JP4267517B2 - Plastic optical element, molding method thereof, and optical scanning unit - Google Patents

Plastic optical element, molding method thereof, and optical scanning unit Download PDF

Info

Publication number
JP4267517B2
JP4267517B2 JP2004143786A JP2004143786A JP4267517B2 JP 4267517 B2 JP4267517 B2 JP 4267517B2 JP 2004143786 A JP2004143786 A JP 2004143786A JP 2004143786 A JP2004143786 A JP 2004143786A JP 4267517 B2 JP4267517 B2 JP 4267517B2
Authority
JP
Japan
Prior art keywords
transfer surface
optical element
plastic optical
asymmetric shape
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004143786A
Other languages
Japanese (ja)
Other versions
JP2005324410A (en
Inventor
竜也 青野
正史 古澤
康生 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004143786A priority Critical patent/JP4267517B2/en
Publication of JP2005324410A publication Critical patent/JP2005324410A/en
Application granted granted Critical
Publication of JP4267517B2 publication Critical patent/JP4267517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザ方式の、デジタル複写機、ファクシミリ、プリンタ等の光学走査系、ビデオカメラ等の光学機器等に適用されるプラスチック光学素子の成形方法及び光学素子に関する。   The present invention relates to a plastic optical element molding method and an optical element that are applied to laser-type optical scanning systems such as digital copying machines, facsimiles, and printers, and optical equipment such as video cameras.

近年、レーザ方式のデジタル複写機、ファクシミリ、レーザ方式のプリンタ等の光学走査系等では、複数のレーザ光線から出射された各ビームを偏向手段及びプラスチック光学素子などの結像手段を介してそれぞれ感光体上に導き、該感光体上にて画像情報に応じて画像形成する多色画像形成装置の光走査ユニットがある。また近年、多色画像形成装置の高速化、高画質化に対応するために、4つの感光体ドラムを出力紙の搬送方向に配列させ、各感光体ドラムに対応したビームで同時露光し、各々異なる色(イエロー、マゼンタ、シアン、ブラック)の現像器で現像した画像を順次、転写し、重ね合わせてカラー画像を形成する方式が実用化されている。   In recent years, in an optical scanning system such as a laser type digital copying machine, a facsimile machine, and a laser type printer, each beam emitted from a plurality of laser beams is exposed to light via an image forming unit such as a deflecting unit and a plastic optical element. There is an optical scanning unit of a multicolor image forming apparatus that guides on a body and forms an image on the photosensitive body according to image information. In recent years, in order to cope with higher speed and higher image quality of multi-color image forming apparatuses, four photoconductive drums are arranged in the transport direction of output paper, and simultaneously exposed with beams corresponding to the photoconductive drums. A system in which images developed by developing devices of different colors (yellow, magenta, cyan, black) are sequentially transferred and superimposed to form a color image has been put into practical use.

また、高画質化を目的としてプラスチック光学素子の複屈折を低減しビームのスポット径を所望の大きさまで絞るため、本出願人は先に特開2000−176944号を提案した。この特開2000−176944号では、プラスチック光学素子の非転写面を形成する少なくとも一つ以上の入れ子が成形中に摺動し、プラスチック光学素子と前記入れ子との間に空隙を形成し、該空隙にヒケを誘導する成形方法を開示した。この成形方法では、冷却に伴う内部歪みの発生が抑えられるので、複屈折の低減に大きな効果が生じる。しかし前記ヒケを有する面と摺動した入れ子との間には前記空隙が存在しており、前記ヒケを有する面と対向する面は金属の入れ子と接しているので、熱伝導の違いから前記ヒケを誘導した面は熱変形温度以下まで冷却する時間が相対する側面よりも長くかかる。そのためプラスチック光学素子は全体的にヒケ面側に反るという問題があった。   In order to reduce the birefringence of the plastic optical element and reduce the beam spot diameter to a desired size for the purpose of improving the image quality, the present applicant has previously proposed Japanese Patent Application Laid-Open No. 2000-176944. In Japanese Patent Laid-Open No. 2000-176944, at least one nest forming a non-transfer surface of a plastic optical element slides during molding, forming a gap between the plastic optical element and the nest, and the gap Disclosed a molding method for inducing sink marks. In this molding method, since the occurrence of internal strain accompanying cooling is suppressed, a great effect is produced in reducing birefringence. However, the gap exists between the sinking surface and the sliding insert, and the surface opposite the sinking surface is in contact with the metal insert. It takes a longer time to cool to the heat deformation temperature or less than the opposite side. For this reason, there is a problem that the plastic optical element is warped to the sink surface as a whole.

さらに、高画質化を目的としてビーム径の像面湾曲などの向上のために、前記光走査ユニットに用いられるプラスチック光学素子の光学的な機能を有する面を光軸に対して非対称形状に設計することが多くなっている。またプラスチック光学素子を保持部材へ取付ける際、取付精度向上のため、プラスチック光学素子の片側に基準を設け、該基準を取付部材へ突き当てる方法などがある。そのため、プラスチック光学素子の外形は精度、組付け性などから光軸を中心にして左右非対称なものが増えている。しかし、プラスチック光学素子が非対称形状を有し、プラスチック光学素子を該非対称形状の示す方向(向き)を全ての色で同一方向にして光走査ユニットに設置した場合、反り方向の傾向が異なると前記色ずれはより大きくなるという問題がある。   Furthermore, the surface having the optical function of the plastic optical element used in the optical scanning unit is designed to be asymmetric with respect to the optical axis in order to improve the field curvature of the beam diameter for the purpose of improving the image quality. A lot is happening. Further, when attaching the plastic optical element to the holding member, there is a method of providing a reference on one side of the plastic optical element and abutting the reference to the attachment member in order to improve the attachment accuracy. For this reason, the outer shape of the plastic optical element is increasingly asymmetric with respect to the optical axis due to its accuracy and ease of assembly. However, when the plastic optical element has an asymmetric shape and the plastic optical element is installed in the optical scanning unit with the direction (direction) indicated by the asymmetric shape being the same direction for all colors, the tendency of the warping direction is different. There is a problem that the color shift becomes larger.

このような問題に対して、プラスチック光学素子の反りを矯正する手段として、例えば特開2002‐182145号のようにプラスチック光学素子の副走査方向に外力を加えて、成形で生じた曲がりを強制的に調整する方式が提案されている。
特開2000−176944号公報 特開2002‐182145号公報
As a means for correcting the warp of the plastic optical element, for example, Japanese Patent Application Laid-Open No. 2002-182145 applies an external force in the sub-scanning direction of the plastic optical element to forcibly cause the bending caused by molding. A method of adjusting to the above has been proposed.
JP 2000-176944 A JP 2002-182145 A

しかしながら、この特許文献2の方法ではプラスチック光学素子が前記非対称形状であった場合、前記非対称形状を一定の方向(向き)で設置すると調整の方向(向き)が一定でないので、調整に手間を要し、コストがかかる。さらには、プラスチック光学素子を接着などで多層に重ねて使用する際、前記多層を形成するプラスチック光学素子の反り方向が各々で異なる場合、接着精度の確保が困難である。   However, in the method of Patent Document 2, if the plastic optical element has the asymmetric shape, the adjustment direction (orientation) is not constant if the asymmetric shape is installed in a certain direction (orientation). And costly. Furthermore, when plastic optical elements are used by being stacked in multiple layers by bonding or the like, if the warp directions of the plastic optical elements forming the multilayer are different from each other, it is difficult to ensure the bonding accuracy.

そこで、本発明は、上記の問題点を解決するものであり、低コストで色ずれを押えることができ、接着強度も確保できるプラスチック光学素子、その成形方法及び光走査ユニットを提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object thereof is to provide a plastic optical element that can suppress color misregistration at low cost and can secure adhesive strength, a molding method thereof, and an optical scanning unit. It is said.

請求項1に記載の発明は、光軸に対して非対称形状を有する少なくとも一つの転写面と、該非対称形状を有する転写面以外の非転写面に選択的に誘導された少なくとも一つのヒケ部とを有する光学素子を、複数のキャビティを有する一つの金型で複数個同時に成形するプラスチック光学素子の成形方法において、前記転写面の非対称形状の示す方向と選択的に誘導されたヒケ部との位置関係を前記複数のキャビティ間で統一して成形することを特徴とするプラスチック光学素子の成形方法である。   The invention according to claim 1 includes at least one transfer surface having an asymmetric shape with respect to the optical axis, and at least one sink portion selectively guided to a non-transfer surface other than the transfer surface having the asymmetric shape. In a plastic optical element molding method, in which a plurality of optical elements having a plurality of cavities are simultaneously molded by a single mold having a plurality of cavities, the direction of the asymmetric shape of the transfer surface and the position of the selectively induced sink portion The plastic optical element molding method is characterized in that the relationship is uniformly molded among the plurality of cavities.

請求項2に記載の発明は、前記非対称形状を有する転写面は光学的な機能を有することを特徴とする請求項1に記載のプラスチック光学素子の成形方法である。   The invention according to claim 2 is the plastic optical element molding method according to claim 1, wherein the transfer surface having the asymmetric shape has an optical function.

請求項3に記載の発明は、前記転写面及び前記非転写面により画成されたキャビティが複数設けられた1対の金型を樹脂の軟化温度未満に加熱保持する金型加熱保持工程と、前記キャビティ内に軟化温度以上に加熱された溶融樹脂を射出充填する溶融樹脂充填工程と、前記転写面に樹脂圧力を発生させて樹脂を該転写面に密着させる樹脂加圧工程と、前記樹脂を軟化温度以下に冷却する際に、前記非転写面の通気口からキャビティ内の樹脂に圧縮気体を付与して、樹脂と前記非転写面との間に空隙を画成する空隙画成工程とを備えることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法である。   The invention according to claim 3 is a mold heating and holding step for heating and holding a pair of molds provided with a plurality of cavities defined by the transfer surface and the non-transfer surface, below the softening temperature of the resin, A molten resin filling step of injecting and filling a molten resin heated to a softening temperature or higher in the cavity; a resin pressing step of generating a resin pressure on the transfer surface to bring the resin into close contact with the transfer surface; and the resin When cooling below the softening temperature, a compressed air is applied to the resin in the cavity from the vent on the non-transfer surface, and a void defining step is performed to define a void between the resin and the non-transfer surface. The method for molding a plastic optical element according to claim 1, wherein the plastic optical element is molded.

請求項4に記載の発明は、前記転写面及び前記非転写面により画成されたキャビティが複数設けられた1対の金型を樹脂の軟化温度未満に加熱保持する金型加熱保持工程と、前記キャビティ内に軟化温度以上に加熱された溶融樹脂を射出充填する溶融樹脂充填工程と、前記溶融樹脂を軟化温度以下に冷却する際に、前記非転写面を形成する入れ子を樹脂から離隔するように摺動して、前記溶融樹脂と前記入れ子との間に空隙を画成する空隙画成工程とを備えることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法である。   The invention according to claim 4 is a mold heating and holding step for heating and holding a pair of molds provided with a plurality of cavities defined by the transfer surface and the non-transfer surface, below the softening temperature of the resin; A molten resin filling step of injecting and filling a molten resin heated above the softening temperature into the cavity, and a nest that forms the non-transfer surface is separated from the resin when the molten resin is cooled below the softening temperature. 3. The method for molding a plastic optical element according to claim 1, further comprising a gap defining step of sliding a gap between the molten resin and the insert to define a gap. 4.

請求項5に記載の発明は、前記非対称形状を有する転写面を形成する入れ子に、前記転写面の光学的な機能を有する部分を成形する部分の範囲外に前記非対称形状の示す方向が判別可能な基準を設けることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法である。   According to a fifth aspect of the present invention, in the nest that forms the transfer surface having the asymmetric shape, the direction indicated by the asymmetric shape can be determined outside the range of the portion that forms the optical function portion of the transfer surface. The method for molding a plastic optical element according to claim 1 or 2, wherein a standard is provided.

請求項6に記載の発明は、前記非対称形状を有する転写面に、前記転写面の光学的な機能を有する部分の範囲外に前記非対称形状の示す方向が判別可能な基準を設けることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法である。   The invention described in claim 6 is characterized in that the transfer surface having the asymmetric shape is provided with a reference capable of determining the direction indicated by the asymmetric shape outside the range of the portion having the optical function of the transfer surface. The method for molding a plastic optical element according to claim 1 or 2.

請求項7に記載の発明は、前記非対称形状の示す方向と、選択的に誘導されたヒケ部と、更にはゲートとの位置関係が全てのキャビティ間で統一されていることを特徴とする請求項1〜6のいずれかに記載のプラスチック光学素子の成形方法である。   The invention according to claim 7 is characterized in that the positional relationship between the direction indicated by the asymmetric shape, the selectively induced sink portion, and the gate is uniform among all the cavities. Item 7. A method for molding a plastic optical element according to any one of Items 1 to 6.

請求項8に記載の発明は、前記1〜7のいずれかの成形方法で成形されたプラスチック光学素子である。   The invention according to claim 8 is a plastic optical element molded by any one of the molding methods 1 to 7 described above.

請求項9に記載の発明は、請求項8に記載のプラスチック光学素子が複数準備され、該複数のプラスチック光学素子が選択的に誘導されたヒケ部を有する面とそれに対向する面とが接着などで固定され、多層に積層されていることを特徴とするプラスチック光学素子である。   In the ninth aspect of the present invention, a plurality of the plastic optical elements according to the eighth aspect are prepared, and a surface having a sink portion in which the plurality of plastic optical elements are selectively guided and a surface opposed thereto are bonded to each other. It is a plastic optical element characterized in that it is fixed by and laminated in multiple layers.

請求項10に記載の発明は、光軸に対して非対称形状を有する少なくとも一つの転写面と、該非対称形状を有する転写面以外の非転写面に選択的に誘導された少なくとも一つのヒケ部とを有するプラスチック光学素子において、前記非対称形状を有する転写面の前記非対称形状の示す方向と選択的に誘導されたヒケ部との位置関係が統一されて積層されていることを特徴とするプラスチック光学素子である。   According to a tenth aspect of the present invention, there is provided at least one transfer surface having an asymmetric shape with respect to the optical axis, and at least one sink portion selectively guided to a non-transfer surface other than the transfer surface having the asymmetric shape. A plastic optical element having a laminated structure in which a positional relationship between a direction of the asymmetric shape of the transfer surface having the asymmetric shape and a selectively induced sink portion is laminated. It is.

請求項11に記載の発明は、請求項8に記載のプラスチック光学素子が、前記非対称形状を有する転写面の前記非対称形状の示す方向と選択的に誘導されたヒケ部との位置関係を揃えて配置されている光走査ユニットである。   According to an eleventh aspect of the present invention, in the plastic optical element according to the eighth aspect, the positional relationship between the direction of the asymmetric shape of the transfer surface having the asymmetric shape and the selectively induced sink portion is aligned. The optical scanning unit is arranged.

請求項1に記載の発明によれば、光軸に対して非対称形状が示す方向(向き)と非転写面のヒケ部との位置関係が常に一定になるように成形することで、プラスチック光学素子に生じる反りの方向(向き)を一定にすることができる。これにより、プラスチック光学素子を非対称形状の示す方向(向き)を考慮して書込みユニット等に組み込んだ際に反り方向が統一され、反り方向の違いによる色ずれ防止、接着強度の確保による取付精度向上等の効果が得られる。   According to the first aspect of the present invention, the plastic optical element is formed by molding so that the positional relationship between the direction (direction) indicated by the asymmetric shape with respect to the optical axis and the sink portion of the non-transfer surface is always constant. The direction (orientation) of the warp generated in can be made constant. As a result, when the plastic optical element is incorporated in a writing unit, taking into account the direction (orientation) indicated by the asymmetric shape, the warping direction is unified, preventing color misregistration due to the difference in the warping direction, and improving the mounting accuracy by ensuring adhesive strength. Etc. are obtained.

さらに請求項2に記載の発明によれば、光学的な機能を有する非対称形状の示す方向(向き)とヒケ部を有する非転写面のヒケ部との位置関係が常に一定になるように成形することができ、プラスチック光学素子に生じる反り方向と前記非対称形状の示す方向(向き)との位置関係を一定にすることができる。これにより、プラスチック光学素子を非対称形状の示す方向(向き)を考慮して書込みユニット等に組み込んだ際に反り方向が統一され、前記反り方向の違いによる色ずれ防止に効果が有る。   Further, according to the second aspect of the invention, the molding is performed so that the positional relationship between the direction (direction) of the asymmetric shape having an optical function and the sink portion of the non-transfer surface having the sink portion is always constant. In addition, the positional relationship between the warp direction generated in the plastic optical element and the direction (orientation) indicated by the asymmetric shape can be made constant. Accordingly, when the plastic optical element is incorporated in a writing unit or the like in consideration of the direction (direction) indicated by the asymmetric shape, the warping direction is unified, and it is effective in preventing color misregistration due to the difference in the warping direction.

請求項3に記載の発明によれば、さらに、低歪み且つ転写面の形状精度を確保したプラスチック光学素子の製造が可能となる。   According to the third aspect of the present invention, it is possible to manufacture a plastic optical element having low distortion and ensuring the shape accuracy of the transfer surface.

請求項4に記載の発明によれば、さらに、低歪み且つ転写面の形状精度を確保したプラスチック光学素子の製造が可能となる。   According to the fourth aspect of the present invention, it is possible to manufacture a plastic optical element having low distortion and ensuring the shape accuracy of the transfer surface.

請求項5に記載の発明によれば、さらに、プラスチック光学素子を形成するために金型に非対称形状を有する入れ子を組み込む際、基準を確認して取付を行うことが可能になるので、組み込みの方向(向き)を間違う危険性を低減することが出来る。   According to the fifth aspect of the present invention, it is possible to confirm the reference when installing the nest having an asymmetric shape in the mold in order to form the plastic optical element. The risk of misdirection (direction) can be reduced.

請求項6に記載の発明によれば、さらに、プラスチック光学素子を形成するために金型に非対称形状を有する入れ子を組み込む場合や、光走査ユニットにプラスチック光学素子を設置する場合に、基準を確認して取付を行うことが可能になるので、取付の方向(向き)を間違う危険性を低減することが出来る。   According to the sixth aspect of the present invention, the reference is confirmed when a nest having an asymmetric shape is incorporated in the mold to form the plastic optical element or when the plastic optical element is installed in the optical scanning unit. Therefore, it is possible to reduce the risk of incorrect mounting direction (orientation).

請求項7に記載の発明によれば、さらに、ゲート側と最終充填位置付近で生じる温度偏差や圧力偏差などの成形特性の変化が前記非対称形状と常に一定となることから、プラスチック光学素子のもつ特性をキャビティ間で揃えることが可能であり、より高精度なプラスチック光学素子を提供できる。   According to the seventh aspect of the present invention, since the change in molding characteristics such as temperature deviation and pressure deviation occurring near the gate side and the final filling position is always constant with the asymmetric shape, the plastic optical element has The characteristics can be made uniform between cavities, and a more accurate plastic optical element can be provided.

さらに請求項8に記載の発明によれば、請求項1〜7までのいずれかのプラスチック光学素子の成形方法で成形されているので、レンズの反り方向と非対称形状の示す方向(向き)とを統一することが可能である。   Further, according to the eighth aspect of the present invention, since the plastic optical element is molded by any one of the first to seventh methods, the warping direction of the lens and the direction (orientation) indicated by the asymmetric shape are determined. It is possible to unify.

請求項9に記載の発明によれば、さらに、請求項8に記載のプラスチック光学素子を選択的に誘導されたヒケ面とそれに相対する面を接着して多層にしたので、前記非対称形状の示す方向(向き)とプラスチック光学素子の反りとの位置関係が統一され、色ずれを抑えた高精度な書込みが可能になる。   According to the ninth aspect of the present invention, since the plastic optical element according to the eighth aspect is formed into a multilayer by adhering the selectively induced sink surface and the surface opposite thereto, the asymmetric shape is shown. The positional relationship between the direction (orientation) and the warp of the plastic optical element is unified, and high-precision writing with suppressed color misregistration becomes possible.

また、請求項10に記載の発明によれば、非対称形状を有する転写面の前記非対称形状の示す方向(向き)と選択的に誘導されたヒケ部との位置関係が統一されて積層されているので、色ずれを抑えた高精度な書込みが可能になる。   According to the invention described in claim 10, the positional relationship between the direction (orientation) indicated by the asymmetric shape of the transfer surface having an asymmetric shape and the selectively induced sink portion is unified and laminated. Therefore, highly accurate writing with suppressed color misregistration is possible.

請求項11に記載の発明によれば、さらに、請求項8に記載のプラスチック光学素子が、前記非対称形状を有する転写面の前記非対称形状の示す方向(向き)と選択的に誘導されたヒケ部との位置関係を揃えて配置されているので、ヒケ部を形成する非転写面の垂直方向に生じる反り方向と、プラスチック光学素子の光軸に対する非対称形状の示す方向を常に同じ方向に設置した光走査ユニットを得ることができ、色ずれが低減できる。   According to the eleventh aspect of the present invention, the plastic optical element according to the eighth aspect further includes a sink portion selectively guided with a direction (orientation) indicated by the asymmetric shape of the transfer surface having the asymmetric shape. Therefore, the warp direction that occurs in the vertical direction of the non-transfer surface that forms the sink part and the direction indicated by the asymmetric shape with respect to the optical axis of the plastic optical element are always placed in the same direction. A scanning unit can be obtained, and color misregistration can be reduced.

以下、本発明の実施の形態を図面を参照して説明する。図1は光軸に対する非対称形状の示す方向(向き)を説明するための図である。図1中、縦軸はプラスチック光学素子の頂点から光軸方向の素子表面までの距離を示し、横軸はプラスチック光学素子の頂点からの距離を示す。なお、図1中、符号OAは光軸、符号Aは非対称形状の示す方向(向き)を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining the direction (orientation) indicated by the asymmetric shape with respect to the optical axis. In FIG. 1, the vertical axis represents the distance from the apex of the plastic optical element to the element surface in the optical axis direction, and the horizontal axis represents the distance from the apex of the plastic optical element. In FIG. 1, symbol OA indicates the optical axis, and symbol A indicates the direction (orientation) indicated by the asymmetric shape.

図1に示すように、非対称形状の示す方向(向き)Aは、転写面に対して光軸からの距離が等距離の部分で、光軸の通る転写面の頂点から光軸方向の転写面の表面までの距離が光軸の両側で異なっている転写面(図1では距離L1>距離L2)のことである。   As shown in FIG. 1, the direction (orientation) A indicated by the asymmetric shape is a portion at an equal distance from the optical axis with respect to the transfer surface, and the transfer surface in the optical axis direction from the apex of the transfer surface through which the optical axis passes. Is a transfer surface (distance L1> distance L2 in FIG. 1) where the distance to the surface is different on both sides of the optical axis.

即ち、転写面の非対称形状の示す方向Aとは、例えば、図1に示すように、中心(光軸)からの距離が等距離の部分に対して長尺レンズであるプラスチック光学素子の頂点から光軸方向の素子表面までの距離L1、L2が異なって(L1>L2)おり、図1の場合には矢印Aで示すように、距離L1の側から距離L2の側に向かう向きのことである。また、転写面の非対称形状の示す方向Aを、図1の矢印Aと逆向きにとって、距離L2の側から距離L1の側に向かう向きとしてもよい。   That is, the direction A indicated by the asymmetric shape of the transfer surface is, for example, as shown in FIG. 1, from the apex of the plastic optical element that is a long lens with respect to a portion that is equidistant from the center (optical axis). The distances L1 and L2 to the element surface in the optical axis direction are different (L1> L2), and in the case of FIG. 1, as indicated by the arrow A, the direction from the distance L1 side to the distance L2 side. is there. In addition, the direction A indicated by the asymmetric shape of the transfer surface may be the direction from the distance L2 side to the distance L1 side in the direction opposite to the arrow A in FIG.

図2はキャビティとプラスチック光学素子の反り量との関係を示す図である。図2中、縦軸はプラスチック光学素子の中央基準からの変位量を示し、横軸はプラスチック光学素子の中央基準からの距離を示す。また、図2中、キャビティ1−1は第1のサンプルの第1のキャビティ、キャビティ1−2は第2のサンプルの第1のキャビティ、キャビティ2−1は第1のサンプルの第2のキャビティ、キャビティ2−2は第2のサンプルの第2のキャビティをそれぞれ示す。なお、図2中、矢印Bは反り方向を示す。   FIG. 2 is a diagram showing the relationship between the cavity and the amount of warping of the plastic optical element. In FIG. 2, the vertical axis represents the amount of displacement from the center reference of the plastic optical element, and the horizontal axis represents the distance from the center reference of the plastic optical element. In FIG. 2, the cavity 1-1 is the first cavity of the first sample, the cavity 1-2 is the first cavity of the second sample, and the cavity 2-1 is the second cavity of the first sample. Cavity 2-2 indicates a second cavity of the second sample, respectively. In FIG. 2, an arrow B indicates a warping direction.

図2に示すように、キャビティ1−1〜キャビティ2−2により成形されたプラスチック光学素子はいずれもヒケ部21が誘導された非転写面2(以後、ヒケ面2)の方向(向き)に反る傾向がある(成形品に生じる反りの方向(向き)を以後「反り方向B」とする。)。   As shown in FIG. 2, the plastic optical elements formed by the cavities 1-1 to 2-2 are all in the direction (direction) of the non-transfer surface 2 (hereinafter referred to as the sink surface 2) from which the sink portion 21 is guided. There is a tendency to warp (hereinafter, the direction (direction) of warping occurring in a molded product is referred to as “warping direction B”).

図3は本発明に係る一実施形態のプラスチック光学素子の成形方法により成形された、成形直後の光学素子成形体(又はキャビティ)を示す図である。図3に示すように、本実施形態では2つのキャビティによる成形直後の光学素子成形体である一対のプラスチック光学素子1は、ゲート3で連結されている。図3の左側のプラスチック光学素子1は非対称形状の示す方向Aが上向きであり、右側の面にヒケが誘導され、反り方向Bが左から右に向かっている。また、図3の右側のプラスチック光学素子1は非対称形状の示す方向Aが下向きであり、左側の面にヒケが誘導され、反り方向Bが右から左に向かっている。   FIG. 3 is a view showing an optical element molded body (or cavity) immediately after molding, which is molded by the plastic optical element molding method according to one embodiment of the present invention. As shown in FIG. 3, in this embodiment, a pair of plastic optical elements 1 which are optical element molded bodies immediately after molding by two cavities are connected by a gate 3. In the plastic optical element 1 on the left side of FIG. 3, the direction A indicated by the asymmetric shape is upward, sink marks are induced on the right side, and the warp direction B is from left to right. Also, the plastic optical element 1 on the right side of FIG. 3 has an asymmetric shape direction A downward, sink marks are induced on the left side, and a warp direction B is from right to left.

転写面の非対称形状の示す方向Aと選択的に誘導されたヒケ部21との位置関係が同じであれば、転写面の非対称形状の示す方向Aとヒケ部21によって生じる反りの方向(図3中の矢印Bの向き)とが同じになる。   If the positional relationship between the direction A indicated by the asymmetric shape of the transfer surface and the selectively induced sink portion 21 is the same, the direction A indicated by the asymmetric shape of the transfer surface and the direction of the warp caused by the sink portion 21 (FIG. 3). The direction of arrow B in the middle) is the same.

図4は本発明に係る一実施形態のプラスチック光学素子を示す図である。図4に示すように、光学的機能面11を有する転写面と、光学的機能面11に対向する光学的機能面12を有する転写面と、ヒケ面21を有する非転写面とを備えている。光学的機能面11を有する転写面は上述したように光軸に対する非対称形状に形成され、非対称形状の示す方向Aを有している。さらに、ヒケ部21に向けて反り方向Bを有している。   FIG. 4 is a view showing a plastic optical element according to an embodiment of the present invention. As shown in FIG. 4, a transfer surface having an optical functional surface 11, a transfer surface having an optical functional surface 12 facing the optical functional surface 11, and a non-transfer surface having a sink surface 21 are provided. . As described above, the transfer surface having the optical functional surface 11 is formed in an asymmetric shape with respect to the optical axis, and has a direction A indicated by the asymmetric shape. Further, it has a warping direction B toward the sink part 21.

所定容量のキャビティを形成するキャビティ面に少なくとも1つ以上の、光軸に対して非対称形状(図1)の転写面を有し、キャビティ内に発生する樹脂圧力によって光学面となる転写面を転写する射出成形金型内にゲート3(図3参照)から溶融樹脂を充填し、樹脂冷却中に前記光学面となる転写面以外の転写面に選択的にヒケを誘導(例えば、後述する図6又は図7のようにして選択的にヒケを誘導)し、樹脂冷却後、金型から成形品を取り出して自然冷却を施してプラスチック光学素子1(図4参照)を製造する場合、成形品は図2に示すように全体的にヒケが誘導された転写面2(以後、ヒケ面2)の方向(向き)である反り方向Bに反る傾向がある。   The cavity surface forming a cavity of a predetermined capacity has at least one transfer surface having an asymmetric shape with respect to the optical axis (FIG. 1), and the transfer surface serving as an optical surface is transferred by the resin pressure generated in the cavity. An injection mold is filled with molten resin from the gate 3 (see FIG. 3), and sink marks are selectively induced on a transfer surface other than the transfer surface serving as the optical surface during resin cooling (for example, FIG. 6 described later). Alternatively, when sinking is selectively induced as shown in FIG. 7 and the plastic optical element 1 (see FIG. 4) is manufactured by taking out the molded product from the mold after cooling the resin and naturally cooling the molded product, As shown in FIG. 2, there is a tendency to warp in a warping direction B which is the direction (direction) of the transfer surface 2 (hereinafter referred to as the sinking surface 2) on which sink marks are entirely induced.

この製造方法を用いて一つの金型で同時に複数個成形する場合、前記非対称形状の示す方向Aと反り方向Bにキャビティ間でばらつきが生じる。従ってキャビティ間で前記非対称形状の示す方向Aと反り方向Bとの位置関係が一定でない場合、前記非対称形状の示す方向Aを統一してプラスチック光学素子1を保持部材(図示せず)に設置した際にプラスチック光学素子1の反り方向は異なる。   When a plurality of molds are simultaneously formed by using this manufacturing method, variation occurs between cavities in the direction A and the warp direction B indicated by the asymmetric shape. Therefore, when the positional relationship between the direction A and the warp direction B indicated by the asymmetric shape is not constant between the cavities, the direction A indicated by the asymmetric shape is unified and the plastic optical element 1 is installed on a holding member (not shown). However, the warping direction of the plastic optical element 1 is different.

そこで本発明では図3に示すように非対称形状の示す方向Aを反り方向Bがキャビティ間で常に一定になるように配置した。即ち、非対称形状の示す方向Aと反り方向Bとの関係が一定になるように非対称形状の示す方向Aと反り方向Bとを配置した。   Therefore, in the present invention, as shown in FIG. 3, the direction A indicated by the asymmetric shape is arranged so that the warping direction B is always constant between the cavities. That is, the direction A and the warp direction B indicated by the asymmetric shape are arranged so that the relationship between the direction A and the warp direction B indicated by the asymmetric shape is constant.

また該成形方法で成形したプラスチック光学素子1の一例が図4であり、非対称形状の示す方向Aとヒケ面2との位置関係がキャビティ間で一定になる。また、プラスチック光学素子1を非対称形状の示す方向Aをそろえて、例えば接着剤などで多層にした例を図5に示す。図5に示すように、積層されたプラスチック光学素子1は、非対称形状の示す方向Aおよび反り方向Bがそれぞれ同一方向(向き)に揃っている。   FIG. 4 shows an example of the plastic optical element 1 molded by the molding method, and the positional relationship between the direction A indicated by the asymmetric shape and the sink surface 2 is constant between the cavities. Further, FIG. 5 shows an example in which the plastic optical element 1 is aligned in the direction A indicating the asymmetric shape and is made into a multilayer with, for example, an adhesive. As shown in FIG. 5, in the laminated plastic optical element 1, the direction A and the warp direction B indicated by the asymmetric shape are aligned in the same direction (direction).

さらに、プラスチック光学素子1を非対称形状の示す方向Aを統一して光走査ユニットに組み込むことで、プラスチック光学素子1の反り方向Bが統一されるために、多色画像形成装置などでは色ずれの低減が可能である。   Further, by integrating the plastic optical element 1 in the optical scanning unit by unifying the direction A indicated by the asymmetric shape, the warp direction B of the plastic optical element 1 is unified. Reduction is possible.

また、本発明の一実施形態において、選択的にヒケを誘導する方法を図6、または図7に示す。図6、図7はいずれも本発明に係る実施形態のプラスチック光学素子1を製造するための射出成形用金型の断面である。   Further, in one embodiment of the present invention, a method for selectively inducing sink marks is shown in FIG. 6 or FIG. 6 and 7 are both cross-sectional views of an injection mold for manufacturing the plastic optical element 1 according to the embodiment of the present invention.

図6に示すように、本実施形態のプラスチック光学素子1を製造するための一例としての射出成形用金型4は、選択的にヒケ部21を形成する手段としてヒケ部21を有する面を形成する入れ子5に少なくとも一つ以上の通気口(圧縮空気流入孔)5aと、通気口5aに連通して成形品に圧縮空気を付与する少なくとも一つ以上の連通口(図示せず)とが設けられている。   As shown in FIG. 6, the injection mold 4 as an example for manufacturing the plastic optical element 1 of the present embodiment forms a surface having the sink portion 21 as means for selectively forming the sink portion 21. The insert 5 is provided with at least one or more vents (compressed air inflow holes) 5a and at least one or more vents (not shown) that communicate with the vents 5a and apply compressed air to the molded product. It has been.

そして、本実施形態のプラスチック光学素子の成形方法で用いる、ヒケ部を選択的に誘導する方法は、射出成形用金型4の転写面及び入れ子5によって少なくとも1つ以上のキャビティが画成された一対の射出成形用金型4を樹脂の軟化温度未満に加熱保持する金型加熱保持工程と、前記キャビティ内に軟化温度以上に加熱された溶融樹脂を射出充填する溶融樹脂充填工程と、前記転写面に樹脂圧力を発生させて樹脂を該転写面に密着させる樹脂加圧工程と、前記樹脂を軟化温度以下に冷却する際に、通気口5aからキャビティ内の樹脂に圧縮気体を付与して、樹脂と通気口5aが設けられた入れ子5との間に空隙6を画成する空隙画成工程とを備えている。これらの工程により、圧縮空気が付与され、空隙6が画成された面と他の転写面との間に熱伝導の差が生じ、空隙6に接した樹脂面にヒケが生じる。   In the method for selectively guiding the sink portion used in the plastic optical element molding method of this embodiment, at least one cavity is defined by the transfer surface of the injection mold 4 and the insert 5. A mold heating and holding step for heating and holding the pair of injection molds 4 below the softening temperature of the resin, a molten resin filling step for injecting and filling the molten resin heated to the softening temperature or higher into the cavity, and the transfer A resin pressurizing step for generating a resin pressure on the surface to bring the resin into close contact with the transfer surface, and when the resin is cooled to a softening temperature or lower, a compressed gas is applied to the resin in the cavity from the vent 5a, A void defining step of defining a void 6 between the resin and the insert 5 provided with the vent 5a. By these steps, compressed air is applied, a difference in heat conduction occurs between the surface on which the gap 6 is defined and the other transfer surface, and sink marks occur on the resin surface in contact with the gap 6.

図7に示すように、本実施形態のプラスチック光学素子1を製造するための他の例の射出成形用金型4は、選択的にヒケ部21を形成する手段としてヒケ部21を形成する入れ子5の一部が摺動自在に設けられている。   As shown in FIG. 7, another example of the injection molding die 4 for manufacturing the plastic optical element 1 according to this embodiment includes a nesting portion 21 as a means for selectively forming the sink portion 21. A part of 5 is slidably provided.

そして、本実施形態のプラスチック光学素子の成形方法で用いる、ヒケ部を選択的に誘導する他の方法は、射出成形用金型4の転写面及び入れ子5によって少なくとも1つ以上のキャビティが画成された一対の射出成形用金型4を樹脂の軟化温度未満に加熱保持する金型加熱保持工程と、前記キャビティ内に軟化温度以上に加熱された樹脂を射出充填する溶融樹脂充填工程と、前記樹脂を軟化温度以下に冷却する際に、入れ子5を樹脂から離隔するように摺動して、前記樹脂と入れ子5との間に空隙6を画成する空隙画成工程とを備えている。これらの工程により、空隙6に接した面と、他の転写面との間に熱伝導の差が生じ、空隙6に接した樹脂面にヒケが生じる。   Another method for selectively inducing the sink portion used in the plastic optical element molding method of this embodiment is that at least one cavity is defined by the transfer surface of the injection mold 4 and the insert 5. A mold heating and holding step of heating and holding the pair of injection molding molds 4 below the softening temperature of the resin, a molten resin filling step of injecting and filling the resin heated above the softening temperature into the cavity, When the resin is cooled to the softening temperature or lower, a gap defining step is defined in which the insert 5 is slid away from the resin to define a gap 6 between the resin and the insert 5. By these steps, a difference in heat conduction occurs between the surface in contact with the gap 6 and another transfer surface, and sink marks are generated in the resin surface in contact with the gap 6.

以上において、転写面の非対称形状の示す方向(向き)と選択的に誘導されたヒケ部との位置関係が複数のキャビティ間で統一されているとは、例えば、距離L1の側から距離L2の側に向かう向きとヒケ部との位置関係が複数のキャビティ間で統一されていることをいうものとする。また、転写面の非対称形状の示す方向(向き)と選択的に誘導されたヒケ部との位置関係が複数のキャビティ間で統一されているとは、例えば、距離L2の側から距離L1の側に向かう向きとヒケ部との位置関係が複数のキャビティ間で統一されていることをいうものとしてもよい。   In the above, the positional relationship between the direction (orientation) indicated by the asymmetric shape of the transfer surface and the selectively induced sink marks is uniform among the plurality of cavities, for example, from the distance L1 side to the distance L2 side. It is assumed that the positional relationship between the direction toward the side and the sink part is unified among a plurality of cavities. In addition, the positional relationship between the direction (orientation) indicated by the asymmetric shape of the transfer surface and the selectively induced sink part is uniform among the plurality of cavities, for example, from the distance L2 side to the distance L1 side. It may be said that the positional relationship between the direction toward the surface and the sink portion is unified among a plurality of cavities.

図8は本発明に係る第2の実施形態のプラスチック光学素子の成形方法により成形された、成形直後の光学素子成形体(又はキャビティ)を示す図である。この第2実施形態では、金型に基準マーク7を設けた点のみ第1の実施形態と異なり、他の構成は第1の実施形態と同様であるので、同様な部分の説明を省略する。   FIG. 8 is a view showing an optical element molded body (or cavity) immediately after molding, which is molded by the plastic optical element molding method according to the second embodiment of the present invention. The second embodiment is different from the first embodiment only in that the reference mark 7 is provided on the mold, and the other configuration is the same as that of the first embodiment, and thus the description of the same parts is omitted.

前記非対称形状の示す方向Aを前記プラスチック光学素子1の反り方向Bがキャビティ間で常に一定になるように入れ子を組み込む場合、非対称形状の示す方向Aは目視で判別することが難しく、形状を測定し方向を判別しなければならない。そこで前記非対称形状を有する転写面を形成する入れ子に非対称形状の示す方向が判別できるように基準マーク7を設けることにより、前記入れ子を金型に組み込む際に方向を誤ることなく組み込むことが出来る。   When the nesting is incorporated so that the direction A indicated by the asymmetric shape is always constant between the cavities B of the plastic optical element 1, it is difficult to visually determine the direction A indicated by the asymmetric shape, and the shape is measured. The direction must be determined. Therefore, by providing the reference mark 7 so that the direction of the asymmetric shape can be discriminated in the nest that forms the transfer surface having the asymmetric shape, the nest can be incorporated in the mold without error.

また図8に示すように、非対称形状を転写する転写面を有する入れ子の光学的な機能を有する範囲8外の転写面に非対称形状の示す方向Aを判別可能な基準マーク7を設けた。これによりプラスチック光学素子1を成形する射出成形用金型に非対称形状を有する入れ子を組み込む際に、非対称形状の示す方向Aを間違えることなく組み込むことが出来る。また、基準マーク7は成形品にも転写されるので、プラスチック光学素子1を光走査ユニットに組み込む際に非対称形状の示す方向Aを判別することが容易である。   Further, as shown in FIG. 8, a reference mark 7 capable of discriminating the direction A indicated by the asymmetric shape is provided on the transfer surface outside the range 8 having the optical function of the nesting having the transfer surface for transferring the asymmetric shape. As a result, when an insert having an asymmetric shape is incorporated into an injection mold for molding the plastic optical element 1, the direction A indicated by the asymmetric shape can be incorporated without mistake. Further, since the reference mark 7 is also transferred to the molded product, it is easy to determine the direction A indicated by the asymmetric shape when the plastic optical element 1 is incorporated into the optical scanning unit.

図9は本発明に係る第3の実施形態のプラスチック光学素子の成形方法により成形された、成形直後の光学素子成形体(又はキャビティ)を示す図である。図9に示すように、第3の実施形態では、第1の実施形態などと同様に、非対称形状の示す方向Aと成形により生じるプラスチック光学素子の反り方向Bとをキャビティ間で統一したことに加え、さらにゲート3の位置関係まで統一して成形する。溶融樹脂を一定の圧力によりゲート3からキャビティ内に流し込み、成形品の形状を形成する射出成形法ではゲート3から樹脂最終充填位置まで樹脂が流入する過程においてキャビティを形成する入れ子に溶融樹脂の熱が奪われ、樹脂温度が低下し、樹脂の流動性が悪くなる。また、樹脂充填後の保圧工程では、ゲート3付近と樹脂最終充填位置では圧力差が生じる。これらの成形品の場所による成形特性のばらつきは、プラスチック光学素子1の光学的な機能を有する転写面の形状や外形、内部の屈折率分布などに影響を及ぼす。よって第3の実施形態では、図9に示すように、非対称形状の示す方向A、ヒケ部21及びゲート3の互いの位置関係をキャビティ間で統一することにより、前記非対称形状の示す方向Aと反り方向B、さらには前記成形特性の傾向を統一した。なお、本発明は上記実施例に限定されるものではない。例えば、上記実施形態では長尺のプラスチック光学素子の長尺方向に沿う断面内で非対称形状を有する場合について説明したが、短尺方向に沿う断面内が非対称形状を有する場合についても本発明を適用することができる。また、上記実施形態では複数のキャビティとして、2つの場合について説明したが、キャビティは3以上であっても本発明を容易に適用することができる。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   FIG. 9 is a view showing an optical element molded body (or cavity) immediately after molding, which is molded by the plastic optical element molding method according to the third embodiment of the present invention. As shown in FIG. 9, in the third embodiment, as in the first embodiment, the direction A indicated by the asymmetric shape and the warp direction B of the plastic optical element generated by molding are unified between the cavities. In addition, the positional relationship of the gate 3 is unified and molded. In the injection molding method in which the molten resin is poured into the cavity from the gate 3 with a constant pressure, and the resin flows from the gate 3 to the final resin filling position, the heat of the molten resin is formed in the nest that forms the cavity. Is taken away, the resin temperature decreases, and the fluidity of the resin deteriorates. Further, in the pressure-holding step after the resin filling, a pressure difference occurs between the vicinity of the gate 3 and the resin final filling position. Variations in molding characteristics depending on the location of these molded products affect the shape and outer shape of the transfer surface having the optical function of the plastic optical element 1, the internal refractive index distribution, and the like. Therefore, in the third embodiment, as shown in FIG. 9, the direction A indicated by the asymmetric shape and the positional relationship between the sink portion 21 and the gate 3 are unified between the cavities, thereby the direction A indicated by the asymmetric shape and Warpage direction B, and also the tendency of the molding characteristics were unified. In addition, this invention is not limited to the said Example. For example, in the above embodiment, the case where the long plastic optical element has an asymmetric shape in the cross section along the longitudinal direction has been described, but the present invention is also applied to the case where the cross section along the short direction has an asymmetric shape. be able to. Moreover, although the said embodiment demonstrated two cases as a some cavity, this invention is easily applicable even if there are three or more cavities. That is, various modifications can be made without departing from the scope of the present invention.

光軸に対する非対称形状の示す方向(向き)を説明するための図である。It is a figure for demonstrating the direction (direction) which the asymmetrical shape shows with respect to an optical axis. キャビティとプラスチック光学素子の反り量との関係を示す図である。It is a figure which shows the relationship between a cavity and the curvature amount of a plastic optical element. 本発明に係る一実施形態のプラスチック光学素子の成形方法により成形された、成形直後の光学素子成形体を示す図である。It is a figure which shows the optical element molded object immediately after shaping | molding shape | molded by the shaping | molding method of the plastic optical element of one Embodiment which concerns on this invention. 本発明に係る一実施形態のプラスチック光学素子を示す図である。It is a figure which shows the plastic optical element of one Embodiment which concerns on this invention. 本発明に係る他の実施形態の多層に積層したプラスチック光学素子を示す図である。It is a figure which shows the plastic optical element laminated | stacked on the multilayer of other embodiment which concerns on this invention. 選択的にヒケを誘導する方法を説明するための金型断面図である。It is a metal mold | die sectional view for demonstrating the method of guide | inducing a sink selectively. 選択的にヒケを誘導する他の方法を説明するための金型断面図である。It is a metal mold sectional view for explaining other methods for selectively inducing sink marks. 本発明に係る第2の実施形態のプラスチック光学素子の成形方法により成形された、成形直後の光学素子成形体を示す図である。It is a figure which shows the optical element molded object immediately after shaping | molding shape | molded by the shaping | molding method of the plastic optical element of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施形態のプラスチック光学素子の成形方法により成形された、成形直後の光学素子成形体を示す図である。It is a figure which shows the optical element molded object immediately after shaping | molding shape | molded by the shaping | molding method of the plastic optical element of 3rd Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 プラスチック光学素子
2 非転写面(ヒケ面)
3 ゲート
4 射出成形用金型
5 入れ子
5a 通気口
6 空隙
7 基準マーク
8 光学的特性の有効範囲
11 光学的機能面
12 光学的機能面
21 ヒケ部
A 非対称形状の示す方向
B 反り方向
1 Plastic optical element 2 Non-transfer surface (sink surface)
DESCRIPTION OF SYMBOLS 3 Gate 4 Injection mold 5 Nest 5a Vent 6 Air gap 7 Reference mark 8 Effective range of optical characteristics 11 Optical functional surface 12 Optical functional surface 21 Sink part A Direction of asymmetric shape B Warp direction

Claims (10)

光軸に対して非対称形状を有する少なくとも一つの転写面と、該非対称形状を有する転写面以外の非転写面に選択的に誘導された少なくとも一つのヒケ部とを有する光学素子を、複数のキャビティを有する一つの金型で複数個同時に成形するプラスチック光学素子の成形方法において、
前記転写面と選択的に誘導されたヒケ部との位置関係を前記複数のキャビティ間で統一して成形することを特徴とするプラスチック光学素子の成形方法。
An optical element having at least one transfer surface having an asymmetric shape with respect to the optical axis and at least one sink part selectively guided to a non-transfer surface other than the transfer surface having the asymmetric shape is provided with a plurality of cavities. In a plastic optical element molding method in which a plurality of molds are molded simultaneously with a single mold having
A plastic optical element molding method, wherein the positional relationship between the transfer surface and the selectively induced sink part is unified between the plurality of cavities.
前記非対称形状を有する転写面は光学的な機能を有することを特徴とする請求項1に記載のプラスチック光学素子の成形方法。   The method for molding a plastic optical element according to claim 1, wherein the transfer surface having the asymmetric shape has an optical function. 前記転写面及び前記非転写面により画成されたキャビティが複数設けられた1対の金型を樹脂の軟化温度未満に加熱保持する金型加熱保持工程と、
前記キャビティ内に軟化温度以上に加熱された溶融樹脂を射出充填する溶融樹脂充填工程と、
前記転写面に樹脂圧力を発生させて樹脂を該転写面に密着させる樹脂加圧工程と、
前記樹脂を軟化温度以下に冷却する際に、前記非転写面の通気口からキャビティ内の樹脂に圧縮気体を付与して、樹脂と前記非転写面との間に空隙を画成する空隙画成工程とを備えることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法。
A mold heating and holding step of heating and holding a pair of molds provided with a plurality of cavities defined by the transfer surface and the non-transfer surface, below the softening temperature of the resin;
A molten resin filling step of injecting and filling the molten resin heated above the softening temperature into the cavity;
A resin pressurizing step for generating a resin pressure on the transfer surface to bring the resin into close contact with the transfer surface;
When the resin is cooled below the softening temperature, a compressed gas is applied to the resin in the cavity from the vent of the non-transfer surface to define a void between the resin and the non-transfer surface. The method for molding a plastic optical element according to claim 1, further comprising a step.
前記転写面及び前記非転写面により画成されたキャビティが複数設けられた1対の金型を樹脂の軟化温度未満に加熱保持する金型加熱保持工程と、
前記キャビティ内に軟化温度以上に加熱された溶融樹脂を射出充填する溶融樹脂充填工程と、
前記溶融樹脂を軟化温度以下に冷却する際に、前記非転写面を形成する入れ子を樹脂から離隔するように摺動して、前記溶融樹脂と前記入れ子との間に空隙を画成する空隙画成工程とを備えることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法。
A mold heating and holding step of heating and holding a pair of molds provided with a plurality of cavities defined by the transfer surface and the non-transfer surface, below the softening temperature of the resin;
A molten resin filling step of injecting and filling the molten resin heated above the softening temperature into the cavity;
When the molten resin is cooled to a softening temperature or lower, a gap is formed between the molten resin and the insert by sliding the insert forming the non-transfer surface away from the resin. A plastic optical element molding method according to claim 1, further comprising a forming step.
前記非対称形状を有する転写面を形成する入れ子の前記転写面の光学的な機能を有する部分を成形する部分の範囲外に前記非対称形状の方向が判別可能な基準を設けることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法。 Claims, characterized in that providing the direction distinguishable criterion asymmetrically shaped portion having an optical function of the transfer surface of the charged element to form the transfer surface to the outside of the portion for molding having the asymmetric shape Item 3. A method for molding a plastic optical element according to Item 1 or 2. 前記非対称形状を有する転写面の前記転写面の光学的な機能を有する部分の範囲外に前記非対称形状の方向が判別可能な基準を設けることを特徴とする請求項1又は2に記載のプラスチック光学素子の成形方法。 3. The plastic optical according to claim 1, wherein a reference capable of discriminating the direction of the asymmetric shape is provided outside the range of the transfer surface having the optical function of the transfer surface having the asymmetric shape. Element molding method. 記転写面と、選択的に誘導されたヒケ部と、更にはゲートとの位置関係が全てのキャビティ間で統一されていることを特徴とする請求項1〜6のいずれかに記載のプラスチック光学素子の成形方法。 Before Symbol transfer surface, plastics according to claim 1 and a sink unit which is selectively induced, further, characterized in that the positional relationship between the gate is unified among all the cavities Optical element molding method. 請求項1〜7のいずれかの成形方法で成形されたプラスチック光学素子が複数準備され、該複数のプラスチック光学素子が選択的に誘導されたヒケ部を有する面とそれに対向する面とが接着剤で固定され、多層に積層されていることを特徴とする積層体のプラスチック光学素子。 Plastic optical element molded by any molding method of claims 1 to 7 is more ready, face-to-face and are contact adhesive facing thereto with a shrinkage portion plastic optical element is selectively induced in said plurality of A laminated plastic optical element characterized in that it is fixed with an agent and laminated in multiple layers. 光軸に対して非対称形状を有する少なくとも一つの転写面と、該非対称形状を有する転写面以外の非転写面に選択的に誘導された少なくとも一つのヒケ部とを有するプラスチック光学素子において、
記転面と選択的に誘導されたヒケ部との位置関係が統一されて積層されていることを特徴とする積層体のプラスチック光学素子。
In a plastic optical element having at least one transfer surface having an asymmetric shape with respect to the optical axis and at least one sink part selectively guided to a non-transfer surface other than the transfer surface having the asymmetric shape,
Plastic optical element of the stack, wherein a positional relationship between the front Kiten imaging surface and selectively induced shrinkage portion are laminated are unified.
請求項1〜7のいずれかの成形方法で成形されたプラスチック光学素子が、前記非対称形状を有する転写面の前記非対称形状の方向と選択的に誘導されたヒケ部との位置関係を揃えて配置されている光走査ユニット。 The plastic optical element molded by the molding method according to any one of claims 1 to 7 is arranged so that a positional relationship between the direction of the asymmetric shape of the transfer surface having the asymmetric shape and a selectively induced sink portion is aligned. Optical scanning unit.
JP2004143786A 2004-05-13 2004-05-13 Plastic optical element, molding method thereof, and optical scanning unit Expired - Fee Related JP4267517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143786A JP4267517B2 (en) 2004-05-13 2004-05-13 Plastic optical element, molding method thereof, and optical scanning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143786A JP4267517B2 (en) 2004-05-13 2004-05-13 Plastic optical element, molding method thereof, and optical scanning unit

Publications (2)

Publication Number Publication Date
JP2005324410A JP2005324410A (en) 2005-11-24
JP4267517B2 true JP4267517B2 (en) 2009-05-27

Family

ID=35471146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143786A Expired - Fee Related JP4267517B2 (en) 2004-05-13 2004-05-13 Plastic optical element, molding method thereof, and optical scanning unit

Country Status (1)

Country Link
JP (1) JP4267517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063998B2 (en) * 2006-11-29 2012-10-31 株式会社リコー Optical component and optical scanning unit
JP5158517B2 (en) * 2009-02-02 2013-03-06 株式会社リコー Optical scanning apparatus and image forming apparatus

Also Published As

Publication number Publication date
JP2005324410A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP2006292944A (en) Plastic optical element, mold for plastic optical element, optical scanner and image forming apparatus provided with the optical scanner
JP5063998B2 (en) Optical component and optical scanning unit
JP5326276B2 (en) Mold for molding plastic lens, plastic lens, optical scanning device including the same, and image forming apparatus
JP2009222934A (en) Optical scanner-plastic optical element, and image forming apparatus
US20030112531A1 (en) Molded lens, scanning lens, optical scanner and image forming apparatus
JP4267517B2 (en) Plastic optical element, molding method thereof, and optical scanning unit
US8004554B2 (en) Plastic optical element, optical scanning device, and image forming apparatus using the optical scanning device
JP4448312B2 (en) Optical element positioning jig
JP5163518B2 (en) Optical scanning apparatus, image forming apparatus, and plastic lens manufacturing method
JP2003177214A (en) Plastic optical element
US20120063811A1 (en) Resin casting mold, molded resin product, optical element, optical scanning device, and image forming apparatus
JP2005182077A (en) Beam scanner and its manufacturing method
JP4291032B2 (en) Optical element, optical scanning device, mirror piece, positioning jig, and positioning method
US8873124B2 (en) Plastic optical element, optical scanner including the plastic optical element, and image forming apparatus including same
JP4751184B2 (en) Plastic optical element, optical scanning device, and image forming apparatus equipped with the optical scanning device
JP2010060637A (en) Plastic optical element, optical scanning apparatus, and image forming apparatus
JP5158517B2 (en) Optical scanning apparatus and image forming apparatus
JP2002254466A (en) Plastic molded product and its manufacturing method
JP4053716B2 (en) Plastic molded product and molding method thereof
JP2011081369A (en) Plastic optical element, optical scanning device, and image forming apparatus
JP5065366B2 (en) Optical element positioning method, optical element, and optical scanning device
JP2016186580A (en) Lens array unit, image forming apparatus, and manufacturing method of lens array unit
JP2005326697A (en) Plastic molded article for optical element, molding method therefor, optical scanner, and image forming apparatus mounting optical scanner thereon
JP5915289B2 (en) Optical scanning lens, manufacturing method thereof, and image forming apparatus
JP2010060962A (en) Plastic optical element, optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees