JP5062417B2 - Lathe equipment - Google Patents
Lathe equipment Download PDFInfo
- Publication number
- JP5062417B2 JP5062417B2 JP2007329151A JP2007329151A JP5062417B2 JP 5062417 B2 JP5062417 B2 JP 5062417B2 JP 2007329151 A JP2007329151 A JP 2007329151A JP 2007329151 A JP2007329151 A JP 2007329151A JP 5062417 B2 JP5062417 B2 JP 5062417B2
- Authority
- JP
- Japan
- Prior art keywords
- cam
- workpiece
- blade
- lathe
- rotation angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B7/00—Automatic or semi-automatic turning-machines with a single working-spindle, e.g. controlled by cams; Equipment therefor; Features common to automatic and semi-automatic turning-machines with one or more working-spindles
- B23B7/02—Automatic or semi-automatic machines for turning of stock
- B23B7/06—Automatic or semi-automatic machines for turning of stock with sliding headstock
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/22—Feeding members carrying tools or work
- B23Q5/34—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
- B23Q5/341—Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission cam-operated
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Turning (AREA)
Description
本発明は、旋盤装置に関し、例えば、数値制御機能が組み合わされたカム式の旋盤装置に関する。 The present invention relates to a lathe apparatus, for example, a cam type lathe apparatus combined with a numerical control function.
旋盤は、棒材から加工品を切削加工により削り出す機械加工装置である。このような旋盤には各種のものがあるが、刃物の動作や主軸台の動作をカムによって制御するカム駆動式旋盤がある。
図20は、従来のカム駆動式旋盤の正面図である。この旋盤は、例えば、腕時計の部品など、小型の部品を棒材から切削する際に用いられる。
A lathe is a machining device that cuts a workpiece from a bar by cutting. There are various types of such lathes, and there is a cam-driven lathe that controls the operation of the blade and the headstock with a cam.
FIG. 20 is a front view of a conventional cam-driven lathe. This lathe is used, for example, when cutting small parts such as wristwatch parts from bars.
旋盤101は、基盤部105と、基盤部105上で主軸方向にスライド可能な主軸台102とセンタ台104、及び基盤部105に固定された刃物台103を備えている。
基盤部105には、カム機構110、151、152がカム軸116によって同軸に保持されており、カム軸116は、ギア部115を介して、カム駆動モータにより回転駆動される。
なお、カム軸モータは、図20においてギア部115の死角となる位置にあるため図示していない。
The
Note that the camshaft motor is not shown in FIG.
カム機構110は、複数のカムから構成され、各カムは、それぞれ個別の刃物121の主軸に垂直な方向の動作を規定している。刃物121は、ワークを中心として周囲に放射状に複数備えられている。
一方、カム機構151は、ワークのチャッキングのタイミングを規定し、カム機構152は、主軸台102の主軸方向の動作を規定している。
センタ台104は、センタによってワークを支持し、主軸台102と連結することにより主軸台102と共に移動する。
The
On the other hand, the
The center table 104 supports the workpiece by the center and moves together with the
各カムの形状、及びカム軸116に取り付けられたカムの相対的な角度は、ワークから加工品が自動的に切削加工されるように設定されており、カム軸116を駆動することにより、旋盤101は、・・・→ワーク供給→チャック閉→刃物121と主軸台102を動作させてワークを切削→ワーク切り落とし→チャック開→ワーク供給→・・・というサイクルを繰り返すことができる。
The shape of each cam and the relative angle of the cam attached to the
ところで、本従来例に関する旋盤と同様に、ワークの周囲に放射状に刃物を配置した技術として公開されているNC自動旋盤がある(例えば、特許文献1参照)。この技術は、刃物の動作をカムではなく、数値制御により行うものである。
このように、刃物を数値制御する旋盤が使用されるようになってきたが、依然としてカム駆動式旋盤を好んで使用しているユーザが多い。
また、カム駆動式旋盤では刃物がカムの外周にならって滑らかに移動するため、デジタル制御である数値制御方式に比べて滑らかな加工面を容易に形成することができるという利点もある。
As described above, lathes that numerically control the blade have been used, but many users still prefer cam-driven lathes.
Further, in the cam-driven lathe, the blade moves smoothly along the outer periphery of the cam, so that there is an advantage that a smooth machining surface can be easily formed as compared with the numerical control method that is digital control.
しかし、カム駆動式旋盤では、主軸に垂直な方向に移動する刃物の制御と、主軸の方向に移動する主軸台の制御を1本のカム軸で行うため(即ち、移動方向の異なる制御を1本のカム軸で行うため)、カムの調節が難しく、高度な熟練技術を必要とした。 However, in the cam-driven lathe, the control of the blade that moves in the direction perpendicular to the spindle and the control of the headstock that moves in the direction of the spindle are performed by one camshaft (that is, the control with different movement directions is 1). Because it is done with a camshaft of a book), it is difficult to adjust the cam, and highly skilled techniques are required.
そこで、本発明の目的は、カムの調整を容易に行うことである。 Accordingly, an object of the present invention is to easily adjust the cam.
本発明は、前記目的を達成するために、請求項1に記載の発明では、軸線上に被加工物を把持する把持手段を備えた主軸と、前記主軸を回転する主軸回転手段と、前記被加工物を切削する刃物を保持する刃物保持手段と、前記刃物保持手段を、回転するカムの形状に倣って、前記主軸の軸線に垂直な方向に移動する刃物移動手段と、前記カムを回転させるカム回転手段と、前記カムの回転角度を検出する回転角度検出手段と、前記検出した回転角度に基づいて前記主軸の移動量を制御する数値制御プログラムをコンピュータで実行することにより数値制御によって前記主軸を軸線方向に移動する主軸移動手段と、前記カムの回転角度に対するオフセット値を取得するオフセット値取得手段と、前記数値制御プログラムにおいて、前記取得したオフセット値に対応する量だけ前記主軸を移動させるタイミングをオフセットするオフセット手段と、を具備したことを特徴とする旋盤装置を提供する。
請求項2に記載の発明では、前記カムは複数存在し、前記オフセット値取得手段は、前記カムごとのオフセット値を取得し、前記数値制御プログラムにおいて、前記カムと前記主軸の移動とを対応づける対応づけ手段を具備し、前記オフセット手段は、前記主軸の移動を、当該移動に前記対応づけられたカムに対して前記取得したオフセット値に対応する量だけオフセットすることを特徴とする請求項1に記載の旋盤装置を提供する。
請求項3に記載の発明では、前記主軸移動手段は、前記主軸を移動させる力を、前記主軸の軸線を含む鉛直面内において、前記軸線に平行な方向に作用させることを特徴とする請求項1、又は請求項2に記載の旋盤装置を提供する。
請求項4に記載の発明では、前記被加工物を前記把持手段と対向する側から支持する支持手段と、前記把持手段と、前記支持手段と、の距離を所定の距離に保って連結する連結手段と、を具備したことを特徴とする請求項1、請求項2、又は請求項3に記載の旋盤装置を提供する。
請求項5に記載の発明では、前記連結手段は、前記被加工物から切削される加工品の長さ単位で、前記連結する長さを調節可能に構成されていることを特徴とする請求項4に記載の旋盤装置を提供する。
請求項6に記載の発明では、前記主軸と所定の角度を成す回転軸の周りに回転する刃物を保持する回転刃物保持手段と、前記回転する刃物で前記被加工物を切削する際に、前記回転刃物保持手段を移動させる回転刃物移動手段と、を具備したことを特徴とする請求項1から請求項5までのうちの何れか1の請求項に記載の旋盤装置を提供する。
請求項7に記載の発明では、前記回転刃物移動手段は、回転する回転刃物用カムの形状に倣って前記回転する刃物を移動することを特徴とする請求項6に記載の旋盤装置を提供する。
請求項8に記載の発明では、前記回転刃物用カムには、前記回転する刃物が前記被加工物に切り込む第1の回転角度と、前記回転する刃物が被加工物から離れる第2の回転角度が設定されており、前記カム回転手段は、前記回転刃物用カムの回転角度を、前記第1の回転角度と前記第2の回転角度に交互に回転することを特徴とする請求項7に記載の旋盤装置を提供する。
請求項9に記載の発明では、前記主軸回転手段は、前記回転刃物用カムが前記第1の回転角度に保持されている間は、前記被加工物の回転角度を所定角度に保持し、前記回転刃物用カムが前記第2の回転角度に保持されている間に、前記回転する刃物が次の切削箇所を切削するように前記被加工物を所定角度だけ回転させることを特徴とする請求項8に記載の旋盤装置を提供する。
請求項10に記載の発明では、前記主軸移動手段は、前記回転刃物用カムが前記第1の回転角度に保持されている間は、前記回転する刃物に向けて前記被加工物を繰り出す方向に前記主軸を移動し、前記回転刃物用カムが前記第2の回転角度に保持されている間に前記主軸を移動前の位置に復帰することを特徴とする請求項9に記載の旋盤装置を提供する。
請求項11に記載の発明では、前記刃物保持手段は、前記主軸と所定の角度を成す回転軸の周りに前記保持した刃物を回転する刃物回転手段を具備したことを特徴とする請求項1から請求項5までのうちの何れか1の請求項に記載の旋盤装置を提供する。
In order to achieve the above object, according to the present invention, in the first aspect of the present invention, a spindle including gripping means for gripping a workpiece on an axis, a spindle rotating means for rotating the spindle, and the workpiece A cutter holding means for holding a cutter for cutting a workpiece, a cutter moving means for moving the cutter holding means in a direction perpendicular to the axis of the main shaft, following the shape of the rotating cam, and the cam. The main spindle by numerical control by executing a computer with a cam rotation means, a rotation angle detection means for detecting the rotation angle of the cam, and a numerical control program for controlling the amount of movement of the main spindle based on the detected rotation angle. In the axial direction, offset value acquisition means for acquiring an offset value for the rotation angle of the cam, and the numerical control program Providing an offset means for offsetting the only timing for moving the spindle quantity corresponding to the offset value, the lathe apparatus characterized by comprising a.
According to a second aspect of the present invention, there are a plurality of the cams, and the offset value acquisition means acquires an offset value for each cam, and associates the cam with the movement of the spindle in the numerical control program. 2. An association means is provided, wherein the offset means offsets the movement of the spindle relative to the cam associated with the movement by an amount corresponding to the obtained offset value. A lathe device described in 1. is provided.
According to a third aspect of the present invention, the main shaft moving means causes a force for moving the main shaft to act in a direction parallel to the axis within a vertical plane including the axis of the main shaft. A lathe device according to
According to a fourth aspect of the present invention, there is provided a connecting means for supporting the workpiece from a side facing the gripping means, and connecting the gripping means and the support means while maintaining a distance between them. And a lathe device according to
The invention according to
In the invention of
According to a seventh aspect of the present invention, there is provided the lathe apparatus according to the sixth aspect, wherein the rotary blade moving means moves the rotating blade following the shape of the rotating rotary blade cam. .
In the invention according to
In the invention according to
In a tenth aspect of the present invention, the spindle moving means is configured to feed the workpiece toward the rotating cutter while the rotary cutter cam is held at the first rotation angle. The lathe apparatus according to
The invention according to
本発明によれば、主軸方向の制御を数値制御として主軸台の制御を刃物の制御から独立させることにより、カムの調整を容易に行うことができる。 According to the present invention, it is possible to easily adjust the cam by making the control in the main shaft direction a numerical control and making the control of the headstock independent of the control of the blade.
(1)実施の形態の概要
図1(b)の旋盤1において、刃物21(図1(a))の切り込み方向の移動はカム機構10により制御し、主軸台2のZ軸方向の移動はサーボモータ6により数値制御する。
旋盤1は、カム軸16の回転角度や回転速度などをセンサーによって検知する。そして、旋盤1は、検知された値に基づいて主軸台2の移動を制御することにより、カム機構10と主軸台2を同期して移動させることができる。
また、ボールねじ7とナット8は、サーボモータ6によるZ軸方向の駆動力が滑り面17に対して均等に作用するように配置されており、滑り面17の不均一な摩耗を防止している。
このように、旋盤1は、主軸台2の制御を数値制御としてカム機構10から分離することにより、カム機構10の調整が容易になり、また、主軸台2のオフセット値の設定も容易になる。
更に、滑り面17の不均一な摩耗が防止されるため、ワークの加工精度を維持することができ、また、滑り面17の補修作業も容易になる。
(1) Outline of Embodiment In the
The
Further, the
As described above, the
Furthermore, since uneven wear of the sliding
(2)実施の形態の詳細
図1は、本実施の形態に関する旋盤装置を示した図であり、図1(a)は、カム部分の側面、図1(b)は旋盤装置の正面図を示している。
図1(b)に示したように、旋盤1は、大きく分けて、基盤部5、主軸台2、刃物台3、及びセンタ台4から構成されている。
基盤部5(ベッド台)は、上面に主軸台2、刃物台3、センタ台4が設けられ、内部には刃物台3に設置された刃物(バイト)を駆動するためのカム機構10が形成されている。
また、基盤部5の主軸台2とセンタ台4との設置部分は、ありみぞ構造などのスライドガイドが形成された滑り面(摺動面)となっている。従って、主軸台2とセンタ台4は、それぞれ基盤部5の上面をスライドガイドに案内されてZ軸方向に移動できるようになっている。
(2) Details of Embodiment FIG. 1 is a view showing a lathe apparatus according to the present embodiment, FIG. 1 (a) is a side view of a cam portion, and FIG. 1 (b) is a front view of the lathe apparatus. Show.
As shown in FIG. 1B, the
The base 5 (bed base) is provided with a
Moreover, the installation part of the
主軸台2は、主軸を回転する主軸モータ11、ワーク(被加工物)を保持するチャック(図3に符号27で図示する)、ワークを加工位置に繰り出すワーク供給装置12、ナット8、主軸18などを備えており、基盤部5の滑り面17の上に設置されている。
主軸モータ11は、主軸台2の上部に設置されており、プーリやベルトなどを用いた駆動力伝達機構により回転力を主軸18に与える。主軸モータ11は、主軸回転手段として機能している。
ナット8は、主軸台2の後部(センタ台4側とは反対側)に固定されており、内径にはボールねじ7が螺合している。ナット8とボールねじ7は、サーボモータ6の回転運動を主軸台2のZ軸方向の運動に変換する運動方向変換機構として機能している。なお、主軸台2の+Z軸方向を送り方向と云う。
The
The
The
ワーク供給装置12、主軸18、及びチャックは、主軸18の軸線(C軸とする)上に同軸に形成されている。
主軸18、及びワーク供給装置12には、主軸18の軸線上にワークを貫通させる貫通孔が形成されており、ワークはこの貫通孔に挿通されて旋盤1に取り付けられる。
ワーク供給装置12は、後述のコントローラからの指令により、ワークを所定量だけ刃物台3の方向(+Z軸方向)に繰り出してワークのローディングを行う。
The
The
The
チャックは、主軸18の先端に形成されており、ワーク供給装置12が繰り出したワークを把持する把持手段として機能している。チャックは、例えば、空気圧を利用して開閉し、コントローラからの指令により、ワーク供給装置12がワーク供給時は開き、ワーク加工時は閉じてこれを把持する。
主軸18、ワーク供給装置12、チャックは、一体となって主軸18の軸線の周りに回転するようになっており、主軸モータ11が主軸18を回転すると、これに伴ってワークが回転する。
The chuck is formed at the tip of the
The
主軸台2の−Z軸方向には、サーボモータ6が基盤部5上に固定されている。サーボモータ6の回転軸にはボールねじ7が形成されている。
サーボモータ6は、コントローラの指令に従って、ボールねじ7を正負の方向に指定された量だけ、指定された回転速度にて回転し、ボールねじ7とナット8の螺合によって、主軸台2をZ軸方向に所定量だけ、所定速さにて移動させる。
サーボモータ6、ボールねじ7、ナット8、及び主軸台2は、主軸18を軸線方向に移動する主軸移動手段として機能している。
A
The
The
ナット8及びボールねじ7は、これらの中心線が、主軸18と並行で、主軸18の軸線を含む鉛直面内に含まれるように配置されており、サーボモータ6が主軸台2に及ぼす力は、主軸18の軸線を含む鉛直面内において、当該軸線に平行に作用するようになっている。
このため、サーボモータ6が主軸台2を移動させる力は滑り面17に均等に加わり、滑り面17が偏摩耗することがない。
The
For this reason, the force by which the
ところで、図20に示した従来例の旋盤装置では、カム機構152による力が主軸台102の側面に加わっていた。
そのため、滑り面17やスライドガイドに偏荷重が作用し、これらの摩耗を早めると共に、摩耗が不均一で偏荷重が大きい部分が多く摩耗する片減りとなっていた。
そのため、後述のガイドブッシュと主軸の同軸精度を低下させ、ワークの加工精度が低下する可能性があった。そして、滑り面17の修正には高度な熟練技術を必要としていた。
しかし、本実施の形態の旋盤1では、荷重が均等に分散されて滑り面17に加わるため、滑り面17は殆ど摩耗しない。また、仮に摩耗したとしても摩耗量が均一であるため、従来に比べて容易に滑り面17の修正を行うことができる。
Incidentally, in the conventional lathe apparatus shown in FIG. 20, the force by the
For this reason, an uneven load acts on the sliding
For this reason, the coaxial accuracy of a guide bush and a main shaft, which will be described later, is lowered, and the workpiece machining accuracy may be lowered. And the correction of the sliding
However, in the
図1(b)に示したように、刃物台3は、主軸台2とセンタ台4の間に固定されており、その下部の基盤部5内には、複数のカム9a、9b、9c、・・・(図1(a))をカム軸16に固定したカム機構10が収納されている。ただし、図の煩雑化を避けるため符号はカム9aにのみ図示している。また、カム9a、9b、9c、・・・を特に区別しない場合は単にカム9と記すことにする。
カム軸16のセンタ台4側端部にはギアが形成されており、基盤部5のセンタ台4側に設けられたギア部15に収納されている。
As shown in FIG. 1 (b), the
A gear is formed at the end of the
ギア部15は、Z軸に垂直な方向にロータ軸が形成されたカム駆動モータの回転駆動力をZ軸方向に伝達してカム軸16を駆動する。
なお、図1(b)では、カム駆動モータはギア部15の死角となって図示されていない。
ここで、カム駆動モータ、ギア部15、及びカム軸16は、カムを回転させるカム回転手段として機能している。
The
In FIG. 1B, the cam drive motor is not shown as a blind spot of the
Here, the cam drive motor, the
図1(a)に示したように、刃物台3には、主軸18の軸線Cを中心線とするガイド孔が形成されたガイドブッシュ23が設けられており、ワーク22は、このガイド孔を挿通して位置決めされると共に加工位置に案内される。
ワーク22の周囲には、刃物21a、21b、21c、・・・が複数個(図では5個)放射状に配置されている。
刃物21a、21b、21c、・・・は、それぞれ個別のアーム25a、25b、25c、・・・の先端に設けられた刃物保持手段によって着脱可能に取り付けられている。
なお、図1(a)では、図を簡略化するために1つの刃物21a、及びアーム25aにのみ符号を付しているが、刃物21a、アーム25aから順に刃物21b、アーム25b、刃物21c、アーム25c、・・・とする。
また、以下では、刃物21a、刃物21b、・・・、及びアーム25a、25b、・・・、を特に区別しない場合は、単に刃物21、アーム25と記す。
As shown in FIG. 1A, the
A plurality of
The
In FIG. 1A, only one
In the following description, the
アーム25aは、主軸18の軸線Cに平行な回転軸の周りに旋回可能な固定軸を備えており、アーム25aが固定軸の周りを旋回すると、これに伴って刃物21aが切り込み方向に移動するようになっている。なお、刃物21の切り込み方向をX軸とし、主軸18の軸線Cから遠ざかる方向を+X軸方向とする。
一方、アーム25aの端部には、接触子24aが形成されており、接触子24aの先端は、カム9aの外周に押圧されている。
このため、カム9aが回転すると、接触子24aがカム9aの外周面にならって移動し、これに伴って刃物21aがX軸方向に移動するようになっている。即ち、カム9aの外周の形状が刃物21aの移動を規定している。
アーム25a、及び接触子24aは、刃物保持手段を、回転するカム9aの外周にならって、主軸18の軸線に垂直な方向に移動する刃物移動手段として機能している。
同様に、アーム25b、25c、・・・は、カム9b、9c、・・・の形状に倣って移動するようになっている。
The
On the other hand, a
For this reason, when the
The
Similarly, the arms 25b, 25c,... Move according to the shape of the cams 9b, 9c,.
カム機構10は、複数のカム9(カム9a、9b、9c、・・・)を組み合わせてできており、各カム9a、9b、9c、・・・の外周の形状は、それぞれ刃物21a、21b、21c、・・・、の運動を規定している。
このため、カム機構10を回転させると、各刃物21に個別に予め設定した動作を行わせることができる。
なお、本実施の形態のカム9は、板カムと呼ばれるものである。
カムにはこの他に平面溝カム、円筒溝カム、端面カムなど各種のものがあり、旋盤1には何れの種類のカムを用いてもよい。
何れのカムにおいても、外周や溝などのカムに予め形成された形状に倣って刃物21が動作する。
The
For this reason, when the
The
In addition to these, there are various cams such as a flat groove cam, a cylindrical groove cam, and an end face cam, and any kind of cam may be used for the
In any of the cams, the
図示しないが、カム軸16には、エンコーダなどで構成された回転角度検出手段が設置されており、後述のコントローラがカム機構10の回転角度を検出できるようになっている。
旋盤1は、検出したカム機構10の回転角度と、主軸台2のZ座標値を用いて、カム機構10の動作と主軸台2の動作が同期するようにカム駆動モータとサーボモータ6を制御する。
また、回転角度からカム機構10の角速度を計算したり、Z座標値から主軸台2の速度を計算したり(別の角速度センサや速度センサでこれらを検知してもよい)して、これらを用いて主軸台2の動作を制御するように構成することも可能である。
なお、カム機構10の角速度、角加速度、及び主軸台2の速度、加速度は、それぞれカム機構10の回転角度の時間的変化、主軸台2のZ座標値の時間的変化であるため、これらを用いた制御もカム機構10の回転角度と主軸台2のZ座標値を用いた制御に含まれる。
Although not shown, the
The
Further, the angular velocity of the
Note that the angular velocity and angular acceleration of the
このような制御の具体例を述べると、例えば、カム軸16の角度をDx、主軸台2のZ座標をDz、カム軸16の角速度をVx、主軸台2の速度をVzとして、次のように、Dx、Dz、Vxを規定する数値制御プログラムが旋盤1に入力されたとする。
A specific example of such control is described below. For example, assuming that the angle of the
(Dx[度]、Dz[mm]、Vx[度/[mm]])=(0、0、10)、(5、0、10)、(7、10、10)、(8、0、10)、(12、−5、10)、(13、0、10)・・・(式1)
これらの値の入力は、例えば、オペレータがカム軸16を回転させて各工程の開始角度、終了角度を確認してDxとして入力すると共に(カム9aには、制作誤差や取付誤差が含まれるので実測する)、予め設計値として与えられているDz、及び所望のVxを入力することにより行われる。
コントローラは、このデータから、Vz=(Dz/Dx)×Vx・・・(式2)によってVzを計算し、これによって主軸台2の移動速度を制御することができる。
(Dx [degree], Dz [mm], Vx [degree / [mm]]) = (0, 0, 10), (5, 0, 10), (7, 10, 10), (8, 0, 10), (12, -5, 10), (13, 0, 10) (Formula 1)
These values are input by, for example, the operator rotating the
From this data, the controller calculates Vz by Vz = (Dz / Dx) × Vx (Equation 2), and can thereby control the moving speed of the
センタ台4(芯押し台)は、図1(b)に示したように、センタ13によってワーク22の端部を支持する。センタ13は、固定式、又は回転式のセンタを用いることができる。
センタ台4は主軸台2と同様に基盤部5の上面に形成された滑り面17に設置されており、スライドガイドによって主軸18の軸線方向(Z軸方向)に移動することができる。
センタ台4は、主軸台2と連結機構により連結可能となっており、これによって主軸台2と共にZ軸方向に移動する。後述するように、この連結機構は、センタ台4と主軸台2の連結距離を変更することができる。
As shown in FIG. 1B, the center table 4 (core pushing table) supports the end portion of the
The center table 4 is installed on a sliding
The center table 4 can be connected to the
図2は、旋盤1で加工された加工品の一例を示した図である。図にはZ軸方向も図示してある。なお、図2ではX軸は図示していないが、Z軸に垂直な方向である。
この加工品は、刃物21によって棒材から切削加工されたものであり、例えば、真鍮などの金属によって構成されている。
図に示したように、加工品は、長さ2.5[mm]、直径1.5[mm]程度であり、例えば、腕時計などの小型精密機械の部品として使用される。
FIG. 2 is a view showing an example of a processed product processed by the
This processed product is cut from a bar with a
As shown in the figure, the processed product has a length of about 2.5 [mm] and a diameter of about 1.5 [mm], and is used as a part of a small precision machine such as a wristwatch, for example.
以下に、この加工品を用いてカム機構10と主軸モータ11の動作例について説明する。
なお、この加工例は一例であって、例えば、粗削りの後に仕上げを行ったりするなど、各種の加工方法がある。
Below, the operation example of the
Note that this processing example is an example, and there are various processing methods such as finishing after roughing.
加工品の+Z軸側の端部は、Z軸に垂直な端面201が形成されている。端面201は、刃物21のZ座標を固定したまま(即ち、主軸台2を固定したまま)、刃物21をカム機構10によって−X軸方向に移動することにより加工される。
この場合、数値制御プログラムは、カム軸16の回転角度が端面201を形成するための開始角度から終了角度に至るまで、主軸台2のZ座標を一定に保つように構成されている。
An
In this case, the numerical control program is configured to keep the Z coordinate of the
端面201の−Z軸側にはテーパ面202が形成されている。テーパ面202は、−Z軸方向にかけて外径が一定割合で大きくなるように加工されている。この加工は、刃物21を−Z軸方向に一定速度で移動させながら(即ち、主軸台2を−Z軸方向に一定速度で移動させながら)、刃物21をカム機構10でX軸方向に一定速度で移動させることにより加工される。
この場合、数値制御プログラムは、カム軸16の回転角度がテーパ面202を形成するための開始角度から終了角度にいたるまで、回転角度の変化率に対する主軸台2のZ座標の変化率を所定の一定値に保つように構成されている。
A
In this case, the numerical control program sets a change rate of the Z coordinate of the
テーパ面202の−Z軸側には円柱面203が形成されている。円柱面203は、刃物21を、X軸をカム機構10で固定したまま−Z軸方向に移動させる(即ち、主軸台2を−Z軸方向に移動させる)ことにより形成される。
この場合、数値制御プログラムは、カム軸16の回転角度が円柱面203を形成するための開始角度から終了角度に至るまで、回転角度の変化率に対する主軸台2のZ座標の変化率を所定の一定値に保つように構成されている。
A
In this case, the numerical control program sets the change rate of the Z coordinate of the
円柱面203の−Z軸側には、円柱面203よりも外径が大きい円柱面204が形成されており、円柱面203と円柱面204の境界には段差部が形成されている。
この段差部は、端面201と同様に刃物21のZ座標を固定したまま(即ち、主軸台2を固定したまま)、刃物21をカム機構10でX軸方向に移動することにより形成される。
この場合、数値制御プログラムは、カム軸16の回転角度が段差部を形成するための開始角度から終了角度に至るまで、主軸台2のZ座標を一定に保つように構成されている。
円柱面204の形成方法は円柱面203と同様である。
A
This stepped portion is formed by moving the
In this case, the numerical control program is configured to keep the Z coordinate of the
The formation method of the
円柱面204の−Z軸方向には、円柱面204よりも外径が小さい円柱面205が形成されており、円柱面204と円柱面205の境界には段差部が形成されている。
円柱面205の形成は、円柱面203、及び円柱面204と同様である。
A
The formation of the
円柱面205の−Z軸側には円錐面106が形成されている。円錐面206は、−Z軸方向にかけて外径が一定割合で小さくなるように加工されている。
この加工は、刃物21を−Z軸方向に一定速度で移動させながら(即ち、主軸台2を−Z軸方向に一定速度で移動させながら)、刃物21をカム機構10で−X軸方向に一定速度で移動させることにより加工される。
この場合、数値制御プログラムは、カム軸16の回転角度が円錐面206を形成するための開始角度から終了角度に至るまで、回転角度の変化率に対する主軸台2のZ座標の変化率を所定の一定値に保つように構成されている。
A conical surface 106 is formed on the −Z axis side of the
In this process, the
In this case, the numerical control program sets a change rate of the Z coordinate of the
以上のように、旋盤1は、刃物21のX軸方向の移動と、主軸台2のZ軸方向の移動を同期(連動)させることにより、棒材を2次元加工することができる。
また、図2のワークは、テーパ面、円柱面、円錐面が加工されているが、この他に、例えば、ZX面内で円弧や楕円弧、あるいは、自由曲線を描くような側面を加工することも可能である。
As described above, the
In addition, the workpiece in FIG. 2 has a tapered surface, a cylindrical surface, and a conical surface. In addition, for example, an arc, an elliptical arc, or a side surface that draws a free curve is processed in the ZX plane. Is also possible.
次に、図3を用いて、主軸台2とセンタ台4の連結機構について説明する。
図3は、旋盤1の全体図において、旋盤1の連結機構を示した図である。なお、図の煩雑化を避けるためにカム機構10などは省略してある。
図3に示したように、基盤部5の内部には、連結棒31、固定部材32、クランプ機構33などからなる連結機構がカム機構10やカム軸16などとは干渉しないように設けられている。
Next, the connection mechanism of the
FIG. 3 is a view showing a connection mechanism of the
As shown in FIG. 3, a coupling mechanism including a
クランプ機構33は、主軸台2に固定されており、連結棒31の一端側が挿通されている。クランプ機構33は、例えば、圧縮空気の力などにより、連結棒31を把持したり開放したりすることができる。
一方、連結棒31の他端側は固定部材32に固定されており、更に固定部材32はセンタ台4に固定されている。
The
On the other hand, the other end side of the connecting
このように構成された連結機構において、旋盤1は、クランプ機構33を開いた状態で主軸台2を移動し(連結が解除されるのでセンタ台4は一定の位置に静止している)、主軸台2とセンタ台4の距離を所望の値とした後、クランプ機構33を閉じることにより、この距離で主軸台2とセンタ台4を連結することができる。
この連結機構により、旋盤1は、主軸台2とセンタ台4の連結距離を連結棒31のクランプ位置によって任意に設定することができる。
このように、旋盤1は、ワーク22をチャック27と対向する側から支持するセンタ13(支持手段)を備えると共に、センタ13と主軸台2との距離を所定の距離に保って連結する連結機構(連結手段)を備えている。
In the connecting mechanism configured as described above, the
With this connection mechanism, the
As described above, the
次に、図4を用いて、このような連結機構を利用したワーク供給方法について説明する。
従来のカム駆動式旋盤では、主軸台の移動と、刃物の移動が単一のカム軸116で連動していたため、ワークを1個加工すると、これを突っ切り加工などにより切断して次のワークを1個分供給するといったように、加工品を1個製造するたびにワークを1個分ずつ供給していた。
これに対して、本実施の形態の旋盤1は、主軸台2の移動を主軸モータ11で行うことにより主軸台2の制御機構と刃物21の制御機構を分離したため、次のように複数の加工品を製造できる長さのワークを一度に供給することができる。
Next, a workpiece supply method using such a coupling mechanism will be described with reference to FIG.
In conventional cam-driven lathes, the movement of the headstock and the movement of the cutter are linked by a
On the other hand, the
例えば、図4(a)は、加工品5個分のワーク22(ワーク22a〜22eが確保可能)を供給したところを示している。
ワーク22の一端はチャック27にてチャッキング(把持)されており、他端はセンタ13で支持されている。
主軸台2とセンタ台4は、連結機構により加工品5個分のワーク22を保持して連結され、サーボモータ6(図1)がセンタ台4をZ軸方向に駆動すると、センタ台4が主軸台2と一体となって移動する。
なお、図の煩雑化を避けるために、主軸台2とセンタ台4は図示せず、チャック27とセンタ13が直接連結棒31で連結されているように記してある。
For example, FIG. 4A shows a state where workpieces 22 (
One end of the
The
In order to avoid complication of the drawing, the
旋盤1は、このようにして固定されたワーク22の先端側の部分(図4(a)ではワーク22a)に刃物21を当ててこれを加工し、加工が完了すると、完成した加工品をワーク22から切断する。
旋盤1は、加工品を切断した後、クランプ機構33を開いて主軸台2をセンタ台4の方向に移動させる。
そして、旋盤1は、ワーク22の端部がセンタ13に当接すると(即ち、主軸台2とセンタ台4の距離を加工品1個分の距離だけ近づけると)、クランプ機構33を閉じて主軸台2とセンタ台4の間の距離を固定する。
The
The
The
これによって、ワーク22の残りの部分(ワーク22b〜22eの加工品4個分)が図4(b)に示したようにセンタ13とチャック27によって固定される。
このように、旋盤1は、一度に加工品複数個分のワーク22をチャッキングし、ワークが完成するごとに主軸台2とセンタ台4の距離をワーク1個分ずつ縮めていく。
そして、ワーク22eの加工が完了すると、ワーク供給装置12(図1)が5個分のワーク22を供給して、連結機構が主軸台2とセンタ台4を連結し、同様の加工を行う。
As a result, the remaining part of the workpiece 22 (four
In this way, the
When the machining of the
即ち、連結機構は、ワーク22から切削される加工品の長さ単位で、連結する長さを調節可能に構成されている。
このため、本実施の形態の旋盤1は、加工品複数個分のワーク22を一度にチャッキングでき、従来の旋盤のように、加工品ができるたびにチャッキングを行う必要がなくなるため、ワーク22の加工時間を短縮化することができる。
That is, the connecting mechanism is configured to be able to adjust the length to be connected in units of the length of a workpiece cut from the
For this reason, the
図5は、旋盤1の制御システムを模式的に表したブロック図である。
制御システム46は、操作盤42、カム駆動モータ45、サーボモータ6、主軸モータ11、連結機構駆動装置43、ワーク供給装置12などがコントローラ41に接続して構成されている。
操作盤42は、旋盤1のオペレータが旋盤1を操作するためのヒューマンインターフェースであり、例えば、液晶ディスプレイなどで構成された表示装置、文字や数字を入力するキーボード、各種ハードキー、各種ソウトキー、スタートボタン、緊急停止ボタンなどが形成されている。
また、端末からのケーブルを接続するインターフェース、磁気ディスクの駆動装置なども備えている。
FIG. 5 is a block diagram schematically showing the control system of the
The
The
It also includes an interface for connecting a cable from the terminal, a magnetic disk drive, and the like.
旋盤1のオペレータは、操作盤42を操作して、数値制御プログラムを入力・編集したり、入力した数値制御プログラムを実行したり、あるいはマニュアル制御にて旋盤1を操作したりする。
また、オペレータは、旋盤1で所定の操作を行うことにより、主軸台2の位置やカム軸16の回転角度をオフセットしてカム軸16の回転角度と主軸台2の位置の相対関係を微調整することができる。
The operator of the
The operator performs a predetermined operation on the
コントローラ41は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、記憶部(例えば、EEPROM(Electrically Erasable and Programmable ROM))などを備えたコンピュータであって、カム駆動モータ45、サーボモータ6、主軸モータ11、連結機構駆動装置43、ワーク供給装置12などを制御する。
記憶部には、OS(Operating System)や、数値制御プログラムが記憶され、CPUは、これらプログラムに従って、数値制御やその他の制御を行う。
また、オペレータがカム軸16の回転角度と主軸台2の位置のオフセット値を設定する場合は、当該オフセット値も記憶部に記憶され、加工時にCPUに参照される。
The
The storage unit stores an OS (Operating System) and a numerical control program, and the CPU performs numerical control and other controls according to these programs.
When the operator sets the offset value of the rotation angle of the
カム駆動モータ45は、X軸モータとして機能しており、コントローラ41からの指令に基づいてカム軸16を回転させる。
サーボモータ6は、Z軸モータとして機能しており、コントローラ41から回転角度、回転速度、回転方向などを数値制御される。なお、コントローラ41は、カム軸16の回転角度や回転速度などを監視しており、これに基づいてサーボモータ6を数値制御する。
主軸モータ11は、C軸モータとして機能しており、コントローラ41からの指令に基づいて主軸18を回転させる。
The
The
The
連結機構駆動装置43は、コントローラ41からの指令に基づいて、例えば、圧縮空気を供給することによりクランプ機構33を開閉する。
ワーク供給装置12は、コントローラ41からの指令に基づいてワーク22を供給すると共に、例えば、圧縮空気を用いてチャック27を開閉する。
Based on a command from the
The
次に、旋盤1の動作を図6のタイミングチャートを用いて説明する。
このタイミングチャートは、横軸にカム軸16の回転角度、縦軸に刃物21a、21b、21c、主軸台2の前進・後退、及びチャック27の開閉を表したものである。ここでは、説明を簡潔にするため、旋盤1は、3つの刃物21、即ち、刃物21a〜21cを備えるものとする。
なお、主軸台2に関しては、+Z軸方向への移動を前進、逆の方向への移動を後退とし、刃物21に関しては、−X軸方向(即ち、ワーク22に近づく方向)を前進、逆の方向への移動を後退とする。
まず、カム軸16が0度から30度まで回転する間、旋盤1は、チャック27を開いて主軸台2を後退させてからチャック27を閉じ、これと並行して、前進していた刃物21aを後退させながら同時に刃物21cを前進させる。なお、旋盤1は、刃物21bに関しては後退した位置に保つ。
Next, the operation of the
In this timing chart, the horizontal axis represents the rotation angle of the
For the
First, while the
カム軸16の角度が30度を超えると、旋盤1は、チャック27を閉じ、主軸台2を前進させながら、刃物21bを後退させ、ワーク22を切削していく。
カム軸16の角度が135度を超えると、旋盤1は、刃物21cを後退させて刃物21cによる切削を終了すると共に、刃物21cの後退と同時に刃物21bを前進させて刃物21bによる切削を開始する。
カム軸16の角度が270度近辺に達すると、旋盤1は、主軸台2を若干後退させた後、更に前進させる。また、旋盤1は、刃物21bを後退させて刃物21bによる切削を終了すると共に、刃物21aを前進させて刃物21による切削を開始する。
カム軸16の角度が360度に達すると加工品が完成する。
When the angle of the
When the angle of the
When the angle of the
When the angle of the
次に、図7のフローチャートを用いて旋盤1の自動サイクル動作を説明する。
まず、オペレータは、カム軸16にカム9a、カム9b、カム9c、・・・を取り付けてカム機構10を構成する。
各カム9には、カム軸16の所定の角度に当たる位置にケガキ線などにより目印が施されており、カム軸16がその所定の角度になったときに、カムの目印とカムフォーマットロア(カム軸16に施された目印)が一致するようにカムを取り付ける。
Next, the automatic cycle operation of the
First, the operator mounts the
Each
次に、オペレータは、旋盤1にワーク22を装着し、操作盤42を操作して当該ワーク22を加工する数値制御プログラムをコントローラ41のCPUにロードさせる(又は(式1)のように操作盤42から直接入力する)。
必要がある場合、オペレータは、加工品を試作し、その外形を計測してカム軸16の回転角度と主軸台2のZ座標のオフセット値を決める。当該オフセット値は、オペレータによって操作盤42から入力され、コントローラ41の記憶部に記憶される。
Next, the operator mounts the
If necessary, the operator makes a trial product, measures its outer shape, and determines the rotation angle of the
オペレータが操作盤42のスタートボタンを押下すると、CPUは、当該数値制御プログラムを実行し、カム駆動モータ45、サーボモータ6、主軸モータ11、及びクーラント供給装置などの制御を開始する。
なお、以下の制御は、コントローラ41のCPUが数値制御プログラムに基づいて行うものである。
When the operator presses the start button on the
The following control is performed by the CPU of the
まず、旋盤1は、カウンタkを0に初期化する(ステップ5)。カウンタkは、1個の棒材に関して、ワーク供給装置12がワーク22を供給した回数を計数するパラメータである。ここで、ワーク供給装置12がワーク22を繰り出すことができる回数をM回(Mは自然数)とし、数値制御プログラムに記述されているものとする。
First, the
次に、旋盤1は、全軸(カム駆動モータ45、サーボモータ6、主軸モータ11)を停止する(ステップ10)。
次に、旋盤1は、主軸モータ11を駆動して主軸台2を移動し、センタ台4(主軸台2と連結状態にある)をワーク供給の際の初期位置に復帰させ(ステップ15)、チャック27を開く(ステップ20)。
Next, the
Next, the
次に、旋盤1は、クランプ機構33を開いて、連結棒31によるセンタ台4との連結を解除し、サーボモータ6を駆動して主軸台2を後退させる(ステップ25)。
次に、旋盤1は、ワーク供給装置12を駆動してワーク22を所定量(端部がセンタ台4に当接する量)だけ繰り出すことにより供給する(ステップ30)。
ワークを供給した後、旋盤1は、チャック27を閉じると共に、クランプ機構33を閉じて主軸台2とセンタ台4を連結する(ステップ35)。なお、ワーク22の供給前にクランプ機構33を閉じてもよい。
次に、旋盤1は、カウンタiを0に初期化する(ステップ40)。カウンタiは、ワーク22を供給してから加工した加工品の個数を計数するパラメータである。
Next, the
Next, the
After supplying the workpiece, the
Next, the
以上のようにして、旋盤1は、ワーク22をセットした後、ワーク22の加工を開始する(ステップ45)。
旋盤1は、主軸モータ11駆動してワーク22を主軸の周りに回転させると共に、カム駆動モータ45を駆動して刃物21を駆動する。
更に、旋盤1は、カム軸16の回転角度を監視しながらこれに基づいてサーボモータ6を駆動し、主軸台2とセンタ台4を移動させる。
As described above, the
The
Further, the
旋盤1は、加工品が完成すると、これをワーク22から切断し、カウンタiがN未満か否かを判断する。
ここでNは、予め設定された自然数であり、1回のワーク22供給に対して加工する加工品の個数である。
iがN未満である場合(ステップ50;Y)、旋盤1は、iに1を加えてインクリメントする(ステップ55)。
When the processed product is completed, the
Here, N is a natural number set in advance and is the number of workpieces to be processed for one supply of the
When i is less than N (step 50; Y), the
そして、旋盤1は、クランプ機構33を開いて(ステップ60)主軸台2を加工品1個分だけ前進させ(ステップ65)、クランプ機構33を閉じて主軸台2とセンタ台4を連結する(ステップ70)。
その後、ステップ45に戻ってワーク22を加工する。
なお、主軸台2とセンタ台4を連結した後、一端チャック27を開いてワーク22をワーク供給装置12によってセンタ13に押圧してから再度チャック27を閉じるように構成することもできる。この動作により、センタ13の支持をより確実にすることができる。
Then, the
Thereafter, the process returns to step 45 to machine the
In addition, after connecting the
一方、iがN未満でない場合(即ち、iがNに達した場合)(ステップ50;N)、旋盤1は、更にkがM未満であるか否かを判断する(ステップ75)。
kがM未満である場合(ステップ75;Y)、旋盤1は、kに1を加えてインクリメントする(ステップ80)。そして、旋盤1は、ステップ10の処理に戻り、ワーク供給装置12にワーク22を供給させる。
一方、kがM未満でない場合(即ち、kがMに達した場合)(ステップ75;N)、旋盤1は、全軸(カム駆動モータ45、サーボモータ6、主軸モータ11)を停止し(ステップ85)、例えば、表示灯を点灯させるなどして加工が終了したことをオペレータに通知する。
On the other hand, when i is not less than N (that is, when i reaches N) (step 50; N), the
If k is less than M (
On the other hand, when k is not less than M (that is, when k reaches M) (
ワーク22の加工が終了すると、オペレータは、次のワークをワーク供給装置12に供給して同じ数値制御プログラムを実行させることもできるし、あるいは、段取り替えを行って(必要がある場合は、カム機構10を交換する)他の加工品を製作することもできる。
When the machining of the
以上に説明した本実施の形態により次のような効果を得ることができる。
(1)主軸台2の移動とカム機構10の回転を機構的に分離したため、カム機構10で主軸台2の移動を行う必要が無く、カム機構10の調整が容易になった。
即ち、従来の旋盤装置では、主軸台移動用カムと刃物切り込み用カムに製作誤差や組み付け誤差があった場合、カムを加工修正して精度を維持する必要があり、カム取り付け及び修正に熟練した技能が必要であったが、本実施の形態の旋盤1では、主軸台移動用カムの調整が不要となる。
The following effects can be obtained by the present embodiment described above.
(1) Since the movement of the
That is, in the conventional lathe device, when there is a manufacturing error or an assembly error in the headstock moving cam and the cutter cutting cam, it is necessary to process and correct the cam to maintain the accuracy, and he is skilled in cam mounting and correction. Although skill is required, in the
(2)ボールねじ7を滑り面17の中央に形成し、押圧が滑り面17に平均的に作用するように形成したため、滑り面17の偏荷重を防止することができる。このため、滑り面17の不均一な摩耗を防止することができると共にワークの加工精度が安定する。
(3)滑り面17の不均一な摩耗を防止することにより、滑り面17の修正作業が容易になる。
(2) Since the
(3) By preventing uneven wear of the sliding
(4)主軸台2の移動を数値制御としたため、主軸台2の移動量を刃物21の動きに合わせて数値や制御コードで設定することができる。
(5)カム機構10の回転角度を検出し、これを用いて主軸台2の移動を制御することにより、カム機構10のカム軸速度と主軸台2の移動を同期させることができる。
(6)主軸台2の移動を数値制御としたため、主軸台2の位置のオフセット値の設定を容易に行うことができる。
(4) Since the movement of the
(5) By detecting the rotation angle of the
(6) Since the movement of the
(7)カム機構10の精度に合わせて主軸台2の移動指令が出せるので、修正は主軸台2の方で数値にて行い、カム機構10の修正が不要となる。
(8)1回のチャッキングで加工品複数個分のワーク22を把持できるので、加工時間を短縮することができる。
(7) Since the movement command of the
(8) Since the
次に、本実施の形態の変形例について説明する。
図8は、本変形例に係る旋盤装置を示した図であり、図8(a)は、カム部分の側面、図8(b)は旋盤装置の正面図を示している。
図8(b)に示したように、旋盤1は、基盤部5の上に、主軸台2、刃物台3を備える他、歯車加工台51を備えている。なお、センタ台4は、備えていてもいなくてもよい。
歯車加工台51は、ワーク22の先端に歯車を形成するユニットであり、基盤部5の上面に固定されている。
Next, a modification of the present embodiment will be described.
FIG. 8 is a view showing a lathe apparatus according to the present modification, in which FIG. 8A shows a side view of the cam portion, and FIG. 8B shows a front view of the lathe apparatus.
As shown in FIG. 8 (b), the
The gear machining table 51 is a unit that forms a gear at the tip of the
図8(a)に示したように、歯車加工台51は、アーム25z、連結部材60、工具保持部59などから形成されている。
工具保持部59は、各種工具を保持できるようになっており、本変形例では、カッター53を保持している。
As shown in FIG. 8A, the
The
カッター53は、図8(c)に示したように円筒形状を有しており、その軸線を回転軸として刃物55を駆動して回転させる。
そして、歯車加工台51は、カッター53の回転線が主軸と垂直となり、刃物55がワーク22の下側になるようにカッター53を保持している。
The
The gear machining table 51 holds the
このように、カッター53の回転軸は主軸に対して補助軸として機能している。なお、カッター53の回転軸は、主軸と垂直としたが、これに限定するものではなく、回転軸が主軸と所定の角度をなすように歯車加工台51がカッター53を保持するように構成することもできる。
このように、工具保持部59は、前記主軸と所定の角度を成す回転軸の周りに回転する刃物を保持する回転刃物保持手段として機能している。
Thus, the rotating shaft of the
In this way, the
図8(d)は、刃物55を拡大した図である。
刃物55は、円盤状の回転対称体を成しており、対称軸がカッター53の回転軸と一致するようになっている。
そして、刃物55の外周部には周囲に渡って切刃が形成されており、刃物55が回転すると、刃物55の外周部にて切削機能を発揮することができる。
刃物55は、切刃が形成する平面がワーク22の中心線を含むように保持されており、切刃がワーク22の側面に切り込んで歯車の溝を主軸方向に切削加工できるようになっている。
FIG. 8D is an enlarged view of the
The
And the cutting edge is formed in the outer peripheral part of the
The
刃物55は、ワーク22の下側に位置しているため、カッター53が上昇するとワーク22の下側面を切削加工し、カッター53が下降すると、刃物55がワーク22から離れる。
旋盤1は、歯車の溝を加工する場合、カッター53を上昇させると共に、主軸は回転角度を保持しつつ(即ち、回転しないで停止する)+Z方向に移動させてワーク22の側面を切削する。
そして、歯車の溝が完成すると、旋盤1は、カッター53を下降させてワーク22から離した後、主軸を−Z方向に移動すると共に、主軸を所定の角度(2π/L(Lは歯車の溝の数))だけ回転させて、次の溝を同様にして加工する。
Since the
When machining the groove of the gear, the
When the gear groove is completed, the
次に、図9の各図を用いて歯車加工台51がカッター53を上下動させる機構について説明する。
図9(a)に示したように、歯車加工台51では、アーム25zと、工具保持部59が連結部材60によって連結されている。
Next, the mechanism by which the
As shown in FIG. 9A, in the gear machining table 51, the
なお、図9(a)のうち、工具保持部59は、図8(a)の矢線A方向の矢視図であり、アーム25zは、図8(b)の矢線B方向の矢視図となっている。
アーム25zは、支点57に軸支されており、一端には接触子24zが形成され、他端には連結部材60が軸支されている。
9A, the
The
接触子24zは、カム9z(回転刃物用カム)の外周に接しており、カム9zの形状に倣って移動する。そのため、接触子24zがカム9zの形状に倣って上下動すると、支点57を中心として連結部材60も上下動する。
The
一方、工具保持部59は、支点58に軸支されており、一端にはカッター53が保持され、他端には連結部材60が軸支されている。
このため、連結部材60が上下動すると、支点58を中心としてカッター53も上下動する。
図9(a)に示したように、カッター53と接触子24zは、支点58、57に対して同じ側に形成され、連結部材60は、これらと対向する側に形成されるため、接触子24zとカッター53は、同期して上下動する。
即ち、接触子24が上昇する場合は、カッター53も上昇し、接触子24が下降する場合はカッター53も下降する。
On the other hand, the
For this reason, when the connecting
As shown in FIG. 9A, the
That is, when the contactor 24 is raised, the
カム9zは、円盤形状を有しており、外周の1カ所に凹部52が形成されている。
接触子24zが凹部52に接触する場合は、接触子24が上昇するため、カッター53も上昇し、接触子24zが凹部52以外の箇所に接触する場合は、接触子24は下降するためカッター53も下降する。
他のカム9a、9b、9c、・・・によってワーク22が加工されている間は、接触子24zがカム9zの凹部52以外の部分に接触するように、カム9zと他のカム9との取付角度が設定されている。
The
When the
While the
図9(b)は、接触子24zが凹部52に接して、カッター53が上昇したところを示している。
ワーク22の切削加工は、このように、接触子24zが凹部52に接した状態で行われる。
旋盤1は、歯車を加工する場合、カム9zを360度に渡って回転させることは行わず、図9(a)に示した位置(即ち、凹部52と接触子24zが接する位置からカム9zが角度θだけ回転した位置、第2の回転角度)と、図9(b)に示した位置(凹部52と接触子24zが接する位置、第1の回転角度)を交互に繰り返す。
このように、歯車加工台51は、回転刃物保持手段を移動することにより、回転する刃物で被加工物を切削する回転刃物移動手段として機能している。
FIG. 9B shows a state where the
Thus, the cutting of the
The
As described above, the gear machining table 51 functions as a rotary blade moving unit that cuts a workpiece with a rotating blade by moving the rotary blade holding unit.
次に、図10のフローチャートを用いて、旋盤1がワーク22に歯車を加工する手順について説明する。
旋盤1は、カム9a、9b、9c、・・・を用いてワーク22の側面を加工した後、主軸を停止して歯車加工モードに移行し、カッター53を駆動して、刃物55の回転を開始する。
まず、旋盤1は、カウンタjをj=1に設定する(ステップ105)。jは、加工した溝の個数を計数するパラメータである。
Next, a procedure in which the
The
First, the
次に、旋盤1は、サーボモータ6によって主軸を後退させ(即ち、−Z軸方向に移動し)、カッター53が上昇しても刃物55とワーク22が干渉しない位置にワーク22を移動する(ステップ110)。
次に、旋盤1は、カム駆動モータ45によってカム9zを角度θだけ正転させて接触子24を凹部52に接触させ、カッター53を上昇させる(ステップ115)。
Next, the
Next, the
なお、ここでは、カム9zの初期位置が、凹部52が接触子24zに接する位置から角度θの位置(図9(a)の位置)にあるものとする。
正転・逆転は何れの方向に定義してもよいが、ここでは、右ねじが−Z方向に進む回転方向を正転とする。
Here, the initial position of the
Although normal rotation and reverse rotation may be defined in any direction, here, the rotation direction in which the right screw advances in the −Z direction is defined as normal rotation.
次に、旋盤1は、サーボモータ6によって主軸を前進させて(即ち、+Z方向に移動し)、ワーク22をカッター53に繰り出し、溝の切削加工を行う(ステップ120)。
この間、主軸モータ11は、主軸を回転させずに保持する。または、主軸が回転しないようにブレーキなどの制動機構を設けることもできる。
Next, the
During this time, the
旋盤1は、溝の切削加工が終了すると、カム駆動モータ45によってカム9zを角度θだけ逆転させて接触子24を凹部52が形成されていない部分に接触させ、カッター53を下降させる(ステップ125)。
次に、旋盤1は、jがLより小さいか否かを判断する(ステップ130)。ここでLは、歯車に形成される溝の個数である。
jがLより小さい場合は(ステップ130;Y)、まだ未加工の溝があるため加工を続行する。
When the
Next, the
If j is smaller than L (step 130; Y), the machining is continued because there are still unprocessed grooves.
この場合、旋盤1は、jをj=j+1にインクリメントすると共に(ステップ135)、Z軸を主軸モータ11によって所定角度(2π/L)だけ回転させ(ステップ140)、更に、ステップ110に戻ってサーボモータ6によって主軸を元の位置に復帰させ、次の溝の加工を行う。
一方、jがLに達した場合(ステップ130;N)、旋盤1は、カッター53を停止し、歯車の切削加工を終了する。
In this case, the
On the other hand, when j reaches L (step 130; N), the
以上のように、主軸モータ11(主軸回転手段)は、カム9zが第1の回転角度に保持されている間(溝を切削加工している間)は、ワーク22の回転角度を所定角度に保持し、カム9zが第2の回転角度に保持されている間に、刃物55が次の切削箇所を切削するようにワーク22を所定角度だけ回転させる。
また、サーボモータ6(主軸移動手段)は、カム9zが前記第1の回転角度に保持されている間は、刃物55に向けてワーク22を繰り出す方向に主軸を移動し、カム9zが第2の回転角度に保持されている間に主軸を移動前の位置に復帰する。
このように、本変形例では、歯車をカム機構と主軸の数値制御を合わせて用いることによりワーク22に歯車を切削加工することができる。
As described above, the spindle motor 11 (spindle rotating means) sets the rotation angle of the
The servo motor 6 (main shaft moving means) moves the main shaft in the direction in which the
Thus, in this modification, the gear can be cut into the
ところで、図10で、歯車加工工程では、ステップ125においてカム9を反転してカッターを加工するため、最後の歯割り(歯車の溝の加工)を行った後には、カム9が反転した状態となっている。
このため、次の歯車を加工するためには、その前に、ワーク22を逃がしてカム9を正転する必要がある。
By the way, in FIG. 10, in the gear machining process, the
For this reason, in order to process the next gear, it is necessary to release the
そこで、図11のフローチャートで示すように、最後の歯割りを行う際に、カム9を正転してカッターを下降させることにより、最後の歯割りと同時にカム9を正転することができ、加工を高速化することができる。
以下に、この工程について説明する。
Therefore, as shown in the flowchart of FIG. 11, when performing the last tooth split, the
Below, this process is demonstrated.
ステップ105〜125は、図10と同じである。
ステップ125でカッターを下降して歯割りを行った後、旋盤1は、jがL−1未満であるか否か、即ち、加工した溝の数がL−1に達したか判断する(ステップ133)。
jがL−1未満の場合(即ち、加工した溝の数がL−1に達していない場合)(ステップ133;Y)、旋盤1は、図10と同様にjに1をインクリメントして(ステップ135)、Z軸を所定角度回転して(ステップ140)、ステップ110に移行する。
After lowering the cutter in step 125 and performing gear splitting, the
When j is less than L-1 (that is, when the number of processed grooves has not reached L-1) (step 133; Y), the
一方、jがL−1未満でない場合(即ち、加工した溝の数がL−1に達した場合)(ステップ133;N)、旋盤1は、最後の1個の溝を加工するために、Z軸を後退して(ステップ145)、カム9を正転してカッターを上昇させる(ステップ150)。
次いで、旋盤1は、Z軸を前進させて(ステップ155)、カム9を正転してカッターを加工させ、最後の溝を加工する(ステップ160)。
以上の工程により、カム9が正転した状態で最後の溝を加工し終えることができる。これによって、次の歯割りを行う際に、ワークを逃がしてカム9を正転する必要が無くなり、より効率よく歯車の加工を行うことができる。
On the other hand, when j is not less than L-1 (that is, when the number of processed grooves reaches L-1) (step 133; N), the
Next, the
Through the above steps, the last groove can be finished with the
次に、図12の各図を用いて、より効率の良いワーク22の供給方法、及びワーク22支持方法について説明する。
まず、ワーク供給装置12でワーク22を繰り出して供給する際、その先端を支持する必要があるが、これには、刃物21で支持する場合とセンタ13で支持する場合がある(図12各図参照)。
ワーク供給装置12によるワーク供給力が小さく、ワーク供給負荷が小さい場合には、ワーク22を刃物21で支持しても刃物21を傷めないため、供給時のワーク支持を刃物21で行うのが効率上有効である。
一方、ワーク供給の負荷が大きい場合には、センタ13を用いるのがよい。
Next, a more efficient method for supplying the
First, when the
When the workpiece supply force by the
On the other hand, when the work supply load is large, the
即ち、ワーク供給装置12がワーク22を供給する力が小さい場合には、刃物21を主軸18の軸上に位置させ、ワーク供給装置12が供給するワーク22を刃物21に当てて供給量を規定し、ワーク供給装置12がワーク22を供給する力が大きい場合には、ワーク供給装置12が供給するワーク22をセンタ13に当てて供給量を規定する。
That is, when the force with which the
このように、ワーク供給装置12は、被加工物の材料を繰り出す材料繰り出し手段として機能し、刃物21やセンタ13(支持手段)は、材料の先端を当接させる当接部材として機能する。
そして、旋盤1は、ワーク供給装置12や、刃物21、センタ13を用いて繰り出される材料の繰り出し量を規定する規定手段を備えている。
In this way, the
And the
そして、ワーク22を加工する際には、必要がある場合にワーク22をセンタ13で支持する。
即ち、ワーク22の径が十分に大きかったり、ワーク22の加工部分の長さが短い場合には、センタ13で支持せずにガイドブッシュ23で片持ちにて加工し、ワーク22の径が小さかったり、加工部分の長さが長い場合には、ワーク22の先端をセンタ13で支持して加工する。
また、加工途中で加工部分の長さが長くなる場合などには、加工の途中からセンタ13でワーク22の先端を支持することもできる。
When the
That is, when the diameter of the
Further, when the length of the processed portion becomes longer during the processing, the tip of the
図12(a)は、センタ13の駆動機構を示した図である。
基盤部5には、刃物台3の+Z側に支柱67が設けられている。支柱67にはセンタ13を挿通させるための貫通孔が形成されていると共に、Z軸方向を長さ方向とする棒材で構成された度当たり64が固定されている。
FIG. 12A is a diagram showing a drive mechanism of the
A
度当たり64は、固定部材32がZ軸方向に移動する際の−Z方向の限界を規定しており、固定部材32が−Z方向に所定量移動すると度当たり64に当接して固定部材32の移動が規制される。
固定部材32は、図示しないセンタ台4に固定されているため、センタ台4の移動、及びセンタ13の移動も度当たり64によって規定される。
64 per degree defines the limit in the −Z direction when the fixing
Since the fixing
バネ66は、センタ13を−Z方向に付勢する付勢手段として機能しており、付勢力は、ワーク供給装置12のワーク供給力よりも強く設定されている。
エアシリンダ61は、エアの圧力によりオンオフすることができ、その力はバネ66の付勢力りよりも大きく設定されている。
The
The
そのため、エアシリンダ61がオン(作動)すると、エアシリンダ61の先端が部材65に当接してこれを+Z方向に移動させる。
部材65はセンタ13と連結しており、部材65がエアシリンダ61によって+Z方向に移動すると、センタ13も+Z方向に移動するようになっている。
Therefore, when the
The
なお、センタ13の先端付近には、センタ13を−Z方向に付勢する緩衝バネ63が設けてあり、図示しないワーク22がセンタ13に接した際の衝撃を緩和するようになっている。
以上のようにして、センタ13は、エアシリンダ61がオフ(非作動)の場合には、バネ66によって−Z軸方向に、度当たり64で規定される位置に付勢されており、エアシリンダ61がオンの場合には、センタ13は、+Z方向に移動する。
このように、エアシリンダ61は、バネ66による付勢を解除する付勢解除手段として機能している。
A
As described above, when the
Thus, the
図12(b)は、ワーク22をガイドブッシュ23で支持し、ワーク22の先端は支持せずに片持ちにして加工しているところを示した図である。
ワーク22の長さが短い場合や、ワーク22の径が十分大きい場合など、ワーク22を片持ちで加工できる場合には、ワーク22をこのように支持して加工することができる。
FIG. 12B is a view showing a state where the
When the
この場合、センタ13でワーク22を支持する必要がないため、旋盤1は、クランプ機構33を開いてセンタ13と主軸台2の連結を解除すると共に、エアシリンダ61をオンしてセンタ13を+Z方向に移動しておく。
In this case, since it is not necessary to support the
図12(c)は、ワーク22をガイドブッシュ23とセンタ13で支持して加工しているところを示した図である。
ワーク22の長さが長い場合や、ワーク22の径が小さい場合など、ワーク22を片持ちで加工するのが困難な場合にはこのように支持する。
FIG. 12 (c) is a view showing the
In the case where it is difficult to process the
この場合、旋盤1は、ワーク22を加工する際には、エアシリンダ61をオフしてセンタ13を度当たり64の位置まで移動させると共に、クランプ機構33を閉じて主軸台2とセンタ13を連結し、ガイドブッシュ23とセンタ13でワーク22を保持して刃物21でワーク22を加工する。
In this case, when the
図13は、ワーク22供給時に刃物21でワーク22の先端を支持して位置決めを行う場合に旋盤1が行う自動サイクルを説明するためのフローチャートである。
以下の、フローチャートで、カウンタkは、ワーク供給装置12がワーク22を供給した回数を計数するパラメータであり、Mは、ワーク供給装置12がワーク22を繰り出す回数である。
また、パラメータNは、1回のワーク22の繰り出しに対して加工する加工品の個数であり、カウンタiは、ワーク22を供給してから加工した加工品の個数を計数するパラメータである。
FIG. 13 is a flowchart for explaining an automatic cycle performed by the
In the following flowchart, the counter k is a parameter for counting the number of times that the
The parameter N is the number of workpieces to be processed with respect to one feeding of the
まず、オペレータは、ワーク22となる棒材を旋盤1にセッティングした後、図7のフローチャートと同様にして旋盤1を始動する。
この際に、オペレータは、数値制御プログラムの部分修正やオフセット機能によるタイミングの補正も実施する
すると、旋盤1は、主軸18を回転し(ステップ200)、カウンタkを0に初期化する(ステップ205)。
次に、旋盤1は、カム軸16と主軸台2を所定の基準位置に待機させ(ステップ210)、チャック27を開く(ステップ215)。
First, the operator sets the bar to be the
At this time, when the operator also performs partial correction of the numerical control program and correction of timing by the offset function, the
Next, the
カム軸16の基準位置では、繰り出されるワーク22が刃物21に当たって位置決めされるように、当該刃物21が主軸18の中心軸上に位置するようになっている。
あるいは、カム軸16を基準位置に移動させた後、ワーク22を位置決めする刃物21を主軸18の中心軸上に位置するようにカム軸16を回転して移動してもよい。
At the reference position of the
Alternatively, after the
次に、旋盤1は、主軸台2の位置を、加工品N個分を加工するためのワーク22を供給できる位置(切削原点−加工品のZ方向のサイズ×N)に復帰し(ステップ220)、ワーク供給装置12を駆動してワーク22を供給する(ステップ225)。
供給されるワーク22が刃物21に当たるとワーク22の繰り出しがこれにより制限され(即ち、ワーク22の先端が刃物21に突き当たってワーク22の供給が止まり)、加工品をN個加工するのに必要な量が繰り出される。
そして、ワーク22供給が完了すると旋盤1はチャック27を閉じてワーク22を把持する(ステップ230)。
Next, the
When the supplied
When the supply of the
次に、図14のフローチャートに続き(続く箇所を丸印で囲ったAにより示してある)、旋盤1は、カウンタiを0に初期化し(ステップ235)、カム軸16の回転を開始して(ステップ240)、ワーク22を加工する(ステップ245)。
旋盤1は、ワーク22を加工する際に、必要に応じてクランプ機構33を閉じると共に(ステップ250)、エアシリンダ61をオフしてセンタ13でワーク22の先端を支持してワーク22を加工する(ステップ255)。
この場合、旋盤1は、加工を終えると、クランプ機構33を開いて(ステップ260)、主軸台2とセンタ13の連結を解除する。
Next, following the flowchart of FIG. 14 (the following part is indicated by A surrounded by a circle), the
When the
In this case, when the
旋盤1は、例えば、ワーク22の長さが長い場合には、加工の最初からセンタ13でワーク22を支持し、加工につれてワーク22の長さが長くなる場合には、加工の途中でセンタ13を駆動してワーク22を支持する。
何れのタイミングで支持するか、あるいは支持しないかは、数値制御プログラムによって規定されている。
For example, when the length of the
The timing of supporting or not supporting is defined by the numerical control program.
このように、センタ13と主軸台2を連結する連結手段は、付勢手段(バネ66)が被加工物(ワーク22)を付勢している場合に把持手段(チャック27が設けられた主軸台2)と支持手段を連(センタ13)結し、付勢解除手段(エアシリンダ61)で付勢が解除されている場合には連結しない。
In this way, the connecting means for connecting the
旋盤1は、ワーク22の加工を終了すると、加工品を突っ切り加工などにより切断する。
そして、旋盤1は、カム軸16を待機させ(ステップ265)、カウンタiを1だけインクリメントする(ステップ270)。
次に、旋盤1は、例えば、オペレータからの停止操作があるなど、停止命令があるか否かを判断し(ステップ275)、停止命令がある場合には(ステップ275;あり)、旋盤1は、全軸を停止して待機状態にする(ステップ295)。
When the
Then, the
Next, the
一方、停止命令が無い場合には(ステップ275;なし)、旋盤1は、iがN未満であるか判断し(ステップ280)、N未満である場合には(ステップ280;Y)、加工した加工品の個数がN個に達していないため、旋盤1は、ステップ240の工程に移行し、次の加工品を製作する。
N未満でない場合には(ステップ280;N)、加工した加工品の個数がN個に達したため、旋盤1は、カウンタkを1だけインクリメントする(ステップ285)。
On the other hand, if there is no stop command (
If it is not less than N (step 280; N), since the number of processed products has reached N, the
そして、旋盤1は、kがM未満であるか判断し(ステップ290)、M未満である場合には(ステップ290;Y)、ワーク22の供給回数がM回に達していないため、旋盤1は、図13のフローチャートのステップ215の工程に移行し(続く箇所を丸印で囲ったaにより示してある)、ワーク22の供給を行う。
一方、M未満でない場合には(ステップ290;N)、ワーク22の供給回数がM回に達したため、旋盤1は、全軸を停止して待機状態にする(ステップ295)。
Then, the
On the other hand, if it is not less than M (step 290; N), since the number of times the
図15は、ワーク22供給時にセンタ13でワーク22の先端を支持して位置決めを行う場合に旋盤1が行う自動サイクルを説明するためのフローチャートである。
ステップ200〜ステップ210は、図13のフローチャートと同じである。
旋盤1は、ステップ210でカム軸16や主軸台2を基準位置に待機した後、クランプ機構33を開き(ステップ212)、エアシリンダ61をオフしてセンタ13をワーク22の方向(−Z方向)に前進させる(ステップ213)。
FIG. 15 is a flowchart for explaining an automatic cycle performed by the
Steps 200 to 210 are the same as those in the flowchart of FIG.
The
そして、旋盤1は、図13のフローチャートと同様に主軸台位置復帰(ステップ220)、ワーク供給(ステップ225)を行う。
この場合、ワーク22の先端がセンタ13の先端に当たってワーク22の供給量が規定される。
その後、旋盤1は、チャック27を閉じて(ステップ230)、エアシリンダ61をオンし、センタ13を+Z方向に後退させる(ステップ232)。
以降、旋盤1は、図14のフローチャートに従って加工を行う。
Then, the
In this case, the supply amount of the
Thereafter, the
Thereafter, the
次に、本実施の形態の更なる変形例について説明する。
図1に示したカム9a、9b、・・・(ただし、カム9b以降は省略してある)は、ケガキ線によって互いの相対的な位置を合わせてカム軸16にボルトによって固定するようになっている。
これらカム9の相対的な取付角度がずれていると、加工誤差が生じ、加工品の形状が当初設計したものとは異なってくる。
Next, a further modification of the present embodiment will be described.
The
If the relative mounting angles of these
従来は、カム9の取り付け及び位置調整は、熟練作業者が、材料を加工しながら各カム9の位置を現物合わせなどにより、即ち、加工形状を見ながらカム9の取付角度を調節していた。
本変形例では、個々のカム9の取付角度のずれを数値制御プログラムに入力し、主軸台2の移動をカム9に合わせて補正する。
これによって、熟練作業者がカム9の位置をカム軸16上で微調整する必要が無くなり、一般の作業者でも容易に補正を行うことができる。
高精度加工を行う場合、通常はほぼずれが0°(通常は±0.1°程度の公差内)になるようにシビアに取付を行っているが、本変形例の機能を用いることで、0.5°前後のずれでもオフセットによって補正が可能となる。
Conventionally, the mounting and position adjustment of the
In this modification, the deviation of the mounting angle of each
This eliminates the need for a skilled worker to finely adjust the position of the
When performing high-precision machining, it is usually attached to severe so that the deviation is almost 0 ° (usually within a tolerance of about ± 0.1 °), but by using the function of this modification, Even a deviation of around 0.5 ° can be corrected by an offset.
まず、各カム9の取付角度のずれの検出方法について説明する。
カム9の取付角度のずれは、何れかのカム9(ここでは、カム9aとする)を基準とし、当該基準となるカム9に対する相対的な角度のずれをエンコーダで検出する。
より詳細に述べると次のようになる。作業者は操作盤42(図5)にてエンコーダの角度を数値にて角にすることができる。
First, a method for detecting a shift in the mounting angle of each
The displacement of the mounting angle of the
In more detail, it is as follows. The operator can change the angle of the encoder numerically on the operation panel 42 (FIG. 5).
まず、カム9aのケガキ線の角度になるように、エンコーダを用いてカム軸16を回転させる。
このとき、接触子24a(図1(a))とケガキ線が一致すれば、カム9aの取付ずれはないと判断できる。ケガキ線と一致しない場合は、接触子24aとケガキ線が一致する位置までカム軸16を回転させる。
このときのエンコーダの値とケガキ線で指示されている角度との差がカム9aの取付角度のずれに相当する。
以上の作業を他のカム9についても行い、全てのカム9について取付角度のずれを検出することができる。
First, the
At this time, if the
The difference between the encoder value at this time and the angle indicated by the marking line corresponds to the displacement of the mounting angle of the
The above operation is also performed for the
図16は、カム9の取付角度を数値制御プログラムでオフセットした場合の各刃物21等の移動を表したタイミングチャートである。
この例では、カム9bの取付角度が標準の取付角度に対して−1°ずれており、これを数値制御プログラムにオフセット値として設定して、主軸台2の移動をカム9bのずれに合わせて補正した場合を示している。
これによって主軸台2の移動のタイミングが補正され、刃物21bの動きと一致する。
FIG. 16 is a timing chart showing the movement of the
In this example, the mounting angle of the cam 9b is deviated by -1 ° with respect to the standard mounting angle, and this is set as an offset value in the numerical control program so that the movement of the
As a result, the timing of movement of the
実線301は、カム9bの取付角度にずれが無い場合の刃物21bの移動を表しており、破線302は、カム9bの取付角度のオフセット値を−1°とした場合の刃物21bの移動を表している。
図に示したように、カム9bの取付角度が−1°ずれているため、刃物21bの移動も1°分だけ遅れている。
A
As shown in the figure, since the mounting angle of the cam 9b is shifted by -1 °, the movement of the blade 21b is also delayed by 1 °.
一方、実線303は、カム9bの取付角度にずれが無い場合の主軸台2(主軸18)の移動を表しており、破線304は、主軸台2の移動をカム9の取付角度に合わせてオフセットした場合の移動を表している。
なお、タイミングチャートの主軸台2の欄に両者を記載すると判別が困難なため、欄外に記載してある。
図に示したように、主軸台2の移動タイミングが実際のカム9bと合ったものになる。
これは、カム9bが加工工程を行う場合に、コントローラ41が主軸台2の移動を+1°分だけ進めることにより、主軸台2がカム9bの取付角度のずれを繰り込んだ動きをするためである。
On the other hand, the
In addition, since it is difficult to discriminate if both are described in the column of the
As shown in the figure, the movement timing of the
This is because, when the cam 9b performs a machining process, the
なお、主軸台2の動きをオフセットすると、次のカム9(例えば、カム9c)の移動と主軸台2の移動が同期しなくなる可能性があるが、各カム9の取付角度には十分な遊びが設けてあり、カム9bから次のカム9に作業が移行する間の遊び区間で主軸台2の移動のオフセットによるずれが吸収される。
If the movement of the
次に、図17の表を用いて、カム9の取付状況と数値制御プログラムとの関係について説明する。
項目「刃物」は、旋盤1に取り付けられている各刃物21を表している。
項目「カム」は、刃物21を駆動するカム9である。図のように、刃物21は、単数又は複数のカム9により駆動される。
図の例では、刃物21aは、カム9aによって駆動され、刃物21bは、カム9bとカム9cによって駆動される。
Next, the relationship between the mounting state of the
The item “blade” represents each
The item “cam” is a
In the illustrated example, the
項目「数値制御プログラム」は、数値制御プログラムの論理的な構成を表しており、「工程番号」、「オフセット」、「ステップ番号」、「カム軸角度」、「主軸移動量」、「カム軸速度」などの項目から構成されている。
項目「工程番号」は、工程に付与された番号である。工程は、カム9が刃物21を駆動して行うひとまとまりの作業であり、各工程は更に細かいステップから構成されている。
The item “numerical control program” represents the logical structure of the numerical control program. “Process number”, “Offset”, “Step number”, “Cam shaft angle”, “Spindle travel”, “Cam shaft” It consists of items such as “speed”.
The item “process number” is a number assigned to the process. The process is a group of operations performed by the
項目「ステップ番号」は、当該工程を構成するステップの番号を表している。即ち、各工程は、更に小さな作業単位であるステップから構成されている。
図の例では、工程1に対してステップ1〜5から構成されており、工程2に対してステップ6、7から構成されている。
一般に、工程iは、ステップN(i−1)+1〜ステップNiによって構成されている。
The item “step number” represents the number of the step constituting the process. That is, each process is composed of steps that are smaller work units.
In the example of the figure, the
Generally, the process i is composed of Step N (i−1) +1 to Step Ni.
項目「オフセット」は、カム9の取付角度のずれ、即ちオフセット値を表している。カム9aは、角度計測の基準となっており、そのため、オフセット値は0になっている。
カム9bは、カム9aに対して+0.2°、カム9cは、カム9aに対して−0.1°取付角度がずれている。
これらオフセット値は、作業者が操作盤42(図5)から入力するようになっている。
一般に、工程iのオフセット値をαiと表すことにする。
The item “offset” represents a shift in the mounting angle of the
The cam 9b is offset by + 0.2 ° with respect to the
These offset values are input by the operator from the operation panel 42 (FIG. 5).
In general, the offset value of step i will be expressed as αi.
図の例では、カム9aが工程1に対応づけられており、工程1の補正値α1には、カム9aのオフセット値0°が設定される。これによって、工程1のステップ1〜ステップ5には補正値α1が適用される。
同様に、カム9nが工程iに対応づけられており、工程iの補正値αiには、カム9nのオフセット値αiが設定される。これによって、工程iのステップN(i−1)+1〜ステップNiには補正値αiが適用される。
In the illustrated example, the
Similarly, the cam 9n is associated with the process i, and the offset value αi of the cam 9n is set as the correction value αi of the process i. As a result, the correction value αi is applied to step N (i−1) +1 to step Ni of step i.
項目「カム軸角度」は、カム軸16を回転する角度である。例えば、工程1のステップ2のカム軸角度は10°となっており、ステップ1は0°であるので、旋盤1は、ステップ1からステップ2に移行する際に、カム軸16を0°から10°まで回転させる。
項目「主軸移動量」は、主軸台2を移動させる量である。例えば、工程1のステップ3の主軸移動量は−2.5[mm]となっており、旋盤1は、ステップ2からステップ3に移行する際に、主軸台2を−2.5[mm]移動させる。
項目「カム軸速度」は、カム軸16を回転する速度であり、単位は[°/秒]である。
The item “cam shaft angle” is an angle for rotating the
The item “spindle movement amount” is an amount by which the
The item “camshaft speed” is a speed at which the
以上のように構成された数値制御プログラムにおいて、コントローラ41(図5)は、当該工程に属する各ステップのコードにて、主軸台2の移動の基準となる「カム軸角度」を補正値だけオフセットして主軸台2を移動する。
これによって、主軸台2は、カム9のオフセット値に対応する量だけ、動作タイミングをオフセットして移動する。
In the numerical control program configured as described above, the controller 41 (FIG. 5) offsets the “camshaft angle”, which is the reference for movement of the
As a result, the
例えば、カム9の取付角度にずれが無い場合に、あるステップのコードで、カム軸16の角度がDx1の時に主軸台2の移動を開始し、Vz=(Dz/Dx)×Vx・・・(式2)なる速度で主軸台2を移動するように規定されていたとする。ただし、Dxはカム軸16の角度であり、絶対座標系によって記述されているものとする。
このコードにおいて、Dx1+αiの時に主軸台2の移動を開始するようにし、(式2)をVz={Dz/(Dx+αi)}×Vx・・・(式3)とすれば、主軸台2の移動がαiによってオフセットされる。
なお、コードが相対座標系にて記述されている場合は、絶対座標に変換して補正を行うものとする。
For example, when there is no deviation in the mounting angle of the
In this code, if the movement of the
If the code is described in a relative coordinate system, it is converted to absolute coordinates and correction is performed.
以上のように、本変形例では、コントローラ41は、検出した回転角度に基づいて主軸18の移動量を制御する数値制御プログラムをコンピュータで実行することにより、主軸18を移動して主軸台2をZ方向に移動させる主軸移動手段として機能しており、更に、コントローラ41は、作業者が設定するαiによって、カム9の回転角度に対するオフセット値を取得するオフセット値取得手段と、当該数値制御プログラムにおいて、当該取得したオフセット値に対応する量だけ主軸18の移動を、例えば、式3によってオフセットするオフセット手段を備えている。
As described above, in this modification, the
また、旋盤1においてカム9は複数存在し、コントローラ41はオフセット値取得手段によって、αiの設定を受け付けることによりカム9ごとのオフセット値を取得する。
そして、コントローラ41は、当該数値制御プログラムにおいて、αiを工程番号に対応させることにより、カム9と主軸18の移動とを対応づける対応づけ手段を具備し、当該オフセット手段は、主軸18の移動を、当該移動に対応づけられたカム9に対して取得したオフセット値に対応する量だけ、例えば、式3によってオフセットしている。
Further, there are a plurality of
The
次に、図18のフローチャートを用いて、コントローラ41が行うオフセット処理の手順について説明する。
まず、作業者は、各カム9の取付角度のずれを計測して個々のカム9の角度のずれを操作盤42からコントローラ41に入力する。
また、作業者は、カム9と数値制御プログラムの工程の対応を操作盤42からコントローラ41に入力する。
Next, an offset process procedure performed by the
First, the operator measures the deviation of the mounting angle of each
In addition, the operator inputs correspondence between the
これに対して、コントローラ41は、カム9ごとのオフセット値の入力を受け付けてRAMなどの記憶装置に格納し、更に、オフセット値と工程の対応の入力を受け付けて記憶装置に格納する(ステップ300)。
次に、コントローラ41は、工程番号iとステップ番号jを1に初期化する(ステップ305)。
On the other hand, the
Next, the
次に、コントローラ41は、iがM以下であるか否かを判断する(ステップ310)。ここで、Mは工程番号の最大値であり、全てのMについてオフセット値を設定したか否かを確認するものである。
iがMより大きい場合(ステップ310;N)、全てのステップについてオフセット処理が行われたため、コントローラ41はオフセット処理を終了する。
Next, the
When i is larger than M (step 310; N), since the offset processing has been performed for all steps, the
iがM以下であった場合(ステップ310;Y)、コントローラ41は、jをN(i−1)+1に設定する(ステップ315)。
ここで、N(i−1)は、工程番号N(i−1)の最後のステップのステップ番号であり、N(i−1)+1は、工程番号iの最小のステップのステップ番号を示している。ただし、N0=0とする。
When i is M or less (step 310; Y), the
Here, N (i−1) is the step number of the last step of the process number N (i−1), and N (i−1) +1 indicates the step number of the smallest step of the process number i. ing. However, N0 = 0.
次に、コントローラ41は、jがNi以下であるか否かを確認する(ステップ320)。ここで、Niは工程番号iの最後のステップのステップ番号であり、工程番号iの全てのステップについてオフセットを設定したか否かを確認するものである。
jがNiよりも大きい場合(ステップ320;N)、工程番号iの全てのステップについてオフセットを設定したため、コントローラ41は、iを1だけインクリメントして(ステップ325)ステップ310に戻る。
Next, the
When j is larger than Ni (step 320; N), since the offset is set for all the steps of the process number i, the
一方、jがNi以下である場合(ステップ320;Y)、コントローラ41は、ステップ番号jのコードにおいてDxjをDxj+αiとすることにより、カム軸16の移動をαiだけオフセットする(ステップ330)。ここで、Dxjは、ステップjにおけるカム軸16の角度Dxである。
そして、コントローラ41は、jを1だけインクリメントして(ステップ335)ステップ320に戻る。
以上の手順により、全ての工程についてカム9の取付角度に応じた補正を行うことができる。
On the other hand, if j is Ni or less (step 320; Y), the
Then, the
By the above procedure, correction according to the mounting angle of the
次に、図19のフローチャートを用いて旋盤1が行う加工処理の手順について説明する。
まず、コントローラ41は、操作盤42によって作業者から、既にセットしてある数値制御プログラムを実行するのか、あるいは新たな数値制御プログラムを実行するのかの選択を受け付ける(ステップ350)。
既にセットしてある数値制御プログラムを実行する場合(ステップ350;N)、コントローラ41は、当該数値制御プログラムに係るカムデータ(カム9の対応づけやオフセット値など)を記憶装置から読み出す(ステップ360)。
Next, a processing procedure performed by the
First, the
When the numerical control program that has already been set is executed (step 350; N), the
一方、新たな数値制御プログラムを実行する場合には(ステップ350;Y)、コントローラ41は当該数値制御プログラムを記憶装置や、例えば、フレキシブルディスクなどの記憶媒体や、あるいはネットワークを介するなどして読み込んでセットする(ステップ355)。
On the other hand, when executing a new numerical control program (step 350; Y), the
次に、コントローラ41は、作業者からカム9とステップの対応づけや、カム9ごとのオフセット値の入力を受け付ける(ステップ365)。このステップは、図18のフローチャートのステップ5に対応するものである。
これらの対応づけやオフセット値がセットされると、コントローラ41は、補正データの計算を行う(ステップ370)。このステップは、図18のフローチャートのステップ10〜ステップ40に対応するものである。
Next, the
When these associations and offset values are set, the
以上のようにして、コントローラ41は、保存データの読み出しを完了した後(ステップ60)、又は補正データの計算が終了した後(ステップ370)、作業者が操作盤42のスタートボタンを押下するのを受け付けることにより自動運転を開始し(ステップ375)、数値制御プログラムに従って旋盤1の運転を行う(ステップ380)。
そして、コントローラ41は、数値制御プログラムを全て実行すると旋盤1の運転を終了する(ステップ385)。
As described above, after the
Then, when all the numerical control programs are executed, the
なお、数値制御プログラムでは、旋盤1の動作速度を設定できるようになっており、コントローラ41は、ステップ375の後にこれを計算して当該速度にて旋盤1を動作させる。
これは、旋盤1がオーバーライド機能(数値制御プログラムで指定された速度を指定された割合だけ変化させて旋盤1を動作させる機能)を有しない場合にオーバーライド機能の代わりとして用いることができる。
なお、オーバーライド機能は、数値制御プログラムの確認を行うために、旋盤1を早送りで空運転する場合などに用いられる。
In the numerical control program, the operation speed of the
This can be used as an alternative to the override function when the
The override function is used, for example, when the
以上に説明した本変形例により次のような効果を得ることができる。
(1)カム9のカム軸16に対する取付角度がずれていた場合でも、そのずれをオフセット値として数値制御プログラムに設定することができる。これによって、カム9の取付位置をカム軸16上で微調整する必要が無くなり、迅速容易にカム9のずれを補正することができる。
(2)工程番号によって、数値制御プログラムのステップをカム9に対応したグループに区分することによりカム9とステップとの対応を設定することができる。これによって、カム9のオフセット値を対応するステップに反映することができる。以上により、カム9を取付直さずに、数値入力で取付角度を調節することができる。
(3)個々のカム9の取付角度のずれを調べて修正するという作業が、主軸台2をカム9で移動していた従来のカム式旋盤の概念と近いため、従来機に慣れ親しんだ作業者にとっても作業がし易い。
The following effects can be obtained by this modification described above.
(1) Even when the mounting angle of the
(2) The correspondence between the
(3) Since the work of examining and correcting the deviation of the mounting angle of each
以上に説明した本実施の形態では、次のような構成を提供することができる。
即ち、軸線上に被加工物を把持する把持手段を備えた主軸と、前記主軸を回転する主軸回転手段と、数値制御によって前記主軸を軸線方向に移動する主軸移動手段と、前記被加工物を切削する刃物を保持する刃物保持手段と、前記刃物保持手段を、回転するカムの形状に倣って、前記主軸の軸線に垂直な方向に移動する刃物移動手段と、前記カムを回転させるカム回転手段と、を具備したことを特徴とする旋盤装置を提供することができる(第1の構成)。
第1の構成において、前記カムの回転角度を検出する回転角度検出手段を具備し、前記主軸移動手段は、前記検出した回転角度に基づいて前記主軸を移動させるように構成することもできる(第2の構成)。
第1の構成、又は第2の構成において、前記主軸移動手段は、前記主軸を移動させる力を、前記主軸の軸線を含む鉛直面内において、前記軸線に平行な方向に作用させるように構成することもできる(第3の構成)。
第1の構成、第2の構成、又は第3の構成において、前記被加工物を前記把持手段と対向する側から支持する支持手段と、前記把持手段と、前記支持手段と、の距離を所定の距離に保って連結する連結手段と、を具備するように構成することもできる(第4の構成)。
第4の構成において、前記連結手段は、前記被加工物から切削される加工品の長さ単位で、前記連結する長さを調節可能に構成されているように構成することもできる(第5の構成)。
第1の構成から第5の構成までのうちの何れか1の構成において、前記主軸と所定の角度を成す回転軸の周りに回転する刃物を保持する回転刃物保持手段と、前記回転する刃物で前記被加工物を切削する際に、前記回転刃物保持手段を移動させる回転刃物移動手段と、を具備するように構成することもできる(第6の構成)。
第6の構成において、前記回転刃物移動手段は、回転する回転刃物用カムの形状に倣って前記回転する刃物を移動するように構成することもできる(第7の構成)。
第7の構成において、前記回転刃物用カムには、前記回転する刃物が前記被加工物に切り込む第1の回転角度と、前記回転する刃物が被加工物から離れる第2の回転角度が設定されており、前記カム回転手段は、前記回転刃物用カムの回転角度を、前記第1の回転角度と前記第2の回転角度に交互に回転するように構成することもできる(第8の構成)。
第8の構成において、前記主軸回転手段は、前記回転刃物用カムが前記第1の回転角度に保持されている間は、前記被加工物の回転角度を所定角度に保持し、前記回転刃物用カムが前記第2の回転角度に保持されている間に、前記回転する刃物が次の切削箇所を切削するように前記被加工物を所定角度だけ回転させるように構成することもできる(第9の構成)。
第9の構成において、前記主軸移動手段は、前記回転刃物用カムが前記第1の回転角度に保持されている間は、前記回転する刃物に向けて前記被加工物を繰り出す方向に前記主軸を移動し、前記回転刃物用カムが前記第2の回転角度に保持されている間に前記主軸を移動前の位置に復帰するように構成することもできる(第10の構成)。
第1の構成から第5の構成までのうちの何れか1の構成において、前記刃物保持手段は、前記主軸と所定の角度を成す回転軸の周りに前記保持した刃物を回転する刃物回転手段を具備するように構成することもできる(第11の構成)。
第4の構成、又は第5の構成において、前記支持手段を前記被加工物に付勢する付勢手段と、前記付勢手段による付勢を解除する付勢解除手段と、を具備し、前記連結手段は、前記付勢手段が前記被加工物を付勢している場合に前記把持手段と前記支持手段を連結し、前記付勢解除手段で付勢が解除されている場合には連結しないように構成することもできる(第12の構成)。
第4の構成、第5の構成、又は第12の構成において、前記被加工物の材料を繰り出す材料繰り出し手段と、前記繰り出される材料の先端を当接部材に当接させることにより繰り出し量を規定する規定手段と、を具備するように構成することもできる(第13の構成)。
第13の構成において、前記当接部材は、前記保持した刃物か、又は前記支持手段であるように構成することもできる(第14の構成)。
In the present embodiment described above, the following configuration can be provided.
That is, a spindle provided with gripping means for gripping the workpiece on the axis, a spindle rotating means for rotating the spindle, a spindle moving means for moving the spindle in the axial direction by numerical control, and the workpiece A blade holding means for holding a cutting tool, a blade moving means for moving the blade holding means in a direction perpendicular to the axis of the main shaft, following the shape of the rotating cam, and a cam rotating means for rotating the cam. And a lathe device characterized by comprising (first configuration).
In the first configuration, rotation angle detection means for detecting a rotation angle of the cam may be provided, and the spindle movement means may be configured to move the spindle based on the detected rotation angle (first). 2 configuration).
In the first configuration or the second configuration, the main shaft moving means is configured to apply a force for moving the main shaft in a direction parallel to the axis in a vertical plane including the axis of the main shaft. It is also possible (third configuration).
In the first configuration, the second configuration, or the third configuration, a distance between the support unit that supports the workpiece from the side facing the gripping unit, the gripping unit, and the support unit is predetermined. It is also possible to comprise a coupling means for coupling at a distance of (4th configuration).
4th structure WHEREIN: The said connection means can also be comprised so that the length to connect may be comprised by the length unit of the workpiece cut from the said workpiece (5th). Configuration).
In any one of the configurations from the first configuration to the fifth configuration, a rotary blade holding means for holding a blade that rotates around a rotation shaft that forms a predetermined angle with the main shaft, and the rotating blade A rotary blade moving means for moving the rotary blade holding means when cutting the workpiece can also be configured (sixth configuration).
In the sixth configuration, the rotary blade moving means may be configured to move the rotating blade following the shape of the rotating rotary blade cam (seventh configuration).
In the seventh configuration, the rotary blade cam is set with a first rotation angle at which the rotating blade cuts into the workpiece and a second rotation angle at which the rotating blade is separated from the workpiece. The cam rotating means can be configured to alternately rotate the rotation angle of the rotary blade cam between the first rotation angle and the second rotation angle (eighth configuration). .
In the eighth configuration, the spindle rotating means holds the rotation angle of the workpiece at a predetermined angle while the rotary blade cam is held at the first rotation angle, While the cam is held at the second rotation angle, the workpiece can be rotated by a predetermined angle so that the rotating blade cuts the next cutting point (the ninth angle). Configuration).
In a ninth configuration, the spindle moving means moves the spindle in a direction in which the workpiece is fed toward the rotating cutter while the rotary cutter cam is held at the first rotation angle. It can also be configured to move and return the main shaft to the position before movement while the rotary blade cam is held at the second rotation angle (tenth configuration).
In any one of the configurations from the first configuration to the fifth configuration, the blade holding means includes blade rotation means for rotating the held blade around a rotation axis that forms a predetermined angle with the main shaft. It can also comprise so that it may comprise (11th structure).
In the fourth configuration or the fifth configuration, comprising: a biasing unit that biases the support unit to the workpiece; and a bias release unit that releases biasing by the biasing unit, The connecting means connects the gripping means and the support means when the biasing means biases the workpiece, and does not connect when the biasing is released by the bias releasing means. The twelfth configuration can also be configured (a twelfth configuration).
In the fourth configuration, the fifth configuration, or the twelfth configuration, the feeding amount is defined by bringing the material feeding means for feeding the material of the workpiece and the tip of the fed material into contact with the abutting member. It is also possible to configure to include a defining means (a thirteenth configuration).
In the thirteenth configuration, the contact member may be the held blade or the support means (fourteenth configuration).
1 旋盤
2 主軸台
3 刃物台
4 センタ台
5 基盤部
6 サーボモータ
7 ボールねじ
8 ナット
9 カム
10 カム機構
11 主軸モータ
12 ワーク供給装置
13 センタ
15 ギア部
16 カム軸
17 滑り面
18 主軸
21 刃物
22 ワーク
23 ガイドブッシュ
24 接触子
25 アーム
27 チャック
31 連結棒
32 固定部材
33 クランプ機構
41 コントローラ
42 操作盤
51 歯車加工台
52 凹部
53 カッター
55 刃物
59 工具保持部
61 エアシリンダ61
63 緩衝バネ
64 度当たり
65 部材
66 バネ
67 支柱
DESCRIPTION OF
63
Claims (11)
前記主軸を回転する主軸回転手段と、
前記被加工物を切削する刃物を保持する刃物保持手段と、
前記刃物保持手段を、回転するカムの形状に倣って、前記主軸の軸線に垂直な方向に移動する刃物移動手段と、
前記カムを回転させるカム回転手段と、
前記カムの回転角度を検出する回転角度検出手段と、
前記検出した回転角度に基づいて前記主軸の移動量を制御する数値制御プログラムをコンピュータで実行することにより数値制御によって前記主軸を軸線方向に移動する主軸移動手段と、
前記カムの回転角度に対するオフセット値を取得するオフセット値取得手段と、
前記数値制御プログラムにおいて、前記取得したオフセット値に対応する量だけ前記主軸を移動させるタイミングをオフセットするオフセット手段と、
を具備したことを特徴とする旋盤装置。 A spindle equipped with gripping means for gripping the workpiece on the axis;
A spindle rotating means for rotating the spindle;
A blade holding means for holding a blade for cutting the workpiece;
A blade moving means for moving the blade holding means in a direction perpendicular to the axis of the main shaft, following the shape of the rotating cam;
Cam rotating means for rotating the cam;
Rotation angle detection means for detecting the rotation angle of the cam;
Spindle moving means for moving the spindle in the axial direction by numerical control by executing a numerical control program for controlling the movement amount of the spindle on the basis of the detected rotation angle;
An offset value acquisition means for acquiring an offset value with respect to the rotation angle of the cam;
In the numerical control program, offset means for offsetting the timing of moving the spindle by an amount corresponding to the acquired offset value;
A lathe device characterized by comprising:
前記オフセット値取得手段は、前記カムごとのオフセット値を取得し、
前記数値制御プログラムにおいて、前記カムと前記主軸の移動とを対応づける対応づけ手段を具備し、
前記オフセット手段は、前記主軸の移動を、当該移動に前記対応づけられたカムに対して前記取得したオフセット値に対応する量だけオフセットすることを特徴とする請求項1に記載の旋盤装置。 There are a plurality of the cams,
The offset value acquisition means acquires an offset value for each cam,
In the numerical control program, the numerical control program includes association means for associating the cam and the movement of the spindle,
The lathe device according to claim 1, wherein the offset means offsets the movement of the main shaft by an amount corresponding to the acquired offset value with respect to the cam associated with the movement.
前記把持手段と、前記支持手段と、の距離を所定の距離に保って連結する連結手段と、
を具備したことを特徴とする請求項1、請求項2、又は請求項3に記載の旋盤装置。 Support means for supporting the workpiece from the side facing the gripping means;
A connecting means for connecting the holding means and the support means while maintaining a predetermined distance;
The lathe device according to claim 1, 2, or 3.
前記回転する刃物で前記被加工物を切削する際に、前記回転刃物保持手段を移動させる回転刃物移動手段と、
を具備したことを特徴とする請求項1から請求項5までのうちの何れか1の請求項に記載の旋盤装置。 Rotary blade holding means for holding a blade that rotates around a rotation axis that forms a predetermined angle with the main shaft;
A rotary blade moving means for moving the rotary blade holding means when cutting the workpiece with the rotating blade;
A lathe device according to any one of claims 1 to 5, wherein the lathe device is provided.
前記カム回転手段は、前記回転刃物用カムの回転角度を、前記第1の回転角度と前記第2の回転角度に交互に回転することを特徴とする請求項7に記載の旋盤装置。 In the rotary blade cam, a first rotation angle at which the rotating blade cuts into the workpiece and a second rotation angle at which the rotating blade is separated from the workpiece are set,
The lathe device according to claim 7, wherein the cam rotation means rotates the rotation angle of the rotary blade cam alternately between the first rotation angle and the second rotation angle.
前記回転刃物用カムが前記第2の回転角度に保持されている間に、前記回転する刃物が次の切削箇所を切削するように前記被加工物を所定角度だけ回転させることを特徴とする請求項8に記載の旋盤装置。 The spindle rotating means holds the rotation angle of the workpiece at a predetermined angle while the rotary blade cam is held at the first rotation angle.
While the rotary blade cam is held at the second rotation angle, the workpiece is rotated by a predetermined angle so that the rotating blade cuts a next cutting point. Item 9. A lathe device according to item 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007329151A JP5062417B2 (en) | 2006-12-28 | 2007-12-20 | Lathe equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006354916 | 2006-12-28 | ||
JP2006354916 | 2006-12-28 | ||
JP2007329151A JP5062417B2 (en) | 2006-12-28 | 2007-12-20 | Lathe equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008178971A JP2008178971A (en) | 2008-08-07 |
JP5062417B2 true JP5062417B2 (en) | 2012-10-31 |
Family
ID=39588428
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008552096A Expired - Fee Related JP5105371B2 (en) | 2006-12-28 | 2007-12-20 | Lathe equipment |
JP2007329151A Active JP5062417B2 (en) | 2006-12-28 | 2007-12-20 | Lathe equipment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008552096A Expired - Fee Related JP5105371B2 (en) | 2006-12-28 | 2007-12-20 | Lathe equipment |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP5105371B2 (en) |
CN (1) | CN101573200B (en) |
HK (1) | HK1135644A1 (en) |
TW (1) | TWI464024B (en) |
WO (1) | WO2008081744A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102744640A (en) * | 2012-07-18 | 2012-10-24 | 张家港名阳精密机械制造有限公司 | Stepless speed change device for camshaft of automatic lathe |
CN103286327A (en) * | 2013-05-31 | 2013-09-11 | 江苏唐音光电有限公司 | Numerical-control automatic cam lathe |
CN104001939A (en) * | 2014-05-15 | 2014-08-27 | 孙小东 | Intelligent cam numerically controlled lathe and control system thereof |
CN105562720A (en) * | 2014-10-24 | 2016-05-11 | 江苏拓海煤矿钻探机械有限公司 | Automatic adapter machining equipment with cam mechanism |
JP6372383B2 (en) * | 2015-02-09 | 2018-08-15 | スター精密株式会社 | Machine Tools |
CN109937107A (en) * | 2016-11-08 | 2019-06-25 | 贝瓦克生产机械有限公司 | Method and apparatus for modifying tank |
JP7156897B2 (en) * | 2018-10-10 | 2022-10-19 | シチズン時計株式会社 | Machine Tools |
CN113458423A (en) * | 2020-03-30 | 2021-10-01 | 东莞市佑昌精密机械有限公司 | Automatic lathe of numerical control computer |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618330B2 (en) * | 1972-11-02 | 1981-04-28 | ||
JPS5632242Y2 (en) * | 1979-05-23 | 1981-07-31 | ||
JPS5816964B2 (en) * | 1979-07-20 | 1983-04-04 | セイコ−精機株式会社 | Multi-tasking automatic lathe |
JPS59174914A (en) * | 1983-03-24 | 1984-10-03 | Matsushita Electric Ind Co Ltd | Device for controlling cam type precision lathe |
JPS6020803A (en) * | 1983-07-14 | 1985-02-02 | Tsugami Corp | Center supporting device in headstock moving lathe |
JPS62224551A (en) * | 1986-03-27 | 1987-10-02 | Fanuc Ltd | Preparation of nc data for bar feeding tool |
JP2877839B2 (en) * | 1989-06-09 | 1999-04-05 | 野村精機株式会社 | Machining method using a spindle moving type automatic lathe |
DE4140466A1 (en) * | 1991-09-21 | 1993-04-01 | Index Werke Kg Hahn & Tessky | MULTI-SPINDLE LATHE |
JPH06312302A (en) * | 1993-04-28 | 1994-11-08 | Toyoda Mach Works Ltd | Work holding device |
JP2002066807A (en) * | 2000-08-31 | 2002-03-05 | Star Micronics Co Ltd | Automatic lathe |
JP3790781B2 (en) * | 2000-10-02 | 2006-06-28 | スター精密株式会社 | Automatic lathe and cutting tool damage judgment method for automatic lathe |
US6815917B2 (en) * | 2001-04-27 | 2004-11-09 | Citizen Watch Co., Ltd. | Automatic lathe, method for controlling the same, and device for controlling the same |
JP4382426B2 (en) * | 2003-09-18 | 2009-12-16 | 株式会社ツガミ | lathe |
KR101052019B1 (en) * | 2003-12-26 | 2011-07-26 | 시티즌 홀딩스 가부시키가이샤 | Automatic lathe |
-
2007
- 2007-12-20 CN CN200780048896.9A patent/CN101573200B/en not_active Expired - Fee Related
- 2007-12-20 WO PCT/JP2007/074572 patent/WO2008081744A1/en active Application Filing
- 2007-12-20 JP JP2008552096A patent/JP5105371B2/en not_active Expired - Fee Related
- 2007-12-20 JP JP2007329151A patent/JP5062417B2/en active Active
- 2007-12-27 TW TW096150562A patent/TWI464024B/en not_active IP Right Cessation
-
2010
- 2010-03-09 HK HK10102460.5A patent/HK1135644A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2008081744A1 (en) | 2008-07-10 |
JPWO2008081744A1 (en) | 2010-04-30 |
TW200914177A (en) | 2009-04-01 |
JP2008178971A (en) | 2008-08-07 |
JP5105371B2 (en) | 2012-12-26 |
CN101573200B (en) | 2013-05-08 |
CN101573200A (en) | 2009-11-04 |
TWI464024B (en) | 2014-12-11 |
HK1135644A1 (en) | 2010-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5062417B2 (en) | Lathe equipment | |
KR0166398B1 (en) | Apparatus and method for machining a gear shape | |
US5964016A (en) | Long bar member machining apparatus | |
EP0371450B1 (en) | Headstock-reciprocating-type automatic lathe and machining method using the same | |
JPH05200601A (en) | Machine tool | |
JP3990441B1 (en) | Automatic tool changing method and automatic tool changing device for machine tool with numerical control device | |
US7177720B2 (en) | Machine tool and method for operating a machine tool | |
KR200437457Y1 (en) | Chuck jaw of CNC lathe for manufacturing the precision parts | |
JP6917135B2 (en) | Machine Tools | |
CN114161170B (en) | Multi-shaft turning and milling composite center special for oil cylinder machining and working method thereof | |
JP5937486B2 (en) | Machine Tools | |
CN110508832A (en) | Multitool high efficiency synchronous dynamic balancing turnery processing lathe and processing method | |
JP2006062077A (en) | Grinding method and device for profile of workpiece | |
WO2015102515A1 (en) | Method for machining an asymmetrical workpiece in a single setting and device for fastening a workpiece | |
CN111036999A (en) | Gear making machine | |
JP4572133B2 (en) | Internal processing equipment for hollow workpieces | |
JPH11165211A (en) | Inner face machining machine | |
JP5262576B2 (en) | Thread groove grinding device rest device and thread groove grinding device | |
US4297925A (en) | Turret head for a lathe | |
JP5726791B2 (en) | Tool holder and lathe device | |
JP3636895B2 (en) | Bar-shaped workpiece supply device for spindle-moving vertical machine tool and rod-shaped workpiece supply method in spindle-moving vertical machine tool | |
JPH10193239A (en) | Working device | |
JP5121361B2 (en) | Internal processing equipment for hollow workpieces | |
JP3010328B2 (en) | 6-axis control machine tool | |
JPH1058202A (en) | Nc machine tool having sphere machining device and sphere machining method used in the machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5062417 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150817 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |