JP5062737B2 - Method for producing hollow fiber organic nanotube - Google Patents

Method for producing hollow fiber organic nanotube Download PDF

Info

Publication number
JP5062737B2
JP5062737B2 JP2007136322A JP2007136322A JP5062737B2 JP 5062737 B2 JP5062737 B2 JP 5062737B2 JP 2007136322 A JP2007136322 A JP 2007136322A JP 2007136322 A JP2007136322 A JP 2007136322A JP 5062737 B2 JP5062737 B2 JP 5062737B2
Authority
JP
Japan
Prior art keywords
hollow fiber
solution
organic
aqueous solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007136322A
Other languages
Japanese (ja)
Other versions
JP2008031152A (en
Inventor
真澄 浅川
真樹 小木曽
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007136322A priority Critical patent/JP5062737B2/en
Priority to PCT/JP2007/061706 priority patent/WO2008001599A1/en
Publication of JP2008031152A publication Critical patent/JP2008031152A/en
Application granted granted Critical
Publication of JP5062737B2 publication Critical patent/JP5062737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0092Hollow drug-filled fibres, tubes of the core-shell type, coated fibres, coated rods, microtubules or nanotubes

Description

本発明は、医薬、化成品分野などにおける包接・分離用材料、薬剤徐放材料として、あるいは高機能性材料として有用な中空繊維状有機ナノチューブとその製造方法に関し、さらに詳しくは、アルカリ性水溶液に溶解した後酸性化合物を加えること、もしくは酸性水溶液に溶解した後アルカリ性化合物を加えること、によって簡便に中空繊維状有機ナノチューブを製造する方法に関するものである。   The present invention relates to hollow fibrous organic nanotubes useful as inclusion / separation materials, drug sustained-release materials, or high-functional materials in the fields of medicine and chemicals, and more particularly to alkaline aqueous solutions. The present invention relates to a method for easily producing hollow fiber organic nanotubes by adding an acidic compound after dissolution, or adding an alkaline compound after dissolution in an acidic aqueous solution.

ナノテクノロジーを代表する材料として0.5〜500ナノメートル(以下nmと記す)の細孔を有するナノチューブ状材料が注目を集めている。そのなかでも人工的に初めて合成された無機系ナノチューブであるカーボンナノチューブは良く知られており(非特許文献1)、そのサイズ、形状、化学構造、等に由来する特性への期待から、ナノスケールの電子デバイス、高強度材料、電子放出、及びガス貯蔵等への用途開発とともに、実用化への要望から精力的に量産化に関する研究が進められている(特許文献1及び非特許文献2)。
また、1nm以下の細孔を有する有機環状化合物としてクロデキストリンが有名である。シクロデキストリンは、種々の低分子有機化合物をその環状中空部に内包できることから、健康食品分野、化粧品分野、抗菌消臭・家庭品分野、工業・農業・環境分野への貢献を目的に、様々なシクロデキストリン包接品が研究開発され、既に事業化されているものも多い(特許文献2、特許文献3、特許文献4)。このようなシクロデキストリンの広範な用途開発の実施は、シクロデキストリンの量産化が実現していることと、シクロデキストリンの構造がブドウ糖6〜8単位を環状に連ねたものであり、生体への安全性が確保されていることが大きな要因である。
As a material representative of nanotechnology, a nanotube-like material having pores of 0.5 to 500 nanometers (hereinafter referred to as nm) has attracted attention. Among them, carbon nanotubes, which are inorganic nanotubes synthesized artificially for the first time, are well known (Non-Patent Document 1). From the expectation of characteristics derived from their size, shape, chemical structure, etc., nanoscale In addition to the development of applications for electronic devices, high-strength materials, electron emission, gas storage, etc., research on mass production has been actively pursued from the demand for practical application (Patent Document 1 and Non-Patent Document 2).
Clodextrin is famous as an organic cyclic compound having pores of 1 nm or less. Cyclodextrins can encapsulate various low-molecular-weight organic compounds in the annular hollow part, so that they can be used in various ways for the purpose of contributing to the health food field, cosmetics field, antibacterial deodorization / household goods field, industry / agriculture / environment field. Many cyclodextrin inclusion products have been researched and developed and have already been commercialized (Patent Document 2, Patent Document 3, Patent Document 4). The development of a wide range of applications for such cyclodextrins is realized by the mass production of cyclodextrins and the structure of cyclodextrins in which 6 to 8 units of glucose are linked in a ring, which is safe for the living body. The main factor is that it is secured.

本発明者らは無機系ナノチューブとは違った分野での応用が見込まれ、またシクロデキストリンよりも大きな内孔サイズの中空構造を有する長鎖炭化水素基に糖残基を結合させた糖脂質を自己集合させることにより形成される中空繊維状有機ナノチューブを合成することに成功している(特許文献5、非特許文献3)。この中空繊維状有機ナノチューブは、中空シリンダー部の内孔サイズが5〜500nmであり、シクロデキストリンよりも一桁以上大きいため、シクロデキストリンでは包接が不可能である5〜500nmのタンパク質、ウイルス、金属微粒子やその他の無機微粒子等をその中空シリンダー内部に捕捉できる可能性があり、その用途開発が期待されている。このような中空繊維状有機ナノチューブの新たな用途開発を積極的に推進するためには、上記糖脂質以外の化合物による中空繊維状有機ナノチューブとその合成法が開発されることが望ましい。   The inventors of the present invention are expected to be applied in fields different from inorganic nanotubes. In addition, glycolipids in which a sugar residue is bonded to a long-chain hydrocarbon group having a hollow structure having an inner pore size larger than that of cyclodextrin. It has succeeded in synthesizing hollow fiber-like organic nanotubes formed by self-assembly (Patent Document 5, Non-Patent Document 3). The hollow fiber-like organic nanotube has a hollow cylinder portion with an inner pore size of 5 to 500 nm, which is an order of magnitude larger than that of cyclodextrin. Therefore, inclusion of 5-500 nm protein, virus, There is a possibility that metal fine particles and other inorganic fine particles can be trapped inside the hollow cylinder, and development of their use is expected. In order to actively promote the development of new applications of such hollow fiber-like organic nanotubes, it is desirable to develop hollow fiber-like organic nanotubes using compounds other than the glycolipids and their synthesis methods.

そこで本発明者らは、長鎖脂肪酸のカルボキシル基とオリゴペプチドのN端を結合させたペプチド脂質の自己集合により形成される中空繊維状有機ナノチューブの合成検討を進めた。その結果、水中でペプチド脂質と遷移金属を共存させることにより、ナノサイズの中空繊維状構造物が形成することを見出している(特許文献6)。
しかしながら、遷移金属を用いずに長鎖脂肪酸のカルボキシル基とオリゴペプチドのN端を結合させたペプチド脂質から中空繊維状有機ナノチューブを直接合成する方法、並びにその中空繊維状有機ナノチューブは、これまで知見することができなかった。
また、このペプチド脂質は分子の末端にカルボシキル基を有しているため、酸性条件下では安定であるが、アルカリ性条件下では不安定であるという欠点があった。この問題を解決できると期待される長鎖アミンのアミノ基とオリゴペプチドのC末端を結合させたペプチド脂質から中空繊維状有機ナノチューブを直接合成する方法、並びにその中空繊維状有機ナノチューブは、これまで知られていない。
特表2003−535794号公報 特開2005−306763号公報 特開2006−1917号公報 特開平7−109254号公報 特開2004−224717号公報 特開2004−250797号公報 S.Iijima, Nature, 1991, 354, 56 K.Hata, DonN.Futaba, K.Mizuno, T.Namai, M.Yumura, S.Iijima, Science, 2004, 306, 1362 S.Kamiya, H.Minamikawa, J.H.Jung, Y.Bo, M.Masuda, T.Shimizu, Langmuir, 2005, 21, 743 B.Yang, S.Kamiya, K.Yoshida, T.Shimizu, Chem.Comm., 2004, 500 B.Yang, S.Kamiya, N.Koshizaki, Y.Shimizu, T.Shimizu, Chem.Mater., 2004, 16, 2826
Accordingly, the present inventors proceeded with the synthesis of hollow fiber-like organic nanotubes formed by self-assembly of peptide lipids in which the carboxyl group of long-chain fatty acid and the N-terminus of oligopeptide were bound. As a result, it has been found that a nano-sized hollow fibrous structure is formed by allowing a peptide lipid and a transition metal to coexist in water (Patent Document 6).
However, a method for directly synthesizing hollow fiber organic nanotubes from peptide lipids in which the carboxyl group of a long-chain fatty acid and the N-terminus of an oligopeptide are bonded without using a transition metal, and the hollow fiber organic nanotubes have been known so far. I couldn't.
In addition, since this peptide lipid has a carboxyl group at the end of the molecule, it has a drawback that it is stable under acidic conditions but unstable under alkaline conditions. A method for directly synthesizing hollow fiber organic nanotubes from peptide lipids in which the amino group of a long-chain amine expected to solve this problem and the C-terminus of the oligopeptide are combined, and the hollow fiber organic nanotubes have so far been unknown.
Special table 2003-535794 gazette JP 2005-306763 A JP 2006-1917 A JP-A-7-109254 JP 2004-224717 A JP 2004-250797 A S.Iijima, Nature, 1991, 354, 56 K.Hata, DonN.Futaba, K.Mizuno, T.Namai, M.Yumura, S.Iijima, Science, 2004, 306, 1362 S. Kamiya, H. Minamikawa, JHJung, Y.Bo, M. Masuda, T. Shimizu, Langmuir, 2005, 21, 743 B. Yang, S. Kamiya, K. Yoshida, T. Shimizu, Chem. Comm., 2004, 500 B. Yang, S. Kamiya, N. Koshizaki, Y. Shimizu, T. Shimizu, Chem. Mater., 2004, 16, 2826

本発明は、カーボンナノチューブに代表される無機ナノチューブにはない特性を持ち、しかもシクロデキストリンよりも約10倍以上大きな内径と高い軸比を持つ中空繊維状有機ナノチューブを、遷移金属を用いることなく簡便に合成できる方法を提供することを目的とする。   The present invention provides a hollow fiber-like organic nanotube that has characteristics not found in inorganic nanotubes typified by carbon nanotubes and that has an inner diameter and a high axial ratio that are about 10 times larger than that of cyclodextrin without using a transition metal. It is an object to provide a method that can be synthesized.

発明者らは、上記課題を解決するため、鋭意検討した結果、長鎖炭化水素基とペプチド鎖の結合体からなるペプチド脂質をアルカリ性水溶液に溶解した後酸性化合物を加えること、もしくは酸性水溶液に溶解した後アルカリ性化合物を加えること、により自己集合させると、遷移金属を用いることなく、ナノサイズの中空繊維状構造物を形成することを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors have dissolved peptide lipids composed of long-chain hydrocarbon group and peptide chain conjugates in an alkaline aqueous solution and then added an acidic compound, or dissolved in an acidic aqueous solution. After that, when self-assembly was performed by adding an alkaline compound, a nano-sized hollow fiber-like structure was formed without using a transition metal, and the present invention was completed.

すなわち本発明は、下記一般式(1)
RCO(NH−CHR’−CO)OH (1)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは2又は3を表す。)で表わされるペプチド脂質を、アルカリ性水溶液に溶解させる段階、その溶液を酸性雰囲気下に放置する段階、及び溶液中で自己集合することにより生成する中空繊維状有機ナノチューブを溶液から回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法である。
また、本発明は、下記一般式(2)
H(NH−CHR’−CO)NHR (2)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは2又は3を表す。)で表わされるペプチド脂質を酸性水溶液に溶解させる段階、その溶液をアルカリ性雰囲気下に放置する段階、及び溶液中で自己集合することにより生成する中空繊維状有機ナノチューブを溶液から回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法である。
That is, the present invention provides the following general formula (1)
RCO (NH—CHR′—CO) m OH (1)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, m represents 2 or 3 ), a step of dissolving the peptide lipid in an alkaline aqueous solution, and the solution is acidic A method for producing hollow fiber organic nanotubes, comprising a step of leaving in an atmosphere and a step of recovering hollow fiber organic nanotubes produced by self-assembly in a solution from a solution and air drying or drying under reduced pressure at room temperature. is there.
Further, the present invention provides the following general formula (2)
H (NH—CHR′—CO) m NHR (2)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, m represents 2 or 3 ), a step of dissolving the peptide lipid in an acidic aqueous solution, and the solution in an alkaline atmosphere A method for producing hollow fiber organic nanotubes, comprising: a step of leaving the substrate under a vacuum; and a step of recovering hollow fiber-like organic nanotubes generated by self-assembly in a solution from a solution and air-drying or drying under reduced pressure at room temperature. .

本発明によれば、下記一般式(1)
RCO(NH−CHR’−CO)OH (1)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは2又は3を表す。)又は下記一般式(2)
H(NH−CHR’−CO)NHR (2)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは2又は3を表す。)で表わされるペプチド脂質からなる実用化に適した中空状の繊維構造、形態を有する中空繊維状有機ナノチューブを、遷移金属を用いることなく容易に製造することができる。
According to the present invention, the following general formula (1)
RCO (NH—CHR′—CO) m OH (1)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents 2 or 3 ) or the following general formula (2)
H (NH—CHR′—CO) m NHR (2)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents 2 or 3 ), a hollow fiber structure suitable for practical use, comprising a peptide lipid, A hollow fiber-like organic nanotube having a shape can be easily produced without using a transition metal.

本発明のペプチド脂質は、長鎖炭化水素基を有するペプチド脂質、すなわち下記の一般式(1)
RCO(NH-CHR’-CO)OH (1)
又は下記の一般式(2)
H(NH-CHR’-CO)NHR (2)
で表わされるペプチド脂質であり、これを原料として中空繊維状有機ナノチューブを製造することができる。
The peptide lipid of the present invention is a peptide lipid having a long-chain hydrocarbon group, that is, the following general formula (1)
RCO (NH—CHR′—CO) m OH (1)
Or the following general formula (2)
H (NH—CHR′—CO) m NHR (2)
A hollow fiber-like organic nanotube can be produced using this as a raw material.

この一般式(1)及び一般式(2)中、Rは炭素数が6〜24の炭化水素基、好ましくは炭素数2以下の側鎖が付いてもよい直鎖炭化水素である。この炭化水素基は飽和であっても不飽和であってもよく。不飽和の場合には3個以下の二重結合を含むことが好ましい。またRの炭素数は6〜24、好ましくは10〜16である。このような炭化水素基としては、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘネイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、及びヘキサコシル基などが挙げられる。
また、上記一般式(1)及び一般式(2)中、R’はアミノ酸側鎖であり、このアミノ酸としては、例えば、グリシン、バリン、ロイシン、イソロイシン、アラニン、アルギニン、グルタミン、リジン、アスパラギン酸、グルタミン酸、プロリン、システイン、スレオニン、メチオニン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、及びセリンが挙げられ、好ましくはグリシンである。このアミノ酸側鎖はD、L型、ラセミ体のいずれであってもよいが、天然由来のものは通常L型である。
上記一般式(1)及び一般式(2)中、mは1〜10の整数であり、好ましくは2である。
In the general formula (1) and the general formula (2), R is a hydrocarbon group having 6 to 24 carbon atoms, preferably a linear hydrocarbon which may have a side chain having 2 or less carbon atoms. This hydrocarbon group may be saturated or unsaturated. In the case of unsaturated, it is preferable to contain 3 or less double bonds. R has 6 to 24 carbon atoms, preferably 10 to 16 carbon atoms. Such hydrocarbon groups include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl , Eicosyl group, heneicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group and the like.
In the general formulas (1) and (2), R ′ is an amino acid side chain, and examples of the amino acid include glycine, valine, leucine, isoleucine, alanine, arginine, glutamine, lysine, and aspartic acid. , Glutamic acid, proline, cysteine, threonine, methionine, histidine, phenylalanine, tyrosine, tryptophan, asparagine, and serine, preferably glycine. This amino acid side chain may be any of D, L, and racemate, but naturally derived is usually L.
In the above general formula (1) and general formula (2), m is an integer of 1 to 10, preferably 2.

本発明のペプチド脂質の製法に特に制限はないが、一般式(1)で表されるペプチド脂質は、例えば、一般式R−COOH(式中、Rは一般式(1)のRと同じ意味をもつ)で表わされる長鎖カルボン酸又は一般式R−COCl(式中、Rは一般式(1)のRと同じ意味をもつ)で表わされる長鎖カルボン酸クロライドを、ペプチドのN端側と反応させて、ペプチド結合を形成させることによって、製造することができる。
長鎖カルボン酸として、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン産、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ヘネイコサン酸、ドコサン酸、トリコサン酸、テトラコサン酸、ペンタコサン酸、ヘキサコサン酸などを挙げることができる。この中でドデカン酸、テトラデカン酸、等は得られるペプチド脂質の両親媒性のバランス、天然に存在するために安価に入手可能なことなどから望ましい。
The method for producing the peptide lipid of the present invention is not particularly limited, but the peptide lipid represented by the general formula (1) is, for example, the general formula R-COOH (wherein R has the same meaning as R in the general formula (1)). A long chain carboxylic acid represented by the general formula R-COCl (wherein R has the same meaning as R in the general formula (1)), N-terminal side of the peptide It can be produced by reacting with to form a peptide bond.
As long chain carboxylic acids, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decane, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid And heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid, pentacosanoic acid and hexacosanoic acid. Of these, dodecanoic acid, tetradecanoic acid, and the like are desirable because of the balance of the amphipathic properties of the obtained peptide lipids and the fact that they are naturally available and are available at low cost.

また、一般式(2)で表されるペプチド脂質は、例えば、一般式R−NH(式中、Rは一般式(2)のRと同じ意味をもつ)で表わされる長鎖アミンを、ペプチドのC端側と反応させて、ペプチド結合を形成させることによって、製造することができる。
長鎖アミンとして、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコシルアミン、ヘネイコシルアミン、ドコシルアミン、トリコシルアミン、テトラコシルアミン、ペンタコシルアミン、及びヘキサコシルアミンなどを挙げることができる。この中でテトラデシルアミン、ヘキサデシルアミン、等は得られるペプチド脂質の両親媒性のバランス、安価に入手可能なことなどから望ましい。
一般式(2)で表されるペプチド脂質のN端は、通常、ハロゲン原子を持つ酸の塩として単離する。これは、N端が各種の保護基で修飾されているのを、各種の希酸/有機溶媒を用いて脱保護を行うためである。さらに、N端アミノ基が遊離の状態で保存するより、ハロゲン原子を持つ酸の塩として保存したほうが化学的に安定である。塩としては、臭化水素酸塩、塩酸塩などが一般的であるが、一般的には、塩酸塩である。
The peptide lipid represented by the general formula (2) is, for example, a long chain amine represented by the general formula R-NH 2 (wherein R has the same meaning as R in the general formula (2)), It can be produced by reacting with the C-terminal side of the peptide to form a peptide bond.
As long chain amines, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, Examples include eicosylamine, heneicosylamine, docosylamine, tricosylamine, tetracosylamine, pentacosylamine, and hexacosylamine. Of these, tetradecylamine, hexadecylamine, and the like are desirable because of the balance of the amphiphilic properties of the obtained peptide lipids and the availability at low cost.
The N-terminus of the peptide lipid represented by the general formula (2) is usually isolated as an acid salt having a halogen atom. This is because the N-terminal is modified with various protecting groups to perform deprotection using various dilute acids / organic solvents. Furthermore, it is more chemically stable to store as an acid salt having a halogen atom than to store the N-terminal amino group in a free state. As the salt, hydrobromide, hydrochloride and the like are common, but in general, hydrochloride.

次に、このペプチド脂質を用いて中空繊維状有機ナノチューブを製造する方法について述べる。
(1a)一般式(1)RCO(NH-CHR’-CO)OHで表されるペプチド脂質をアルカリ性水溶液に溶解させて溶液を調製する。ペプチド脂質は、アルカリ性水溶液に溶解することにより、脂質末端にカルボキシレートアニオンが形成される。この溶液を調製するにあたっては特に加温を要しない。この溶液中のペプチド脂質の濃度は高いほど好ましく、飽和であることが最も好ましい。このアルカリ性水溶液は、アルカリ金属水酸化物やアルカリ土類金属水酸化物などの水溶液、あるいはpH7以上の緩衝溶液であり、pHが7.5〜12の範囲であることが好ましい。
アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどを挙げることができる。
アルカリ土類金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化バリウムなどを挙げることができる。
pH7以上の緩衝溶液としては、ホウ酸塩、炭酸塩、アンモニウム塩などの水溶液を挙げることができる。
Next, a method for producing hollow fiber-like organic nanotubes using this peptide lipid will be described.
(1a) A peptide lipid represented by the general formula (1) RCO (NH—CHR′—CO) m OH is dissolved in an alkaline aqueous solution to prepare a solution. Peptide lipids are dissolved in an alkaline aqueous solution to form a carboxylate anion at the end of the lipid. In preparing this solution, no particular heating is required. The higher the concentration of peptide lipid in this solution, the better and most preferably saturated. This alkaline aqueous solution is an aqueous solution such as an alkali metal hydroxide or alkaline earth metal hydroxide, or a buffer solution having a pH of 7 or more, and preferably has a pH in the range of 7.5 to 12.
Examples of the alkali metal hydroxide include sodium hydroxide, lithium hydroxide, and potassium hydroxide.
Examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, and barium hydroxide.
Examples of the buffer solution having a pH of 7 or higher include aqueous solutions of borate, carbonate, ammonium salt and the like.

次に、この溶液に、酸性化合物を直接、好ましくは水で希釈して5重量%以下の希薄酸性水溶液として、より好ましくは1重量%以下の希薄酸性水溶液として、更により好ましくは1重量%以下の希薄酸性水溶液の蒸気拡散により加える。
この酸性化合物としては塩酸、硫酸、硝酸、臭化水素酸、を挙げることができる。更には、これら酸性化合物2種以上を混合した混合溶液を用いてもよい。
その結果、ペプチド脂質の末端に形成されたカルボキシレートアニオンが、酸性化合物由来のプロトンにより中和されてカルボン酸となり、水溶液に対する溶解度の低下に依存して、溶液から中空繊維状物質が析出してくる。
Next, the acidic compound is directly diluted in this solution, preferably with water, as a dilute acidic aqueous solution of 5 wt% or less, more preferably as 1 wt% or less of dilute acidic aqueous solution, even more preferably 1 wt% or less. Add by vapor diffusion of a dilute acidic aqueous solution.
Examples of the acidic compound include hydrochloric acid, sulfuric acid, nitric acid, and hydrobromic acid. Furthermore, you may use the mixed solution which mixed 2 or more types of these acidic compounds.
As a result, the carboxylate anion formed at the end of the peptide lipid is neutralized by protons derived from acidic compounds to become carboxylic acid, and depending on the decrease in solubility in aqueous solution, hollow fibrous substances precipitate from the solution. come.

(1b)別法として、一般式(2)H(NH-CHR’-CO)NHRで表されるペプチド脂質を酸性水溶液に溶解させて溶液を調製する。ペプチド脂質は、酸性水溶液に溶解することにより、脂質末端にアンモニウムカチオンが形成される。この溶液を調製するにあたっては特に加温を要しない。この溶液中のペプチド脂質の濃度は高いほど好ましく、飽和であることが最も好ましい。この酸性水溶液としては、希塩酸、希硝酸、希硫酸、蟻酸、酢酸、プロピオン酸、酪酸、もしくは、pH7以下の緩衝溶液(酢酸塩など)などの水溶液であり、pHが3〜6.5の範囲であることが好ましい。 (1b) As another method, a peptide lipid represented by the general formula (2) H (NH—CHR′—CO) m NHR is dissolved in an acidic aqueous solution to prepare a solution. Peptide lipids dissolve in an acidic aqueous solution to form ammonium cations at the lipid ends. In preparing this solution, no particular heating is required. The higher the concentration of peptide lipid in this solution, the better and most preferably saturated. The acidic aqueous solution is an aqueous solution such as dilute hydrochloric acid, dilute nitric acid, dilute sulfuric acid, formic acid, acetic acid, propionic acid, butyric acid, or a buffer solution (acetate, etc.) having a pH of 7 or less, and has a pH in the range of 3 to 6.5. It is preferable that

次に、この溶液にアルカリ性化合物を直接、好ましくは水で希釈して5重量%以下の希薄アルカリ性水溶液として、より好ましくは1重量%以下の希薄アルカリ性水溶液として、更により好ましくは1重量%以下の希薄アルカリ性水溶液の蒸気拡散により加える。
アルカリ性化合物としては、トリエチルアミン、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ジエチルアミン、N-エチルメチルアミン、N-メチルプロピルアミン、ジプロピルアミン、トリメチルアミン、N,N-ジメチルエチルアミン、N,N-ジメチルイソプロピルアミン、N,N-ジメチルブチルアミン、N,N-ジエチルメチルアミン、トリプロピルアミン、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、などを挙げることができる。更には、これらアルカリ性化合物2種以上を混合した混合溶液を用いてもよい。
その結果、ペプチド脂質の末端に形成されたアンモニウムカチオンが、アルカリ性化合物により脱プロトン化してアミンとなり、水溶液に対する溶解度の低下に依存して、溶液から中空繊維状物質が析出してくる。
Next, the alkaline compound is diluted directly with this solution, preferably with water, as a 5% by weight or less diluted alkaline aqueous solution, more preferably as a 1% by weight or less diluted alkaline aqueous solution, and even more preferably 1% by weight or less. Add by vapor diffusion of dilute alkaline aqueous solution.
Alkaline compounds include triethylamine, methylamine, ethylamine, propylamine, butylamine, diethylamine, N-ethylmethylamine, N-methylpropylamine, dipropylamine, trimethylamine, N, N-dimethylethylamine, N, N-dimethylisopropyl Amine, N, N-dimethylbutylamine, N, N-diethylmethylamine, tripropylamine, sodium hydroxide, lithium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, etc. it can. Furthermore, you may use the mixed solution which mixed 2 or more types of these alkaline compounds.
As a result, the ammonium cation formed at the end of the peptide lipid is deprotonated by an alkaline compound to become an amine, and a hollow fibrous substance is precipitated from the solution depending on the decrease in solubility in an aqueous solution.

(2)次に、溶液から中空繊維状物質を回収し、減圧加熱乾燥することにより、空気中で安定な、平均外径が20〜700nm、好ましくは40〜400nmであり、平均内径(中空の平均径)が10〜500nm、好ましくは20〜200nmであり、長さが数百nm〜数百μmのサイズを有する中空繊維状有機ナノチューブが得られる。
減圧加熱乾燥の条件は、室温から60℃の温度範囲において減圧度20Pa以下で、2時間以上乾燥することである。加熱温度は60℃以下であれば高いほど乾燥時間が短くて済むが、ペプチド脂質の熱安定性に与える影響を考慮すると40℃以下が好ましい。より好ましい乾燥条件は、30℃で24〜48時間である。
(2) Next, the hollow fibrous material is recovered from the solution, dried under reduced pressure, and stable in the air. The average outer diameter is 20 to 700 nm, preferably 40 to 400 nm, and the average inner diameter (hollow A hollow fiber-like organic nanotube having an average diameter) of 10 to 500 nm, preferably 20 to 200 nm, and a length of several hundred nm to several hundred μm is obtained.
The conditions for heat drying under reduced pressure are to dry for 2 hours or more at a reduced pressure of 20 Pa or less in a temperature range from room temperature to 60 ° C. The higher the heating temperature is 60 ° C. or lower, the shorter the drying time is. However, in consideration of the effect on the thermal stability of peptide lipids, 40 ° C. or lower is preferable. More preferable drying conditions are 24 to 48 hours at 30 ° C.

中空繊維状有機ナノチューブの形態やサイズ次元の確認のためには、光学顕微鏡、レーザー顕微鏡、走査電子顕微鏡、透過電子顕微鏡、原子間力顕微鏡などが用いられる。光学顕微鏡やレーザー顕微鏡では、一般には数百nm以下の外径をもつ繊維状構造体を検出するには、染色法などの技法を用いないと困難である。走査電子顕微鏡は繊維状構造体の表面観察、形態観察には非常に有効な観察手段である。繊維構造体の配向状態によっては、中空シリンダー構造の直接確認は可能であるが、万能とは言えない。透過電子顕微鏡は、中空シリンダー構造を濃淡のコントラストの差で表現できるため、中空シリンダー構造の確認は可能であるが、リボン状の構造体の横幅両端が単に少し巻き上がった状態でも同様なコントラスト像を与えるため、単独使用では、中空シリンダー構造と断定するには少し危険である。そのため、中空繊維状形態の存在確認のためには、走査電子顕微鏡と透過電子顕微鏡を併用して使用することが望ましい。   An optical microscope, a laser microscope, a scanning electron microscope, a transmission electron microscope, an atomic force microscope, etc. are used for confirmation of the form and size dimension of the hollow fiber-like organic nanotube. In an optical microscope or a laser microscope, it is generally difficult to detect a fibrous structure having an outer diameter of several hundred nm or less without using a technique such as a staining method. The scanning electron microscope is a very effective observation means for observing the surface and morphology of the fibrous structure. Depending on the orientation of the fiber structure, the hollow cylinder structure can be confirmed directly, but it is not universal. The transmission electron microscope can express the hollow cylinder structure with the contrast of light and shade, so the hollow cylinder structure can be confirmed, but the same contrast image can be obtained even when the widthwise ends of the ribbon-like structure are slightly rolled up. Therefore, when used alone, it is a little dangerous to conclude with a hollow cylinder structure. Therefore, it is desirable to use a scanning electron microscope and a transmission electron microscope in combination in order to confirm the presence of the hollow fiber form.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。
(製造例1)
[N−テトラデカノイル−グリシルグリシンの合成]
グリシルグリシンベンジルエステル塩酸塩0.57g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにトリデカンカルボン酸0.46g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量% 炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固し白色固体(N−テトラデカノイル−グリシルグリシンベンジルエステル)0.57g(収率65%)を得た。得られた化合物0.43g(1ミリモル) をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.5g加え、接触水素還元を行った。6時間後、セライトろ過した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固することにより、一般式(1)RCO(NH-CHR’-CO)OHにおいてRがトリデシル基であり、mが2であり、R’が両方ともHである、N−テトラデカノイル−グリシルグリシン0.21g(収率60%)を得た。
融点:158℃
元素分析(C18H34N2O4
計算値(%)C63.13、H10.01、N8.18
実測値(%)C62.09、H9.65、N8.25
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
(Production Example 1)
[Synthesis of N-tetradecanoyl-glycylglycine]
To 0.57 g (2.2 mmol) of glycylglycine benzyl ester hydrochloride was added 0.31 ml (2.2 mmol) of triethylamine and dissolved in 10 ml of ethanol. 50 ml of chloroform solution containing 0.46 g (2 mmol) of tridecanecarboxylic acid was added thereto. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, and then concentrated to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.) to give a white solid (N -Tetradecanoyl-glycylglycine benzyl ester) 0.57 g (yield 65%) was obtained. 0.43 g (1 mmol) of the obtained compound was dissolved in 100 ml of dimethylformamide, and 0.5 g of 10 wt% palladium / carbon was added as a catalyst to perform catalytic hydrogen reduction. After 6 hours, filtration through Celite, followed by concentration and drying using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), R in the general formula (1) RCO (NH—CHR′—CO) m OH is tridecyl. 0.21 g (yield 60%) of N-tetradecanoyl-glycylglycine, which is a group, m is 2, and R ′ is both H.
Melting point: 158 ° C
Elemental analysis (C 18 H 34 N 2 O 4 )
Calculated (%) C63.13, H10.01, N8.18
Actual value (%) C62.09, H9.65, N8.25

(製造例2)
[N−ドデカノイル−グリシルグリシンの合成]
グリシルグリシンベンジルエステル塩酸塩0.57g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにウンデカンカルボン酸0.40g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量% 炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固し白色固体(N−ドデカノイル−グリシルグリシンベンジルエステル)0.50g(収率60%)を得た。得られた化合物0.42g(1ミリモル) をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.5g加え、接触水素還元を行った。6時間後、セライトろ過した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固することにより、一般式(1)RCO(NH-CHR’-CO)OHにおいてRがウンデシル基であり、mが2であり、R’が両方ともHである、N−ドデカノイル−グリシルグリシン0.16g(収率50%)を得た。
融点:160℃
元素分析(C16H30N2O4 ・0.5H2O)
計算値(%)C59.41、H9.66、N8.66
実測値(%)C60.09、H9.34、N8.58
(Production Example 2)
[Synthesis of N-dodecanoyl-glycylglycine]
To 0.57 g (2.2 mmol) of glycylglycine benzyl ester hydrochloride was added 0.31 ml (2.2 mmol) of triethylamine and dissolved in 10 ml of ethanol. To this was added 50 ml of a chloroform solution containing 0.40 g (2 mmol) of undecanecarboxylic acid. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, and then concentrated to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.) to give a white solid (N -Dodecanoyl-glycylglycine benzyl ester) 0.50 g (yield 60%) was obtained. 0.42 g (1 mmol) of the obtained compound was dissolved in 100 ml of dimethylformamide, and 0.5 g of 10 wt% palladium / carbon was added as a catalyst to perform catalytic hydrogen reduction. After 6 hours, filtration through Celite, and then concentrating to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), R in the general formula (1) RCO (NH—CHR′—CO) m OH is undecyl. 0.16 g (yield 50%) of N-dodecanoyl-glycylglycine, which is a group, m is 2 and R ′ is both H, is obtained.
Melting point: 160 ° C
Elemental analysis (C 16 H 30 N 2 O 4 · 0.5H 2 O)
Calculated (%) C59.41, H9.66, N8.66
Actual value (%) C60.09, H9.34, N8.58

(製造例3)
[N−ドデカノイル−グリシルグリシルバリンの合成]
グリシルグリシルバリンベンジルエステル塩酸塩0.93g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにウンデカンカルボン酸0.40g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量% 炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固し白色固体(N−ドデカノイル−グリシルグリシルバリンベンジルエステル)0.45g(収率45%)を得た。得られた化合物0.45g(0.9ミリモル) をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.5g加え、接触水素還元を行った。6時間後、セライトろ過した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固することにより、一般式(1)RCO(NH-CHR’-CO)OHにおいてRがウンデシル基であり、mが3であり、R’が左からH、H、(CHCH−である、N−ドデカノイル−グリシルグリシルバリン0.22g(収率60%)を得た。
融点:130℃
元素分析(C21H39N3O5
計算値(%)C60.99、H9.51、N10.16
実測値(%)C61.11、H9.24、N9.68
(Production Example 3)
[Synthesis of N-dodecanoyl-glycylglycylvaline]
To 0.93 g (2.2 mmol) of glycylglycylvaline benzyl ester hydrochloride was added 0.31 ml (2.2 mmol) of triethylamine and dissolved in 10 ml of ethanol. To this was added 50 ml of a chloroform solution containing 0.40 g (2 mmol) of undecanecarboxylic acid. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, and then concentrated to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.) to give a white solid (N 0.45 g (yield 45%) of -dodecanoyl-glycylglycylvaline benzyl ester) was obtained. 0.45 g (0.9 mmol) of the obtained compound was dissolved in 100 ml of dimethylformamide, and 0.5 g of 10 wt% palladium / carbon was added as a catalyst to perform catalytic hydrogen reduction. After 6 hours, filtration through Celite, and then concentrating to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), R in the general formula (1) RCO (NH—CHR′—CO) m OH is undecyl. 0.22 g (yield 60%) of N-dodecanoyl-glycylglycylvaline, which is a group, m is 3, and R ′ is H, H, (CH 3 ) 2 CH— from the left, was obtained.
Melting point: 130 ° C
Elemental analysis (C 21 H 39 N 3 O 5 )
Calculated value (%) C60.99, H9.51, N10.16
Actual value (%) C61.11, H9.24, N9.68

(製造例4)
[N−トリデシル−グリシルグリシンアミド塩酸塩の合成]
t−ブチルオキシカルボニル−グリシルグリシン0.51g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにトリデシルアミン0.40g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量% 炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固しオイル(N−トリデシル−t−ブチルオキシカルボニル−グリシルグリシンアミド)を得た。得られたオイル をクロロホルム100mlに溶解し、4N塩酸/酢酸エチル10mlを加えてペプチドの脱保護を行った。4時間後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固することにより、一般式(2)H(NH-CHR’-CO)NHRにおいてRがトリデシル基であり、mが2であり、R’が両方ともHである、N−トリデシル−グリシルグリシンアミド塩酸塩0.19g(収率27%)を得た。
融点:140℃
元素分析(C17H36ClN3O2・1.5H2O)
計算値(%)C54. 6、H10.43、N11.15
実測値(%)C53.81、H10.86、N11.43
(Production Example 4)
[Synthesis of N-tridecyl-glycylglycinamide hydrochloride]
To 0.51 g (2.2 mmol) of t-butyloxycarbonyl-glycylglycine, 0.31 ml (2.2 mmol) of triethylamine was added and dissolved in 10 ml of ethanol. To this was added 50 ml of a chloroform solution containing 0.40 g (2 mmol) of tridecylamine. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, concentrated to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), and oil (N- Tridecyl-t-butyloxycarbonyl-glycylglycinamide) was obtained. The obtained oil was dissolved in 100 ml of chloroform, and 10 ml of 4N hydrochloric acid / ethyl acetate was added to deprotect the peptide. After 4 hours, by concentrating to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), in formula (2) H (NH—CHR′—CO) m NHR, R is a tridecyl group, m N-tridecyl-glycylglycinamide hydrochloride 0.19 g (yield 27%), in which R ′ is 2 and both R ′ are H.
Melting point: 140 ° C
Elemental analysis (C 17 H 36 ClN 3 O 2・ 1.5H 2 O)
Calculated (%) C54.6, H10.43, N11.15
Actual value (%) C53.81, H10.86, N11.43

(製造例5)
[N−テトラデシル−グリシルグリシンアミド塩酸塩の合成]
t−ブチルオキシカルボニル−グリシルグリシン0.51g(2.2ミリモル)にトリエチルアミン0.31ml(2.2ミリモル)を加えエタノール10mlに溶解した。ここにテトラデシルアミン0.43g(2ミリモル)を含むクロロホルム溶液50mlを加えた。この混合溶液を−10℃で冷却しながら1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.42g(2.2ミリモル)を含むクロロホルム溶液20mlを加え、徐々に室温に戻しながら一昼夜撹拌した。反応溶液を10重量%クエン酸水溶液50ml、4重量% 炭酸水素ナトリウム水溶液50ml、純水50mlで洗浄した後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固しオイル(N−テトラデシル−t−ブチルオキシカルボニル−グリシルグリシンアミド)を得た。得られたオイル をクロロホルム100mlに溶解し、4N塩酸/酢酸エチル10mlを加えてペプチドの脱保護を行った。4時間後、ロータリーエバポレーター(圧力10KPa、蒸発温度40℃)を用いて濃縮乾固することにより、一般式(2)H(NH-CHR’-CO)NHRにおいてRがテトラデシル基であり、mが2であり、R’が両方ともHである、N−テトラデシル−グリシルグリシンアミド塩酸塩0.38g(収率52%)を得た。
融点:150℃
元素分析(C18H38ClN3O2・H2O)
計算値(%)C56.60、H10.56、N11.00
実測値(%)C56.10、H10.88、N11.44
(Production Example 5)
[Synthesis of N-tetradecyl-glycylglycinamide hydrochloride]
To 0.51 g (2.2 mmol) of t-butyloxycarbonyl-glycylglycine, 0.31 ml (2.2 mmol) of triethylamine was added and dissolved in 10 ml of ethanol. To this, 50 ml of a chloroform solution containing 0.43 g (2 mmol) of tetradecylamine was added. While cooling this mixed solution at −10 ° C., 20 ml of a chloroform solution containing 0.42 g (2.2 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added and gradually returned to room temperature. Stir all day and night. The reaction solution was washed with 50 ml of 10 wt% aqueous citric acid solution, 50 ml of 4 wt% aqueous sodium hydrogen carbonate solution and 50 ml of pure water, concentrated to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), and oil (N- Tetradecyl-t-butyloxycarbonyl-glycylglycinamide) was obtained. The obtained oil was dissolved in 100 ml of chloroform, and 10 ml of 4N hydrochloric acid / ethyl acetate was added to deprotect the peptide. After 4 hours, by concentrating to dryness using a rotary evaporator (pressure 10 KPa, evaporation temperature 40 ° C.), in formula (2) H (NH—CHR′—CO) m NHR, R is a tetradecyl group, m N-tetradecyl-glycylglycinamide hydrochloride 0.38 g (yield 52%) in which R ′ is 2 and both R ′ are H.
Melting point: 150 ° C
Elemental analysis (C 18 H 38 ClN 3 O 2 · H 2 O)
Calculated (%) C56.60, H10.56, N11.00
Actual value (%) C56.10, H10.88, N11.44

(実施例1)
[N−ドデカノイル−グリシルグリシン中空繊維状有機ナノチューブの合成]
製造例2で得られたN−ドデカノイル−グリシルグリシン0.031gを10mMの水酸化ナトリウム水溶液100mlに溶解し、その後、1%希酢酸水溶液の蒸気拡散により溶液を中和すると白色沈殿が析出する。得られた白色粉末を更に50℃で12時間減圧加熱乾燥(10Pa)することにより、N−ドデカノイル−グリシルグリシン中空繊維状有機ナノチューブ(収量:0.025g)を得た。透過電子顕微鏡と走査電子顕微鏡観察により平均外径75nmの中空繊維状有機ナノチューブが形成していることがわかった。走査型電子顕微鏡写真を図1に示す。
Example 1
[Synthesis of N-dodecanoyl-glycylglycine hollow fiber organic nanotube]
When 0.031 g of N-dodecanoyl-glycylglycine obtained in Production Example 2 is dissolved in 100 ml of 10 mM aqueous sodium hydroxide solution and then the solution is neutralized by vapor diffusion of 1% dilute acetic acid aqueous solution, a white precipitate is deposited. . The obtained white powder was further dried under reduced pressure (10 Pa) at 50 ° C. for 12 hours to obtain N-dodecanoyl-glycylglycine hollow fiber organic nanotubes (yield: 0.025 g). Observation with a transmission electron microscope and a scanning electron microscope revealed that hollow fiber-like organic nanotubes having an average outer diameter of 75 nm were formed. A scanning electron micrograph is shown in FIG.

(実施例2)
[N−テトラデカノイル−グリシルグリシン中空繊維状有機ナノチューブの合成]
製造例1で得られたN−テトラデカノイル−グリシルグリシン0.033gを1mMの水酸化ナトリウム水溶液100mlに溶解し、その後、1%希酢酸水溶液の蒸気拡散により溶液を中和すると白色沈殿が析出する。得られた白色粉末を更に40℃で24時間減圧加熱乾燥(10Pa)することにより、N−テトラデカノイル−グリシルグリシン中空繊維状有機ナノチューブ(収量:0.028g)を得た。透過電子顕微鏡と走査電子顕微鏡観察により平均外径70nmの中空繊維状有機ナノチューブが形成していることがわかった。走査型電子顕微鏡写真を図2に示す。
(Example 2)
[Synthesis of N-tetradecanoyl-glycylglycine hollow fiber organic nanotube]
When 0.033 g of N-tetradecanoyl-glycylglycine obtained in Production Example 1 is dissolved in 100 ml of 1 mM sodium hydroxide aqueous solution and then neutralized by vapor diffusion of 1% dilute acetic acid aqueous solution, white precipitate is formed. Precipitate. The obtained white powder was further dried under reduced pressure (10 Pa) at 40 ° C. for 24 hours to obtain N-tetradecanoyl-glycylglycine hollow fiber organic nanotubes (yield: 0.028 g). Observation with a transmission electron microscope and a scanning electron microscope revealed that hollow fiber-like organic nanotubes having an average outer diameter of 70 nm were formed. A scanning electron micrograph is shown in FIG.

(実施例3)
[N−ドデカノイル−グリシルグリシン中空繊維状有機ナノチューブの合成]
製造例2で得られたN−ドデカノイル−グリシルグリシン3gを100mMの水酸化ナトリウム水溶液50mlに溶解し、その後、100mMの塩酸50mlを加えることより溶液を中和すると白色沈殿が析出する。得られた白色粉末を更に室温で48時間減圧加熱乾燥(10Pa)することにより、N−ドデカノイル−グリシルグリシン中空繊維状有機ナノチューブ(収量:2.2g)を得た。透過電子顕微鏡と原子間力顕微鏡観察により平均外径90nmの中空繊維状有機ナノチューブが形成していることがわかった。原子間力顕微鏡写真を図3に示す。
(Example 3)
[Synthesis of N-dodecanoyl-glycylglycine hollow fiber organic nanotube]
When 3 g of N-dodecanoyl-glycylglycine obtained in Production Example 2 is dissolved in 50 ml of 100 mM sodium hydroxide aqueous solution and then the solution is neutralized by adding 50 ml of 100 mM hydrochloric acid, a white precipitate is deposited. The resulting white powder was further dried under reduced pressure (10 Pa) at room temperature for 48 hours to obtain N-dodecanoyl-glycylglycine hollow fiber organic nanotubes (yield: 2.2 g). Observation with a transmission electron microscope and an atomic force microscope revealed that hollow fiber-like organic nanotubes having an average outer diameter of 90 nm were formed. An atomic force micrograph is shown in FIG.

(実施例4)
[N−ドデカノイル−グリシルグリシルバリン中空繊維状有機ナノチューブの合成]
製造例3で得られたN−ドデカノイル−グリシルグリシルバリン0.041gを10mMの水酸化ナトリウム水溶液100mlに溶解し、その後、1%希酢酸水溶液の蒸気拡散により溶液を中和すると白色沈殿が析出する。得られた白色粉末を更に室温で48時間減圧加熱乾燥(10Pa)することにより、N−ドデカノイル−グリシルグリシルバリン中空繊維状有機ナノチューブ(収量:0.035g)を得た。透過電子顕微鏡と走査電子顕微鏡観察により平均外径45nmの中空繊維状有機ナノチューブが形成していることがわかった。透過電子顕微鏡写真を図4に示す。
Example 4
[Synthesis of N-dodecanoyl-glycylglycylvaline hollow fiber organic nanotube]
When 0.041 g of N-dodecanoyl-glycylglycylvaline obtained in Production Example 3 is dissolved in 100 ml of 10 mM sodium hydroxide aqueous solution and then the solution is neutralized by vapor diffusion of 1% dilute acetic acid aqueous solution, a white precipitate is precipitated. To do. The obtained white powder was further dried under reduced pressure (10 Pa) at room temperature for 48 hours to obtain N-dodecanoyl-glycylglycylvaline hollow fiber organic nanotubes (yield: 0.035 g). Observation with a transmission electron microscope and a scanning electron microscope revealed that hollow fiber-like organic nanotubes having an average outer diameter of 45 nm were formed. A transmission electron micrograph is shown in FIG.

(実施例5)
[N−トリデシル−グリシルグリシンアミド中空繊維状有機ナノチューブの合成]
製造例4で得られたN−トリデシル−グリシルグリシンアミド塩酸塩0.034gを水100mlに溶解し、その後、1%トリエチルアミン水溶液の蒸気拡散により溶液を中和すると白色沈殿が析出する。得られた白色粉末を更に40℃で12時間減圧加熱乾燥(10Pa)することにより、N−トリデシル−グリシルグリシンアミド中空繊維状有機ナノチューブ(収量:0.025g)を得た。透過電子顕微鏡と走査電子顕微鏡観察により平均外径180nmの中空繊維状有機ナノチューブが形成していることがわかった。走査型電子顕微鏡写真を図5に示す。
(Example 5)
[Synthesis of N-tridecyl-glycylglycinamide hollow fiber organic nanotube]
When 0.034 g of N-tridecyl-glycylglycinamide hydrochloride obtained in Production Example 4 is dissolved in 100 ml of water and then the solution is neutralized by vapor diffusion of a 1% triethylamine aqueous solution, a white precipitate is deposited. The obtained white powder was further dried under reduced pressure (10 Pa) at 40 ° C. for 12 hours to obtain N-tridecyl-glycylglycinamide hollow fiber organic nanotubes (yield: 0.025 g). Observation with a transmission electron microscope and a scanning electron microscope revealed that hollow fiber-like organic nanotubes having an average outer diameter of 180 nm were formed. A scanning electron micrograph is shown in FIG.

(実施例6)
[N−テトラデシル−グリシルグリシンアミド中空繊維状有機ナノチューブの合成]
製造例5で得られたN−テトラデシル−グリシルグリシンアミド塩酸塩0.036gを水100mlに溶解し、その後、1%トリエチルアミン水溶液の蒸気拡散により溶液を中和すると白色沈殿が析出する。得られた白色粉末を更に40℃で12時間減圧加熱乾燥(10Pa)することにより、N−(グリシルグリシン)テトラデシルアミド中空繊維状有機ナノチューブ(収量:0.030g)を得た。透過電子顕微鏡と走査電子顕微鏡観察により平均外径110nmの中空繊維状有機ナノチューブが形成していることがわかった。走査型電子顕微鏡写真を図6に示す。
(Example 6)
[Synthesis of N-tetradecyl-glycylglycinamide hollow fiber organic nanotube]
When 0.036 g of N-tetradecyl-glycylglycinamide hydrochloride obtained in Production Example 5 is dissolved in 100 ml of water and then the solution is neutralized by vapor diffusion of a 1% triethylamine aqueous solution, a white precipitate is deposited. The obtained white powder was further dried under reduced pressure (10 Pa) at 40 ° C. for 12 hours to obtain N- (glycylglycine) tetradecylamide hollow fibrous organic nanotubes (yield: 0.030 g). Observation with a transmission electron microscope and a scanning electron microscope revealed that hollow fiber-like organic nanotubes having an average outer diameter of 110 nm were formed. A scanning electron micrograph is shown in FIG.

本発明の中空繊維状有機ナノチューブは、例えば、ファインケミカル工業分野、医薬、化粧品分野などにおいて薬剤や有用生体分子の包接・分離用材料、ドラッグデリバリ材料として、あるいはナノチューブに導電性物質や金属をコーティングすることによりマイクロ電子部品として電子・情報分野において利用可能である。さらには、微小なチューブ構造を利用した人工血管、ナノチューブキャピラリ、ナノリアクターとして医療、分析、化学品製造分野などで有用であり、工業的利用価値が高いため、これら様々な分野へ貢献することが出来る。   The hollow fiber-like organic nanotube of the present invention is used, for example, as a material for inclusion / separation of drugs and useful biomolecules, drug delivery materials in the fine chemical industry, medicine, cosmetics field, etc., or coated with a conductive substance or metal on the nanotube. By doing so, it can be used in the field of electronics and information as a microelectronic component. In addition, it is useful as an artificial blood vessel, nanotube capillary, and nanoreactor using a micro tube structure in the fields of medicine, analysis, and chemical production, and has high industrial utility value, so it can contribute to these various fields. I can do it.

実施例1の走査電子顕微鏡写真である。2 is a scanning electron micrograph of Example 1. FIG. 実施例2の走査電子顕微鏡写真である。2 is a scanning electron micrograph of Example 2. 実施例3の原子間力顕微鏡写真である。4 is an atomic force micrograph of Example 3. 実施例4の透過電子顕微鏡写真である。4 is a transmission electron micrograph of Example 4. 実施例5の走査電子顕微鏡写真である。6 is a scanning electron micrograph of Example 5. 実施例6の走査電子顕微鏡写真である。6 is a scanning electron micrograph of Example 6.

Claims (14)

下記一般式(1)
RCO(NH−CHR’−CO)OH (1)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは2又は3を表す。)で表わされるペプチド脂質を、アルカリ性水溶液に溶解させる段階、その溶液に酸性化合物を加える段階、及び溶液中で自己集合することにより生成する中空繊維状有機ナノチューブを溶液から回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法。
The following general formula (1)
RCO (NH—CHR′—CO) m OH (1)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, and m represents 2 or 3 ), a step of dissolving the peptide lipid in an alkaline aqueous solution, acidic to the solution A method for producing hollow fiber-like organic nanotubes, comprising the steps of adding a compound, and recovering the hollow fiber-like organic nanotubes produced by self-assembly in a solution from the solution, followed by air drying or drying under reduced pressure at room temperature.
前記一般式(1)中のmが2である請求項1に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing a hollow fiber-like organic nanotube according to claim 1, wherein m in the general formula (1) is 2. 前記ペプチドがグリシルグリシンである請求項2に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing a hollow fiber-like organic nanotube according to claim 2, wherein the peptide is glycylglycine. 前記アルカリ性水溶液が、アルカリ金属水酸化物又はアルカリ土類金属水酸化物を含む弱アルカリ性水溶液或いはpH7以上の緩衝溶液であり、そのpHが7.5〜12の範囲で調整してある請求項1〜3のいずれか一項に記載の中空繊維状有機ナノチューブの製造方法。   The alkaline aqueous solution is a weak alkaline aqueous solution containing an alkali metal hydroxide or an alkaline earth metal hydroxide or a buffer solution having a pH of 7 or more, and the pH is adjusted in the range of 7.5 to 12. The manufacturing method of the hollow fiber-like organic nanotube as described in any one of -3. 前記酸性化合物が有機酸によるものである請求項1〜3いずれか一項に記載の中空繊維状有機ナノチューブの製造方法。   The said acidic compound is an organic acid, The manufacturing method of the hollow fiber-like organic nanotube as described in any one of Claims 1-3. 前記アルカリ性水溶液がpH7.5に調整した水酸化ナトリウム水溶液であり、前記酸性化合物が酢酸によるものである請求項1〜3いずれか一項に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing hollow fiber organic nanotubes according to any one of claims 1 to 3, wherein the alkaline aqueous solution is an aqueous sodium hydroxide solution adjusted to pH 7.5, and the acidic compound is derived from acetic acid. 下記一般式(2)
H(NH−CHR’−CO)NHR (2)
(式中、Rは炭素数6〜24の炭化水素基、R’はアミノ酸側鎖、mは2又は3を表す。)で表わされるペプチド脂質を、酸性水溶液に溶解させる段階、その溶液にアルカリ性化合物を加える段階、及び溶液中で自己集合することにより生成する中空繊維状有機ナノチューブを溶液から回収し、室温で風乾又は減圧加熱乾燥させる段階から成る、中空繊維状有機ナノチューブの製造方法。
The following general formula (2)
H (NH—CHR′—CO) m NHR (2)
(Wherein R represents a hydrocarbon group having 6 to 24 carbon atoms, R ′ represents an amino acid side chain, m represents 2 or 3 ), a step of dissolving the peptide lipid in an acidic aqueous solution, and the solution is alkaline. A method for producing hollow fiber-like organic nanotubes, comprising the steps of adding a compound, and recovering the hollow fiber-like organic nanotubes produced by self-assembly in a solution from the solution, followed by air drying or drying under reduced pressure at room temperature.
前記一般式(2)中のmが2である請求項7に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing hollow fiber-like organic nanotubes according to claim 7, wherein m in the general formula (2) is 2. 前記ペプチドがグリシルグリシンである請求項8に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing hollow fiber-like organic nanotubes according to claim 8, wherein the peptide is glycylglycine. 前記酸性水溶液が、酸性化合物を含む弱酸性水溶液又はpH7以下の緩衝溶液であり、そのpHが3〜6.5の範囲で調整してある請求項7〜9のいずれか一項に記載の中空繊維状有機ナノチューブの製造方法。   The hollow according to any one of claims 7 to 9, wherein the acidic aqueous solution is a weakly acidic aqueous solution containing an acidic compound or a buffer solution having a pH of 7 or less, and the pH is adjusted in the range of 3 to 6.5. A method for producing fibrous organic nanotubes. 前記アルカリ性化合物がアルキルアミンによるものである請求項7〜9のいずれか一項に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing hollow fiber-like organic nanotubes according to any one of claims 7 to 9, wherein the alkaline compound is an alkylamine. 前記酸性水溶液が希塩酸であり、前記アルカリ性化合物がトリエチルアミンによるものである請求項7〜9のいずれか一項に記載の中空繊維状有機ナノチューブの製造方法。   The method for producing hollow fiber-like organic nanotubes according to any one of claims 7 to 9, wherein the acidic aqueous solution is dilute hydrochloric acid, and the alkaline compound is triethylamine. 請求項1〜12のいずれか一項に記載の方法によって製造された中空繊維状有機ナノチューブ。   The hollow fiber-like organic nanotube manufactured by the method as described in any one of Claims 1-12. 平均外径が20〜700nm、平均内径が10〜500nmである請求項13に記載の中空繊維状有機ナノチューブ。   The hollow fiber-like organic nanotube according to claim 13, wherein the average outer diameter is 20 to 700 nm and the average inner diameter is 10 to 500 nm.
JP2007136322A 2006-06-26 2007-05-23 Method for producing hollow fiber organic nanotube Expired - Fee Related JP5062737B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007136322A JP5062737B2 (en) 2006-06-26 2007-05-23 Method for producing hollow fiber organic nanotube
PCT/JP2007/061706 WO2008001599A1 (en) 2006-06-26 2007-06-11 Process for production of hollow-fiber-like organic nanotube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006174713 2006-06-26
JP2006174713 2006-06-26
JP2007136322A JP5062737B2 (en) 2006-06-26 2007-05-23 Method for producing hollow fiber organic nanotube

Publications (2)

Publication Number Publication Date
JP2008031152A JP2008031152A (en) 2008-02-14
JP5062737B2 true JP5062737B2 (en) 2012-10-31

Family

ID=38845367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136322A Expired - Fee Related JP5062737B2 (en) 2006-06-26 2007-05-23 Method for producing hollow fiber organic nanotube

Country Status (2)

Country Link
JP (1) JP5062737B2 (en)
WO (1) WO2008001599A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640192B2 (en) * 2009-04-27 2014-12-17 独立行政法人産業技術総合研究所 Method for manufacturing composite nanotube, method for manufacturing composite nanotube, and metal nanotube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796613B2 (en) * 1996-08-29 1998-09-10 工業技術院長 Method for producing tubular fiber structure encapsulating vesicles
JP2006510572A (en) * 2002-03-22 2006-03-30 エモリー ユニバーシティー Self-organizing peptide-based structure and method for controlling self-organization of the structure
JP2005529137A (en) * 2002-04-29 2005-09-29 ビオテシス ゲゼルシャフト ミット ベシュレンクテル ハフツング Transport systems in biological systems
JP3699086B2 (en) * 2003-02-18 2005-09-28 独立行政法人科学技術振興機構 Fine hollow fiber

Also Published As

Publication number Publication date
JP2008031152A (en) 2008-02-14
WO2008001599A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
JP5062736B2 (en) Hollow fiber organic nanotube and method for producing the same
Wang et al. A structure–gelation ability study in a short peptide-based ‘Super Hydrogelator’system
Shimizu et al. Self-organized nanotube materials and their application in bioengineering
Zhang et al. Supramolecular hydrogelation with bile acid derivatives: structures, properties and applications
Awasthi et al. Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes
US9777041B2 (en) Protein nanofibers from self-assembling pentamers
KR100682381B1 (en) Single-wall carbon nanotube-egg white protein composite and preparation thereof
Yang et al. Self-assembly of natural tripeptide glutathione triggered by graphene oxide
Spinato et al. Different chemical strategies to aminate oxidised multi-walled carbon nanotubes for siRNA complexation and delivery
JP5062737B2 (en) Method for producing hollow fiber organic nanotube
Mazzier et al. A terminally protected dipeptide: From crystal structure and self-assembly, through co-assembly with carbon-based materials, to a ternary catalyst for reduction chemistry in water
JP3699086B2 (en) Fine hollow fiber
JP2007509218A (en) Cyclodextrin amphiphilic derivatives, methods of preparing the same, and uses thereof
JP5339399B2 (en) Low molecular organic compound intercalated hollow fiber organic nanotube and method for producing the same
JP5158805B2 (en) Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
WO2012153576A1 (en) Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
KR100864422B1 (en) Method for immobilizing of biomaterials on fullerene nano structures
Iwata et al. Effectiveness of mechanochemical treatment with cyclodextrins on increasing solubility of glimepiride
JP5207359B2 (en) Mass production method of metal coordination type organic nanotube
JP5721130B2 (en) Asymmetric nanotube-forming asymmetric double-headed lipid molecule, asymmetric nanotube formed by the lipid molecule, and drug encapsulated product using the asymmetric nanotube
JP2004261885A (en) Method of leading functional material to organic nanotube
Brahmachari et al. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids
JP2010006713A (en) Porous fine particle formed by spherically agglomerating tubular structural material, and method for producing the same
JP6868267B2 (en) Amino acid-containing amphipathic molecules and organic nanotubes
JP2010005706A (en) Organic nanotube combined with substance having hydrophobic moiety and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees