できる。   According to the present invention, it is possible to provide an optical component that can be combined with high accuracy and can be formed at low cost, and an optical scanning unit using the optical component.

〔第1の実施形態〕
本発明を好適に実施した第1の実施形態について説明する。図1(a)に、本実施形態にかかる光学素子の構成を示す。また、図1(b)に、層状に接合した光学部品の外見を示す。
樹脂とキャビティ駒との間に強制的に空隙を作るヒケ誘導成形において、任意のヒケ形状3の外周(輪郭)に微小なバリ4が発生する。ここで、バリ4の高さ寸法をbとする。このような光学素子同士をヒケ面2とこの面と対向する面5とを合わせてバリ4の干渉無しに積層できるように、ヒケ面2に対向する面5には深さaでヒケ形状3よりも大きい凹形状を設けた。ここで、干渉を防止するために、a>bである。
なお、凹形状深さ分だけ光学素子が薄肉になることで、成形品の冷却時間を短縮でき、光学素子を安価に成形できる。
[First Embodiment]
A first embodiment in which the present invention is suitably implemented will be described. FIG. 1A shows the configuration of the optical element according to this embodiment. FIG. 1B shows the appearance of an optical component joined in layers.
In sink induction molding that forcibly creates a gap between the resin and the cavity piece, minute burrs 4 are generated on the outer periphery (contour) of an arbitrary sink shape 3. Here, the height dimension of the burr 4 is b. The surface 5 facing the sinking surface 2 has a sink shape 3 with a depth of a so that the optical elements 2 can be laminated with the sinking surface 2 and the surface 5 facing this surface without interference of the burr 4. A larger concave shape was provided. Here, a> b in order to prevent interference.
In addition, since the optical element is thinned by the depth of the concave shape, the cooling time of the molded product can be shortened, and the optical element can be molded at low cost.

図2に、離型方向に対して成形品が勾配を有するようにした型の状態を示す。離型方向に対して成形品が勾配を有することで、主に摩擦による離型抵抗が低減され、取り出す際の成形品への負担が軽減される。これにより、光学素子の歪が低減され、光学特性が向上する。すなわち、光学素子の変形が低減されるため、転写面の形状精度を高められる。   FIG. 2 shows a state of the mold in which the molded product has a gradient with respect to the mold release direction. Since the molded product has a gradient with respect to the mold release direction, the mold release resistance mainly due to friction is reduced, and the burden on the molded product when taking out is reduced. Thereby, the distortion of the optical element is reduced and the optical characteristics are improved. That is, since the deformation of the optical element is reduced, the shape accuracy of the transfer surface can be increased.

〔第2の実施形態〕
本発明を好適に実施した第2の実施形態について説明する。図3(a)に本実施形態にかかる光学素子の構成を示す。本実施形態においては、干渉を回避する方法として、凹量aの底面にヒケ面を生成している。これにより、ヒケ面外周にバリ4が生じても、図3(a)に示すように接合時の干渉は回避される。ただし、バリの高さbに対して、凹量aはa>bである。
[Second Embodiment]
A second embodiment in which the present invention is suitably implemented will be described. FIG. 3A shows the configuration of the optical element according to this embodiment. In the present embodiment, as a method for avoiding interference, a sink surface is generated on the bottom surface of the concave amount a. Thereby, even if the burr | flash 4 arises on a sink surface outer periphery, as shown to Fig.3 (a), the interference at the time of joining is avoided. However, the concave amount a is a> b with respect to the burr height b.

図3(b)に、二つの光学素子を層状に形成した光学部品の外観を示す。凹形状深さ分だけ光学素子が薄肉となることで、成形品の冷却時間を短縮でき、コストダウンが可能となる。   FIG. 3B shows the appearance of an optical component in which two optical elements are formed in layers. By reducing the thickness of the optical element by the depth of the concave shape, the cooling time of the molded product can be shortened, and the cost can be reduced.

図4に、凹形状の底面にヒケ面を設ける構成で、離型方向に対して成形品が勾配を有するようにした場合の型の状態を示す。離型方向に対して成形品が勾配を有することで、主に摩擦による離型抵抗が低減され、取り出す際の成形品への負担が軽減される。すなわち、光学素子の変形が低減されるため、転写面の形状精度を高められる。   FIG. 4 shows a state of a mold in a case where a sink surface is provided on the concave bottom surface and the molded product has a gradient with respect to the mold release direction. Since the molded product has a gradient with respect to the mold release direction, the mold release resistance mainly due to friction is reduced, and the burden on the molded product when taking out is reduced. That is, since the deformation of the optical element is reduced, the shape accuracy of the transfer surface can be increased.

〔第3の実施形態〕
本発明を好適に実施した第3の実施形態について説明する。図5(a)に、本実施形態に係る光学素子の構成を示す。本実施形態においては、光学素子の両面にヒケ面を設けている。両面においてヒケ面外周においてバリ4が生じても、片面に凹形状6を有することで、接合時の干渉が回避される。二つの光学素子を層状に接合した光学部品の外観を図5(b)に示す。また、凹形状6の深さ分だけ光学素子が薄肉となることで、成形品の冷却時間を短縮でき、コストダウンが可能となる。
[Third Embodiment]
A third embodiment in which the present invention is preferably implemented will be described. FIG. 5A shows the configuration of the optical element according to this embodiment. In this embodiment, a sink surface is provided on both surfaces of the optical element. Even if burrs 4 occur on the outer periphery of the sink surface on both sides, interference at the time of joining is avoided by having the concave shape 6 on one side. FIG. 5B shows the appearance of an optical component in which two optical elements are joined in layers. Further, since the optical element is thinned by the depth of the concave shape 6, the cooling time of the molded product can be shortened, and the cost can be reduced.

なお、上記の第1〜第3のいずれの実施形態においても、成形に用いる樹脂としては、紫外線を透過する樹脂を用い、複数の光学素子を層状に合わせるように接着冶具にセットし、紫外線を照射して硬化させると良い。光硬化型接着剤を用いることにより、接合位置の正確さを確認してから接着剤を硬化させることができる。また、接着剤の硬化時間が短時間であるため、他の接着剤を用いる場合よりも生産性を高められる。   In any of the first to third embodiments described above, as a resin used for molding, a resin that transmits ultraviolet rays is used, and a plurality of optical elements are set in an adhesive jig so as to be layered, and ultraviolet rays are emitted. It is good to cure by irradiation. By using a photocurable adhesive, the adhesive can be cured after confirming the accuracy of the joining position. Further, since the curing time of the adhesive is short, the productivity can be improved as compared with the case of using another adhesive.

また、図6に示すように、光学素子に付加された突起12を突き当て部材(基準位置)13に突き当てることにより、正確かつ容易に位置決めできる。これにより、安価で面精度の高い光学部品を実現できる。   Further, as shown in FIG. 6, the projection 12 added to the optical element can be positioned accurately and easily by abutting against the abutting member (reference position) 13. Thereby, an inexpensive optical component with high surface accuracy can be realized.

また、図7に示すように、複数枚を層状に接合した光学素子及び接着剤の熱膨張率を略同一とすることで、温度変化が生じうる環境下でも伸縮量の差が小さくなるため、歪の発生が回避される。複数の光学素子を接合した光学部品を温度変化が生じるような環境下で使用する場合、接合されたそれぞれの光学素子の線膨張係数が異なると、それぞれ変形量が異なるため、各光学素子に力が作用し、この力によって光学素子自体の形状精度・配置精度が劣化してしまう。このため、線膨張係数を同じにすることにより伸縮量が同等となり、高精度な接合を維持できる。   In addition, as shown in FIG. 7, by making the thermal expansion coefficient of the optical element and the adhesive that are joined together in a plurality of layers substantially the same, the difference in expansion and contraction is reduced even in an environment where temperature changes can occur. Generation of distortion is avoided. When using an optical component with multiple optical elements in an environment where temperature changes occur, if the optical expansion coefficient of each optical element is different, the amount of deformation will be different. Acts, and this force deteriorates the shape accuracy and arrangement accuracy of the optical element itself. For this reason, by making the linear expansion coefficient the same, the amount of expansion and contraction becomes equal, and highly accurate joining can be maintained.

また、光学素子の接合の際には、光学素子に透過光を入射し、出射光の位置を偏心顕微鏡などで検出しながら光学素子の接合位置決めを調整することで、高精度に位置決めできる。これにより、光学素子の配置精度を一層向上させることができ、光学性能の向上を図れる。   In addition, when the optical elements are joined, the transmitted light is incident on the optical elements, and the joining position of the optical elements is adjusted while detecting the position of the emitted light with an eccentric microscope or the like, so that the optical elements can be positioned with high accuracy. Thereby, the arrangement accuracy of the optical element can be further improved, and the optical performance can be improved.

上記第1〜第3のいずれの実施形態にかかる光学部品を搭載した光走査ユニットは、複数の光学素子を層状に接合した光学部品を筐体に接合する場合、不完全転写部を接合面に用いても、突起(バリ)の干渉無く接合できるため、筐体の受け面に何らかの工夫を施す必要が無くなる。このため、光走査ユニットを高精度かつ低コストで製造可能となる。   In the optical scanning unit on which the optical component according to any of the first to third embodiments is mounted, when the optical component in which a plurality of optical elements are bonded in layers is bonded to the housing, the imperfect transfer portion is used as a bonding surface. Even if it is used, since it can be joined without interference of protrusions (burrs), it is not necessary to devise any means on the receiving surface of the housing. For this reason, the optical scanning unit can be manufactured with high accuracy and at low cost.

なお、上記実施形態は本発明の好適な実施の一例であり、本発明はこれに限定されることなく様々な変形が可能である。   In addition, the said embodiment is an example of suitable implementation of this invention, and various deformation | transformation are possible for this invention, without being limited to this.

本発明を好適に実施した第1の実施形態にかかる光学素子の構成を示す図である。It is a figure which shows the structure of the optical element concerning 1st Embodiment which implemented this invention suitably. 第1の実施形態にかかる光学素子及びその成形に用いる金型の断面を示す図である。It is a figure which shows the cross section of the optical element concerning 1st Embodiment, and the metal mold | die used for the shaping | molding. 本発明を好適に実施した第2の実施形態にかかる光学素子の構成を示す図である。It is a figure which shows the structure of the optical element concerning 2nd Embodiment which implemented this invention suitably. 第2の実施形態にかかる光学素子及びその成形に用いる金型の断面を示す図である。It is a figure which shows the cross section of the optical element concerning 2nd Embodiment, and the metal mold | die used for the shaping | molding. 本発明を好適に実施した第3の実施形態にかかる光学素子の構成を示す図である。It is a figure which shows the structure of the optical element concerning 3rd Embodiment which implemented this invention suitably. 突き当て部を設けた光学素子の構成を示す図である。It is a figure which shows the structure of the optical element which provided the butting part. 熱膨張率が略同一の複数枚の光学素子を層状に接合した光学部品を示す図である。It is a figure which shows the optical component which joined the several optical element with substantially the same thermal expansion coefficient in layered form. 従来の光学素子の構成を示す図である。It is a figure which shows the structure of the conventional optical element. 従来の光学素子及びその成形に用いる金型の断面を示す図である。It is a figure which shows the cross section of the metal mold | die used for the conventional optical element and its shaping | molding.

符号の説明Explanation of symbols

1 光学素子
2 ヒケ面
3 ヒケ形状
4 バリ
5 ヒケ面に対向する面
6 凹部
7、8、9、10、11 金型部材
12 突起
13 突き当て部材
DESCRIPTION OF SYMBOLS 1 Optical element 2 Sink surface 3 Sink shape 4 Burr 5 Surface which faces a sink surface 6 Recessed part 7, 8, 9, 10, 11 Mold member 12 Protrusion 13 Abutting member

Claims (5)

層状に重ねた複数の光学素子を接合によって一体化した光学部品であって、
前記光学素子の少なくとも一方の接合面を含む面内に、当該面を形成する金型のキャビティ形状を不完全転写することによって形成した不完全転写部と、接合時に一の光学素子に隣接する他の光学素子の該不完全転写部と対向する面に設けられた凹部とを有し、
前記複数の光学素子それぞれに、前記不完全転写部および前記凹部が形成され、
前記凹部は、前記金型における凸形状部分により形成され、前記層状に重ねられた前記光学素子において前記不完全転写部の輪郭を包含する大きさに形成されたことを特徴とする光学部品。
An optical component in which a plurality of layered optical elements are integrated by bonding,
An incomplete transfer portion formed by incomplete transfer of a cavity shape of a mold forming the surface in a surface including at least one bonding surface of the optical element, and another adjacent to one optical element at the time of bonding A concave portion provided on a surface facing the incomplete transfer portion of the optical element ,
In each of the plurality of optical elements, the incomplete transfer portion and the recess are formed,
2. The optical component according to claim 1, wherein the concave portion is formed by a convex portion of the mold, and is formed in a size that includes the outline of the incomplete transfer portion in the optical element stacked in a layered manner.
前記凹部は、成形時に前記金型から離型する方向に抜き勾配を有することを特徴とする請求項1記載の光学部品。   The optical component according to claim 1, wherein the concave portion has a draft in a direction of releasing from the mold during molding. 前記光学素子は、前記接合面において光硬化型接着剤によって他の光学素子と結合されていることを特徴とする請求項1または2記載の光学部品。   3. The optical component according to claim 1, wherein the optical element is coupled to another optical element on the bonding surface by a photo-curing adhesive. 前記各光学素子は、光軸合わせがなされた上で接合されたことを特徴とする請求項1からのいずれか1項記載の光学部品。 The optical component according to any one of claims 1 to 3 , wherein the optical elements are bonded after optical axis alignment. 請求項1からのいずれか1項記載の光学部品を搭載した光走査ユニット。 An optical scanning unit on which the optical component according to any one of claims 1 to 4 is mounted.
JP2006322447A 2006-11-29 2006-11-29 Optical component and optical scanning unit Active JP5063998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322447A JP5063998B2 (en) 2006-11-29 2006-11-29 Optical component and optical scanning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322447A JP5063998B2 (en) 2006-11-29 2006-11-29 Optical component and optical scanning unit

Publications (2)

Publication Number Publication Date
JP2008139330A JP2008139330A (en) 2008-06-19
JP5063998B2 true JP5063998B2 (en) 2012-10-31

Family

ID=39600904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322447A Active JP5063998B2 (en) 2006-11-29 2006-11-29 Optical component and optical scanning unit

Country Status (1)

Country Link
JP (1) JP5063998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021068A (en) * 2018-08-04 2020-02-06 エーエーシー テクノロジーズ ピーティーイー リミテッド Pressing ring and lens module
JP2020021067A (en) * 2018-08-04 2020-02-06 エーエーシー テクノロジーズ ピーティーイー リミテッド Pressing ring and lens module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026371B2 (en) * 2008-09-01 2012-09-12 株式会社リコー Plastic optical element, optical scanning device, image forming apparatus
JP5163518B2 (en) * 2009-01-28 2013-03-13 株式会社リコー Optical scanning apparatus, image forming apparatus, and plastic lens manufacturing method
JP5589389B2 (en) 2010-01-06 2014-09-17 株式会社リコー Plastic molded product, method for molding plastic molded product, and optical scanning device having the plastic molded product
JP2012056269A (en) * 2010-09-13 2012-03-22 Ricoh Co Ltd Mold for molding resin, resin molding, optical element, optical scanner and image forming apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343491B2 (en) * 1997-04-01 2002-11-11 株式会社リコー Injection molded article and molding method thereof
JP4494669B2 (en) * 2001-05-10 2010-06-30 株式会社リコー Manufacturing method of plastic molded product
JP2002350608A (en) * 2001-05-23 2002-12-04 Konica Corp Image pickup lens, image pickup device, metallic mold and method for molding image pickup lens
JP2002362948A (en) * 2001-06-05 2002-12-18 Canon Inc Optical member
JP2003066299A (en) * 2001-08-24 2003-03-05 Canon Inc Method for fixing precision member and holding structure of precision member
JP2003241083A (en) * 2001-12-13 2003-08-27 Canon Inc Molded lens, scanning lens, optical scanner and image forming apparatus
JP2003177214A (en) * 2001-12-13 2003-06-27 Ricoh Co Ltd Plastic optical element
JP2003326566A (en) * 2002-05-15 2003-11-19 Ricoh Co Ltd Injection molding die
JP2004302157A (en) * 2003-03-31 2004-10-28 Hitachi Maxell Ltd Doublet
JP2005258329A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Compound lens and molding die therefor
JP4267517B2 (en) * 2004-05-13 2009-05-27 株式会社リコー Plastic optical element, molding method thereof, and optical scanning unit
JP4444067B2 (en) * 2004-10-15 2010-03-31 株式会社リコー Optical element adhesive fixing method and optical scanning device
JP2006126333A (en) * 2004-10-27 2006-05-18 Ricoh Co Ltd Plastic optical element, optical scanner provided with element, and image forming apparatus
JP2006264192A (en) * 2005-03-24 2006-10-05 Canon Inc Plastic optical element and method for molding the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021068A (en) * 2018-08-04 2020-02-06 エーエーシー テクノロジーズ ピーティーイー リミテッド Pressing ring and lens module
JP2020021067A (en) * 2018-08-04 2020-02-06 エーエーシー テクノロジーズ ピーティーイー リミテッド Pressing ring and lens module

Also Published As

Publication number Publication date
JP2008139330A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5063998B2 (en) Optical component and optical scanning unit
US7872813B2 (en) Optical element, optical scanning device, and image forming apparatus
JP2006292944A (en) Plastic optical element, mold for plastic optical element, optical scanner and image forming apparatus provided with the optical scanner
KR100818378B1 (en) Optical element, optical scanning apparatus, and image forming apparatus using optical element, and method and apparatus for fixedly joining optical element
JP5709680B2 (en) Lens array, lens unit, LED head, exposure apparatus, image forming apparatus, and reading apparatus
JP2003241083A (en) Molded lens, scanning lens, optical scanner and image forming apparatus
JP4448312B2 (en) Optical element positioning jig
JP2003177214A (en) Plastic optical element
JP4291032B2 (en) Optical element, optical scanning device, mirror piece, positioning jig, and positioning method
JP4494669B2 (en) Manufacturing method of plastic molded product
JP5084423B2 (en) Light source device
US8873124B2 (en) Plastic optical element, optical scanner including the plastic optical element, and image forming apparatus including same
JP4444067B2 (en) Optical element adhesive fixing method and optical scanning device
JP2016186580A (en) Lens array unit, image forming apparatus, and manufacturing method of lens array unit
JP2011081369A (en) Plastic optical element, optical scanning device, and image forming apparatus
JP4267517B2 (en) Plastic optical element, molding method thereof, and optical scanning unit
US20120063811A1 (en) Resin casting mold, molded resin product, optical element, optical scanning device, and image forming apparatus
JP2002254466A (en) Plastic molded product and its manufacturing method
JP5065366B2 (en) Optical element positioning method, optical element, and optical scanning device
JP5151064B2 (en) Method for fixing and joining optical elements
JP5158517B2 (en) Optical scanning apparatus and image forming apparatus
JP4053716B2 (en) Plastic molded product and molding method thereof
JP2007133179A (en) Plastic optical element, insert, metallic mold, optical scanner, and image forming apparatus mounted with optical scanner
JP4468158B2 (en) Assembly method of optical scanning device
JP2003241127A (en) Scanning optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5063998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3